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Abstract: Most petrochemical plants still maintain a Proportional-Integral-Differential controller
(PID) system, which is a feedback control system. However, gradually, the PID system is being
extended and introduced to the Advanced Process Controller (APC) system, which is an integrated
control system of feedforward and feedback that predicts external influences in advance. In the
process of conducting on-site plant tests and calculating APC model parameter for the application
of APC systems, a problem arises that Model Parameter are implemented differently depending
on the proficiency of APC engineers. To minimise this problem, a technique for estimating APC
model parameter without a plant test is required. In order to estimate the APC model parameter, it is
necessary to train on dynamic interval data. In this paper, we use statistical techniques such as PELT,
Linear Kernel, and Radial Basis Function Kernel of Change Point Detection (CPD) to extract dynamic
data with minimum Mean Absolute Error (MAE) from time series data of a real petrochemical plant.
Then, the hyper parameter is fixed and the APC model parameter is estimated by learning the
dynamic section data. By applying the estimated APC model parameter to the APC Model Tool and
measuring the fitting rate, it was confirmed that it is possible to estimate the APC model parameter
with excellent control performance without plant test.

Keywords: Petrochemical, Continuous Process, Advanced Process Control, Change Point Detection,
Model Parameter Estimation

1. Introduction

Most petrochemical plants still maintain a PID (Proportional-Integral-Differential
Controller) system for feedback control [28]. However, gradually, the PID system, which is a
feedback control, is being expanded and introduced to APC (Advanced Process Controller),
which is an integrated control system of feedforward and feedback that predicts external
influences in advance. The model underlying these two systems is the response of the output
variable to the input of the manipulated variable. In particular, most control systems used
in the industrial field adopt a first-order time-delay model with a stepped response. The
reason for the widespread use of first-order time-delay models is not only their simplicity,
but also their ability to capture the essential dynamics of many industrial processes [11].
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Figure 1. PID System Structure

The representative control method of classical control theory is PID control. As shown
in Figure 1, the transfer function of a PID controller consists of three terms: proportional,
integral, and derivative. The terms Kp, K;, and Kp are called proportional, integral, and
differential gains, respectively. As Kp increases, the overshoot increases, but the rise time
decreases, approaching the target value faster and reducing the steady-state error. However,
requiring a large amount of control can strain the system, and the settling time is not
affected. As K| increases, the overshoot increases due to the large change in the amount of
control over the residual deviation from steady state, and since it is a fine control, the rise
time decreases slightly and the steady state error, which is the goal of integral control, is
eliminated, but the settling time increases additionally. Increasing Kp reduces the overshoot,
reduces the rise time, and reduces the settling time because the error is corrected more
quickly. However, it has no effect on steady-state error. The Laplace inversion of the transfer
function G(s) given in Equation (1) yields the output equation in the time domain, as shown
in Equation (2).

K
G(s) = Kp + ?I+KDS )

de(t)
dt

t
y(t) = Kpe(t) + K [ e(r) dr+Kp @)

PID system is characterised by a 1:1 control method between output and input vari-
ables, and feedback control that compensates for the difference between predicted and
actual values in real time. The control performance is determined by the PID tuning value.

Unlike PID systems, APC systems can be applied to processes with large time delays,
unstable processes, and multi-variable processes. The characteristics of APC control are N:N
control method, which can control multiple output variables with multiple input variables,
and a mixed control method of feedback control, which controls by compensating the
difference between the predicted value and the actual value in real time, and feedforward
control, which considers the influence of external disturbance variables in advance and
controls before the external influence [19]. The following figure presents a schematic
diagram of the APC system.
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Figure 2. APC System Structure

A typical APC system consists of a system model, constraints, disturbance model, cost
function, optimisation method, and control range, all of which can affect the performance of
the APC System [1]. In general, the APC system used in industrial applications is modeled
as a first-order time-delay control system, as shown in Equation (3). Where K = gain, TD
= Delay, and t = Time Constant. By performing the Laplace inverse transformation, the
output equation can be obtained in the time domain of the first-order time-delay model as
shown in Equation (4).

€7DS
G<S) - 1+ 7s &)
y(t) = K(1 —e77) - x(t - D) (4)

The performance of an APC system is determined by the APC model parameter values
calculated from the formula above. APC systems require regular APC model parameter
maintenance over time due to changes in production grades, equipment obsolescence, and
replacement. Programs that help APC engineers easily obtain Model Parameter (MATLAB,
Model-ID, etc.) are commercially available, but in the process of conducting on-site plant
tests and calculating APC model parameter, APC model parameter are implemented
differently depending on the proficiency of APC engineers. This leads to a decrease in the
accuracy of the APC model and the control performance of the APC system. Therefore, a
method for estimating APC model parameter without a plant test is needed to minimise
the difference in the proficiency of APC engineers.

In order to estimate the APC model parameter, it is necessary to train the data in
the dynamic interval to know the correlation between the output variable (CV) and the
manipulated variables (MV, DV). However, it is not easy to determine the dynamic interval
due to the complexity of process dynamics [14]. In this paper, we use the time series data
of a real petrochemical plant to extract the dynamic intervals of the time series data using
various statistical techniques of Change Point Detection (CPD). In order to estimate the
accurate APC model parameter, a comparison of PELT-based Learning, Linear Kernel-based
Learning, and Radial Basis Function Kernel-based Learning of CPD is performed to find
the hyper parameter of the dynamic section with the smallest MAE (Mean Absolute Error).
Then, the APC model parameter is estimated using the Levenberg-Marquardt algorithm
in the dynamic range of the fixed hyper parameter. Finally, the estimated APC model
parameter is applied to the APC control program to verify the accuracy by presenting the
fitting rate results in three random sections of evaluation data.
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By comparing the fitting rate of the estimated APC model parameter in three random
sections of evaluation data, the average fitting rate of 86.09% for Plant A and 79.94% for
Plant B was found. This shows that it is possible to estimate APC model parameter with
good control performance without plant tests.

2. Background and Methodology
2.1. APC Model Design Flow

Considering the inherent characteristics of the process, such as time delays, mutual
interference, back-reaction, and process constraints, the APC system is introduced because
the PID system alone has limitations in performing optimised operation. To carry out an
APC project, the following steps should be taken [39].

(1) Functional Design
By analysing the flow and operation purpose of the target process, the PID loop
performance of the MV to be used by the APC system is identified, and the CV, MV,
and DV to configure the APC system for optimal operation are set [39].

(2) Plant Test

The APC system is a model-based control system. To obtain the model, a plant test is
required to check the movement of CV by changing the expected MV and DV with
the desired amplitude at the appropriate period. At this time, the actual process is
moved arbitrarily, so when performing the plant test, sufficient consultation should
be made with the person in charge of the site, and care should be taken to prevent
process problems from occurring [39]. Figure 3 below shows an example of a plant
test.

Figure 3. Plant Test

(3) Detail Design

Using the data obtained through the plant test, the process variables such as CV, MV,
and DV selected in the basic design are finally determined, and a dynamic model
is built to predict and verify the control performance of the APC with an offline
controller. The dynamic model has a structure such as FIR (Finite Impulse Resp),
Laplace, etc. and is mostly designed using a programme provided by the APC system
supplier as shown in Figure 4 [39]. Offline verification can be achieved by using an
APC simulator to mimic the actual process and apply the APC system to verify its
performance. This can reduce the implementation error when building an APC system
online [Figure 5].
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Figure 5. Offline Validation of APC system

(4) Commissioning and Performance Analytics
Commissioning is the stage where the actual APC system is brought online and
optimised for operation. Once the APC model parameter are tuned, the actual benefits
are calculated by analysing the performance of the optimised operation by comparing
the performance before and after the application of the APC system as shown in
Figure 6 [39].
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Figure 6. APC Model Commissioning & Performance Analytics
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2.2. Change Point Detection

Change Point Detection (CPD) is a statistical technique that literally looks for points
of trend change in time series data, as shown in the figure below. In other words, it is a
matter of finding points in the time series data where the time series characteristics such
as mean, standard deviation, and slope change rapidly. Below [Figure 7] is an example of
CPD, and the vertical lines marked with blue dots in the figure below represent the points
where trend changes are detected.
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Figure 7. Example of Applying Change Point Detection

CPD is performed by dividing the time series data into bins and minimising the sum
of the costs for each bin. In other words, CPD can be viewed as a kind of partial time series
clustering problem that bins time series data with similar characteristics. In other words,
the starting point of each bin can be called a change point. The change detection problem
for the time series y=(y1,2 - - - ,y+) can be formally defined as follows.

S* = argmin ) | C(s) ()
5 seS

Where S is the set of bins, C is the cost function for the bins, and S* is the optimal set
of bins.

(1) PELT(Pruned Exact Linear Time)
The PELT algorithm is a change detection algorithm that finds the optimal interval
in linear time when the number of change points is unknown, and consists of the
following steps [17,30].

(a) Input: time series y, cost function C, penalty .
(b) Step 1: Initialise
— Initialise z as an empty array of size T + 1.
Initialise with Z[0] = —f
Initialise with L[0] = @
Initialise with x = {0}
Initialise with t =1
() Step2: Updatef, Z[t], L[t], and yx as follows

N argemin(Z[T] + C(Yrt) + B)
TeX

- Z[] < Z[H + Clyz,) + B
- L[]+ L[{JU{t}
- xe{rex: Z[t+Clyw) < Z[H}U{}
(d)  Step 3: Terminate the algorithm if ¢ = 7, otherwise increment f by 1 and
return to step 2
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(2) Kernel Change Point Detection
Kernel Change Point Detection is a method for dividing bins based on the change in the
mean of each bin [5]. In KCP, data is projected into a high-dimensional space through
a measurable function, Kernel, and then change points are detected by comparing the
homogeneity of each sequence [3,15]. It is characterised by the fact that individual
points are mapped using a mapping function ¢, i.e., the cost for a set of intervals S is
defined as

cs)=3 ¥ o) —sl? (6)

seSyt€S

where § is the average of every value in the interval s for every element in the interval
s. During the mapping process, we can use the following kernel functions

p(ye)lI*> = K(ye, ve) ()

P(yt) - ¢(yr) = K(yt, y) ®)

Where K represents a kernel function, the most commonly used kernel functions are
Linear Kernel, RBF Kernel (Radius Basis Function Kernel), etc.

3. Research Methods Overall Process
3.1. Owverall Architecture

In this section, we first describe the overall structure of the study to estimate the APC
model parameter and propose the expected results of the study in terms of the estimated
APC model parameter. Next, as described in the introduction, it is very important to collect
data of dynamic intervals to estimate the APC model parameter, so we describe the research
methodology of CPD used to find data of dynamic intervals, and the definition and purpose
of the evaluation metric Mean Absolute Error (MAE). We also explain the rationale for the
scope of the hyper parameter Grid used to find the MAE. First, the overall process of this
study can be briefly described as follows, which consists of four steps, as shown in Figure

8.
Raw Data Acquisition Change Point Detection
@ L = e et .
Petrochemical Plant Time Series Data Acquisition @ \F 77777777777777777777
APC Model Parameter Estimation Comparison of Result

Plant A Fitting Rate

Levenberg-Marquardt Algorithm

Plant B Fitting Rate

Figure 8. The Overall Research Process

(1) Raw Data Acquisition

(2) Change Point Detection

(3) APC Model Parameter Estimation
(4) Comparison of Result

The data used in this study are time series data of actual petrochemical plants in Korea,
collected through OPC DA (Data Access) connected to DCS (Distributed Control System),
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and the names of each plant are anonymised as Plant A and Plant B in consideration of
data security issues, and output variables (CV) and manipulation variables (MV, DV) are
separated. In order to estimate APC model parameter without plant test, which is the
purpose of this study, it is essential to cluster only the dynamic part of the data. CPD
algorithm is used to find the dynamic section of the data. Among the CPD algorithms,
PELT, Linear Kernel, and RBF Kernel techniques are used to find the hyper parameter of the
dynamic region with the minimum MAE (Mean Absolute Error). First, the CPD algorithm is
used to find the hyper parameter of the dynamic section with the minimum MAE, and then
the value of the hyper parameter is fixed to estimate the APC model parameter, K (Gain)
and T (Time Constant), through the Levenberg-Marquardt algorithm. Finally, the estimated
APC model parameter are applied to the APC control programme to verify the accuracy
by comparing the fitting rate of the predicted and actual values. As the MAE value of the
manipulated variables (MV, DV) for each output variable (CV) becomes smaller through
CPD, the fitting rate of the estimated APC model parameter will show high accuracy, and
the fitting rate is expected to increase as the number of manipulated variables (MV, DV)
required to predict and control the output variable (CV) increases.

3.2. Designing a Change Point Detection Model

i . i
Change T - 4
Poant o .
Detection : -
PELT Linear Kemel RBF Kernel

Figure 9. Change Point Detection Techniques

In order to estimate APC model parameter from time series data, it is necessary to
consider the dynamic nature of the process, so it is first necessary to accurately identify the
dynamic regions of the data. In this study, CPD algorithms such as PELT, Linear Kernel,
and RBF Kernel are used to identify fluctuating data as shown in Figure 9. However, even
with CPD techniques, it is difficult to perfectly identify when the trend starts to change.
In order to perfectly detect when the trend starts to change, we need to be very sensitive
to detecting the trend change, which is problematic because we will consider most of the
points as change points. Therefore, for any point with a trend change found using CPD,
we can define the fluctuating interval as -a to r+a where a is calculated by the following
algorithm.

(1) Calculate the slope 67 of a simple linear regression model using the data from r-1 to r+1.
(2) Initialise the variable a which represents the length of the interval, to 2.

(3) Let the independent variable be t and the dependent variable be r-a to r+a Compute the
slope 6, of a simple linear regression model with data from r-a to r+a.

(4) 6,1 x 8, < 0 or the rate of change of the intercept of §,_1 relative to the intercept of 6,
16la—16la-1]

9|a—1

> ¢, return a-1. Otherwise, increase a by 1 and revert to (3).

3.3. Defining and Purpose of Performance Indicators

This section explains what Mean Absolute Error (MAE) is and why it is used as a
metric in CPD. MAE is a popular metric used to determine if a regression model has been
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trained properly. It can be derived by converting the difference between the actual correct
answer and the predicted value into absolute value and then averaging it, and the smaller
the value, the better the performance of the model. The formula for MAE is as follows

1 N
MAE = = Y lyi — ¥l ©)
Nizl

In the formula, y; is the actual value and ¥; is the predicted value. Since MAE takes an
absolute value, it is difficult to determine whether the regression model predicted higher or
lower than the actual answer. However, it is easy to interpret the results because it has the
same unit as the actual answer value and the predicted value. Also, since it takes absolute
values, the results can be interpreted intuitively. In this paper, we need an intuitive indicator
not to evaluate the correlation of the model, but to detect the change point of the data and
indicate the difference between the predicted value and the actual value. Therefore, we use
MAE as a performance indicator for detecting change points.

3.4. Defining and Designing Hyper Parameters

Hyper parameter refers to a variable that is manually set by the user in the model
to achieve an optimal training model. In this study, we compare the MAE of the three
change point detection techniques mentioned above, Pruned Exact Linear Time (PELT),
Linear kernel-based technique, and Radial Basis Function (RBF) kernel-based technique, to
identify the dynamic interval with the smallest MAE value and find the hyper parameter.
To effectively detect changes in time series data, Delay (D) and Minimum Segment Size
(MS) are applied as hyper parameters. Since there is no rule or method to design the hyper
parameter Grid perfectly mathematically, the range is set and tuned empirically. In general,
it is suggested to set the range from 0 to 10 for hyper parameters and 5 to 20 for MS because
they rarely have values above 10 when affected by variables in the same process. D, If the
hyper parameter Grid of MS has a narrow spacing, you can find a hyper parameter with
good performance, but the computation time will increase considerably.

4. Experimental Results
4.1. Experimental Environments

Specify the experimental environment of the study for reproducibility of the experi-
ment.

*  Hardware platform architecture: GPU-enabled laptop
e  Laptop configuration: CPU Core i5-8250, quad-core processor, 8GB RAM.
*  Operating system: Window 10.

For an optimal development environment that is fast and collaborative, we used the
cloud-based Google Collaboratory. Google Collaboratory provides a free Jupyter Notebook
environment and is available on the cloud without installation. Google Collaboratory
enables high-performance development, sharing, and computing resources. In particular,
you can process large amounts of data.

4.2. Experimental Datasets Design

The primary objective of the experiment is to determine the data in the dynamic section
in order to estimate the correct APC model parameter. Finally, the objective is to train the
model with data from only the dynamic bins and estimate the APC model parameter with
good performance. The data used in this study are time series data obtained from two
different factories, Plant A and Plant B, at two different times, which are referred to as
A-1, A-2, B-1, and B-2, respectively. The sampling time of each data is 1 minute, and the
experiment is conducted on 5 days of data. The range of each data is as follows.

e A-1:23 April 2023 00:00:00 to 27 April 2023 23:59:00
e  B-1:26 March 2023 00:00:00 to 30 March 2023 23:59:00


https://doi.org/10.20944/preprints202306.1026.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 June 2023 d0i:10.20944/preprints202306.1026.v1

10 of 18

e A-2:30 April 2023 00:00:00 to 04 May 2023 23:59:00
e B-2:19 April 2023 00:00:00 to 23 April 2023 23:59:00

Let A-1 and B-1 be the training data and A-2 and B-2 be the respective test data. In addition,
all four data described above consist of one control variable (CV) and two manipulation
variables (MV, DV). In addition, the experimental trend change detection technique and its
hyper parameter grid are shown in the following Table 1.

Table 1. Change Point Detection Techniques¥} Hyper Parameter Grid

Change Point Detection Technique Hyper Parameter Grid
MS: {5, 10, 15, 20}
PELT D: {0, 3, 5, 10}
MS: {5, 10, 15, 20}

Kernel-based detection ['Linear’, '/RBF’] D: {0, 3, 5, 10]

Otherwise, the hyper parameter Grid evaluates for the following sections
e £:0.001,0.01,0.05,0.1

The specific process using the dataset is as follows

[Step 1]

To objectively evaluate the proposed Plant A and Plant B data, divide the dataset into
a training dataset and a test dataset. Specifically, the first 5 days data (50%) of Plant
A and Plant B are used as training data, and the last 5 days data (50%) are used for
testing.

[Step 2]

Hyper parameters are divided into MS and MS, and dynamic bins are detected and
identified using PELT, Linear kernel-based technique, and RBF kernel-based technique.
We use the above three methods because they are the most commonly used methods
for anomaly detection in time series data in CPD’s previous studies [17,30,35-36].
[Step 3]

The data trained by the PELT, Linear kernel-based, and RBF kernel-based methods
are used to determine the accuracy of the dynamic segments through the MAE metric.
Here, the hyper parameter of the algorithm with the smallest MAE is fixed, and the
APC model parameter estimation proceeds.

[Step 4]

The APC model parameter trained with the above proposed metrics is learned by
applying the following equation to the Levenberg-Marquardt algorithm.

y(t) = K(1—e¢ %) - x(t— D) (10)

Here, each variable means the following

t : Elapsed Time

y(t): Value of the CV (output variable) for time t

x(t): Value of the MV (manipulation variable) for time t (may be replaced by DV)

K:Gain

T : Time Constant

D : Delay
[Step 5]
Verify the accuracy of the control performance by comparing the fitting rate of the
predicted and actual values with the APC model parameter estimates obtained in Step
3 and Step 4.
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4.3. Results

(1) Experiment 1 Results: Plant A For the manipulated variable MV, the 10 models and

hyper parameters with the smallest MAE are shown in Table 2.

Table 2. Plant A - Parameter tuning results for the manipulated variable MV

Rank Algorithms D MS € MAE
1 Linear Kernel 10 10 0.05 8.642452
2 Linear Kernel 10 15 0.05 8.651746
3 Linear Kernel 10 5 0.05 8.656836
4 Linear Kernel 10 20 0.05 8.674863
5 Linear Kernel 5 10 0.05 8.682052
6 Linear Kernel 5 5 0.05 8.691545
7 Linear Kernel 3 10 0.05 8.693691
8 Linear Kernel 5 15 0.05 8.699134
9 Linear Kernel 3 5 0.05 8.700352
10 Linear Kernel 3 15 0.05 8.703656

For the manipulated variable DV, the 10 models and hyper parameters with the

smallest MAE are shown in Table 3.

Table 3. Plant A - Parameter tuning results for the operational variable DV

Rank Algorithms D MS € MAE
1 Linear Kernel 10 20 0.01 10.73935
2 Linear Kernel 5 20 0.01 10.739671
3 Linear Kernel 3 20 0.01 10.739682
4 Linear Kernel 0 20 0.01 10.740037
5 Linear Kernel 0 15 0.01 10.741053
6 Linear Kernel 0 5 0.01 10.741164
7 Linear Kernel 0 10 0.01 10.741403
8 Linear Kernel 0 5 0.01 10.741504
9 Linear Kernel 10 5 0.01 10.742831
10 Linear Kernel 5 5 0.01 10.743456

From the two tables, we can see that kernel-based detection with a linear kernel per-
forms well. The average MAEs for D, MS, and ¢ are shown in Tables 4, 5, and 6, respectively.
Depending on the manipulated variables, we can see that the distribution of performance
across parameters is significantly different. For example, for the manipulation variable
MYV, the larger the value, the better the performance, while for DV, the smaller the value,
the better the performance. This suggests that it is very important to tune the appropriate

parameters according to the data.

Table 4. Average MAE according to D: Plant A

Manipulated Variables

Mean MAE

MV

Sawo|d

9.934820
9.914994
9.905677
9.820333

DV

g w o

—_
o

11.741451
12.000861
11.999641
11.997169
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Table 5. Average MAE according to MS: Plant A

Manipulated Variables MS Mean MAE
5 9.876135
10 9.904980
MV 15 9.927402
20 9.867307
5 11.864946
10 12.038425
bv 15 11.882389
20 11.953361

Table 6. Average MAE according to e: Plant A

Manipulated Variables € Mean MAE
0.01 9.898091
MV 0.05 9.579578
0.10 10.204200
0.01 11.386267
DV 0.05 12.186671
0.10 12.231404

A comparison of the average MAE across algorithms is shown in Table 7 below

Table 7. Average MAE according to Algorithms: Plant A

Manipulated Variables Algorithms Mean MAE
Linear Kernel 9.399081
MV RBF Kernel 9.507844
PELT 10.774943
Linear Kernel 11.443224
DV RBF Kernel 12.540117
PELT 11.821000

As shown in Table 7, we can see that the linear kernel-based change detection algorithm
performs well for both manipulated variables. Based on the best performing linear kernel-
based hyper parameter of = 10, MS = 10, and & = 0.05 for the manipulated variable MV, the
Levenberg-Marquardt algorithm yielded a model parameter estimate of MV for CV of K
=15.3188 and t = 0.3221. Also. Based on the best performing Linear kernel-based Hyper
Parameter for the manipulated variable DV, = 5, MS = 10, and € = 0.01, the Model Parameter
estimates for DV for CV resulted in K = 22.85, T = 0.0309. The graphical representation of the
APC model parameter estimated based on the best performing model for the operational
variables MV and DV and the result of measuring the fitting rate through the APC Model
Tool is shown in the figure below [10,11,12]. The intervals were randomly selected from the
evaluation data intervals of Plant A. Three intervals of about 200 minutes in length were
selected.
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Figure 12. (Section 3) Fitting rate of CV with Estimated APC Model Parameter

We measured the fitting rate of the estimated APC model parameter to the predicted
and actual values using the APC Model Tool, and found the following results.
(Section 1) Fitting Rate of CV with Estimated APC Model Parameter(MV+DV): 81.9%

[ ]
®  (Section 2) Fitting Rate of CV with Estimated APC Model Parameter(MV+DV): 81.04%
®  (Section 3) Fitting Rate of CV with Estimated APC Model Parameter(MV+DV): 95.35%

(2) Experiment 2 Results: Plant B For the manipulated variable MV, the 10 models and
hyper parameters with the smallest MAE are shown in Table 8.


https://doi.org/10.20944/preprints202306.1026.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 June 2023 d0i:10.20944/preprints202306.1026.v1

14 0f 18
Table 8. Plant B - Parameter tuning results for the manipulated variable MV
Rank Algorithms D MS € MAE
1 RBF Kernel 0 10 0.01 45.629945
2 RBF Kernel 0 5 0.01 45.647986
3 RBF Kernel 0 20 0.01 45.813426
4 Linear Kernel 0 5 0.1 46.103089
5 Linear Kernel 0 5 0.05 46.117504
6 RBF Kernel 0 15 0.01 46.118124
7 RBF Kernel 0 5 0.1 46.121928
8 RBF Kernel 10 10 0.01 46.134523
9 RBF Kernel 5 10 0.01 46.136264
10 RBF Kernel 0 15 0.1 46.147291

For the manipulated variable DV, the 10 models and hyper parameters with the
smallest MAE are shown in Table 9.

Table 9. Plant B - Parameter tuning results for the operational variable DV

Rank Algorithms D MS € MAE
1 RBF Kernel 3 20 0.01 4110627
2 RBF Kernel 5 20 0.01 4.192519
3 RBF Kernel 0 20 0.01 4.19666
4 RBF Kernel 10 20 0.01 4.200493
5 PELT 0 20 0.1 4216778
6 Linear Kernel 0 10 0.01 4.231443
7 Linear Kernel 3 10 0.01 4.234592
8 PELT 3 20 0.1 4.269921
9 Linear Kernel 5 10 0.01 4.27022
10 PELT 5 20 0.1 4.274902

The averages of MAE according to D, MS, and ¢ are shown in Tables 10, 11, and 12, re-
spectively. We can see that the parameterized performance distributions differ significantly
depending on the manipulated variables.

Table 10. Average MAE according to D: Plant B

Mean MAE

47.014508
47.716971
47.703097
47.672040

4.402237
4.417269
4.420273
4.431750

Manipulated Variables

MV

Suwo | "

DV

g1 W o

—_
o
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Table 11. Average MAE according to MS: Plant B

Manipulated Variables MS Mean MAE

5 47.090598
10 47.331090

MV 15 47.803609
20 47.881317
5 4.425821
10 4.406654

bv 15 4.43916
20 4.404137

Table 12. Average MAE according to &: Plant B

Manipulated Variables € Mean MAE
0.01 47.603724
MV 0.05 47.531555
0.10 47.444681
0.01 4.339782
DV 0.05 4.431148
0.10 4.482717

A comparison of the average MAE across algorithms is shown in Table 13 below.

Table 13. Average MAE according to Algorithms: Plant B

Manipulated Variables € Mean MAE
Linear Kernel 47.092989
MV RBF Kernel 46.742333
PELT 48.744638
Linear Kernel 4.399071
DV RBF Kernel 4.498206
PELT 4.356370

As shown in Table 13, the appropriate algorithm depends on the manipulated variables.
We can also see that the difference in performance across manipulated variables is nearly an
order of magnitude. This suggests that the performance difference can be large depending
on which variable is used to predict the control variable. Based on D =0, MS=5,and € =
0.05, the linear kernel-based hyper parameters that performed best for the manipulated
variable MV, the model parameter estimation of MV for CV using the Levenberg-Marquardt
algorithm was K = 2.644706, T = 0. 038512. Based on D = 0, MS = 15, ¢ = 0.1, the best
performing hyper parameter based on the PELT technique for the manipulated variable
DV, the model parameter estimate of DV for CV was K = 0.9556, © = 0.0337. The graphical
representation of the APC model parameter estimated based on the best performing model
for the operational variables MV and DV and the fitting rate measured by the APC Model
Tool is shown in the figure below [13,14,15]. The intervals were randomly selected from the
evaluation data intervals of Plant B. Three intervals of about 200 minutes in length were
selected.
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We measured the fitting rate of the estimated APC model parameter to the predicted
and actual values using the APC Model Tool, and found the following results.

®  (Section 1) Fitting Rate of CV with Estimated APC Model Parameter(MV+ DV): 95.04%
*  (Section 2) Fitting Rate of CV with Estimated APC Model Parameter(MV+ DV): 74.42%
*  (Section 3) Fitting Rate of CV with Estimated APC Model Parameter(MV+ DV): 70.36%

5. Conclusion

APC model parameter play a key role in APC control. Most of the previous studies
have been conducted in various industries such as semiconductor and bio, but few papers
have been applied to the petrochemical industry. Since it is essential to maintain the APC
system over time, it is very important to obtain dynamic interval data to estimate the
APC model parameter. In this paper, PELT, Linear kernel-based, and RBF kernel-based
techniques were applied for Change Point Detection as described in Chapter 3 to evaluate
the MAE of the dynamic section. The results show that the Linear kernel-based method
is the best for MV and DV of Plant A, the RBF kernel-based method is the best for MV of
Plant B, and the PELT method is the best for DV. Since the variables can be current values,
set values, or valve values of flow, pressure, temperature, etc. in petrochemical processes,
it suggests that the performance of the model can be significantly different depending on
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which variables are used to predict the control variables. As shown in the experimental
results in Chapter 4, the CV control method that considers both MV and DV has the highest
fitting rate, rather than controlling CV with MV or DV alone. As a result, by fixing the
hyper parameter in the dynamic interval with the minimum MAE, the estimated APC
model parameter was measured for the fitting rate of the predicted value and the actual
value through the APC Model Tool, and the fitting rate was found to be 86.09% on average
for Plant A and 79.94% on average for Plant B. Therefore, it is possible to estimate the
APC model parameter with good control performance without plant test. In the future, it
is necessary to increase the reliability of the results through extended experiments with
more process data. In this experiment, only MAE was used as an evaluation metric, but
it is necessary to expand evaluation metrics such as MSE (Mean Squared Error), RMSE
(Root Mean Squared Error), and MAPE (Mean Absolute Percentage Error) in addition to
MAE to improve the reliability of evaluation metrics. Also, it is necessary to analyze how
to reduce the MAE of each variable through approaches other than PELT-based Learning,
Linear Kernel-based Learning, and Radial basis function Kernel-based Learning applied in
this experiment.
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