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Abstract: This paper presents research on the application of trajectory design, optimization, and 1

control to an orbital transfer from Mars-Phobos Distant Retrograde Orbits to the surface of Phobos. 2

Given a Distant Retrograde Orbits and a landing location on the surface of Phobos, landing trajectories 3

for which total ∆v for a direct 2-burn maneuver is minimized are computed. This is accomplished 4

through the use of Particle Swarm Optimization in which the required ∆v and time of flight are 5

optimization parameters. The non-uniform gravitational environment of Phobos is considered in the 6

computation. Results show how direct transfers can be achieved with ∆v in the order of ∼30 m/s. 7

Keywords: Mars; Distant Retrograde Orbits; Phobos; Particle Swarm Optimization; landing trajecto- 8

ries 9

Nomenclature 10

∆v = Change in velocity (km/s)
e = Orbit eccentricity
Ax = Larger x-coordinate from the primary body in the Circular Restricted

Three-Body Problem (km)
Vy = y-component of velocity (km/s)
Nmax = Maximum number of iterations used in Particle Swarm

Optimization (PSO)
T = Orbital Period (s)
Pi = Number of particles used in PSO
J = Cost function
λ = Mass ratio of Mars and Phobos
r⃗ = Position vector
v⃗ = Velocity vector
Nparticles = Number of particles in PSO
Blo = Lower limit for particles in PSO
Bup = Upper limit for particles in PSO
α = Angle with respect to the x-axis at which the ∆v is applied (°)
ϕ = Position along the orbit with respect to the x-axis, starting at r⃗0 (°)
r⃗0 = Initial position vector
v⃗0 = Initial velocity vector
r⃗final = Final position vector
v⃗final = Final velocity vector
γ = Penalty scaling factor used by PSO
µ = Gravitational parameter (km3/s2)
m0 = Total spacecraft mass (mt)
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m f = Dry spacecraft mass (mt)
mp = Propellant mass (mt)
Isp = Specific Impulse (s)
g0 = Standard acceleration due to gravity at Earth’s sea level (m/s2)
ve = Exhaust velocity (m/s)

1. Introduction 11

In order to facilitate the exploration of the Moon and Mars, intermediate staging loca- 12

tions have been proposed. The Lunar Gateway represents an intermediate orbital platform 13

capable of linking, organizing, and supporting missions between the Earth and the Moon 14

[1–3]. However, a lesser amount of literature regarding the use of similar platforms in 15

the Martian environment exists. Such Martian platform would be referred to as Mars 16

Base Camp [4]. As well as the Lunar Gateway, Mars Base Camp is a proposed platform 17

that would enable and aid exploration of Mars and its surroundings, including its moons, 18

Phobos and Deimos [5–7]. Although a final location for Mars Base Camp has not been 19

chosen, it has been proposed that it could be located in the vicinity of Phobos or Deimos [8], 20

such as a Mars-Phobos Distant Retrograde Orbit (MP DRO) [9]. This would avoid locating 21

Mars Base Camp deep in Mars’ gravity well while keeping the Martian moons an accessible 22

target. Some studies have shown the effectiveness of intermediate staging locations such as 23

the aforementioned Mars Base Camp to facilitate missions in the vicinity of Mars and its 24

moons [10,11]. Thus, the establishment of an infrastructure capable of performing In-Situ 25

Resource Utilization (ISRU) of the material found in the regolith and under the surface 26

of Phobos would prove to increase human and robotic exploration capabilities on Mars 27

and its vicinity. For the purpose of this research, we assumed the existence of a Phobos 28

Base capable of resupplying Mars Base Camp located in a Distant Retrograde Orbit (DRO). 29

We analyzed the necessary trajectories required to transport material from the surface of 30

Phobos to Mars Base Camp. We applied trajectory design, optimization, and control to an 31

orbital transfer in the Circular Restricted Three-Body Problem (CR3BP), specifically from a 32

Mars-Phobos Distant Retrograde Orbit to the surface of Phobos [12]. Given an MP DRO and 33

a landing location on Phobos, the goal is to find the trajectory for which total ∆v for a direct 34

2-burn maneuver is minimum [8,13]. Here, the total ∆v corresponds to the sum of ∆v’s 35

required to initiate the transfer in the MP DRO and complete the transfer, i.e. land on the 36

surface of Phobos. Considerations on Time-Of-Flight (TOF) were done in order to ensure 37

that any necessary phasing and/or repositioning maneuvers are taken into account. A 2-D 38

analysis is sufficiently accurate since we considered the Mars-Phobos orbit plane as the 39

reference frame, and motion will mostly happen in such plane. However, further analysis 40

will take into account a 3-dimensional space problem in which the gravitational potential 41

of Phobos is also considered [14]. Furthermore, the initial position among the departing 42

DRO will be implemented as the third optimization parameter, given that the minimum ∆v 43

does not necessarily occur at a fixed position along the orbit for a given landing location. In 44

this paper, a Particle Swarm Optimization (PSO) is used to determine the initial MP DRO 45

given two parameters, [Ax, Vy]. Once the initial DRO is found, a trajectory optimization 46

through a PSO is performed in order to determine the lowest ∆v trajectory to land a specific 47

location on Phobos’ surface, given three parameters to optimize [α, ϕ, ∆v]. Here, we also 48

discuss which PSO parameters are used for the analysis and which ones lead to the most 49

efficient (i.e., the fastest) computations, that can be used for other optimization problems in 50

the CR3BP. For further details on such parameters, refer to the nomenclature session at the 51

beginning of the paper or to the detailed Sections 2.3 and 3. 52

53

Phobos is the largest of two moons orbiting Mars, with an approximate size of 13.4 km 54

× 11.2 km × 9.2 km [15,16]. Phobos has an unusual shape (somewhat similar to a potato) 55

which creates numerous difficulties for spacecrafts to orbit and therefore land on the moon 56

itself. In the literature, the gravitational potential and the density of Phobos have been of 57

high interest, since it becomes essential for a precise and complete analysis to acknowledge 58

such characteristics, especially for long-duration stability of orbits in the vicinity of the 59
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Moon [17–19]. 60

61

In this paper, the following approximations are made. Phobos orbits Mars on an 62

elliptical orbit with an eccentricity of e = 0.0151. For this study, we modeled Mars and 63

Phobos using the CR3BP, which assumes that the eccentricity is 0. The semi-major axis of 64

such orbit (i.e. average distance between Mars and Phobos) is 9376 km. Finally, the orbit’s 65

inclination with respect to Mars’ equatorial plane is around 1°. Since Phobos’ Sphere of 66

Influence (SOI) is below its physical surface, it becomes impossible to orbit the moon in the 67

classical Keplerian sense. In the CR3BP, considering Phobos and Mars as the two primary 68

masses, some periodic orbits exist, such as Halo Orbits or Lyapunov Orbits, as shown in 69

Figure1. However, such periodic orbits are either highly unstable or come dangerously 70

close to the surface [20]. That being considered, the family of Distant Retrograde Orbits 71

is of use in the following analysis. Such family of orbits proved to be “far” enough from 72

Phobos’ surface and to be sufficiently stable as well, up to multiple hundreds of years, 73

when considering a full-force model [20]. The word “far” is here used loosely, since these 74

orbits are within tens of hundreds of km from Phobos. 75

Figure 1. Mars-Phobos periodic orbits examples in the Circular Restricted Three Body Problem [20]

Mission analysis for Earth to Mars-Phobos DROs is of high interest when associated 76

with human and robotic exploration [4,10,11,16]. Phobos could prove itself extremely useful 77

for future Mars missions as a popular location for future ISRU plants. It is widely recog- 78

nized that having such in-orbit and in-situ infrastructures would make space exploration 79

much more affordable, sustainable, and effective [16,21,22]. Several advantages of such 80

stations include the ability not to bring all the necessary material, including propellant, 81

for deep space missions [23]. Such projects are already in development (such as NASA’s 82

Artemis [24]) for what concerns Earth’s Moon: building a refueling in-orbit station along 83

with several on-the-surface infrastructures can easily be imagined as an intermediate step 84

to what would be a deep space exploration mission. 85

86

In the following analysis, optimization algorithms are developed in order to generate 87

a specific DRO given a desired distance from Phobos and optimize a landing maneuver to 88

a specific landing site on the surface of Phobos with respect to the ∆v needed, i.e. minimize 89

the necessary impulsive maneuver applied for landing. 90
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2. Background Theory 91

For the purpose of giving a better insight of the problem, a brief overview of the basic 92

aspects regarding Distant Retrograde Orbits and the Particle Swarm Optimization method 93

are given. 94

2.1. Distant Retrograde Orbits 95

Distant Retrograde Orbits (DROs) are large orbits around the smaller primary body in 96

the 3BP. Perfectly periodic DROs exist in the CR3BP and in-plane velocity perturbations 97

create quasi-periodic orbits. Such orbits are favorable when looking for quarantine orbits 98

since their stability demonstrates a noteworthy capability to resist perturbations [22]. 99

Indeed, DROs can stay quasi-periodic when larger perturbations than other families of 100

three-body orbits can withstand are applied. DROs have been recently proposed to be 101

the ideal family of orbits when it comes to locating in-space infrastructures, and this is 102

due to their outstanding stability and ease of access in terms of a gravity well [22]. DROs 103

are usually characterized by the so-called x-amplitude (Ax), which represents the larger 104

distance from m2 (in a CR3BP) in the x-axis direction, given a xyz rotating reference frame 105

orbiting the primaries, as shown in Figure 2. In such analysis, it is typical to use a frame of 106

coordinates with its center located at the barycenter of the primary masses [16]. According 107

to this, several essential parameters can be determined in order to define a DRO. Such 108

parameters are the radius at periapsis, and its corresponding velocity, required at the 109

intersection of the xz-plane (i.e. where y = 0) in order to create a periodic orbit. Since the 110

radius has only one component along the x-axis, which is Ax-dependent, we can say that 111

the essential parameters necessary to define a DRO are [Ax, Vy], where Vy indicates the 112

y-component of the velocity vector at such location (which is in facts the only component, 113

the x-component and z-component of the velocity vector at the considered starting location 114

are zero). DROs have been identified and studied in the literature, for both Earth-Moon 115

DROs and Mars-Phobos DROs [16,25], as shown in Figure 3. However, in this study a 116

PSO algorithm will be used to determine a DRO given its x-amplitude, which will be the 117

starting point for the landing trajectory optimization. 118

Figure 2. Graphic representation of parameters [Ax,Vy] to optimize to generate a periodic DRO in the
CR3BP rotating reference frame xyz.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 June 2023                   doi:10.20944/preprints202306.0951.v1

https://doi.org/10.20944/preprints202306.0951.v1


Version June 9, 2023 submitted to Universe 5 of 17

Figure 3. Mars-Phobos DRO samples with Lagrange Points L1 and L2 for reference.

2.2. Particle Swarm Optimization 119

The Particle Swarm Optimization method is used in this study as an optimization
algorithm to generate periodic DROs and compute ∆v-optimal landing trajectories. PSO is
a heuristic method used several times in previous astrodynamics problems [26–28]. It is
based on the unpredictable motion of bird flocks while searching for food, taking advantage
of the mechanism of information sharing that affects the overall behavior of a swarm [29,30].
The initial population that composes a swarm is randomly generated at the first iteration of
the algorithm. Each particle is associated with a position vector and a velocity vector. In
the PSO terminology, the words “position” and “velocity” are not to be interpreted in the
classical sense (i.e. position and velocity as intended in classical physics and mechanics).
Instead, they indicate the position vector containing the unknown parameters to optimize
and the velocity vector determining the position update. Each particle represents a possible
solution to the problem. At the end of the iterations, the particle corresponding to the
optimal solution is selected, i.e. the particle that minimizes the parameters of interest,
such as ∆v. At each iteration, the position vector’s elements move in the velocity vector’s
corresponding direction, to a new position, which represents a new possible solution. The
updating of position and velocity is based on the objective function evaluation at the end
of every iteration. The objective function (henceforth referred to as “cost function”) is an
expression that needs to be minimized (or maximized). Once this condition is satisfied or
the maximum number of iterations set Nmax is reached, the algorithm will have obtained
an optimal solution. At every iteration, the best cost function is used to determine how
to update both velocity and position. Indeed, with the approach formulated above, the
algorithm will converge on the best solution in every iteration. For each particle, the
formula for velocity update includes three components with stochastic weights. In the PSO
terminology, these are known as the inertial (cI), cognitive (cC), and social (cS) components.
The inertial parameter is usually chosen randomly, but it has appeared to be proportional
to each particle’s velocity in the previous iteration for some applications [28]; the cognitive
parameter is based on the best position experienced by the particle; finally, the social
component is direct toward the personal best position (i.e. the best location yet located
by any particle in the swarm). The algorithm terminates when the maximum number of
iterations (user decision) is reached. For this study, the following values are used in the
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algorithm. The function rand stands for a single uniformly distributed random number in
the interval (0,1).

cI =
(1 + rand)

2
cC = 1.49445 · rand (1)

cS = 1.49445 · rand

The constants in Equation (1) are derived from the literature and optimized for this problem 120

[31,32]. The implementation of the PSO was run in MatLab where the function unifrnd was 121

used to assign the initial values at each particle element for each particle. The function 122

unifrnd creates a uniformly distributed array of random values included in a specific range 123

as given by the boundary values in Table (2). Once that is implemented, the initial position 124

is assigned 125

r⃗0 = [Ax + (1 − λ)]î + 0 ĵ (2)

where 126

λ =
mPhobos

(mMars + mPhobos)
(3)

represents the mass ratio. Note that, as already mentioned, the following analysis will be 127

conducted assuming 2-D motion. Therefore the ith particle (i.e. the particle corresponding 128

to the jth iteration) is 129

Pi = [Vy(i); T(i)] (4)

so that 130

v⃗0 = 0î + Pi(1) ĵ (5)

The PSO algorithm here used is summarized in the flowchart in Figure 4. The coordinate
system used is represented in Figure 5. Note that these two parameters are picked for the
MP DRO analysis described in the Mars-Phobos DRO section below and are here used
to better describe the general problem and give the reader a full comprehension of the
general approach. Once the Initial Conditions (ICs) are determined (⃗r0 and v⃗0), numerical
integration is performed in order to compute the resulting trajectory using the CR3BP
equations:

ẍ − 2ẏ − x = − (1 − λ)(x + λ)

r3
1

− λ(x − 1 + λ)

r3
2

ÿ + 2ẋ − y = − (1 − λ)y
r3

1
− λy

r3
2

(6)

z̈ = − (1 − λ)z
r3

1
− λz

r3
2

r1 =
√
(x + λ)2 + y2 + z2

r2 =
√
(x + λ − 1)2 + y2 + z2

(7)

Once the integration is done, if the final position and velocity of the resulting trajectory 131

are within a small tolerance (here 10−10) to the initial conditions r⃗0 and v⃗0, then a periodic 132

orbit is achieved and the optimization algorithm has reached a final solution. 133
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Start

Initializing particles and
upper and lower limits
P = [a0, a1, a3, ..., an]

BLp = [BL1, BL2, BL3, ..., BLn]
BUp = [BU1, BU2, BU3, ..., BUn]

Initializing velocities and their limits

Evaluating
cost function J

Compute best particle
Pbest

Compute best global particle
Gbest

Update velocities ac-
cording to Eq. (9)

Update particles
Pi = Pi + vi

Nmax reached? Report Gbest
Yes

No

Figure 4. Flow Chart for PSO algorithm.
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Therefore, the cost function, i.e. function to minimize, is

J =| r⃗final − r⃗0 | + | v⃗final − v⃗0 |
=| rfinal î − [Ax + (1 − λ)] | + | vfinal ĵ − Vy(i) | (8)

Satisfying the condition in Equation (8) results in having a periodic orbit, i.e. r⃗(0) = r⃗(t f )
and v⃗(0) = v⃗(t f ). Once the cost function is evaluated, each particle velocity (intended in
the PSO terminology) is updated as follows

Vi = cIVi + cC(Pbest − Pi) + cS(Gbest − Pi) (9)

where Pbest is the personal best of each particle, and Gbest is the overall best position 134

between all particles and all iterations as of the ith iteration. The coefficients cS, cC, cI 135

are defined in Equation (1). Note that the subscript i in the Equations (4, 8, 9) indicates 136

the ith element at the jth iteration of the algorithm. Naturally, the greater number of 137

particles initialized, the more probability the algorithm has to achieve an optimal result. 138

Similarly, a higher number of maximum iterations has more probability to converge to a 139

solution. Nevertheless, a compromise between computational complexity and the number 140

of iterations and particles needs to be made. In fact, increasing either the number of 141

particles or the maximum iterations allowed can make the computational time increase 142

significantly. However, due to the random nature of the algorithm, one cannot guarantee 143

that an absolute optimal solution can be reached. On the other hand, a ‘good’ initial guess 144

is not necessary in order to initiate the algorithm. Furthermore, unlike gradient-based 145

methods, heuristic optimization methods are capable of finding absolute maxima/minima 146

regardless of ICs [31]. 147

Figure 5. Geometry of the restricted three-body problem.

2.3. Mars-Phobos DRO 148

Several DROs have been defined in the literature [12,16] for given Ax values. Here 149

a PSO algorithm has been implemented to generate DROs. The optimization was imple- 150

mented starting from the two parameters [T,Vy], where Vy was defined in Section 2 and T 151

represents the orbital period of the DRO. The initial data are summarized in Table 1. 152

Starting from data taken from [16] the value of Vy for Ax = 100 km is known to be 153

−0.045620256764708 km/s, that identifies a DRO with an orbital period 154

T = 2.731044880670166 × 104 s [33]. Knowing such parameters helps the implementation 155

of boundary values for the two parameters used in this analysis (i.e. the maximum and 156

minimum values that the parameters can assume in the particles). In particular, the initial 157

conditions for the optimization are listed in Table 2. Similarly, any other DRO of interest 158

can be derived, although only one is here chosen for the results shown. 159
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Table 1. Orbital parameters for Mars-Phobos and initial values for DRO Optimization.

Variable Value Description

µPhobos (km3s−2) 7.11358812096305 · 10−4 Gravitational parameter
for Phobos

µMars (km3s−2) 42828.375214 Gravitational parameter
for Mars

λ 1.660952106463386 · 10−8 Mass ratio

R (km) 9376 Average distance
Mars-Phobos

Ax (km) 125 DRO Amplitude

Table 2. Boundary Values for DRO Optimization.

Variable Value Description

Blo(Vy) 3
2 Vy Lower limit for Vy (km/s)

Bup(Vy) Vy Upper limit for Vy (km/s)

Blo(α) T Lower limit for T (s)

Bup(α) 2π Upper limit for T (s)

Nmax 80 Maximum number of iterations

Nparticles 40 Number of particles

The parameters to optimize are the initial velocity v0 (Equation (5)) at position r0 160

(Equation (2)) and the orbital period T (Equation (4)). In the literature, different DROs have 161

been identified for Ax ∈ [15, 300] km [16]. DROs with Ax values below 15 km result in a 162

certain impact with Phobos’ surface and the ones with higher Ax values than 300 km are 163

considered too far away to maintain the characteristics in which we are interested (vicinity 164

to Phobos and low-∆v for landing). Given the initial orbital parameters for Mars-Phobos 165

and the initial values for the DRO, specified in Table 1, the resulting DRO is shown in 166

Figure 6, and its reference values for position and velocity are summarized in Equation 167

(10). 168

Figure 6. Mars-Phobos DRO for Ax = 125 km resulting from the Particle Swarm Optimization.
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r⃗ = [9500.920971466154,−0.006046323363597] km

v⃗ = [0.0007100917133235669,−0.056800560873732] km/s (10)

T = 27310.98049729574 s

where T represents the total orbital period, and v is the velocity vector at position r. Given 169

the Nmax and Nparticles specified in Table 2, the result was achieved with a minimum cost 170

function J in the order of 10−4 approximately, as shown in Figure 7, so the final values are 171

such that | r⃗ f − r⃗0 |≈0.1 mm and | v⃗ f − v⃗0 |≈0.1 mm/s . The total average computation 172

time was ∼20 seconds. Several other approaches were tried, in terms of the number of 173

particles and the number of maximum iterations, but these parameters proved to give a 174

sufficiently accurate result in a reasonable amount of time. If, for instance, we doubled the 175

Nmax up to 160, the computation time increases up to ∼40 seconds, generating a minimum 176

cost function J in the order of 10−5. So doubling the computational time will generally 177

give a result that is just one order of magnitude more accurate than the initial one. As 178

already outlined, one has to compromise between computational efficiency, computational 179

speed, and results’ accuracy. Many computational issues may occur while implementing

(a) Ax = 100 km (b) Ax = 125 km

(c) Ax = 150 km
Figure 7. Cost Function J compared to Iteration Number for different DRO amplitudes.

180

the algorithm. However, parallel programming and computing is a suitable solution to 181

speed up the computation time. In fact, every possible trajectory computed at each iteration 182

is independent with respect to all the other trajectories, until every particle is updated. 183

Note that for this study a 2016 MacBook Pro is used. Hardware and Software details are 184

summarized in Table 3. 185

3. Landing Trajectory Optimization 186

In this section, the trajectory optimization for multiple landing maneuvers is analyzed 187

through the use of PSO. Given an initial stable parking DRO around Phobos like the exam- 188

ple computed in Section 2.3, and a desired landing location, the analysis aims to find the 189

minimum ∆v necessary to encounter that specific location. The problem is computationally 190

more complex than the one described in the MP DRO Section and it presents several more 191

difficulties in the formulation. First of all, the choice of the parameters to optimize is 192
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Table 3. Computer system characteristics.

Item Description

Operating System MacOS Big Sur Version 11.2.3

Processor 3.3 GHz Dual-Core Intel Core i7

RAM 16 GB 2133 MHz

MatLab version R2020b Update 3

System architecture 64-bit operating system, x-64-based processor

non-trivial and there are different ways to approach the optimization. Here, the following 193

parameters were chosen, minimizing the dimensionality of the trade space to three: 194

Pi = [α(i); ∆v(i); ϕ(i)] (11)

where the element ∆v(i) represents the ∆v to apply, and α(i) indicates the angle with 195

respect to the x-axis at which the ∆v is applied. The parameter ϕ(i) represents the angle 196

with respect to the x-axis which consequently identifies a location on the DRO r(ϕ), as 197

shown in Figure 8. Note that in this analysis, the index i represents the ith particle at the 198

jth iteration. This analysis requires more computational time than the DRO optimization 199

because there are 3 parameters to optimize instead of 2, and we do not have specific analytic 200

expressions to relate them to each other. The starting DRO is equal to the one defined in the 201

optimization described in Section 2.3. Therefore, as obtained in Equation (10), the initial 202

values and the particle boundary values are summarized in Table 5 and Table 4 respectively. 203

Figure 8. Graphic representation of parameters α, ϕ and ∆v. These are the parameters to optimize in
the landing trajectory analysis of this study.

204

In this particular optimization, a penalty scaling factor γ was introduced. The addition 205

of such a factor is necessary in order to prioritize the terms of the cost function [34]. In 206

fact, the essential condition for a valid outcome of the optimization is to land at the desired 207

location on Phobos. Indeed, a trajectory is considered valid only if it intersects the surface 208
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Table 4. Boundary Values for Landing Optimization using PSO.

Variable Value Description

Blo(Vy) 0 Lower limit for ∆v (km/s)

Bup(Vy) −Vy Upper limit for ∆v (km/s)

Blo(α) 0 Lower limit for α (rad)

Bup(α) 2π Upper limit for α (rad)

Blo(ϕ) 0 Lower limit for ϕ (rad)

Bup(ϕ) 2π Upper limit for ϕ (rad)

Nmax 200 Maximum number of iterations

Nparticles 100 Number of particles

of Phobos. Secondarily, given that a valid trajectory to accomplish such a condition has 209

been found, the total ∆v needs to be minimized. The expression for γ was derived in the 210

literature [34], and the following proved to be an effective value for this factor 211

γ(i) = β

[
γinitial −

γinitial − γfinal
Nmax

√
(2Nmax − i)i

]
(12)

where i is the current iteration number, Nmax is the maximum number of iterations and 212

γinitial and γfinal represent the initial and the final weighting values. In this analysis, they 213

are equal to 1 and 0.1 respectively. The factor β is an order scaling factor, set equal to 100 for 214

this optimization, which is used to make sure that the location checking term has a higher 215

order than the ∆v term. Therefore, the cost function becomes 216

J =

{
γ | r⃗final − r⃗landing | +∆vtotal, if | r⃗final − r⃗landing | > tol
∆vtotal, if | r⃗final − r⃗landing | < tol

(13)

For this optimization, the tolerance (tol) is set to 0.1 km (100 meters). It is clear how 217

the scaling factor prioritizes a specific term in Equation (13), given that the ∆v term is a 218

relatively small value.

Table 5. Initial values for Landing Trajectory Optimization

Variable Value Description

r⃗0 (km) [9500.920971466154,−0.006046323363597] Initial position of
parking DRO

v⃗0 (km/s) [0.0007100917133235669,−0.056800560873732] Orbit velocity at
position r0

Torbit (s) 27310.98049729574 Orbital period

219

For a matter of simplicity, Phobos was ideally divided into 12 sectors, and a landing 220

location within each sector was picked as a reference location for such area. This means 221

that the ∆v required to achieve landing in such sector can be considered quantitatively 222

similar to the reference location’s ∆v. Results for the landing locations in each sector are 223

summarized in Table 7. Computation times for each example in Table 7 are indicated in 224

Table 6. As expected, the average computation time is slightly higher than the one for the 225

DRO optimization described in the MP DRO analysis. 226
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Figure 9. Phobos’ sector division and qualitative landing trajectories.

Table 6. Computation times for Landing Optimization Algorithm.

Landing Location Sector Computation time

1 2 min, 56 s
2 2 min, 21 s
3 3 min, 20 s
4 2 min, 17 s
5 2 min, 42 s
6 2 min, 15 s
7 2 min, 56 s
8 3 min, 17 s
9 2 min, 21 s
10 2 min, 19 s
11 2 min, 53 s
12 4 min, 8 s

Average 2 min, 54 s

The landing trajectories for each sector are represented in Figure 10 and a heat map of 227

all the landing locations is shown in Figure 9. To have a better insight into the results, a 228

fully loaded SpaceX Starship is considered. SpaceX’s Starship will have an empty mass of 229

∼120 mt (260,000 lb) and a gross mass of ∼1,320 mt (2,910,000 lb) with a propellant capacity 230

of ∼1,200 mt (2,600,000 lb)[35]. Recall the Tsiolkovsky rocket equation 231

∆v = ve ln

(
m0

m f

)
= g0 Isp ln

(
m0

m f

)
(14)

where m0 is the total mass of the spacecraft, including the propellant, m f is the final total 232

mass assuming all propellant to be consumed (also known as dry mass), Isp is the space- 233

craft’s specific impulse and g0 is the standard gravity at Earth’s sea level. We can now 234

assume to land on Phobos’ surface at sector 7, which latitude corresponds to the Stickney 235

Crater on the surface of Phobos and which corresponds to a total ∆v of 27.41 m/s (see Table 236

7). From Equation (14) we can estimate the necessary propellant mass to land a full-load 237

Starship on Phobos. 238

239
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Table 7. Final results for Landing Optimization at one landing location for each sector.

Landing Loc. Sector Time of Flight Total ∆v (m/s) α (°) ϕ (°)

1 4 hrs, 41 min 27.35 246.10 147.14

2 3 hrs, 51 min 29.24 205.53 108.16

3 5 hrs, 10 min 31.02 347.27 256.35

4 7 hrs, 33 min 32.42 101.32 89.22

5 4 hrs, 54 min 27.27 88.41 337.07

6 3 hrs, 29 min 32 0 270.49

7 5 hrs, 13 min 27.41 100.38 0

8 6 hrs, 6 min 28.72 154.32 62.75

9 3 hrs, 41 min 31.93 0 270.84

10 4 hrs, 24 min 31.34 168.82 73.85

11 5 hrs, 36 min 27.66 260.27 204.36

12 5 hrs, 13 min 30.25 209.12 161.04

Average 4 hrs, 59 min 29.72 m/s

We consider the spacecraft to empty its tanks at landing. Given a specific impulse
of 380 s in a vacuum and a payload of 100 mt, Starship will achieve landing with a total
propellant mass equal to

mp = m f (e
∆v

g0 Isp − 1)

= (120 + 100) · (e
27.41

9.81·380 − 1) (15)

≈ 1.62 mt

mp

m f
= 0.7 % (16)

where mp is the total propellant mass used to achieve the indicated ∆v. Since the landing 240

∆v is quantitatively equal to the ∆v required to go from the surface of Phobos to the 241

initial DRO (the trajectory will just look different from a qualitative point of view), and 242

we assumed Phobos to have a re-fueling station on its surface, the total propellant mass 243

necessary to leave and arrive the DRO is simply two times the mass indicated in Equation 244

(15). Therefore, assuming one travel per terrestrial day for a year (365 days) back and forth 245

the Stickney Crater, the total propellant mass per year necessary to achieve such transfers 246

is ∼1,185.22 mt of propellant. If we consider a 1,200 mt propellant capacity, Starship can 247

achieve a back-and-forth transfer ∼369 times before refueling. Although it is challenging 248

to precisely estimate the propellant price per tonne, SpaceX claims that refueling Starship 249

would cost approximately $900,000. This means that a complete transfer would cost around 250

$2,435, transporting a 100 mt payload. 251
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Figure 10. Landing trajectories for each sector. Details are summarized in Table 7.

4. Conclusions 252

This study led to valuable results for both DRO implementations and landing trajec- 253

tory optimization. Several DROs have been defined in the literature for given Ax values, but 254

not much exists about landing trajectories from DROs to the surface of Phobos. Regarding 255

the landing trajectory optimization, which is the main purpose of this study, it is clear 256

from Table 7 how the ∆v is on average equal to ∼30 m/s. This value is reasonably low 257

and makes this orbit feasible for an in-orbit refueling station or in general for a stationary 258

orbit around Phobos which one can easily reach and leave. Several landing locations were 259

reached, and the impulsive ∆v was always found to be in approximately the same range. 260

Therefore, nearly every point on Phobos’ surface can be reached with a ∆v of approximately 261

∼30 m/s. Furthermore, as summarized in Table 6, the average computation time for such 262

PSO algorithm is reasonable and makes the optimization feasible for future mission designs. 263

264

Mars’ moons exploration has been of high interest within the scientific community in 265

the past years. The existence of periodic orbits around Phobos, such as DROs, makes the 266

future design of in-orbit refueling and supporting stations more than feasible. Moreover, 267

the ease of departing and arriving to such orbits with low ∆v’s gives the possibility of 268

exploring Phobos and establishing a Mars Base Camp, in order to explore Mars and its 269

surroundings with great versatility and with lower flight times between transfers from and 270

to Mars itself. Having stations or spacecrafts orbiting around Mars (in Low-Mars Orbits 271

for example) would require continuous trajectory adjustments because of Mars’ gravity 272

potential acting on the spacecraft/station, and will then result in significant ∆v used over 273

the course of a long-term mission. Besides, given the distance between Earth and Mars, 274

it would not be convenient to perform frequent trajectory adjustments or remote control 275

operations, given an average transmission delay of ∼20 minutes between Mars and Earth. 276

Hence, having a long-term stability solution is crucial, and DROs appear to be feasible for 277

such an objective. The method here presented can be used for multiple Mars-Phobos DROs 278
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optimizations at different amplitudes. Plus, a Mars-Deimos DRO can utilize this very same 279

approach. 280
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