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Abstract: An attractive application of crude glycerol is in the generation of biomethane by means of 
anaerobic co-digestion, involving the decomposition of the organic matter in two or more substrates 
by bacteria and archaea, in the absence of oxygen. Thus, the objective of this work was to evaluate 
the potential of neural networks and fuzzy logic to predict the production of biomethane from the 
anaerobic co-digestion of glycerol and/or sugarcane molasses. Firstly, a reactor model was 
implemented using Scilab, with Monod kinetics involving two substrates and an intermediate (M2SI 
model), to generate a database for subsequent fitting and evaluation of neural and fuzzy models. 
The neural network package of Matlab was used. Fuzzy modeling was applied using the Takagi-
Sugeno approach available in the ANFIS package of Matlab. The biomethane production results 
simulated by M2SI were used in neural network modeling, firstly employing a “generic” network 
applicable to all 8 scenarios. A very good fit was obtained (R²>0.99). Excellent performance was also 
observed for specific artificial neural networks (one for each condition). The parameters of the M2SI 
model for the 8 different conditions were also mapped using a neural network, as a function of the 
organic material composition. A fit with R²>0.99 was obtained using 25 neurons. In the case of the 
fuzzy logic, RMSE of 18.88 mL of methane was obtained with 216 rules, which was a value lower 
than 0.5% of the order of magnitude of the accumulated methane. It could be concluded from the 
results that fuzzy logic and artificial neural networks offer excellent ability to predict methane 
production, as well as to parameterize the M2SI kinetic model (using neural networks). 

Keywords: glycerol; sugarcane molasses; biomethane; anaerobic co-digestion; neural network; 
fuzzy logic; computational simulation 
 

1. Introduction 

Since the Stockholm Conference in Sweden, in 1972, many efforts have been made and public 
policies have been created aiming to minimize the impacts of anthropogenic activities on the 
environment [1]. The use of biofuels is a clean energy option that can replace fossil fuels and 
contribute to reducing greenhouse gas emissions. Biofuels are usually produced from renewable 
sources of plant origin, but can also be obtained from byproducts and domestic and agro-industrial 
wastes. This makes them highly appropriate in the circular economy and provides a use for materials 
that would otherwise be improperly discarded in the environment. 

Brazil can be highlighted in the global policy of production and marketing of bio-fuels, since the 
country was a pioneer in the production of ethanol. In 2004, the Federal Government published a 
National Policy for the Use and Production of Biodiesel, stipulating the increasing incorporation of 
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biodiesel in diesel, to reach 15% in 2023 [2]. Most of Brazilian biodiesel production uses soybean oil, 
although waste frying oil and animal fat may also be used [3,4] 

In 2018, the Federal Government established a National Biofuels Policy, with de-carbonization 
targets to be met by 2030, linked to incentivizing the production of ethanol and biodiesel. Hence, it is 
expected that the production of these biofuels in the country will increase during the next ten years 
[5]. One consequence of increased biodiesel production is the large quantity of glycerol generated. 
However, the market demand for this product has not grown at the same rate, which has led to 
depreciation of the glycerol price. Furthermore, the glycerol formed in the process contains many 
impurities, so it needs to be purified before it can be sold. Due to the low glycerol price, its treatment 
has not been economically feasible, especially for small and medium sized biodiesel producers. 
Glycerol has high polluting potential, so it should not be discharged into the environment in effluents. 
As an alternative, one emerging use for crude glycerol is as a substrate in anaerobic digestion for the 
production of biogas and application in energy processes [6]. 

Anaerobic digestion consists of the degradation of organic matter by bacteria and archaea, in the 
absence of oxygen. However, maintaining the metabolic processes of these microorganisms requires 
nutrients (such as nitrogen, phosphorus, potassium, sodium, and iron, among others) and favorable 
environmental conditions [7]. Glycerol is a compound rich in carbon, so it can provide a source of 
energy for the process. However, it does not contain the macro and micronutrients required to 
support fermentation. Therefore, to make the process feasible, it is necessary to add synthetic 
nutrients or a co-substrate that contains the main nutrients in its composition. 

Sugarcane molasses, a byproduct from the crystallization step of sugar production, contains 
nutrients (including calcium, nitrogen, phosphorus, iron, and sulfur) that can assist microbial growth 
[8]. Predictions for the Brazilian sugar and ethanol sector indicate the continued generation of 
molasses on a large scale, with widespread availability and low prices [9] 

The literature contains many experimental studies, such as those by Costa [10], Paranhos and 
Silva [11], Freitas [12] and Pereyra et al. [13], aimed at exploring the energy potentials of these two 
substrates (glycerol and sugarcane molasses) and finding optimal conditions for the production of 
hydrogen, methane, and value-added metabolites. Anaerobic digestion is a complex process 
requiring the evaluation of many different parameters (such as temperature, organic load, pH, 
alkalinity, and retention time, among others), with kinetic studies being essential for maximizing 
bioenergy production and optimizing the variables. One approach is to use the Monod two-substrate 
with an intermediate kinetic model, proposed by Rakmak et al. [14], which allows calculation of the 
accumulated methane production in anaerobic co-digestion. 

On the other hand, when a database is available, an attractive approach is to use artificial 
intelligence for rapid, precise, and inexpensive prediction of the behavior of the process. Artificial 
intelligence uses mathematical approaches based on the way that humans think and learn. The main 
methods involve the use of artificial neural networks and fuzzy logic. As the name suggests, artificial 
neural networks were inspired by biological neural networks and are structured in layers, with the 
results of mathematical calculations flowing from one layer to another, simulating nerve synapses. 
Fuzzy logic, on the other hand, is based on the relative and nebulous way of human thinking when 
quantifying situations, with the solving of problems using a series of rules elaborated using non-
numerical variables [15]. 

Considering the above background, the aim of the present work was to evaluate the potential of 
artificial neural networks and fuzzy logic to predict methane production and the kinetic parameters 
for co-digestion of glycerol and sugarcane molasses. 

2. Bibliographic review 

2.1. Substrates used and their importance 

2.1.1. Glycerol 
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The glycerol molecule can be formed in biological processes, chemical synthesis of petrochemical 
compounds, ethanol production, hydrogenation of the sucrose molecule in the presence of a catalyst, 
at high temperature and pressure, and as a byproduct of soap or biodiesel production [16]. According 
to Quispe et al., [6], until the 1950s, all the global glycerol production was from the saponification 
reaction, while today glycerol is also produced by the transesterification reaction and from glycerides. 
The crude glycerol obtained from the transesterification reaction has around 70% purity, with the 
other components being impurities such as water (8-30%), salts (0-10%), alcohols (<0.5%), and 
residual oils (~0.5%). 

Ayoub and Abdullah [17] described how the physicochemical properties of glycerol result in it 
having many applications in the pharmaceutical, cosmetics, chemical, and food industries. There are 
different types of crude glycerol refining, which consider the degree of purity required for the 
intended application [6,16]. 

Given the increasing global demand for biodiesel, the quantity of glycerol generated will also 
increase. A volume of 8-10% of glycerol is generated during transesterification, with an estimated 
41.9 million cubic meters of glycerol produced worldwide in 2020 [18,19]. According to Abiquim [20], 
in 2008 the Brazilian market had an annual demand of around 30 thousand cubic meters of glycerol, 
while the production capacity was ap-proximately 117 thousand cubic meters of double-distilled 
glycerol from transesterification. Industrial applications require high-purity glycerol, but the 
purification process is expensive, while at the same time the increased supply has reduced the market 
price. The recovery of alcohols (usually methanol) requires distillation or evaporation processes, 
where the recovery process may be more expensive than using new methanol, making reuse 
unfeasible. Therefore, it is important to develop new applications for crude glycerol, in order to make 
biodiesel production more competitive and viable, in addition to ensuring that all the glycerol 
generated can be absorbed by the market in some way. The high chemical oxygen demand (COD) of 
glycerol means that it has high polluting potential if released into water bodies in the environment 
[11]. 

2.1.2. Sugarcane molasses 

Molasses, a byproduct of the sugar crystallization process, has a low market value, wide 
availability, and biodegradability. The nutrient content of molasses makes it a good co-substrate for 
optimizing the production of biohydrogen and biomethane by dark fermentation. Exploiting the 
energy potential of sugarcane molasses and diversifying the production of biofuels could be a more 
competitive strategy, compared to only producing bioethanol [21]. 

2.2. Anaerobic co-digestion 

Co-digestion refers to processes where the organic matter consists of two or more different 
substrates. The use of different substrates can enhance fermentation and increase biogas yield, if the 
combination is performed strategically. Co-digestion can assist in regulating pH, improving 
carbon/nitrogen and carbon/phosphorus ratios, and increasing the availability of micro and 
macronutrients required for the metabolism of the microbial community. 

Preliminary batch studies of the co-digestion of glycerol and a second substrate were performed 
by Aguilar et al., [22], using swine waste, with the results showing that biogas production and COD 
removal were favored by co-digestion. 

The anaerobic process usually has four distinct stages [7]: Hydrolysis; Acidogenesis; 
Acetogenesis and Methanogenesis. Acidogenesis and acetogenesis are also known as primary 
fermentation, while methanogenesis is secondary fermentation. In the presence of nitrate or sulfate, 
the hydrogen formed in the acidogenesis step acts as an electron donor for the reducing bacteria, 
producing sulfides and ammonia [7]. 

Temperature is an important factor in the digestion process. Microorganisms are unable to 
regulate their internal temperature, which is therefore determined by the environment. The 
production of methane can occur in a wide temperature range up to 97 °C, while hydrogen formation 
occurs from 15 to 85 °C, and it is not possible to produce H2 under psychrophilic conditions [7,23]. 
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According to Chernicharo [7], the best temperatures for microbial growth and biogas production are 
in the mesophilic (30-35 °C) and thermophilic (50-55 °C) ranges, with thermophilic conditions 
generally providing higher hydrogen and methane production rates. Operating at around 55 °C 
requires the consumption of energy to transfer heat, which can make the process economically 
unfeasible. Therefore, most anaerobic digesters are operated under mesophilic conditions, which are 
easy to provide in tropical countries, such as Brazil [7,23]. Controlled fermentation processes can be 
performed in different types of reactors, which may be operated continuously or in batch mode [7]. 

2.3. Artificial Neural Networks 

Different artificial neural network architectures are described in the literature, although the most 
common is the multilayer perceptron (MLP), often incorrectly used as a neural network synonym. 
Other architectures include convolutional neural networks and recurrent neural networks, among 
others. According to Nelles [15], the MLP can approximate any smooth function, with a degree of 
precision that varies with increase of the number of neurons in the hidden layer. Increasing the 
number of hidden layers makes the method more powerful, albeit more complex. 

The structure of an MLP network can be described by Equation 1. There are “n” inputs (x), with 
each input being accompanied by a weighting (wij) that is a network adjustment parameter. In 
addition, there is a bias (wi0) that provides a further degree of freedom for fitting the network 
response to experimental data, which can be considered an independent weighting (not associated 
with any input variable). All these parameters compose the “m” neurons of the hidden layer. The 
hidden layer neurons are usually composed of sigmoid (ϕi) logistic (Equation 2) and hyperbolic 
tangent (Equation 3) functions. These neurons are arranged in parallel and send signals to the 
neurons of the next layer, until reaching the output layer (in practice, one or two hidden layers are 
sufficient). In the output layer, the neurons are usually composed of linear functions (a linear 
combination) for adjusting the amplitude and the point of operation. This mathematical structure 
enables the MLP to be applied to different problems, demonstrating the universality of the method 
[15]. 

y =  � w�φ� �� w��x��
��� ��

���  ,        φ� = 1 and x� = 1                               (1) 

making u= wij xj: 
 Logistic function:    φ�(u) =  11 + exp (−u)                                                                               (2) 

Hyperbolic tangent:    φ�(u) =  exp(u) − exp (−u)exp (u) + exp (−u) =  1 − exp (−2u)1 + exp (−2u)                            (3) 

2.3.1. Application of Neural Networks in biogas production 

In order to optimize the development of bioenergy and make it attractive from both 
environmental and economic perspectives, different areas of research and technology have 
encouraged the use of artificial neural network resources for the prediction of biogas production 
scenarios using the co-digestion of different substrates. This methodology can assist in solving 
problems that are complicated to model, predicting outcomes in a more simplified way. 

Jaroenpoj et al., [24] used a multilayer feedforward model to predict the production of biogas 
from co-digestion of leachate and pineapple peel. In comparison with experimental data, the 
simulation results had a squared error of 0.0267 and R2 of 0.9942, showing the effectiveness of this 
approach and its versatility in prediction applied to nonlinear problems. 

Ghatak and Ghatak [25] used artificial neural networks to model and optimize the production 
of biogas from co-digestion of cattle manure combined with bamboo dust, sugarcane bagasse, or 
sawdust, under mesophilic and thermophilic conditions. The results for biogas specific production 
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presented R2 of 0.997 and accuracy of ±0.01, compared to experimental values. The simulations were 
performed using different temperatures of the substrates. The best biogas production was obtained 
using the co-digestion of cattle manure with sugarcane bagasse. 

Özarslan et al., [26] used artificial neural networks to predict the production of methane from 
co-digestion of tea factory wastes and spent tea waste, comparing the results to experimental data 
from the co-digestion of these substrates for 49 days, in batch mode, under mesophilic conditions. 
The coefficient of determination (R2) value obtained for the fit was 0.9982 and the best mixture for 
methane production was 65% tea production waste and 35% spent tea. The accumulated production 
of biogas obtained in the co-digestion was 183% higher than for anaerobic digestion of the substrates 
separately. 

Gonçalves Neto et al., [27] investigated the digestion and co-digestion of food wastes (including 
fruits, vegetables, meats, and dairy products) using experiments in batch mode, under mesophilic 
conditions and with different organic loadings. In addition to the experimental values, the database 
included literature data that acted as a basis for implementing the logic of artificial neural networks. 
The input variables were the substrate mixture composition, reactor feed flow rate, reactor type, 
organic loading, pH, hydraulic retention time, volatile solids, temperature, and reactor volume. The 
output variable was the accumulated biogas production. The network provided R2 values of 0.9929 
for training, 0.8486 for testing, and 0.6167 for validation. It was found that the biogas pro-duction 
volume was higher under thermophilic conditions, with a local maximum for mesophilic 
temperatures. It was also concluded that the isolated digestion of fruits and vegetables produced a 
greater accumulated quantity of biogas, compared to the co-digestion of food wastes. 

2.4. Fuzzy Logic 

An alternative to artificial neural networks is the use of fuzzy logic, developed in 1965 by Lotfi 
A. Zadeh. The methodology was inspired by the vague and uncertain way in which human beings 
think and communicate, absorbing semiquantitative information in the description of a process [15].  

This approach is especially useful for complex systems. Advantages are that fuzzy logic is 
conceptually easy to understand and that the mathematical equations employed are relatively simple. 
Recent years have seen increasing use of fuzzy logic in the development of cameras, washing 
machines, microwaves, and industrial process control systems [28]. 

The main concepts on which fuzzy logic is based are presented below. 

• Linguistic variable and linguistic value 

In fuzzy logic, linguistic variables are non-numerical, being represented qualitatively by 
linguistic values (high, medium, and low). Consequently, they have a degree of uncertainty, since the 
numerical input data will be subdivided into linguistic values with a certain degree of adherence. 

• Membership functions  

In fuzzy logic, membership functions (MF) describe the linguistic value intervals and the degree 
of belonging (degree of membership) of an element to these values. The membership functions can 
present different standard or customized curves, depending on the situation, with the most common 
being Gaussian, triangular, and trapezoidal. 

A linguistic variable can have more than one linguistic value, with each linguistic value having 
its own function. 

• Heuristic rules 

Based on the behavior of human thought, the heuristic rules of fuzzy logic are formulated 
according to the concept of cause and effect: “IF” there is a given input condition “THEN” there is a 
consequent specific response. The number of rules is a com-bination of the inputs and depends on 
the granularity (degree of detail) of the linguistic variables. Like artificial neural networks, fuzzy logic 
is a universal variable estimation tool [15] 
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There are two different approaches that structure the “IF”...“THEN” rules. The Mamdani 
approach uses linguistic variables for the input (antecedent, “IF”) and the output (consequent, 
“THEN”), while the Takagi-Sugeno approach uses linguistic variables for the input and numerical 
variables for the output. In the Takagi-Sugeno approach, the numerical variables are normally 
calculated using a linear function. Examples of the approaches are as follows: 

IF long period THEN high volume of CH4 (Mamdani) 
IF long period THEN 5000 mL volume of CH4 (Takagi-Sugeno) 

• Logical operators 

In cases of more than one linguistic variable in the antecedent of the rules, then these variables 
are combined using logical operators, typically “AND” and “OR”. The “AND” operator is applied 
when the two antecedent conditions need to occur, in order for the consequent action to be 
performed. The “OR” operator is used when only one of the antecedent conditions needs to occur, in 
order for the consequent action to be performed. 

Each operator performs specific calculations combining the degrees of membership of the 
linguistic variables in the antecedent. According to Nelles [15], this combination is called the degree 
of rule fulfillment or the triggering force of the rule, reflecting how well a created premise reflects the 
specific input value. If the combination of membership degrees (MDs) is equal to zero, then the rule 
is not active. The step where these operators are applied is denoted aggregation. 

The “AND” operator combines MDs using the minimum or product methods (other methods 
exist, but these are the most common). The “OR” operator can also combine MDs in different ways, 
although the most common are the maximum and probabilistic OR methods.  

After calculation of the degree of compliance with the rule, evaluation is made of the consequent 
of the rule. The commonest implication methods are truncation (using the minimum function) and 
scale reduction (using the product function). Use of a single rule is normally ineffective in solving the 
problem; therefore, it is necessary to evaluate the implication of the consequent for each rule, after 
which all the consequents are accumulated [15,28]. The commonest accumulation methods are the 
maximum, probabilistic, and weighted average methods. The maximum function evaluates the MFs 
point by point, selecting the highest value. The probabilistic function is indicated when there are only 
two rules, with calculation of the sum minus the product of each point of the MFs. The weighted 
average method performs the sum of all the points of the MFs and applies a weight to each value 
based on the MD. 

In the Takagi-Sugeno approach, the combination of all the consequents provides the final result 
(output variable) of the problem. In the Mamdani approach, there is a final defuzzification step. 

An excellent strategy that has increased the possible applications of fuzzy logic is its combination 
with neurocomputing and/or genetic algorithms. The ANFIS (Adaptive-Network-Based Fuzzy 
Inference System) methodology, developed by Jyh-Shing Roger Jang in 1993, functions in a similar 
way as artificial neural networks. It involves defining the parameters of a Takagi-Sugeno model, 
which enables the inference system to perform a mapping of the relationship between the inputs and 
the outputs, using im-plication rules. The parameters are adjusted using the backpropagation 
algorithm in combination with a statistical least squares method [28]. 

2.4.1. Application of fuzzy logic in biogas production 

Among the many applications for fuzzy logic, recent reports have described its use in the 
prediction of biogas production from the anaerobic digestion of different substrates. 

Khayum et al., [29] used the Mamdani fuzzy logic approach to predict the performance of co-
digestion of spent tea waste and cattle manure. The simulation employed a triangular membership 
function and five layers, with a total of 125 “IF”...“THEN” rules being inferred. The input variables 
were digestion time, pH, and carbon/nitrogen ratio. Comparison of the experimental and predicted 
values resulted in R² of 0.994, demonstrating the precision of the fuzzy logic data. It was found that 
the highest biogas pro-duction was achieved using a mixture of 70% cattle manure and 30% spent tea 
waste. 
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Heydari et al., [30] investigated the production of biogas from the anaerobic digestion of mint 
essential oil wastewater, under mesophilic conditions in a UASB reactor, adopting the Takagi-Sugeno 
approach and the ANFIS methodology. The simulations were per-formed using Matlab R2017b, with 
19 samples and 10 input variables (influent COD, pH, suspended solids, volatile solids, oil and grease 
removal, turbidity removal, COD removal, phenol removal, effluent volatile acids, and alkalinity). 
For prediction of methane production, the data were grouped in pairs in the first layer and the model 
was divided into eight sub-networks, employing five layers. The model provided a satisfactory fit, 
with R² of 0.956 and low mean relative error of 0.315%. 

3. Objectives 

3.1. General Objective 

The main objective of this work was to explore the potential of computational intelligence (fuzzy 
logic and neural networks) for predicting methane production from co-digestion of glycerol and 
molasses in wastewater. 

3.2. Specific Objectives 

• Obtain a database from computer simulation employing the Monod two-substrate with an 
intermediate (M2SI) simple kinetic model; 

• Train neural networks to predict methane production based on the database created; 
• Train a neural network to provide the kinetic parameters of the M2SI model; 
• Evaluate the quality of the results provided by artificial neural networks; 
• Specify a membership function type for fuzzy logic; 
• Define ranges of linguistic values for the linguistic variables of the fuzzy inference system; 
• Apply a neuro-fuzzy methodology for parameterization of the fuzzy model; 
• Evaluate the effectiveness of the fuzzy logic approach; 
• Compare the results obtained using the artificial neural network and fuzzy logic approaches. 

4. Materials and Methods 

4.1. Monod two-substrate with an intermediate (M2SI) kinetic simulation model  

For generation of a database of biomethane production from the co-digestion of wastewaters 
containing glycerol or molasses, the Monod two-substrate with an inter-mediate (M2SI) kinetic model 
proposed by Rakmak et al., [14] was considered, with parameters as reported by Phayungphan et al., 
[31]. In this work, the generation of a database by using the M2SI Model has methodological 
importance only, to allow the assessment of computational intelligence models. Obviously, this step 
is not necessary in a practical situation where an experimental database is already available. 

The M2SI model adopts the following hypotheses: 

• Endogenous metabolism is present in the process. 
• An intermediate substrate (Si) is added in the hydrolysis step. This substrate is obtained from 

slow degradation (Ss). The Si is consumed by a specific group of microorganisms (Xe). 
• There are two groups of microorganisms: Xe (degrades Se and Si) and Xs (grows on Ss). 

Assuming these hypotheses, the M2SI model was produced using the ordinary differential 
equations shown below, where X is the concentration of microorganisms, S is the concentration of 
substrate, and P is the concentration of biogas. The subscripts “e”, “s”, and “i” indicate substrates 
with fast degradation (Se), slow degradation (Ss), and intermediate (Si); µ and µm are the specific and 
maximum microbial growth rates, respectively; kd is the specific microbial death rate; K is the 
saturation constant; YX is the yield of microorganisms; and YP is the biogas production yield from 
each substrate. The factors fSsX and fisX correspond to the conversion of X to Ss and of Ss to Si, 
respectively. 
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dX�dt =  X�(μ� + μ� − k��) , μ� =  μ��S�K� + S�                                                        (4) dX�dt =  X�(μ� − k��) , μ� = g(P) � μ��S�K� + S� �                                                      (5) dS�dt =  − μ�X�Y����                                                                                                                   (6) dS�dt =  f���μ�X� �1 − Y����Y���� � − μ�X�Y����  , μ� =  μ��S�K� + S�                                        (7) dS�dt =  f���(k��X� + k��X�) − μ�X�Y����                                                                           (8) dPdt =   μ�X�Y���Y���� + μ�X�Y���Y����                                                                                          (9) 

The function g(P) is a commutation or preference function, given by Equation 10. The variables 
α, Pc, fc, and fSs are the amplification factor, critical biogas concentration, critical factor, and fraction 
of Ss in the initial substrate concentration (S0), respectively. g(P) =  1π �tan���α(P − P�)� + π2� ,          P� =  S�Y���f�(1 − f��)                     (10) 

 
Equations 4-10 were implemented in Scilab (v. 6.1.1), using the “ode” function to solve the 

system of ODEs and obtain the biogas concentrations for the conditions shown in Table 1. The final 
concentrations were compared with the values reported by Phayungphan et al., [31]. The results that 
showed good agreement were saved as .csv files. 

Table 1. Percentage composition (by volume) of the substrate. 

Assay 
Distillery 

wastewater (%) 
Molasses (%) Glycerol (%) 

1 100 0 0 
2 99 1 0 
3 98 2 0 
4 97 3 0 
5 96 4 0 
6 95 5 0 
7 99 0 1 
8 98 0 2 
9 97 0 3 

10 96 0 4 
11 95 0 5 

4.2. Application of the neural networks 

Implementation of the neural networks was performed using the Neural Network package of 
Matlab v. R2018a, based on the review by Beale et al., [32]. Firstly, network training was performed, 
with simulations to predict the production of biogas according to time, considering different 
substrate compositions, followed by network training to predict the Monod parameters as a function 
of substrate composition. 

All the training employed the Levenberg-Marquardt backpropagation algorithm. 
  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 June 2023                   doi:10.20944/preprints202306.1123.v1

https://doi.org/10.20944/preprints202306.1123.v1


 9 

 

4.2.1. Training of the neural network for obtaining biomethane 

In elaboration of the training of a “generic” neural network (a single network, incorporating all 
the different substrate composition conditions), four inputs were considered, constituting a matrix of 
4x688 elements. The first row of the matrix corresponds to the time variable (0 to 45 days), the second 
row to the normalized percentage of distillery wastewater (DW) in the substrate (95 to 100%, i.e., 0.95 
to 1), the third row to the normalized percentage of molasses (ML) in the substrate composition (0 to 
5%, i.e., 0 to 0.05), and the fourth line to the normalized percentage of crude glycerol (CG) in the 
substrate (0 and 5%, i.e., 0 to 0.05), as shown in Figure 1. 

 

Figure 1. Representation of the database for training of the generic neural network: (a) input variables 
and (b) output variable. 

The output data of the generic neural network consisted of a 1x688 matrix, with a single line 
containing the methane production values (in mL) for each day and specific substrate composition. 
Hence, the network had four inputs and one output. The effect of the quantity of neurons in the 
hidden layer was tested until obtaining the minimum value that led to a good fit. 

For simulation of specific neural networks (one for each composition condition) only the time 
variable was considered as input for each condition, with a 1x25 matrix for the 100% DW condition 
and 1x45 matrices for the other conditions. The output of each specific neural network was the 
methane production (in mL) for that condition, according to time. The network structure consisted 
of one input and one output, and 10 neurons were used in the hidden layer. 

For both types of networks (generic and specific), the distribution of the data was 70% for 
training, 15% for validation, and 15% for testing. 

4.2.2. Network training for prediction of the monod parameters 

In agreement with the work of Phayungphan et al., [31], the Monod parameters were as follows: 

1. Maximum microbial growth rate of Xe (µme); 
2. Maximum microbial growth rate of Xs (µms); 
3. Methane production yield from consumption of Se (YPSe); 
4. Fraction of Ss in the total substrate composition (fSs); 
5. Amplification factor (α). 

These parameters constituted the 5 outputs of the network, associated with a 5x8 matrix (since 
there were 8 substrate composition conditions). The input matrix was 3x8, where the 3 inputs were 
the percentages of distillery wastewater, molasses, and glycerol in the substrate composition for the 
8 different configurations. 

4.3. Fuzzy Logic 

The fuzzy logic was implemented using the ANFIS package of Matlab R2018a and the database 
generated in the M2SI simulation based on the work by Phayungphan et al., [31]. 
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The data were divided into 628 points for training and 60 points for testing. The files were 
converted to text, with the data arranged in columns, where the last column corresponded to the 
output and the other columns corresponded to the input variables, as shown in Figure 2 (noticing 
that Figure 2 is not the same as Figure 1). The text file was loaded into the ANFIS program. 

 

Figure 2. Representation of the database for training the FIS. 

In the generation of the FIS, evaluation was made of the granularity of the input variables, in order 
to find the one that produced the lowest root mean square error. The Gaussian membership function 
(gaussmf) was employed (Equation 11), which uses the standard deviation (σ) and mean (x ̅) of the input 
values (x) [28]. This function was chosen based on the positive results observed in earlier tests.        FP(x) = exp �−(x − x�)�2σ� �                                                            (11) 

The ANFIS generated a Takagi-Sugeno type FIS, with four fuzzified input variables and an 
output variable calculated using a linear function (Figure 3), with parameter adjustment based on 
neural network concepts. A hybrid training algorithm was selected, combining backpropagation and 
the least squares method. 

 

Figure 3. Representation of the fuzzy model structure. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 June 2023                   doi:10.20944/preprints202306.1123.v1

https://doi.org/10.20944/preprints202306.1123.v1


 11 

 

5. Results and Discussion 

5.1. Biomethane production using monod kinetics 

Based on the values and ranges for the Monod kinetic parameters published by Phayungphan 
et al., [31] and the M2SI model proposed by Rakmak et al., [14], the ac-cumulation of methane over 
time was estimated for the co-digestion of molasses (ML) or crude glycerol (CG) and distillery 
wastewater (DW). Comparison of the results of the M2SI model with the experimental results 
reported by Phayungphan et al., [31] indicated very satisfactory agreement, with low divergence, for 
compositions containing 100% DW, 99% DW / 1% ML, 98% DW / 2% ML, 97% DW / 3% ML, 96% DW 
/ 4% ML, 95% DW / 5% ML, 99% DW / 1% CG, and 95% DW / 5% CG, which composed the database 
directly used to train the neural networks and the fuzzy model. Biogas production rates were similar 
to those presented by Phayungphan et al., [31]. The majority of the substrate degradation occurred in 
the first 10 days, after which there was a substantial decrease in methane production, indicative of 
possible inhibition of microbial activity. Total accumulated methane at the end of each batch is 
summarized in Table 2. In general, it was evident that the addition of glycerol to the distillery 
wastewater led to greater production of methane, compared to the addition of molasses.  

Table 2. Accumulated methane for each composition of the substrate. 

Assay1 Composition (%) Accumulated Methane (mL) 
1 100 DW 4580.44 
2 99 DW + 1 ML 4918.50 
3 98 DW + 2 ML 4963.33 
4 97 DW + 3 ML 4168.67 
5 96 DW + 4 ML 3992.97 
6 95 DW + 5 ML 4014.97 
7 99 DW + 1 CG 5744.64 
8 95 DW + 5 CG 5647.33 

1total digestion time of 45 days, except for Assay 1, whose digestion time was 25 days. 

The region of compositions containing about 98% DW / 2% CG and 97% DW / 3% CG, in turn, 
was posteriorly considered for additional assessment of the predictive capability of hybrid M2SI-
Neural Network model (as will be seen in Section 5.5.1.) and analysis of the response surface 
generated by the fuzzy model (as will be seen in Section 5.6.1.). 

5.2. Training of the neural network for biomethane production 

The training of the artificial neural network for methane production according to time, varying 
the substrate composition (Section 4.2.1), was made testing various quantities of neurons to find the 
minimum quantity of neurons in the hidden layer that provided a good fit between the intended 
output value and the value provided by the neural network. A lower number of neurons means that 
there is a lower number of “synapses” to be incorporated, resulting in faster processing of 
information by the network. The results obtained for “n” of 2, 14, and 60 are shown in Figures 4–7. It 
is straightforward to see that 2 neurons are not enough, with low R2 values. The minimum number 
of neurons in the hidden layer required to obtain satisfactory results was 14. 
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Figure 4. Linear regression fits of the network output values for 2 neurons. 

 
Figure 5. Linear regression fits of the network output values for 14 neurons. 
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Figure 6. Linear regression fits of the network output values for 60 neurons. 

 

 
Figure 7. Differences between the expected and network output values for (a) 2 neurons, (b) 14 
neurons, and (c) 60 neurons. 
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As can be seen in Figures 4–7, the fitting improved substantially when the number of neurons 
was increased from 2 to 14 neurons, while further increase to 60 neurons had a more subtle effect. 
Hence, increasing the number of neurons progressively improved the fit of the model, although the 
improvement was not significant after 60 neurons, so further testing was unnecessary. In addition, 
indiscriminate increase of the number of neurons (above 60) would make the model unnecessarily 
complex, with possible computational overload during data processing. 

No previous studies were found in the literature that used neural networks for the prediction of 
methane production from the co-digestion of molasses and glycerol. Yetilmezsoy et al., [33] used 
neural networks in an investigation of the production of biogas and methane from the digestion of 
molasses wastewater in a UASB reactor, under mesophilic conditions. The input variables considered 
in the simulation were the organic loading, influent and effluent pH and alkalinity, temperature, 
volatile acids concentration, and COD. Three hidden layers with sigmoid tangent functions were 
applied, with optimal numbers of nine and twelve neurons obtained for the production of biogas and 
methane, respectively. Eleven types of network training algorithms were evaluated, with the best 
results obtained using the SCG (scaled conjugate gradient) algorithm, which provided coefficients of 
determination in the testing stage of 0.935 for biogas and 0.924 for methane. The fit of the model for 
methane production was poorer than found in the present work (R² = 0.99983 for 14 neurons), but it 
was considered satisfactory by the authors, considering the greater complexity of the system that was 
modeled. 

5.3. Comparison of prediction of methane production using the M2SI model and the generic neural network 

After training the neural network, comparison was made of the predicted methane production 
obtained using the M2SI model and the artificial neural network (Figure 8). 
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Figure 8. Comparison of cumulative methane production predicted using the Monod kinetic model 
and the generic neural network (with 14 neurons), for the different substrates: (a) 100% DW, (b) 99% 
DW and 1% ML, (c) 98% DW and 2% ML, (d) 97% DW and 3% ML, (e) 96% DW and 4% ML, (f) 95% 
DW and 5% ML, (g) 99% DW and 1% CG, and (h) 95% DW and 5% CG. 

As shown in Figure 8, good agreement was obtained between the predicted biomethane 
production curves for the M2SI model and the generic neural network, for the different conditions. 
Nonetheless, it should be noted that the predictions could be improved further by increasing the 
number of neurons in the hidden layer (to 60, for example), without risk of overfitting (see Figure 9). 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 June 2023                   doi:10.20944/preprints202306.1123.v1

https://doi.org/10.20944/preprints202306.1123.v1


 16 

 

 

Figure 9. Comparison of cumulative methane production predicted using the Monod kinetic model 
and the generic neural network (with 14 neurons), for the different substrates: (a) 100% DW, (b) 99% 
DW and 1% ML, (c) 98% DW and 2% ML, (d) 97% DW and 3% ML, (e) 96% DW and 4% ML, (f) 95% 
DW and 5% ML, (g) 99% DW and 1% CG, and (h) 95% DW and 5% CG. 
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5.4. Prediction of methane production using specific neural networks 

Figure 10 shows a comparison of the predicted methane production using the M2SI model and 
the specific artificial neural networks. The results demonstrated the excellent predictive capacity of 
these artificial neural networks, which could therefore be used as an alternative strategy. In 
comparison with generic networks, the latter allow the use of interpolations of different values for 
the substrate composition, as well as the testing of hypothetical scenarios for methane production, 
which can generate an optimized combination, using a single network. However, it is possible to 
create a set of specific neural networks, where their combination in a committee would also allow 
interpolations of different values for the substrate composition. In a similar way, Horta et al., [34] 
proposed a committee of neural networks for identifying Streptococcus pneumoniae growth phases, 
used for on-line state inference. 
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Figure 10. Comparison of cumulative methane production predicted using the Monod kinetic model 
and the specific neural networks, for the different substrates: (a) 100% DW, (b) 99% DW and 1% ML, 
(c) 98% DW and 2% ML, (d) 97% DW and 3% ML, (e) 96% DW and 4% ML, (f) 95% DW and 5% ML, 
(g) 99% DW and 1% CG, and (h) 95% DW and 5% CG. 

5.5. Neural network training to predict monod kinetic parameters 

A neural network was trained to provide the kinetic parameters of the M2SI model, with the 
best fit obtained using 25 neurons (Figure 11). In order to achieve satisfactory prediction of the data, 
the testing step was eliminated, with 90% of the data being used in the training step and 10% in the 
validation step. This enabled consistent results to be obtained in the simulations, with fits presenting 
R² values higher than 0.99. Therefore, the neural network could be used in a hybrid M2SI-neural 
network approach. This enabled simulation of alternative compositions, obtaining the kinetic 
parameters for application in the M2SI model considered to predict methane production. 
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Figure 11. Linear regression fits of the output values obtained using the neural network with 25 
neurons. 

5.5.1. Assessment of the predictive capability of hybrid M2SI-Neural Network approach 

By applying the neural network to predict Monod's parameters at 97% DW - 3% CG condition, 
it was possible to evaluate the predictive capability of the hybrid model. Experimental data from 
Phayungphan et al., [31] was considered for comparison purposes. The predicted methane 
production reached 4,766.39 mL of accumulated CH4 (as shown in Figure 12) compared to the 
experimental value of 4,464.64 mL of CH4, which represents a minor divergence of 6.7%. 

 
Figure 12. Prediction of hybrid M2SI-neural approach at 97% DW-3% CG condition. 

In the training phase, no data on this composition was presented to the neural network. Despite 
that, the hybrid M2SI-neural network predicted a downward trend in accumulated methane with 
substrate containing 97% DW and 3% CG, which is in agreement with the experimental behavior. 
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5.6. Application of fuzzy logic 

The simulations were performed with alteration of the granularity of the fuzzy system. As a 
standard procedure, Matlab R2018a recommends dividing the variables into three ranges of linguistic 
values. However, since the time variable had a greater range (0 to 45 days), it was initially divided 
into five linguistic values, while the other variables (concentrations of distillery wastewater, 
molasses, and glycerol) were divided into three values. Using this granularity, the model generated 
135 “IF”...“THEN” rules and provided a root mean square error of 43.10 mL. When the granularity 
was changed to six linguistic values for the time variable, while keeping the other variables at three 
linguistic values, 162 rules were obtained, with root mean square error of 36.33 mL. Finally, when 
eight linguistic values were defined for time, while keeping the other variables at three values, a root 
mean square error of 18.88 mL was obtained, with 216 rules. Considering that the order of magnitude 
of the accumulated methane was around 5x10³, the error was very small (less than 0.5%). This could 
be considered a very satisfactory result. Increasing granularity progressively improved the capacity 
of the model, although granularity higher than eight for the time variable resulted in improvements 
that were less significant. Therefore, higher values were considered unnecessary. Besides, here it is 
possible to point out that concerns (to analyze and validate models) are not only based on R2 value. 
Furthermore, granularity higher than eight for the time variable would lead to greater difficulty in 
labeling its linguistic values, or even the loss of practical meaning for the labels applied. 

Table 3 lists the parameters of the membership functions fitted using the ANFIS model. 

Table 3. Parameters of the membership functions fitted using the ANFIS model. 

Linguistic variable Linguistic value 
Standard deviation 

(σ) Input mean (��) 

Time 

Initial 2.731 0.00077 
Very short 2.730 6.428 

Short 2.730 12.860 
Low medium 2.731 19.280 

Medium 2.730 25.710 
High medium 2.730 32.140 

Long 2.730 38.570 
Very long 2.730 45.000 

DW 
Low 0.0073 0.9483 

Medium 0.0034 0.9768 
High 0.0029 1.0040 

ML 
Low 0.0091 -0.0016 

Medium 0.0145 0.0250 
High 0.0163 0.0480 

CG 
Low 0.0094 -0.0013 

Medium 0.0116 0.0238 
High 0.0106 0.0500 

The effectiveness of the neuro-fuzzy training was evidenced by the good agreement between the 
responses of the fuzzy model and the data from the M2SI model, as shown in Figure 13. 
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Figure 13. Comparison of the responses of the fuzzy model and the M2SI model for the different 
substrates: (a) 100% DW, (b) 99% DW and 1% ML, (c) 98% DW and 2% ML, (d) 97% DW and 3% ML, 
(e) 96% DW and 4% ML, (f) 95% DW and 5% ML, (g) 99% DW and 1% CG, and (h) 95% DW and 5% 
CG. 

Turkdogan-Aydinol and Yetilmezsoy [35] investigated the production of methane from 
anaerobic digestion of molasses wastewater, under mesophilic conditions, applying the Mamdani 
fuzzy logic approach. This resulted in generation of 134 “IF”...“THEN” rules, with five input 
variables (organic load, COD removal, alkalinity, and influent and effluent pH) divided into 8 
linguistic values. A trapezoidal type curve was selected for generation of the membership functions. 
The fuzzy model provided satisfactory results, with R² of 0.96, demonstrating the effectiveness of 
using a simple method, without complex mathematical equations, for accurate prediction of methane 
production. 

5.6.1. Analysis of the response surface generated by the fuzzy model 

From the fuzzy modeling, it was possible to build a response surface and evaluate the global 
effect of the composition of distillery wastewater, glycerol, and molasses on methane production. The 
time was set at 25 days as it was the maximum time for which information was available for the 
specific case of 100% distillery wastewater composition. Sugarcane molasses was fixed at 2.5%. 
Glycerol ranged from 0 to 5% and distillery wastewater from 95 to 100%. 

In the scenario presented in Figure 14, the region with an amount of distillery wastewater greater 
than 97.5% is a non-feasible region (even with 0% of glycerol), since the composition of the substrates 
would exceed 100%. The same reasoning applies to the case of a glycerol amount greater than 2.5% 
(even with 95% still water). 

Still, in Figure 14, it is possible to note the accuracy of the results, since for 0% glycerol, the 
volume of accumulated methane is around 3000 mL, which is consistent with the predictions for the 
compositions containing 2 and 3 % molasses (and 98 and 97% distillery wastewater, respectively). In 
addition, the volume of accumulated methane followed the expected behavior for glycerol, with a 
downward trend in methane production for glycerol composition increasing from zero to about 2.5% 
(95% distillery wastewater), as discussed in an analogous way in the application of hybrid M2SI-
neural modeling. Actually, this was an important objective here: apply simple methodologies that 
can assist in solving problems that are complicated to model, predicting outcomes such as methane 
production as a function of mixing ratios of substrates in a more simplified way. Of course, it is 
supposed that the individual substrates maintain, in average, their main own basic characteristics.   
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Figure 14. Response surface with 2.5% ML and time at 25 days (percentage values of CG and DW 
were normalized to a range between 0 and 1). 

6. Conclusions 

From the results of the modeling and simulation using artificial neural networks, a good fit was 
obtained in the network training step (R² > 0.99). A minimum of 14 neurons were required in the 
hidden layer of the generic neural network for prediction of methane production. Good agreement 
was obtained between the methane production curves generated by the M2SI model and the generic 
neural network, under various conditions. Besides, a hybrid model provided satisfactory prediction 
of the kinetic parameters for the M2SI model. The number of neurons in the hidden layer of the neural 
network for prediction of the kinetic parameters of the M2SI model was 25. 

The training of the fuzzy model with 216 rules had a mean square error of 18.88 mL of methane, 
which was less than 0.5% of the order of magnitude of the accumulated methane. Good agreement 
was obtained between the M2SI model methane production points and the fuzzy model simulation.  

Even after phenomenological models (and some of them much more complex than M2SI) have 
been created to clarify the digestion process, their drawbacks have compelled many researchers to 
develop simplified alternatives. This way, artificial intelligence approaches can be used to solve 
engineering problems such as modeling, prediction and optimization of co-digestion based on 
artificial neural networks and fuzzy modeling (as presented in this work, which of course can be 
extended to the study of co-digestion from other substrates). 
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Abbreviations 

The following abbreviations are used in this manuscript 
DW Distillery wastewater 

ANFIS Adaptive-Network-Based Fuzzy Inference System  

ANP Agência Nacional de Petróleo, Gás Natural e Biocombustíveis 

CH4 Methane 

CH3COOH Acetate  

CO2 Carbon dioxide 

COD Chemical oxygen demand 

FIS Fuzzy inference system 

MF Membership function 

ML Molasses  

CG Crude glycerol 

MD Membership degree 

H2 Hydrogen gas 

H2O Water  

M2SI Monod two-substrate with an intermediate model 

MLP Multilayer perceptron 

pH Hydrogen ion potential 

RMSE Root mean squared error 

R² Coefficient of determination  

SCG Scaled conjugate gradient 

UASB Upflow anaerobic sludge blanket 
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