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Abstract: Single particle analysis with cryogenic electron microscopy (cryo-EM) can determine high resolution 
structures of macromolecular assemblies. To reconstruct final three-dimension(3D) density map, a reliable initial 
model is essential and ab-initio reconstruction usually can avoid model bias. The grand challenge for ab-initio 
reconstruction is to alignment two-dimension(2D) low signal-to-noise ratio(SNR) of particle images with random 
and unknown parameters. Here we formulate a fast ab initio reconstruction method(named AlignFM) based on 
Fourier Mellin transform and particle-swarm intelligence optimization(PSO) algorithm. It enables simultaneous 
2D alignment and 3D refinement, which can fast generate a reliable 3D map. After experiments on several real 
datasets. AlignFM shows high performance on fast ab initio reconstruction with a small amount of data. 

Keywords: ab initio reconstruction; simultaneous 2D alignment and 3D refinement; AlignFM; Fourier Mellin 
transform; particle swarm intelligence optimization 

 

1. Introduction 

As a powerful tool, cryo-EM provides near-atomic resolution structure of biological 
macromolecules to understand their molecular mechanisms. Data analysis of thousands of images 
contained 2D projections of macromolecular objects called single particle, to find parameters to 
describe those projections, often adopts a model-based approach[1-6]. This process often begins with 
an initial model, directly from the images or indirectly from related or simulated data[7]. As a starting 
model, it should not be bias the final structure[8].   

To address model bias, ab-initio reconstruction[6, 7, 9-12] directly from images is necessary. In 
cryo-EM, frozen biologic molecules are imaged with a low electron dose and multiple sources of noise. 
Those images maintain the information of atomic structures but with a low SNR. The orientation 
described by five parameters, (two translations (x,y) and three rotational Euler angles(θ,φ,ω) ) of the 
particle in each image is unknown and random. Due to above effect, it full of challenge to produce a 
reliable 3d reconstruction directly from noisy 2D projection images. Basically, 3D reconstruction is 
considered as an optimization problem to find a 3D structure to describe the observed images. It equals 
to find the best orientation of particles to reconstruct a 3D map of the object. To estimate a set of high-
dimensional parameters, maximum-likelihood (ML)-based algorithms[5, 6] and correlation-based 
projection matching algorithms[1], run gridding[5] and gradient-descent algorithms[1] or its variant[6] 
version in iterative alignment of 3D reconstruction. Monte Carlo method[12, 13] and stochastic hill 
climbing[11, 14] also are introduced to search space exploration and assign parameters to each image. 
Those optimization schemes make studying particles by random model (RM) method become reality. 
AUTO3DEM[15] study icosahedral virus from random model[7] and search parameters by polar 
Fourier transform[16]. Weighted orientation assignment in SIMPLE[11] built several initial model with 
different symmetry. cryoSPARC[6] can obtain fast low-resolution model initialization for 
heterogeneous structure determination. A particle-filter algorithm in THUNDER[12] obtains optimal 
Bayesian estimations to process ab initio reconstruction. CisTEM[17] has ab-initio method by 
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performing a user-specified number of global alignment parameter searches. In summary, those 
methods fall into two categories, first 2D alignment(in-plane search) and then 3D refinement(out-of-
plane search) and simultaneous 2D alignment and 3D refinement(SAR). Numerous 2D alignment 
kernels have been proposed for in-plane search, including mathematical computation method[16, 18-
22] and optimization search method[5, 14, 17, 23, 24]. When 2D alignment kernels can obtain good 
performance for in-plane parameters and optimization search method can achieve good convergence 
to global optimal, ab initio reconstruction can be produced.  

We recently developed an ab initio reconstruction algorithm based on the formulation of SAR as 
Object optimization problem(OOP). We applied a variant version of particle-swarm 
optimization(PSO)[25-28] to estimate all parameters subject to optimization. With known (θ,φ) and in-
plane parameters(ω,x,y) calculated by Fourier Mellin transform[29-31], multi-grid points are selected 
as initial point to start search, which refer to ‘particles’ in PSO algorithm. More accurate in-plane 
computation and high performance of optimization search to achieve good convergence make ab initio 
reconstruction generate a reliable initial 3d model for several real homogeneous dataset with different 
symmetry. And the ultimate resolution of serval datasets can achieve near atom resolution with limited 
particles. The implemented algorithm is just so called AlignFM(Alignment based on Fourier-Mellin 
transform). 

2. Materials and Methods 

Basically, structure determination by cryo-EM is to find a set of unknown variables which 
describes CTF, in-plane and out-of-plane parameters for each particle image, and those variables can 
be used to reconstruct a 3D map from which the re-projection, projected with those variables, can 
best explain the observed images. The process can be formalized as a OOP: 
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Assumed that the translations of all particle images N obey a gaussian distribution[32] with 

mean ,x y  and standard deviations ζ
2

xy
, the aim of the optimization is to find the parameters Θi in 

high-dimensional space of each observed image imgi to recontruct a 3D map V and then minimize 
the difference between images and its re-projection from the 3D map with related parameters. 
Objective function to measure similarity between images and its re-projection often use likelihood 
function[5, 32-34] or cross-correlation function[1, 4, 16].  

2.1. Fast in-plane parameter computation 

For a particle image I and its reprojection T with in-plane rotation ω0 and translation  (x0,y0), 
their relationship is indicated as follow: 

        0 0 0 0 0 0( , ) ( cos sin , sin cos )I x y T x y x x y yω ω ω ω= + − − + −  (2) 

After Fourier transform(FT), their relationship can be formalized as: 

      0 02 ( )
0 0 0 0I ( , ) ( cos sin , sin cos )i x y

FT FTe T
π ξ ηξ η ξ ω η ϖ ξ ω η ω− += + − +  (3) 
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From above equation, the relationship of amplitude information between image I and its re-
projection T refer to the in-plane rotation angle, and the relation of phase information between them 
refer to translation. According Fourier-Mellin transform[30], log-polar transform of amplitude 
information can translate rotational relationship to translation relationship(see Figure 1) which can 
be solved by Fourier shift theory. Also the shift relationship can be resolved directly with phase 
information by phase correlation or normalized cross correlation[29]. 

                  

Figure 1. Rotational relationship indicated by translation relationship between amplitude information 
resampling with log polar coordination. 

2.2. Objective function 

Objective function is to measure similarity between images and its reprojection and choose the best 
parameters. In theory, a perfect objective function should be a convex function which can make the 
search achieve convergence fast. In cryo-EM, an amount of random parameters in high-dimensional 
space, noise in each particle image, incorrect initial 3d model, etc. make search achieve convergence 
difficultly. We divide ab initio reconstruction algorithm into three parts, global search(mode 
1,resolution usually equal 60Å),low resolution refinement (mode 2,resolution usually more than 10Å) 
and high resolution refinement(mode 3). And three parts use different forms of objective functions 
which are all maximized and given by cross correlation function CC(Θi,V) minus punish function O(Θi).  
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In mode 1, the Fourier matrix of cross-correlation must do inverse Fourier transform(IFT) to 
obtain translation parameters. The result of phase correlation is a delta function and able to provide 
strong and clearly identifiable correlation between particle image and its matched templates[30], 
which makes the objective function be convex and the process of search achieve convergence fast. To 
speed up search, a weighted Fourier ring correlation(FRC)[17] on each resolution r with a certain 
interval ε is calculated without IFT to obtain similarity after global search.  
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2.3. The procedure of ab initio reconstruction 

The ab initio reconstruction begins with a random model generated from original image 
directly[7]. Global search(shown in Figure 2) generates heuristic points according (θ,φ) parameters with 
given interval in quasi-even distribution on Ewald sphere. For each heuristic point (θ,φ), in-plane 
parameters(ω,x,y) is calculated by FMT(shown in Figure 3). A template is projected from given 3D map 
with out-of-plane parameter(θ,φ) and translation parameters(x,y) are calculated by phase correlation. 
After that particle image shift its center to (x,y) , a soft mask is done to remove noise. And then the 
amplitude information of particle image and its projected template are abstracted and log-polar 
transformation is done to them. Rotational parameter ω can be calculated by phase correlation of two 
log-polar amplitude images. A certain heuristic points with high score are selected as “particles” in PSO 
algorithm[35] and the search based on template matching is launched. After the search is finished, the 
result of orientation parameters can generate a new 3D model and an iterative reconstruction is 
processing until a reliable initial 3D mode is generated. After that, global search can generate heuristic 
points within asymmetrical unit according symmetry of the reliable initial 3D mode, and local 
refinement push the model to achieve expected high resolution. The whole procedure is summarized 
as follows:   
1. A random model is generated directly from particle image with random orientation parameters.  
2. For a given 3D model, global search(mode 1 and 2) is launched to find rough orientation 

parameters near global optimization and generate a new 3D model. 
3. For a given 3D model and old orientation parameters, local refinement(mode 2 and 3) search is 

launched to find better orientation parameters near local optimization and then generate a new 3D 
model. 

4. Repeating steps 2–3 until convergence or expected resolution are achieved. 
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Figure 2. Process of global search. Several heuristic points on Ewald sphere are uniformly sampled 
and related projections are projected from a given 3D model. For each partice image, the in-plane 
parameters are cacluated by FMT with all heuristic points. A certain number of heuristic points with 
high correlation are selected and refinemnet are launched around them until convergence. Finally, a 
new 3D model is generated.   . 

 

Figure 3. Process of in-plane parameters calcualted by FMT. For particle image and its matched 
template, Amplitude and phase information are detached after FFT. Amplitude imformation is 
resampled with log-polar coordinate. Phase correlation is calcualted with log-polar amplitude 
information and phase information to obtain in-plane rotational angle,translation and correlation. 

3. Results 

We program our ab initio reconstruction algorithm with parallel CPU code and implement it on 
several real data from asymmetry(C1-symmetric) to high symmetry( D2-symmetric, D7-symmetric 
and icosahedral symmetry). We used three high-resolution datasets(EMPIAR-10028, EMPIAR-10012, 
EMPIAR-10025) from the Electron Microscopy Public Image Archive (EMPIAR). All initial random 
models are generated directly from real data without imposed symmetry. 
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A set of 5000 Cytoplasmic polyhedrosis virus(CPV) particles[36, 37] with icosahedral symmetry 
are randomly selected. A random model is generated without assuming any point-group symmetry 
from selected data. After the alignment was initialized with this random model, the feature of 5-fold 
is clear after three rounds and the feature of 3-fold and 2-fold are clear after 5 rounds(in Figure 4). 
The resolution of CPV data set is not pushed and this dataset is only for functional test.  

A set of 5000 Plasmodium Falciparum 80S Ribosome particles[38] with C1 symmetry(EMPIAR-
10028) are randomly selected. A random model is generated without assuming any point-group 
symmetry from selected data. Due to its asymmetry, the process is converged until 18 rounds. And 
the ultimate resolution is 7.4 Å according Fourier shell correlation curves with 0.143 criterion (in 
Figure 5). 

A set of 5000 β-galactosidase particles[39] with D2 symmetry(EMPIAR-10012) are randomly 
selected. A random model is generated without assuming any point-group symmetry from selected 
data. After five rounds, the axis of symmetry is clear and then D2 symmetry is added to the map. 
And the ultimate resolution is 4.1 Å according Fourier shell correlation curves with 0.143 criterion (in 
Figure 6). 

A set of 5000 Thermoplasma acidophilum 20S proteasome [40] with D7 symmetry(EMPIAR-
10025) are randomly selected. A random model is generated without assuming any point-group 
symmetry from selected data. After ten rounds, the axis of symmetry is clear and then D7 symmetry 
is added to the map. And the final resolution is 3.7 Å according Fourier shell correlation curves with 
0.143 criterion (in Figure 7). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Initial model generation of CPV symmetry imposed.  The process begins from a random 
model. The total cycle are six rounds. Each round include one global search which is followed six or 
seven local refinement. 

  

round0 round1 round2 

round3 round4 round5 

initial 
model 
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Figure 5. Initial model of plasmodium falciparum 80S ribosome. The process begins from a random 
model. The total cycle are eighteen rounds. Each round include one global search which is followed 
six or seven local refinement. After the model is stable, the high resolution is pushed to 7.4 Å. 

  

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 June 2023                   doi:10.20944/preprints202306.1023.v1

https://doi.org/10.20944/preprints202306.1023.v1


 8 

 

 

Figure 6. Initial model of β-galactosidase. The process begins from a random model. The total cycle 
are five rounds. Each round include one global search which is followed six or seven local refinement. 
After the model is stable, the high resolution is pushed to 4.1 Å. Under this resolution, β sheet is clear. 
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Figure 7. Initial model of Thermoplasma acidophilum 20S proteasome. The process begins from a 
random model. The total cycle are ten rounds. Each round include one global search which is followed 
six or seven local refinement. After the model is stable, the high resolution is pushed to 3.7 Å. Under 
this resolution, side chain is clear. 

4. Discussion 

Standard projection matching for alignment is an exhaustive procedure for global search and 
greedy procedure for local search. In global search, it is computationally intractable to launch 
systematic search by scanning through the entire high-dimensional space. In practice, heuristic search 
often sets a set of possible parameters and feasible subset is selected according their score. And then 
local search explores the neighborhood of the feasible subset separately to guarantee convergence to 
a local optimum. A sensitive problem is how many feasible parameters kept in the subset. Small 
subset means fast but just local optimum and large subset need more computational time but get 
more chance to global optimum. Here, we adopt Fourier Mellin transform to calculate in-plane 
parameters and heuristic search only focus on out-of-plane parameters. The low SNR of cryo-EM 
images often cause objective function nonconvex and may give risk to search trapped in a single best 
parameter. The result of phase correlation is a delta function which can make objective function 
convex. Out-of-plane parameters search means feasible subset can contain more possible parameters 
and more ‘particles’ in PSO can enhance performance of search. Different from the other optimization 
algorithm, particle-swarm optimization take advantage of global and local information to explore the 
search space. In global search, more feasible parameters, referred to as ‘particles’ in PSO, share global 
optimum and drive search to the direction toward the combination with its local optimum and global 
optimum. It can achieve fast better convergence which provide better parameters for 3D 
reconstruction. The above advantage benefits to improve our algorithm to fast ad initio 
reconstruction. 

5. Conclusions 

In all tested cases, AlignFM generates accurate 3D maps without a priori assumptions about the 
structure or its symmetry directly from the noisy cryo-EM images, which pass the process of 2D 
image alignment and clustering. From generated accurate inital 3D maps, AlignFM can push the 
maps to the desired resolution with limited number of particle images.  
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