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Abstract: Centrifugal pumps are widely employed in the oil refinery industry due to their efficiency 
and effectiveness in fluid transfer applications. The reliability of pumps plays a pivotal role in 
ensuring uninterrupted plant productivity and safe operations. Analysis of failure history data 
shows that bearings have been identified as critical components in oil refinery pump groups. 
However, traditional reliability estimation theories may not apply when data is limited or subject 
to right censoring. This paper addresses the complexity of estimating the Weibull distribution 
parameters using the maximum-likelihood method under the abovementioned conditions. The 
likelihood equation lacks an explicit analytical solution, necessitating the use of numerical methods 
for resolution. The proposed approach presented in this article leverages the Expectation-
Maximization (EM) algorithm for estimating the Weibull distribution parameters. This method 
provides more accurate estimates of failure rates and probabilities by accounting for limited and 
censored data. The findings are demonstrated through a case study, showcasing the practical 
application of the proposed approach. 
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1. Introduction 

The growing demand for effective and secure systems has led to the development of operational 
maintenance processes to improve system availability and operational safety while achieving cost-
effectiveness. Predictive maintenance is one such process that utilizes data analytics and machine 
learning algorithms to predict potential failures before they occur [1,2]. This approach has 
widespread adoption in the manufacturing, energy, and transportation industries. Predictive 
maintenance can identify patterns and anomalies indicative of impending issues by analyzing real-
time data obtained from sensors and other sources. This enables maintenance teams to take proactive 
measures, such as replacing faulty components or adjusting operating conditions, thereby preventing 
failures [3,4]. 

Unexpected and untimely failures remain a significant challenge for maintenance practices 
today. Depending on the severity of the failure, it can disrupt the proper functioning of a 
manufacturing line or, in more severe cases, lead to a complete shutdown, resulting in substantial 
expenses ranging from the procurement of spare components to equipment replacement. Hence, it 
becomes crucial to comprehend the behavior of equipment [5]. Such understanding forms a solid 
foundation for determining optimal maintenance policies tailored to each piece of equipment and its 
components. This leads to significant cost savings by optimizing inspection frequencies, reducing 
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component replacements and stocking, improving pre-maintenance work, and minimizing repair 
times. 

To predict the future behavior of equipment and components, it is valuable to employ a tool that 
fits theoretical models to the dataset to identify potential failures accurately and rapidly. Analysis 
and estimation processes are supported by statistical techniques, methods, and procedures that 
facilitate modeling the system by adjusting predefined distributions or calculating customized 
distribution functions [6,7]. These statistical techniques offer valuable tools for data-driven decision-
making, enabling the identification of underlying patterns and trends in complex systems. 

Statistical techniques prove beneficial in predicting future trends and outcomes. Analyzing 
historical data allows statisticians to develop models and predictions that aid in strategic decision-
making. Leveraging statistical techniques, it becomes possible to forecast when equipment will 
require repair or replacement and allocate resources, accordingly, thus saving time, money and 
preventing unplanned downtime. Furthermore, statistical analysis can optimize maintenance 
schedules and identify opportunities for improving maintenance processes [8,9]. 

In some cases, estimating statistical distribution parameters can be challenging to solve [10–12]. 
This article presents a procedure for resolving such difficulties, employing the Expectation-
Maximization (EM) algorithm. The proposed procedure offers a structured and practical approach to 
estimating Weibull distribution parameters, even in challenging scenarios where conventional 
methods may fail. By leveraging the EM algorithm, the estimation process becomes more precise and 
reliable, enhancing decision-making capabilities. This method helps estimate distribution parameters 
in realistic situations. 

The remainder of this paper is organized as follows. Chapter 2 highlights the main practical 
problems that are generally associated with the analysis of data from the historical record of 
mechanical equipment failures, namely the existence of censored data. 

Chapter 3 provides an overview of the concepts and theoretical foundations underlying the 
method for determining Weibull distribution parameters. Since maximum likelihood equations often 
lack analytical solutions due to their complexity, the Expectation-Maximization (EM) algorithm is 
presented as a resolution technique. The EM algorithm analysis is performed in the presence of 
censored data, aligning with its application in the case study. 

Chapter 4 showcases the real-world application of the proposed methodology. The study 
focuses on a system comprising five centrifugal pumps in the petrochemical industry. Weibull 
distribution parameters are estimated using the maximum likelihood method through the EM 
algorithm. The confidence interval of the estimated parameters, obtained via the bootstrap method, 
is presented. 

Chapter 5 concludes the paper by summarizing the essential findings and highlighting the 
significance of the proposed methodology in improving maintenance practices and system reliability.  

2. Reliability analysis with censored data 

The Weibull distribution is widely utilized in reliability studies, survival analysis, and various 
other fields due to its versatility. It is commonly employed for modeling the failure rates of 
components and systems and estimating their lifetimes. The Weibull distribution can effectively fit 
data from diverse sources, including laboratory tests, field data, and warranty claims. Estimating its 
parameters can be accomplished through methods such as maximum likelihood estimation, enabling 
the development of models that facilitate predictions of future failures and comparisons of reliability 
among different products or designs. 

Maximum likelihood estimation (MLE) is fundamental for estimating unknown parameters in 
statistical models [13,14]. This approach involves determining the parameter values that maximize 
the likelihood function, constructed based on the observed data and the parameters. The resulting 
estimates are frequently employed for making predictions and inferences about the underlying 
population from which the data was sampled. 

The likelihood function is established by considering the joint probability distribution of the 
observed data. In simpler terms, it quantifies the probability of obtaining the observed data for 
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various parameter values [15]. The Maximum Likelihood Estimation method seeks to identify the 
parameter values that maximize this likelihood function, thereby providing the most plausible 
parameter estimates (Equation (1)). 

max 𝐿ሺ𝜃ଵ, 𝜃ଶ, … , 𝜃௡ሻ = 𝑚𝑎𝑥 ෑ 𝑓ሺ𝜃|𝑥௜ሻ,௡
௜ୀଵ  (1) 

Where, xi = x1, x2, …, xn is a sample of n independent observations of the random variable X from 
a distribution with probability density function f(x,  θ), and θi = θ1, θ2, …, θn is the vector of unknown 
parameters.  

In practical applications, it is often more convenient to maximize the log-likelihood function 
instead of the likelihood directly [16,17]. The log-likelihood function offers several advantages, as it 
is a monotonically increasing function of the likelihood and simplifies mathematical calculations. 
Consequently, the Maximum Likelihood Estimation (MLE) problem can be transformed into a 
maximization problem of the log-likelihood. 

Assuming that each failure time (ti= t1, t2, ..., tn) represents an independent data point from the 
same representative population following the Weibull distribution with scale parameter η and shape 
parameter β, the log-likelihood function for the Weibull distribution with complete data is expressed 
as follows (Equation (2)): 

ln 𝐿ሺ𝜂, 𝛽ሻ = 𝜂𝑙𝑛𝛽 − 𝜂𝛽𝑙𝑛𝜂 + ሺ𝛽 − 1ሻ ෍ሺ𝑙𝑛𝑡௜ሻ − ෍ ൬𝑡௜𝜂൰ఉ௡
௜ୀଵ

௡
௜ୀଵ  (2)

Once the log-likelihood function is defined, a variety of optimization techniques, including 
numerical optimization algorithms, can be employed to identify the maximum of the function. The 
parameter values that correspond to this maximum are considered as the Maximum Likelihood 
Estimation (MLE) estimates. These estimates represent the most likely values for the parameters 
given in the observed data. By maximizing the log-likelihood function, we obtain parameter 
estimates that provide the best fit to the data, in accordance with the Weibull distribution model. 

2.1. Historical failure data type 

Historical failure data, documenting past failures, holds significant importance in reliability 
analysis, guiding decision-making related to maintenance strategies, equipment replacement or 
refurbishment, spare part stocking, and warranty policies. Through data analysis, optimal 
maintenance intervals can be determined, critical components that frequently fail can be identified, 
and the cost-effectiveness of different maintenance approaches can be assessed. 

When considering historical fault data, it can be categorized into two types based on the 
availability of information: complete data and censored data [10,18]. 

Complete data refers to records where the exact failure time or event occurrence time is known 
without any uncertainty. In other words, there is no censoring present in the data, and the failure 
times are fully observed. Complete data provides precise information about when the failure event 
occurred, enabling accurate analysis of reliability metrics and statistical modeling. 

On the other hand, censored data refers to observations in which the exact failure time or event 
occurrence time is either unknown or partially known. Censoring occurs in different forms: 
1. Left censoring occurs when the event of interest (failure) has occurred before the study started, 

and only the time since the event is known. In such cases, the data provides a lower bound for 
the failure time, but the exact time remains unknown. 

2. Right censoring occurs when the event of interest (failure) has not occurred by the end of the 
observation period or study duration. The data indicates that the failure event will occur at some 
point in the future, but the exact time is unknown. Right censoring often occurs in reliability 
tests, where a specified number of units are tested until the end of the study period, and the 
unfailed units are right-censored. 
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3. Interval censoring arises when the exact failure time is unknown, but it is known that the failure 
occurred within a certain time interval. This form of censoring provides information about a 
range of possible failure times. 
Understanding the type of censoring present in the data is crucial for appropriate data analysis 

and modeling, as different techniques are employed to handle each type. By properly accounting for 
censored data, a more accurate and comprehensive reliability analysis can be performed, facilitating 
informed decision-making in maintenance and operational strategies. Censoring data is denoted by 
δi variable to indicate that the event is censored, that is [19] (Equation (3)),  𝛿௜ = ൜1, for uncensored data0, for censored data      (3)

Censored data poses a challenge in statistical analysis as it contains incomplete information and 
introduces uncertainty in the failure times. Specialized statistical methods are necessary to 
appropriately handle censored data, accounting for the missing information and capturing the 
uncertainty. By employing these methods, more accurate predictions and informed decisions can be 
made based on the available data. 

Censored data is frequently encountered in reliability studies when analyzing the historical 
failure data of equipment. Therefore, a comprehensive understanding of censored data and its impact 
on reliability analysis is crucial to ensure the accuracy and reliability of the results. Handling censored 
data correctly is of utmost importance to avoid biased results and maintain the validity of the 
conclusions drawn from the analysis. By applying appropriate statistical techniques for censored 
data, researchers can obtain more robust and trustworthy findings, enabling effective decision-
making in reliability and maintenance practices. 

3. Expectation-Maximization algorithm 

The estimation of Weibull distribution parameters in the presence of censored data often poses 
challenges, as closed-form analytical solutions for the maximum likelihood equations are typically 
unavailable. Explicit formulas to directly solve for parameter estimates are not feasible in this case. 

When dealing with censored data, the likelihood function becomes more intricate, incorporating 
both observed failure times and censored observations. The likelihood function includes terms 
representing the probabilities of observed failure times and the probabilities of failure times being 
censored. 

Due to the complexity of the problem, analytical solutions for the maximum likelihood equations 
are not viable. Instead, numerical methods and iterative algorithms are commonly employed to 
estimate the parameters that maximize the likelihood function [20]. These methods iteratively update 
the parameter estimates until convergence is achieved, searching for the values that optimize the 
likelihood function. 

In this work, the Expectation-Maximization (EM) algorithm was chosen among other numerical 
methods due to its demonstrated effectiveness in producing reliable results [21,22]. The EM 
algorithm, introduced by Dempster, Laird, and Rubin in 1977, is an iterative optimization algorithm 
[23]. It is widely used in reliability and survival analysis, as well as in other fields such as machine 
learning, data mining, and bioinformatics [24–26]. The EM algorithm is a powerful statistical tool for 
estimating parameters in complex models, particularly in situations involving incomplete or 
censored data, where analytical solutions are challenging [27,28]. The algorithm alternates between 
two steps: the E-step (Expectation step) and the M-step (Maximization step). In the E-step, the 
algorithm calculates the expected value of the log-likelihood function based on the current parameter 
estimates. In the M-step, it maximizes the expected value of the log-likelihood function with respect 
to the parameters [23,29]. 

The log-likelihood function for the complete data set X is denoted as lc (x, θ). When incomplete 
data is present, certain events are unknown, and the observed data set is represented as Y, while Z 
represents the unknown data. Consequently, X can be expressed as a function of (y, z). 

The EM algorithm with the presence of incomplete data can be summarized as follows: 
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1. Initialization: The algorithm begins by initializing the model's parameters, denoted as θ(0). This 
initialization can be done randomly or with reasonable initial values. It is crucial to pay attention 
to the choice of initial values as poor selection can result in slow convergence of the algorithm. 
Additionally, since the maximum likelihood equation can have multiple solutions 
corresponding to local maxima, the choice of initial values becomes significant. A comparative 
study on different strategies for choosing initial values was conducted by [30], highlighting the 
dependency of the strategy on the selection of initial solutions. 

2. E-step (Expectation step): In the E-step, the algorithm calculates the expected values of the 
missing or unobserved data, given the current parameter estimates. This step involves 
computing the posterior probability distribution of the missing data, which represents the 
uncertainty about their values. The expectation is taken with respect to the conditional 
distribution of the missing data, conditioned on the observed data and the current parameter 
estimates. 
To perform the E-step, the algorithm typically utilizes the complete-data likelihood function, 
which incorporates both the observed and missing data. However, since the missing data is not 
available, the algorithm computes the expectation of the complete-data log-likelihood instead. 
This expectation is often referred to as the “Q-function” (Equation (4)). 𝑄ሺ𝜃, 𝜃௞ሻ = 𝐸ఏೖሺ𝑙௖ሺ𝑥, 𝜃ሻ|𝑦, 𝛿, 𝜃௞ିଵሻ (4) 

3. M-step (Maximization step): In the M-step, the algorithm updates the parameter estimates to 
maximize the expected log-likelihood computed in the E-step. It treats the expected values of 
the missing data as if they were observed and finds the parameter values that maximize the log-
likelihood of the complete data.  
To maximize the expected log-likelihood, the algorithm employs standard optimization 
techniques such as gradient descent or closed-form solutions tailored to specific models. The M-
step involves solving for the optimal values of the parameters by maximizing the Q-function 
with respect to the parameters. This can be achieved through numerical optimization methods 
that iteratively update the parameter estimates until convergence is reached. Gradient-based 
methods estimate the gradient of the log-likelihood with respect to the parameters and adjust 
the parameter values in the direction of steepest ascent. Closed-form solutions, on the other 
hand, exploit the specific structure of the model to derive explicit expressions for the optimal 
parameter estimates (Equation (5)). 𝑄௞ାଵ = arg max 𝑄ሺ𝜃, 𝜃௞ሻ (5) 

The choice of optimization technique depends on the complexity of the model and the 
computational efficiency required. Gradient-based methods are widely used due to their 
versatility and ability to handle a broad range of models. However, for simpler models, closed-
form solutions may offer faster and more efficient estimation. The M-step plays a crucial role in 
refining the parameter estimates by iteratively improving their values based on the available 
data. By maximizing the log-likelihood of the complete data, the algorithm finds parameter 
values that optimize the fit between the model and the observed and expected data. This step is 
essential for obtaining accurate and reliable parameter estimates in the presence of incomplete 
data. 

4. Iteration: After completing the E-step and M-step, the algorithm checks for convergence. If the 
change in the log-likelihood or the parameter estimates falls below a certain threshold, the 
algorithm terminates. Otherwise, it continues to iterate by returning to the E-step and repeating 
the process until convergence is achieved. 
The convergence guarantees of the EM algorithm ensure that the likelihood of the model 

increases or remains constant with each iteration. However, it is important to note that the algorithm 
may converge to a local maximum of the likelihood function rather than the global maximum. This 
behavior arises due to the inherent non-convex nature of the likelihood function. Consequently, 
running the algorithm multiple times with different initializations is often recommended [30]. This 
strategy helps mitigate the risk of getting trapped in suboptimal solutions and increases the chances 
of finding the global maximum. 
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Figure 1 illustrates the interactive process of the EM algorithm, demonstrating how the 
algorithm iteratively updates the parameter estimates and improves the likelihood of the model. The 
stepwise nature of the algorithm is evident, with the E-step estimating the missing data and the M-
step refining the parameter estimates based on the completed data. The iteration continues until 
convergence, resulting in optimized parameter estimates that maximize the likelihood of the 
complete data. 

The iterative nature of the EM algorithm allows it to handle complex models and accommodate 
incomplete or censored data effectively. By leveraging the E-step and M-step iteratively, the 
algorithm refines the parameter estimates, improving the overall fit between the model and the 
observed data. Convergence serves as a criterion for determining when the algorithm has reached a 
stable solution, ensuring the reliability and accuracy of the estimated parameters. 

 
Figure 1. Interactive process of the EM algorithm. 

Reliability studies often involve analyzing data in which the failure times of equipment or 
systems are subject to right-censoring. Right-censoring occurs when the observed failure times are 
limited by the study's duration, and failures beyond that duration are not observed. To address the 
challenge of right-censored data in reliability analysis, the EM algorithm proves to be an effective 
approach. 

The EM algorithm offers a powerful framework for estimating the parameters of a chosen 
reliability model when working with censored data. In the case of right-censored data, the algorithm 
employs an iterative process. It imputes the unobserved failure times based on the current parameter 
estimates and updates the parameter estimates using the imputed failure times. This iterative process 
enables the incorporation of censored data and enhances the accuracy of parameter estimation. 

During the E-step of the EM algorithm for right-censored data in reliability studies, the survival 
probabilities are computed for each observation using the current parameter estimates. These 
survival probabilities represent the probability of survival beyond the censoring time for each 
observation. Subsequently, the survival probabilities are utilized to impute the failure times for the 
censored observations. 

The Q equation, which characterizes the E-step in the EM algorithm for right-censored data, can 
be expressed as follows, as presented in [31] (Equation (6)):  

𝑄ሺ𝜃, 𝜃௞ሻ = 𝑛𝑙𝑛𝛽 − 𝑛𝛽𝑙𝑛𝜂 + ሺ𝛽 − 1ሻ ෍ ቈ𝛿௜𝑙𝑛𝑦௜ + ሺ1 − 𝛿௜ሻ ቊ𝑙𝑛𝑦௜ + 1𝛽௞ 𝑒𝑥𝑝 ൬𝑦௜𝜂௞൰ఉೖ Γ ቈ0, ൬𝑦௜𝜂௞൰ఉೖ቉ቋ቉ −௡
௜ୀଵ  

− 1𝜂ఉ ෍ ቄ𝛿௜𝑦௜ఉ + ሺ1 − 𝛿௜ሻ ቂ𝑦௜ఉೖ + ሺ𝜂௞ሻఉೖቃቅ௡
௜ୀଵ  (6)

Where, 

Γሺ𝑝, 𝑥ሻ = න 𝑢௣ିଵ𝑒ି௨ஶ
௫ 𝑑𝑢, is the incomplete gamma function. 
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This equation captures the estimation of the missing failure times based on the available survival 
probabilities. By imputing the failure times for the censored observations, the algorithm iteratively 
refines the parameter estimates, progressively improving the fit between the reliability model and 
the right-censored data. 

As seen above, the step M is design to find the solution θk+1 which maximizes Q(θ, θk+1). Once 
the failure times are imputed, the M-step of the EM algorithm proceeds to update the parameter 
estimates. In this step, the algorithm maximizes the expected complete-data log-likelihood, which 
incorporates both the observed failure times and the imputed failure times. By incorporating the 
imputed failure times, the algorithm effectively accounts for the censoring information and provides 
more accurate parameter estimates. 

The EM algorithm, when applied to right-censored data, offers a robust approach for estimating 
reliability parameters in the presence of censored observations. It overcomes the limitations imposed 
by censoring, such as incomplete failure time information, and ensures that the analysis incorporates 
all available data to make reliable inferences about the reliability characteristics of the system or 
equipment under study. 

It is important to note that the specific implementation of the EM algorithm for censored data in 
reliability studies relies on the chosen reliability model, such as the Weibull distribution, and the 
assumptions made about the underlying distribution. 

The utilization of appropriate statistical techniques can significantly enhance the analysis and 
estimation process. These procedures enable the modeling of the system based on the fit of a 
predefined distribution. In the following section, a case study will be presented to demonstrate the 
effectiveness of this approach in a real-world scenario. 

4. Case study 

One of the objectives of this case study is to apply the EM algorithm to find the solution of the 
function obtained by the maximum likelihood method in the parameter estimation of the Weibull 
distribution using right-censored data. The case study analyzes the failure history of five centrifugal 
pumps used by a petrochemical company for pumping similar-density oil, specifically emphasizing 
bearing failures. Over seven years, these pumps experienced recurrent failures, resulting in 
significant downtime and a decrease in the overall reliability of the pumping system. 

Centrifugal pumps play a critical role in various industries by transporting fluids. Their design 
allows them to handle various fluid viscosities and temperatures, making them versatile for different 
applications. 

Reliability is essential for ensuring the efficient and uninterrupted operation of these pumps. 
The bearing system within centrifugal pumps is particularly crucial as its performance directly 
impacts the overall reliability of the pump. 

The collected data revealed that bearing failures accounted for significant failures, representing 
approximately 38% of the total. This highlights the importance of investigating and addressing 
bearing failures to improve the reliability and performance of the pumping system. 

Bearing failures can have severe consequences, including costly downtime, repairs, safety 
hazards, and environmental risks. Estimating the parameters of the Weibull distribution based on 
limited and censored data enables plant operators to proactively monitor and maintain critical 
components such as bearings to ensure continuous and safe operations. The failure data collected 
were analyzed to determine the frequency of each failure mode over the seven years. This analysis 
provides insights into the relative importance of each failure mode in contributing to the overall 
failure rate. 

Failures between regular inspections conducted by the maintenance staff, which happen at least 
every 8 hours, were considered complete data. Hence, it was assumed that the exact moment of 
failure was well-known, as the time between inspections was relatively short compared to the total 
observed time. 
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The last recorded data point for each pump represents the end of the study rather than an actual 
failure. This type of situation, as mentioned earlier, is known as right-censored data, where the 
observed data is incomplete due to the study ending without observing all potential failures. 

Treating the last recorded time for each pump as right-censored data is a good approach since it 
indicates that the failure times for those pumps are unknown, as they were still operating when the 
study concluded. 

The Expectation-Maximization algorithm was employed to estimate the parameters of the 
Weibull distribution using the maximum likelihood method with right-censored data. The iterative 
process was implemented using the R statistical program. 

The least squares method was utilized to determine the initial solution θ(0). The iterative method 
terminated when the difference between iteration k+1 and k was smaller than 0.1. Table 1 presents the 
expected values for β and η for the bearings of the five analyzed centrifugal pumps obtained through 
the EM algorithm. Confidence intervals for each parameter are also provided. 

Table 1. Expected value for β and η for the bearings of 5 centrifugal pumps obtained by EM algorithm 
and respective confidence interval by the bootstrap-T method. 

Bearings  β  
1 5,67 8,34 14,34 
2 4,15 7,22 12,75 
3 7,19 9,98 15,11 
4 3,91 6,97 11,86 
5 2,77 5,74 10,78 

Bearings  η  
1 544,75 584,81 626,10 
2 476,28 509,95 551,36 
3 579,78 601,29 631,04 
4 493,96 529,86 572,89 
5 611,07 656,96 701,03 

Given the small size of the data sample, the bootstrap-t method was employed to determine the 
confidence intervals with a confidence level of 95% [32]. 

For all bearings, the shape parameter β was found to be greater than 1. The scale parameter η 
exhibited values ranging between 509.95 and 656.96 operation days. In the bootstrap method, 1000 
resampling iterations were performed to obtain reliable estimates. Figure 2 visually presents the 
confidence interval of the estimated parameters of the Weibull distribution specifically for bearing 1. 
These intervals were derived from the information obtained through the bootstrap method. 

 

Figure 2. Dispersion of the values obtained by the bootstrap method for bearing 1. 
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Various tests are available to assess the quality of fit between the data and the theoretical 
distribution. In this study, the Kolmogorov-Smirnov (K-S) test was chosen due to its simplicity and 
reliable results, especially for datasets with a limited amount of data. 

The K-S test involves three steps: 
1. Formulation of hypotheses: 

The null hypothesis (H0) states that the population from which the data is derived follows the 
Weibull distribution. The alternative hypothesis (H1) suggests that the population does not 
follow the Weibull distribution. 

2. Determination of the D value: 
The D value is calculated as the maximum absolute difference between the sample distribution 
function F(ti) and the population distribution function F(t). This value is compared to the critical 
value, which depends on the sample size (n) and the chosen significance level (α). Additionally, 
the critical value is adjusted based on the shape parameter value (β): 

K = 0.70 (β > 3.0) 

K = 0.75 (1.5 < β < 3) 

K = 0.8 (β < 1.5) 

3. Comparison: 
If the test statistic D is greater than or equal to the corrected critical value (D ≥ k x critical value), 
the null hypothesis is rejected (Reject H0). The p-value also provides insight into the quality of 
the fit. The p-value represents the probability of observing results as extreme as those obtained 
if the null hypothesis is true. A large p-value supports H0, while a small p-value indicates 
evidence against H0. If the p-value is greater than 0.05, there is no evidence against H0. For 
bearing 1, with a sample size of n = 6 and a significance level of α = 5%, the following results 
were obtained: 

D = 0.218 < 0.363 (0.70 x 0.519) 

p-value = 0.5294 > 0.05 

Based on these results, the null hypothesis is not rejected, indicating that the population from 
which the data is derived follows the Weibull distribution. Similar results were obtained for the other 
bearings. 

Estimating Weibull parameters provides valuable insights for optimization efforts and informed 
decision-making. By understanding failure patterns through parameter estimation, system designs 
can be optimized, appropriate materials can be selected, and maintenance intervals can be 
determined. Reliability estimates derived from Weibull analysis serve as a quantitative basis for 
decision-making, facilitating efficient resource allocation, reducing downtime, and improving system 
performance. 

Furthermore, Weibull analysis enables comparative analysis of failure data from different 
systems, components, or designs. By comparing the estimated parameters, the relative reliability of 
various products or configurations can be assessed. 

5. Conclusions 

The analysis of historical failure data for industrial equipment, such as centrifugal pumps in an 
oil refinery, is a complex task due to censored data and missing information. However, analyzing 
historical failure data to monitor systems and perform maintenance tasks effectively is essential. 

In cases where censored data is present, the equation from the maximum-likelihood method 
needs an analytical solution due to its complexity. Therefore, in this work, the EM algorithm was 
proposed as a solution to estimate the parameters. The EM algorithm has demonstrated its 
effectiveness in reliability estimation for such cases, leading to significant cost savings and improved 
safety. With the increasing complexity and criticality of modern systems, accurate reliability 
estimation has become more crucial than ever, and the use of advanced statistical methods, such as 
the EM algorithm, is essential to achieve this goal. For instance, in an oil refinery, a failure in a pump 
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bearing can result in costly shutdowns and even hazardous accidents. Plant operators can proactively 
monitor and maintain critical components like bearings, ensuring continuous and safe operations by 
employing the EM algorithm to estimate the Weibull distribution parameters based on limited and 
censored data. 

Furthermore, these methods can be applied to the oil industry and other sectors, such as 
aerospace, automotive, and healthcare, where limited and censored failure data are expected. 
However, it is essential to note that the predictions of the EM algorithm will be more accurate with 
more significant amounts of data and higher data quality. 

Additionally, using the EM algorithm enables the utilization of maintenance action data, further 
enhancing its usefulness. In conclusion, applying the EM algorithm for reliability estimation in 
scenarios with limited and censored data shows excellent promise and merits further research and 
exploration. 
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