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Abstract: Most petrochemical plants still maintain a Proportional-Integral-Differential controller 1

(PID) system, which is a feedback control system. However, gradually, the PID system is being 2

extended and introduced to the Advanced Process Controller (APC) system, which is an integrated 3

control system of feedforward and feedback that predicts external influences in advance. In the 4

process of conducting on-site plant tests and calculating APC model parameter for the application 5

of APC systems, a problem arises that Model Parameter are implemented differently depending 6

on the proficiency of APC engineers. To minimise this problem, a technique for estimating APC 7

model parameter without a plant test is required. In order to estimate the APC model parameter, it is 8

necessary to train on dynamic interval data. In this paper, we use statistical techniques such as PELT, 9

Linear Kernel, and Radial Basis Function Kernel of Change Point Detection (CPD) to extract dynamic 10

data with minimum Mean Absolute Error (MAE) from time series data of a real petrochemical plant. 11

Then, the hyper parameter is fixed and the APC model parameter is estimated by learning the 12

dynamic section data. By applying the estimated APC model parameter to the APC Model Tool and 13

measuring the fitting rate, it was confirmed that it is possible to estimate the APC model parameter 14

with excellent control performance without plant test. 15

Keywords: Petrochemical, Continuous Process, Advanced Process Control, Change Point Detection, 16

Model Parameter Estimation 17

1. Introduction 18

Most petrochemical plants still maintain a PID (Proportional-Integral-Differential 19

Controller) system for feedback control [28]. However, gradually, the PID system, which is a 20

feedback control, is being expanded and introduced to APC (Advanced Process Controller), 21

which is an integrated control system of feedforward and feedback that predicts external 22

influences in advance. The model underlying these two systems is the response of the output 23

variable to the input of the manipulated variable. In particular, most control systems used 24

in the industrial field adopt a first-order time-delay model with a stepped response. The 25

reason for the widespread use of first-order time-delay models is not only their simplicity, 26

but also their ability to capture the essential dynamics of many industrial processes [11]. 27
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Figure 1. PID System Structure

The representative control method of classical control theory is PID control. As shown 28

in Figure 1, the transfer function of a PID controller consists of three terms: proportional, 29

integral, and derivative. The terms KP, KI , and KD are called proportional, integral, and 30

differential gains, respectively. As KP increases, the overshoot increases, but the rise time 31

decreases, approaching the target value faster and reducing the steady-state error. However, 32

requiring a large amount of control can strain the system, and the settling time is not 33

affected. As KI increases, the overshoot increases due to the large change in the amount of 34

control over the residual deviation from steady state, and since it is a fine control, the rise 35

time decreases slightly and the steady state error, which is the goal of integral control, is 36

eliminated, but the settling time increases additionally. Increasing KD reduces the overshoot, 37

reduces the rise time, and reduces the settling time because the error is corrected more 38

quickly. However, it has no effect on steady-state error. The Laplace inversion of the transfer 39

function G(s) given in Equation (1) yields the output equation in the time domain, as shown 40

in Equation (2). 41

G(s) = KP +
KI
s

+ KDs (1)

y(t) = Kpe(t) + KI

∫ t

0
e(τ) dτ + KD

de(t)
dt

(2)

PID system is characterised by a 1:1 control method between output and input vari- 42

ables, and feedback control that compensates for the difference between predicted and 43

actual values in real time. The control performance is determined by the PID tuning value. 44

Unlike PID systems, APC systems can be applied to processes with large time delays, 45

unstable processes, and multi-variable processes. The characteristics of APC control are N:N 46

control method, which can control multiple output variables with multiple input variables, 47

and a mixed control method of feedback control, which controls by compensating the 48

difference between the predicted value and the actual value in real time, and feedforward 49

control, which considers the influence of external disturbance variables in advance and 50

controls before the external influence [19]. The following figure presents a schematic 51

diagram of the APC system. 52
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Figure 2. APC System Structure

A typical APC system consists of a system model, constraints, disturbance model, cost 53

function, optimisation method, and control range, all of which can affect the performance of 54

the APC System [1]. In general, the APC system used in industrial applications is modeled 55

as a first-order time-delay control system, as shown in Equation (3). Where K = gain, TD 56

= Delay, and τ = Time Constant. By performing the Laplace inverse transformation, the 57

output equation can be obtained in the time domain of the first-order time-delay model as 58

shown in Equation (4). 59

G(s) = K
e−Ds

1 + τs
(3)

y(t) = K(1− e−
t
τ ) · x(t− D) (4)

The performance of an APC system is determined by the APC model parameter values 60

calculated from the formula above. APC systems require regular APC model parameter 61

maintenance over time due to changes in production grades, equipment obsolescence, and 62

replacement. Programs that help APC engineers easily obtain Model Parameter (MATLAB, 63

Model-ID, etc.) are commercially available, but in the process of conducting on-site plant 64

tests and calculating APC model parameter, APC model parameter are implemented 65

differently depending on the proficiency of APC engineers. This leads to a decrease in the 66

accuracy of the APC model and the control performance of the APC system. Therefore, a 67

method for estimating APC model parameter without a plant test is needed to minimise 68

the difference in the proficiency of APC engineers. 69

In order to estimate the APC model parameter, it is necessary to train the data in 70

the dynamic interval to know the correlation between the output variable (CV) and the 71

manipulated variables (MV, DV). However, it is not easy to determine the dynamic interval 72

due to the complexity of process dynamics [14]. In this paper, we use the time series data 73

of a real petrochemical plant to extract the dynamic intervals of the time series data using 74

various statistical techniques of Change Point Detection (CPD). In order to estimate the 75

accurate APC model parameter, a comparison of PELT-based Learning, Linear Kernel-based 76

Learning, and Radial Basis Function Kernel-based Learning of CPD is performed to find 77

the hyper parameter of the dynamic section with the smallest MAE (Mean Absolute Error). 78

Then, the APC model parameter is estimated using the Levenberg-Marquardt algorithm 79

in the dynamic range of the fixed hyper parameter. Finally, the estimated APC model 80

parameter is applied to the APC control program to verify the accuracy by presenting the 81

fitting rate results in three random sections of evaluation data. 82

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 June 2023                   doi:10.20944/preprints202306.1026.v1

https://doi.org/10.20944/preprints202306.1026.v1


Version June 13, 2023 submitted to Journal Not Specified 4 of 18

By comparing the fitting rate of the estimated APC model parameter in three random 83

sections of evaluation data, the average fitting rate of 86.09% for Plant A and 79.94% for 84

Plant B was found. This shows that it is possible to estimate APC model parameter with 85

good control performance without plant tests. 86

2. Background and Methodology 87

2.1. APC Model Design Flow 88

Considering the inherent characteristics of the process, such as time delays, mutual 89

interference, back-reaction, and process constraints, the APC system is introduced because 90

the PID system alone has limitations in performing optimised operation. To carry out an 91

APC project, the following steps should be taken [39]. 92

(1) Functional Design 93

By analysing the flow and operation purpose of the target process, the PID loop 94

performance of the MV to be used by the APC system is identified, and the CV, MV, 95

and DV to configure the APC system for optimal operation are set [39]. 96

(2) Plant Test 97

The APC system is a model-based control system. To obtain the model, a plant test is 98

required to check the movement of CV by changing the expected MV and DV with 99

the desired amplitude at the appropriate period. At this time, the actual process is 100

moved arbitrarily, so when performing the plant test, sufficient consultation should 101

be made with the person in charge of the site, and care should be taken to prevent 102

process problems from occurring [39]. Figure 3 below shows an example of a plant 103

test. 104

Figure 3. Plant Test

(3) Detail Design 105

Using the data obtained through the plant test, the process variables such as CV, MV, 106

and DV selected in the basic design are finally determined, and a dynamic model 107

is built to predict and verify the control performance of the APC with an offline 108

controller. The dynamic model has a structure such as FIR (Finite Impulse Resp), 109

Laplace, etc. and is mostly designed using a programme provided by the APC system 110

supplier as shown in Figure 4 [39]. Offline verification can be achieved by using an 111

APC simulator to mimic the actual process and apply the APC system to verify its 112

performance. This can reduce the implementation error when building an APC system 113

online [Figure 5]. 114
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Figure 4. Calculate a Dynamic Characteristic Model of the APC

Figure 5. Offline Validation of APC system

(4) Commissioning and Performance Analytics 115

Commissioning is the stage where the actual APC system is brought online and 116

optimised for operation. Once the APC model parameter are tuned, the actual benefits 117

are calculated by analysing the performance of the optimised operation by comparing 118

the performance before and after the application of the APC system as shown in 119

Figure 6 [39]. 120

Figure 6. APC Model Commissioning & Performance Analytics
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2.2. Change Point Detection 121

Change Point Detection (CPD) is a statistical technique that literally looks for points 122

of trend change in time series data, as shown in the figure below. In other words, it is a 123

matter of finding points in the time series data where the time series characteristics such 124

as mean, standard deviation, and slope change rapidly. Below [Figure 7] is an example of 125

CPD, and the vertical lines marked with blue dots in the figure below represent the points 126

where trend changes are detected. 127

Figure 7. Example of Applying Change Point Detection

CPD is performed by dividing the time series data into bins and minimising the sum 128

of the costs for each bin. In other words, CPD can be viewed as a kind of partial time series 129

clustering problem that bins time series data with similar characteristics. In other words, 130

the starting point of each bin can be called a change point. The change detection problem 131

for the time series y=(y1,y2 · · · ,yt) can be formally defined as follows. 132

S∗ = arg min
S

∑
s∈S

C(s) (5)

Where S is the set of bins, C is the cost function for the bins, and S∗ is the optimal set 133

of bins. 134

(1) PELT(Pruned Exact Linear Time) 135

The PELT algorithm is a change detection algorithm that finds the optimal interval 136

in linear time when the number of change points is unknown, and consists of the 137

following steps [17,30]. 138

(a) Input: time series y, cost function C, penalty β. 139

(b) Step 1: Initialise 140

– Initialise z as an empty array of size T + 1. 141

– Initialise with Z[0] = −β 142

– Initialise with L[0] = ∅ 143

– Initialise with x = {0} 144

– Initialise with t = 1 145

(c) Step 2: Update t̂, Z[t], L[t], and χ as follows 146

– t̂← arg min
τ∈χ

(Z[τ] + C(yτ:t) + β) 147

– Z[t̂]← Z[t] + C(yt̂:t) + β 148

– L[t]← L[t̂] ∪ {t̂} 149

– χ← {τ ∈ χ : Z[τ] + C(yτ:t) ≤ Z[t]} ∪ {t̂} 150

(d) Step 3: Terminate the algorithm if t = τ, otherwise increment t by 1 and 151

return to step 2 152
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(2) Kernel Change Point Detection 153

Kernel Change Point Detection is a method for dividing bins based on the change in the
mean of each bin [5]. In KCP, data is projected into a high-dimensional space through
a measurable function, Kernel, and then change points are detected by comparing the
homogeneity of each sequence [3,15]. It is characterised by the fact that individual
points are mapped using a mapping function ϕ, i.e., the cost for a set of intervals S is
defined as

C(S) = ∑
s∈S

∑
yt∈S
∥ϕ(yt)− s̄∥2 (6)

where s̄ is the average of every value in the interval s for every element in the interval
s. During the mapping process, we can use the following kernel functions

∥ϕ(yt)∥2 = K(yt, yt) (7)

ϕ(yt) · ϕ(yτ) = K(yt, yτ) (8)

Where K represents a kernel function, the most commonly used kernel functions are 154

Linear Kernel, RBF Kernel (Radius Basis Function Kernel), etc. 155

3. Research Methods Overall Process 156

3.1. Overall Architecture 157

In this section, we first describe the overall structure of the study to estimate the APC 158

model parameter and propose the expected results of the study in terms of the estimated 159

APC model parameter. Next, as described in the introduction, it is very important to collect 160

data of dynamic intervals to estimate the APC model parameter, so we describe the research 161

methodology of CPD used to find data of dynamic intervals, and the definition and purpose 162

of the evaluation metric Mean Absolute Error (MAE). We also explain the rationale for the 163

scope of the hyper parameter Grid used to find the MAE. First, the overall process of this 164

study can be briefly described as follows, which consists of four steps, as shown in Figure 165

8. 166

Figure 8. The Overall Research Process

(1) Raw Data Acquisition 167

(2) Change Point Detection 168

(3) APC Model Parameter Estimation 169

(4) Comparison of Result 170

The data used in this study are time series data of actual petrochemical plants in Korea, 171

collected through OPC DA (Data Access) connected to DCS (Distributed Control System), 172
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and the names of each plant are anonymised as Plant A and Plant B in consideration of 173

data security issues, and output variables (CV) and manipulation variables (MV, DV) are 174

separated. In order to estimate APC model parameter without plant test, which is the 175

purpose of this study, it is essential to cluster only the dynamic part of the data. CPD 176

algorithm is used to find the dynamic section of the data. Among the CPD algorithms, 177

PELT, Linear Kernel, and RBF Kernel techniques are used to find the hyper parameter of the 178

dynamic region with the minimum MAE (Mean Absolute Error). First, the CPD algorithm is 179

used to find the hyper parameter of the dynamic section with the minimum MAE, and then 180

the value of the hyper parameter is fixed to estimate the APC model parameter, K (Gain) 181

and T (Time Constant), through the Levenberg-Marquardt algorithm. Finally, the estimated 182

APC model parameter are applied to the APC control programme to verify the accuracy 183

by comparing the fitting rate of the predicted and actual values. As the MAE value of the 184

manipulated variables (MV, DV) for each output variable (CV) becomes smaller through 185

CPD, the fitting rate of the estimated APC model parameter will show high accuracy, and 186

the fitting rate is expected to increase as the number of manipulated variables (MV, DV) 187

required to predict and control the output variable (CV) increases. 188

3.2. Designing a Change Point Detection Model 189

Figure 9. Change Point Detection Techniques

In order to estimate APC model parameter from time series data, it is necessary to 190

consider the dynamic nature of the process, so it is first necessary to accurately identify the 191

dynamic regions of the data. In this study, CPD algorithms such as PELT, Linear Kernel, 192

and RBF Kernel are used to identify fluctuating data as shown in Figure 9. However, even 193

with CPD techniques, it is difficult to perfectly identify when the trend starts to change. 194

In order to perfectly detect when the trend starts to change, we need to be very sensitive 195

to detecting the trend change, which is problematic because we will consider most of the 196

points as change points. Therefore, for any point with a trend change found using CPD, 197

we can define the fluctuating interval as -a to r+a where a is calculated by the following 198

algorithm. 199

(1) Calculate the slope θ1 of a simple linear regression model using the data from r-1 to r+1. 200

(2) Initialise the variable a which represents the length of the interval, to 2. 201

(3) Let the independent variable be t and the dependent variable be r-a to r+a Compute the 202

slope θa of a simple linear regression model with data from r-a to r+a. 203

(4) θa−1 × θa < 0 or the rate of change of the intercept of θa−1 relative to the intercept of θa, 204

|θ|a−|θ|a−1|
|θ|a−1

> ε, return a-1. Otherwise, increase a by 1 and revert to (3). 205

3.3. Defining and Purpose of Performance Indicators 206

This section explains what Mean Absolute Error (MAE) is and why it is used as a
metric in CPD. MAE is a popular metric used to determine if a regression model has been
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trained properly. It can be derived by converting the difference between the actual correct
answer and the predicted value into absolute value and then averaging it, and the smaller
the value, the better the performance of the model. The formula for MAE is as follows

MAE =
1
N

N

∑
i=1
|yi − ŷi| (9)

In the formula, yi is the actual value and ŷi is the predicted value. Since MAE takes an 207

absolute value, it is difficult to determine whether the regression model predicted higher or 208

lower than the actual answer. However, it is easy to interpret the results because it has the 209

same unit as the actual answer value and the predicted value. Also, since it takes absolute 210

values, the results can be interpreted intuitively. In this paper, we need an intuitive indicator 211

not to evaluate the correlation of the model, but to detect the change point of the data and 212

indicate the difference between the predicted value and the actual value. Therefore, we use 213

MAE as a performance indicator for detecting change points. 214

3.4. Defining and Designing Hyper Parameters 215

Hyper parameter refers to a variable that is manually set by the user in the model 216

to achieve an optimal training model. In this study, we compare the MAE of the three 217

change point detection techniques mentioned above, Pruned Exact Linear Time (PELT), 218

Linear kernel-based technique, and Radial Basis Function (RBF) kernel-based technique, to 219

identify the dynamic interval with the smallest MAE value and find the hyper parameter. 220

To effectively detect changes in time series data, Delay (D) and Minimum Segment Size 221

(MS) are applied as hyper parameters. Since there is no rule or method to design the hyper 222

parameter Grid perfectly mathematically, the range is set and tuned empirically. In general, 223

it is suggested to set the range from 0 to 10 for hyper parameters and 5 to 20 for MS because 224

they rarely have values above 10 when affected by variables in the same process. D, If the 225

hyper parameter Grid of MS has a narrow spacing, you can find a hyper parameter with 226

good performance, but the computation time will increase considerably. 227

4. Experimental Results 228

4.1. Experimental Environments 229

Specify the experimental environment of the study for reproducibility of the experi- 230

ment. 231

• Hardware platform architecture: GPU-enabled laptop 232

• Laptop configuration: CPU Core i5-8250, quad-core processor, 8GB RAM. 233

• Operating system: Window 10. 234

For an optimal development environment that is fast and collaborative, we used the 235

cloud-based Google Collaboratory. Google Collaboratory provides a free Jupyter Notebook 236

environment and is available on the cloud without installation. Google Collaboratory 237

enables high-performance development, sharing, and computing resources. In particular, 238

you can process large amounts of data. 239

4.2. Experimental Datasets Design 240

The primary objective of the experiment is to determine the data in the dynamic section 241

in order to estimate the correct APC model parameter. Finally, the objective is to train the 242

model with data from only the dynamic bins and estimate the APC model parameter with 243

good performance. The data used in this study are time series data obtained from two 244

different factories, Plant A and Plant B, at two different times, which are referred to as 245

A-1, A-2, B-1, and B-2, respectively. The sampling time of each data is 1 minute, and the 246

experiment is conducted on 5 days of data. The range of each data is as follows. 247

• A-1: 23 April 2023 00:00:00 to 27 April 2023 23:59:00 248

• B-1: 26 March 2023 00:00:00 to 30 March 2023 23:59:00 249
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• A-2: 30 April 2023 00:00:00 to 04 May 2023 23:59:00 250

• B-2: 19 April 2023 00:00:00 to 23 April 2023 23:59:00 251

Let A-1 and B-1 be the training data and A-2 and B-2 be the respective test data. In addition, 252

all four data described above consist of one control variable (CV) and two manipulation 253

variables (MV, DV). In addition, the experimental trend change detection technique and its 254

hyper parameter grid are shown in the following Table 1. 255

Table 1. Change Point Detection Techniques과 Hyper Parameter Grid

Change Point Detection Technique Hyper Parameter Grid

PELT
MS: {5, 10, 15, 20}

D: {0, 3, 5, 10}

Kernel-based detection [’Linear’, ’RBF’] MS: {5, 10, 15, 20}
D: {0, 3, 5, 10}

Otherwise, the hyper parameter Grid evaluates for the following sections 256

• ε : 0.001, 0.01, 0.05, 0.1 257

The specific process using the dataset is as follows 258

[Step 1]
To objectively evaluate the proposed Plant A and Plant B data, divide the dataset into
a training dataset and a test dataset. Specifically, the first 5 days data (50%) of Plant
A and Plant B are used as training data, and the last 5 days data (50%) are used for
testing.
[Step 2]
Hyper parameters are divided into MS and MS, and dynamic bins are detected and
identified using PELT, Linear kernel-based technique, and RBF kernel-based technique.
We use the above three methods because they are the most commonly used methods
for anomaly detection in time series data in CPD’s previous studies [17,30,35-36].
[Step 3]
The data trained by the PELT, Linear kernel-based, and RBF kernel-based methods
are used to determine the accuracy of the dynamic segments through the MAE metric.
Here, the hyper parameter of the algorithm with the smallest MAE is fixed, and the
APC model parameter estimation proceeds.
[Step 4]
The APC model parameter trained with the above proposed metrics is learned by
applying the following equation to the Levenberg-Marquardt algorithm.

y(t) = K(1− e−
t
τ ) · x(t− D) (10)

Here, each variable means the following 259

t : Elapsed Time 260

y(t): Value of the CV (output variable) for time t 261

x(t): Value of the MV (manipulation variable) for time t (may be replaced by DV) 262

K : Gain 263

τ : Time Constant 264

D : Delay 265

[Step 5] 266

Verify the accuracy of the control performance by comparing the fitting rate of the 267

predicted and actual values with the APC model parameter estimates obtained in Step 268

3 and Step 4. 269
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4.3. Results 270

(1) Experiment 1 Results: Plant A For the manipulated variable MV, the 10 models and 271

hyper parameters with the smallest MAE are shown in Table 2. 272

Table 2. Plant A - Parameter tuning results for the manipulated variable MV

Rank Algorithms D MS ε MAE

1 Linear Kernel 10 10 0.05 8.642452
2 Linear Kernel 10 15 0.05 8.651746
3 Linear Kernel 10 5 0.05 8.656836
4 Linear Kernel 10 20 0.05 8.674863
5 Linear Kernel 5 10 0.05 8.682052
6 Linear Kernel 5 5 0.05 8.691545
7 Linear Kernel 3 10 0.05 8.693691
8 Linear Kernel 5 15 0.05 8.699134
9 Linear Kernel 3 5 0.05 8.700352
10 Linear Kernel 3 15 0.05 8.703656

For the manipulated variable DV, the 10 models and hyper parameters with the 273

smallest MAE are shown in Table 3. 274

Table 3. Plant A - Parameter tuning results for the operational variable DV

Rank Algorithms D MS ε MAE

1 Linear Kernel 10 20 0.01 10.73935
2 Linear Kernel 5 20 0.01 10.739671
3 Linear Kernel 3 20 0.01 10.739682
4 Linear Kernel 0 20 0.01 10.740037
5 Linear Kernel 0 15 0.01 10.741053
6 Linear Kernel 0 5 0.01 10.741164
7 Linear Kernel 0 10 0.01 10.741403
8 Linear Kernel 0 5 0.01 10.741504
9 Linear Kernel 10 5 0.01 10.742831
10 Linear Kernel 5 5 0.01 10.743456

From the two tables, we can see that kernel-based detection with a linear kernel per- 275

forms well. The average MAEs for D, MS, and ε are shown in Tables 4, 5, and 6, respectively. 276

Depending on the manipulated variables, we can see that the distribution of performance 277

across parameters is significantly different. For example, for the manipulation variable 278

MV, the larger the value, the better the performance, while for DV, the smaller the value, 279

the better the performance. This suggests that it is very important to tune the appropriate 280

parameters according to the data. 281

Table 4. Average MAE according to D: Plant A

Manipulated Variables D Mean MAE

MV

0 9.934820
3 9.914994
5 9.905677

10 9.820333

DV

0 11.741451
3 12.000861
5 11.999641

10 11.997169
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Table 5. Average MAE according to MS: Plant A

Manipulated Variables MS Mean MAE

MV

5 9.876135
10 9.904980
15 9.927402
20 9.867307

DV

5 11.864946
10 12.038425
15 11.882389
20 11.953361

Table 6. Average MAE according to ε: Plant A

Manipulated Variables ε Mean MAE

MV
0.01 9.898091
0.05 9.579578
0.10 10.204200

DV
0.01 11.386267
0.05 12.186671
0.10 12.231404

A comparison of the average MAE across algorithms is shown in Table 7 below 282

Table 7. Average MAE according to Algorithms: Plant A

Manipulated Variables Algorithms Mean MAE

MV
Linear Kernel 9.399081

RBF Kernel 9.507844
PELT 10.774943

DV
Linear Kernel 11.443224

RBF Kernel 12.540117
PELT 11.821000

As shown in Table 7, we can see that the linear kernel-based change detection algorithm 283

performs well for both manipulated variables. Based on the best performing linear kernel- 284

based hyper parameter of = 10, MS = 10, and ε = 0.05 for the manipulated variable MV, the 285

Levenberg-Marquardt algorithm yielded a model parameter estimate of MV for CV of K 286

= 15.3188 and τ = 0.3221. Also. Based on the best performing Linear kernel-based Hyper 287

Parameter for the manipulated variable DV, = 5, MS = 10, and ε = 0.01, the Model Parameter 288

estimates for DV for CV resulted in K = 22.85, τ = 0.0309. The graphical representation of the 289

APC model parameter estimated based on the best performing model for the operational 290

variables MV and DV and the result of measuring the fitting rate through the APC Model 291

Tool is shown in the figure below [10,11,12]. The intervals were randomly selected from the 292

evaluation data intervals of Plant A. Three intervals of about 200 minutes in length were 293

selected. 294
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Figure 10. (Section 1) Fitting rate of CV with Estimated APC Model Parameter

Figure 11. (Section 2) Fitting rate of CV with Estimated APC Model Parameter

Figure 12. (Section 3) Fitting rate of CV with Estimated APC Model Parameter

We measured the fitting rate of the estimated APC model parameter to the predicted 295

and actual values using the APC Model Tool, and found the following results. 296

••••• (Section 1) Fitting Rate of CV with Estimated APC Model Parameter(MV+DV): 81.9% 297

• (Section 2) Fitting Rate of CV with Estimated APC Model Parameter(MV+DV): 81.04% 298

• (Section 3) Fitting Rate of CV with Estimated APC Model Parameter(MV+DV): 95.35% 299

(2) Experiment 2 Results: Plant B For the manipulated variable MV, the 10 models and 300

hyper parameters with the smallest MAE are shown in Table 8. 301
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Table 8. Plant B - Parameter tuning results for the manipulated variable MV

Rank Algorithms D MS ε MAE

1 RBF Kernel 0 10 0.01 45.629945
2 RBF Kernel 0 5 0.01 45.647986
3 RBF Kernel 0 20 0.01 45.813426
4 Linear Kernel 0 5 0.1 46.103089
5 Linear Kernel 0 5 0.05 46.117504
6 RBF Kernel 0 15 0.01 46.118124
7 RBF Kernel 0 5 0.1 46.121928
8 RBF Kernel 10 10 0.01 46.134523
9 RBF Kernel 5 10 0.01 46.136264
10 RBF Kernel 0 15 0.1 46.147291

For the manipulated variable DV, the 10 models and hyper parameters with the 302

smallest MAE are shown in Table 9. 303

Table 9. Plant B - Parameter tuning results for the operational variable DV

Rank Algorithms D MS ε MAE

1 RBF Kernel 3 20 0.01 4.110627
2 RBF Kernel 5 20 0.01 4.192519
3 RBF Kernel 0 20 0.01 4.19666
4 RBF Kernel 10 20 0.01 4.200493
5 PELT 0 20 0.1 4.216778
6 Linear Kernel 0 10 0.01 4.231443
7 Linear Kernel 3 10 0.01 4.234592
8 PELT 3 20 0.1 4.269921
9 Linear Kernel 5 10 0.01 4.27022
10 PELT 5 20 0.1 4.274902

The averages of MAE according to D, MS, and ε are shown in Tables 10, 11, and 12, re- 304

spectively. We can see that the parameterized performance distributions differ significantly 305

depending on the manipulated variables. 306

Table 10. Average MAE according to D: Plant B

Manipulated Variables D Mean MAE

MV

0 47.014508
3 47.716971
5 47.703097

10 47.672040

DV

0 4.402237
3 4.417269
5 4.420273

10 4.431750
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Table 11. Average MAE according to MS: Plant B

Manipulated Variables MS Mean MAE

MV

5 47.090598
10 47.331090
15 47.803609
20 47.881317

DV

5 4.425821
10 4.406654
15 4.43916
20 4.404137

Table 12. Average MAE according to ε: Plant B

Manipulated Variables ε Mean MAE

MV
0.01 47.603724
0.05 47.531555
0.10 47.444681

DV
0.01 4.339782
0.05 4.431148
0.10 4.482717

A comparison of the average MAE across algorithms is shown in Table 13 below. 307

Table 13. Average MAE according to Algorithms: Plant B

Manipulated Variables ε Mean MAE

MV
Linear Kernel 47.092989

RBF Kernel 46.742333
PELT 48.744638

DV
Linear Kernel 4.399071

RBF Kernel 4.498206
PELT 4.356370

As shown in Table 13, the appropriate algorithm depends on the manipulated variables. 308

We can also see that the difference in performance across manipulated variables is nearly an 309

order of magnitude. This suggests that the performance difference can be large depending 310

on which variable is used to predict the control variable. Based on D = 0, MS = 5, and ε = 311

0.05, the linear kernel-based hyper parameters that performed best for the manipulated 312

variable MV, the model parameter estimation of MV for CV using the Levenberg-Marquardt 313

algorithm was K = 2.644706, τ = 0. 038512. Based on D = 0, MS = 15, ε = 0.1, the best 314

performing hyper parameter based on the PELT technique for the manipulated variable 315

DV, the model parameter estimate of DV for CV was K = 0.9556, τ = 0.0337. The graphical 316

representation of the APC model parameter estimated based on the best performing model 317

for the operational variables MV and DV and the fitting rate measured by the APC Model 318

Tool is shown in the figure below [13,14,15]. The intervals were randomly selected from the 319

evaluation data intervals of Plant B. Three intervals of about 200 minutes in length were 320

selected. 321
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Figure 13. (Section 1) Fitting rate of CV with Estimated APC Model Parameter

Figure 14. (Section 2) Fitting rate of CV with Estimated APC Model Parameter

Figure 15. (Section 3) Fitting rate of CV with Estimated APC Model Parameter

We measured the fitting rate of the estimated APC model parameter to the predicted 322

and actual values using the APC Model Tool, and found the following results. 323

• (Section 1) Fitting Rate of CV with Estimated APC Model Parameter(MV+ DV): 95.04% 324

• (Section 2) Fitting Rate of CV with Estimated APC Model Parameter(MV+ DV): 74.42% 325

• (Section 3) Fitting Rate of CV with Estimated APC Model Parameter(MV+ DV): 70.36% 326

5. Conclusion 327

APC model parameter play a key role in APC control. Most of the previous studies 328

have been conducted in various industries such as semiconductor and bio, but few papers 329

have been applied to the petrochemical industry. Since it is essential to maintain the APC 330

system over time, it is very important to obtain dynamic interval data to estimate the 331

APC model parameter. In this paper, PELT, Linear kernel-based, and RBF kernel-based 332

techniques were applied for Change Point Detection as described in Chapter 3 to evaluate 333

the MAE of the dynamic section. The results show that the Linear kernel-based method 334

is the best for MV and DV of Plant A, the RBF kernel-based method is the best for MV of 335

Plant B, and the PELT method is the best for DV. Since the variables can be current values, 336

set values, or valve values of flow, pressure, temperature, etc. in petrochemical processes, 337

it suggests that the performance of the model can be significantly different depending on 338
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which variables are used to predict the control variables. As shown in the experimental 339

results in Chapter 4, the CV control method that considers both MV and DV has the highest 340

fitting rate, rather than controlling CV with MV or DV alone. As a result, by fixing the 341

hyper parameter in the dynamic interval with the minimum MAE, the estimated APC 342

model parameter was measured for the fitting rate of the predicted value and the actual 343

value through the APC Model Tool, and the fitting rate was found to be 86.09% on average 344

for Plant A and 79.94% on average for Plant B. Therefore, it is possible to estimate the 345

APC model parameter with good control performance without plant test. In the future, it 346

is necessary to increase the reliability of the results through extended experiments with 347

more process data. In this experiment, only MAE was used as an evaluation metric, but 348

it is necessary to expand evaluation metrics such as MSE (Mean Squared Error), RMSE 349

(Root Mean Squared Error), and MAPE (Mean Absolute Percentage Error) in addition to 350

MAE to improve the reliability of evaluation metrics. Also, it is necessary to analyze how 351

to reduce the MAE of each variable through approaches other than PELT-based Learning, 352

Linear Kernel-based Learning, and Radial basis function Kernel-based Learning applied in 353

this experiment. 354
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