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Abstract: Breath volatile organic compound analysis is a non-invasive tool for assessing health sta-

tus; the compositional profile of these compounds in the breath of patients with chronic kidney 

disease is believed to change with decreasing renal function. We aimed to identify breath volatile 

organic compounds for recognizing patients with chronic kidney disease. Using thermal desorp-

tion-gas chromatography-mass spectrometry, untargeted analysis of breath markers was performed 

using breath samples of healthy controls (n=18) versus non-dialysis (n=21) and hemodialysis (n=12) 

patients with chronic kidney disease in this cross-sectional study. A total of 303 volatile organic 

compounds alongside 12 clinical variables were used to determine the breath volatile organic com-

pound profile. Metabolomic analysis revealed that age, systolic blood pressure, and fifty-eight 

breath volatile organic compounds differed significantly between the chronic kidney disease group 

(non-dialysis + hemodialysis) and healthy controls. Thirty-six volatile organic compounds and two 

clinical variables that showed significant associations with chronic kidney disease in the univariate 

analysis were further analyzed. Different spectras of breath volatile organic compounds between 

the control and chronic kidney disease groups were obtained. Multivariate model incorporating 

age, 2-methyl-pentane, and cyclohexanone showed high performance (accuracy, 86%) in identifying 

patients with chronic kidney disease, with odds ratios (95% confidence interval) P-values of 0.18 

(0.07-2.49) 0.013; 2.10 (0.94-2.24) 0.025; and 2.31 (0.88–2.64) 0.008, respectively. Hence, renal dysfunc-

tion-associated characteristic profiles of breath volatile organic substances can be used as non-inva-

sive markers to screen for chronic kidney disease. 
 

Keywords: Chronic kidney disease; Hemodialysis; Uremic toxins; Breath markers; Volatile organic 
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1. Introduction 

Human breath analysis has become a promising research field that has recently at-

tracted significant interest owing to advances in analytical techniques. Exhaled human 
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breath typically consists of nitrogen (78%), oxygen (16%), carbon dioxide (4−5%), hydro-

gen (5%), inert gases (0.9%), and volatile organic compounds (VOCs) [1]. VOCs can vary 

depending on a person's metabolism, which changes when someone becomes sick. For 

decades, humans have used the superior sense of smell of dogs to identify illicit drugs or 

explosives. Sniffing animals have also been trained to detect human diseases, such as can-

cers, tuberculosis, or even coronavirus disease 2019 [2,3]. In all cases, animals are pre-

sumed to detect chemicals emitted by humans through their body odors or breath. Re-

searchers do not know exactly which components the animals smell; however, it is under-

stood that these diseases cause the human body to release the characteristic patterns of 

VOCs in scents.  

The kidneys remove waste products and extra water from the body and maintain 

homeostasis for the normal functioning of cells and organs. Chronic kidney disease (CKD) 

is a long-term condition of gradual loss of filtering function that results in the progressive 

accumulation of more than hundred uremic retention solutes [4,5]. In patients with CKD, 

the compositional profile of breath VOCs can change because of the limited ability of kid-

neys to eliminate metabolic products from the blood. Metabolites produced in the body 

are transported to the alveoli, and trace amounts of volatile substances are exhaled via 

respiration. Breath VOCs can be analyzed using mass spectrometry, and changes in the 

VOC profile according to health status can be used as a breathprint for human diseases. 

Evidence suggests that patients with CKD have higher levels of VOCs in their breath than 

those of healthy individuals [6-10]. CKD is clinically silent and asymptomatic in many 

cases and is often detected during health checkups or is not detected until the late stage. 

The severity of CKD can be quantified by low estimated glomerular filtration rate (eGFR) 

and increased urinary albumin levels, both of which require blood sampling and/or urine 

collection [11]. Breath VOC analysis is a noninvasive tool for assessing health status infor-

mation. Exhaled breath is one of the most easily collected samples and contains profound 

but unknown information related to human diseases. Olfactory evaluation can provide 

diagnostic clues and guide further evaluation.  

In this study, we analyzed more than 300 VOCs in the breath of 51 participants (18 

normal healthy controls, 21 patients with CKD, and 12 patients with CKD undergoing 

hemodialysis) using thermal desorption gas chromatography/mass spectrometry (TD-

GCMS) along with clinical variables. This dataset allowed us to test the hypothesis that 

the normal and CKD states can be distinguished based on breath VOCs that change as 

CKD progresses.  

2. Materials and Methods 

2.1. Study design and participants 

To address our hypothesis, we designed a cross-sectional study to compare the com-

positional profile of breath VOCs between normal healthy controls and CKD patients 

along with confounding clinical variables. A total of 51 participants were included in this 

study; 18 healthy controls, 21 non-dialysis outpatients with CKD (CKD-ND), and 12 he-

modialysis patients (HD). All participants were adults aged 19 years or more, and patients 

with CKD-ND and HD were recruited from Kangdong Sacred Heart Hospital between 

March and September 2021. CKD was defined as the presence of kidney damage or de-

creased kidney function for three or more months, irrespective of the cause [11]. The in-

clusion criterion for CKD-ND was stable renal function for >3 months, without acute kid-

ney injury or hospitalization. Hemodialysis patients underwent regular hemodialysis 

three times a week for more than three months and had no acute diseases. Normal healthy 

controls were adults who were confirmed to be free of kidney disease through general 

health checkup and had CKD-EPI eGFR of ≥ 80 ml/min/1.73 m2, with no proteinuria. This 

study was approved by the Institutional Review Board of Kangdong Sacred Heart Hospi-

tal (IRB no. 2019-10-001) and was conducted in compliance with the Helsinki Congress 

and Declaration of Istanbul. Written informed consent was obtained from all participants. 

Laboratory data were collected to determine the biochemical parameters.  
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2.2. Breath sample collection and preparation  

Pre-concentration methods can detect trace concentrations of VOCs in exhaled breath 

samples. Sorbent-containing thermal desorption stainless steel tubes are most frequently 

used to adsorb and enrich VOCs in breath [12]. Prior to sample collection, each thermal 

desorption tube (Tenax TA, 3.5 inch, 60−80 mesh, 230−250 mg, KNR, Namyangju, Korea) 

was heated and sealed to ensure absence of any residual gas in the tube. Tedlar bags are 

difficult to fill due to their low gas flow conductance, and hence a 10 L polyester bag (Top-

Trading, Seoul, Korea), which is a disposable sampling device, was used for breath col-

lection. Exhaled breath samples were collected from participants in the morning. Breath 

samples from normal controls and non-dialysis CKD patients were collected once, and 

breath samples from hemodialysis patients were collected twice, before and after hemo-

dialysis. Breath collection was conducted in the same outpatient clinic room of our hospi-

tal, in a clean and quiet environment, which was dedicated for breath collection on the 

sampling day. The participants were asked to breath deeply and inflate a 10 L polyester 

bag. A Gilair Plus pump (Sensidyne, St. Petersburg, USA) was used to force ambient air 

to flow at a rate of 250 mL/min through the desorption tubes (active sampling). The ther-

mal desorption tube was connected and VOCs were adsorbed for 12 min from the 3 L 

aliquot flow from the polyester bag. Three consecutive samples were collected from each 

patient. To collect the background air, 3 L of air from the sampling room was concentrated 

in a thermal desorption tube in duplicate using a Gilair Plus pump at a pumping speed of 

250 mL/min for 12 min. The VOC-adsorbed thermal desorption tube was immediately 

sealed and stored in an icebox to avoid deterioration of collected samples. 

2.3. VOC analysis using TD-GCMS 

The adsorbed VOCs were vaporized and analyzed by TD-GCMS (Turbomatrix 650, 

Perkin Elmer, Waltham, USA; 7890B-GC and 5977A-MS, Agilent Technologies, Santa 

Clara, USA). A fused silica capillary GC column, Elite-5 ms column (60 m × 0.32 mm × 1 

μm, Perkin Elmer, Waltham, USA) was used to analyze the desorbed VOCs in the breath. 

Helium with a chromatographic purity (220 kPa) was used as the carrier gas. The VOCs 

were desorbed for 15 min from the thermal desorption tube to which breath VOCs were 

adsorbed. Maintaining oven, cold trap, and transmission line temperatures of 250ºC, -30 

to 300ºC (10 min) at 33ºC/min, and 250 ºC, respectively, gas chromatography column tem-

perature was held at 30°C for 10 minutes, following by gradual ramping (3.4°C/min to 

50°C and 5°C/min to 100°C with a hold for 10 minutes, and at 3.5°C/min to 150°C and at 

100°C/min to 250°C with a hold at 250°C for 10 minutes) [12,13]. The electron impact (EI) 

voltage in the mass spectrometer was set to 70 eV. The mass detection range varied from 

30 to 350 m/z. Compound identification was performed based on the retention time in gas 

chromatography and ion fragmentation patterns using Wiley and NIST GC-MS libraries 

(Wiley Spectral Libraries, Wiley Science Solutions, Hoboken, USA) and compared with 

previously reported retention time data in the literature [14,15].The relative concentration 

of each compound was calculated from the peak areas of the selected ion chromatograms. 

Most of the VOCs observed in the TD-GCMS experiment have been reported previously 

[13-15]. Untargeted metabolomics using TD-GCMS was performed on the VOCs observed 

in breath samples. 

 

2.4. Statistical analysis 

We compared the levels of 303 breath VOCs and 12 clinical variables between the 

healthy control and CKD groups, which included both non-dialysis CKD and hemodial-

ysis patients. The VOC values before hemodialysis were used to investigate the relation-

ship between renal dysfunction and breath VOCs. For descriptive analysis, continuous 
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variables are expressed as mean ± standard deviation (SD), and categorical variables are 

expressed as frequencies (percentages). Continuous variables included six clinical varia-

bles (age, body weight, height, body mass index, and systolic and diastolic blood pressure) 

and 303 breath VOCs. Because most of the measured VOC values ranged between 106 and 

108, these were scaled down as follows: SQRT (breath VOC value - background room air 

VOC value)/1000. The categorical variables included six clinical variables: sex, diabetes, 

hypertension, dyslipidemia, cerebrovascular accident (CVA), and coronary heart disease 

(CHD).   

Categorical variables were compared using the χ2 test between groups as appropri-

ate. For continuous variables, we conducted Student t test and univariate logistic regres-

sion to select significant VOCs and clinical variables that could distinguish between the 

normal and CKD (non-dialysis CKD + HD) groups.  

Principal component analysis (PCA) was performed with breath VOCs and clinical 

variables that showed P values of odds ratio <0.05 in the univariate analysis. PCA was 

used to determine the possibility of separating patients with CKD from healthy controls 

by analyzing breath VOCs.  

Next, multivariate analysis was performed in two steps. First, significant continuous 

variables were selected from 100 repeated training and test sets. Briefly, 51 participants 

were randomly sampled into the training set (67%) and the test set (33%), and a multivar-

iate model was constructed with the training dataset; further, the accuracy was derived 

by applying this model to the corresponding test set. This process was repeated hundred 

times and the variables used in each multivariate model were listed based on the number 

of times they were used. The most frequently used variables were determined as the se-

lected continuous variables. In the second step, the final multivariate logistic regression 

model was built by integrating the selected continuous variables in the first step and four 

significant categorical variables selected using the χ2 test. We used stepwise regression 

with forward selection and backward elimination to obtain a model that minimized the 

Akaike information criterion (AIC) while avoiding overfitting. Receiver operating charac-

teristic (ROC) curve analysis was performed by applying the final multivariate model to 

all participants. The software package R version 4.1.1 (www.r-project.org; The R Founda-

tion for Statistical Computing, Vienna, Austria) was used for statistical analyses, and a P-

value of < 0.05 was considered significant. A flowchart of the statistical analysis is shown 

in Figure 1. 
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Figure 1. The flow chart of statistical analysis. Abbreviations: CKD (chronic kidney disease); VOC 

(volatile organic compound); CVA (cerebrovascular accident); CHD (coronary heart disease); BMI 

(body mass index); SBP (systolic blood pressure); DBP (diastolic blood pressure). 

3. Results 

3.1. Characteristics of study participants 

All participants were confirmed eligible and included for analysis in the study. Table 

1 summarizes the demographic and clinical characteristics of the study participants. The 

mean age of normal, CKD-ND and HD groups was 46.0 ± 8.9, 63.3 ± 16.4, and 56.1 ± 16.0 

years, respectively. Patients in the CKD-ND and HD groups were older, had higher sys-

tolic blood pressures, and more comorbidities than the control group. None of the partic-

ipants had any lung disease. Six participants had a history of cancer, but none reported 

cancer recurrence at the time of breath sampling. The mean eGFR of normal, CKD-ND, 

and HD groups was 100.4 ± 12.0, 50.8 ± 26.9, and 4.4 ± 1.0 mL/min/1.73 m2, respectively. 

We divided the study participants into two groups for metabolomic analysis: a normal 

group (normal healthy controls) and a CKD group, which included patients with CKD-

ND and HD. 

Table 1. Characteristics of participants. 

 

 total n=51 

Normal 

healthy 

control group 

(n=18) 

CKD group  

non-dialysis 

CKD patients 

(n=21) 

Hemodialysis 

patients (n=12) 
p-value 

Age 
46.0±8.9 

(31.0-65.0) 

63.3±16.4 

(28.6-85.5) 

56.1±16.0 

(30.5-74.8) 
0.0001 

Sex (M:F) 10:8 13:8 6:6 0.8893 

Physical Examination (mean±SD) 

Bwt 67.5±14.6 71.9±14.5 59.2±10.3 0.962 

Height 168.0±9.5 163.6±10.5 162.5±10.0 0.119 

Body Mass Index 

(BMI) 
23.7±3.2 26.7±4.1 22.3±2.6 0.230 

Systolic BP (SBP) 122.4±13.7 133.1±13.9 148.3±21.7 0.003 

Diastolic BP (DBP) 76.3±9.7 74.9±10.2 78.3±14.0 0.955 

Comorbidity (number (%))  

Diabetes 0 (0%) 10 (47.6%) 7 (58.3%) 0.0000 

Hypertension 0 (0%) 17 (81.0%) 11 (91.7%) 0.0000 

Dyslipidemia 0 (0%) 17 (81.0%) 3 (25.0%) 0.0000 

Cerebrovascular 

accident (CVA) 
0 (0%) 2 (9.5%) 1 (8.3%) 0.0995 
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Coronary heart 

disease (CHD) 
0 (0%) 1 (4.8%) 7 (58.3%) 0.0053 

Lung disease 0 (0%) 0 (0.0%) 0 (0.0%)  

History of cancer 1 (5.6%) 5 (23.8%) 0 (0.0%)  

Lab data (mean±SD)  

BUN 11.0±3.9 23.6±8.6 62.4±20.0  

Serum creatinine 0.80±0.16 1.56±0.55 10.49±1.87  

eGFR (CKD-EPI) 100.4±12.0 50.8±26.9 4.4±1.0  

Hemoglobin 14.2±1.3 13.2±2.3 10.8±1.0  

Glucose 101.4±10.0 118.2±26.9 150.8±55.3  

Calcium 9.6±0.4 9.4±0.8 8.9±0.5  

Phosphorus 3.6±0.4 3.6±0.5 5.1±1.0  

Uric acid 4.7±1.7 7.1±1.5 6.3±1.1  

Total cholesterol 201.8±18.6 161.3±48.8 107.8±17.9  

Triglyceride 111.8±56.8 125.1±51.3 100.0±55.3  

HDL-cholesterol 63.5±13.4 48.4±9.3 47.2±7.9  

LDL-cholesterol 122.7±19.4 90.6±36.4 55.0±12.3  

Protein 7.5±0.5 7.1±0.6 6.6±0.4  

Albumin 4.7±0.4 4.2±0.6 3.9±0.3  

 

 

3.2. Overview of the breath VOCs  

A total of 324 VOCs with molecular weights ranging from 40 to 400 u were measured 

and classified into the following 16 VOC groups: volatile sulfur compounds (VSCs) 20, 

ketones 25, alcohols 43, halo-hydrocarbons 16, alkenes 13, alkyne 1, alkanes 68, terpenes 

22, aromatics 26, acetates 25, acids 9, furans 3, steroids 1, aldehydes 12, nitrogen com-

pounds 7, others 12, and siloxanes 21 (Table S1).  We excluded 21 VOCs belonging to the 

siloxane group from the analysis because they were assumed to be derived from 

methylpolysiloxane, which was coated onto a GC-MS column (Elite-5ms column, Perkin 

Elmer, Waltham, USA) [16]. Before excluding them, we conducted an analysis that in-

cluded 21 VOCs from the siloxane group; however, no significant differences were ob-

served. After excluding 21 VOCs, 303 VOCs were included in the analysis to identify the 

breath markers of CKD.  

3.3. Potential breath markers for CKD 
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We used an untargeted metabolomic strategy to identify marker breath VOCs asso-

ciated with CKD and used a step-by-step approach to identify significant VOCs that could 

distinguish patients with CKD from normal controls. We analyzed 12 clinical variables to 

correct for confounding variables caused by the clinical characteristics or underlying 

comorbidities of the participants. 

3.3.1. Selection of significant breath VOCs and clinical variables 

Among the six categorical variables, the χ2 test showed that diabetes, hypertension, 

dyslipidemia, and CHD were significantly higher in the CKD group compared with the 

control group (Table 1). Further, t-test analysis revealed significant differences in 58 breath 

VOCs and two clinical variables (age and SBP) between the CKD and normal groups (Ta-

ble S2).  

In the univariate analysis, 36 VOCs and two clinical variables (age and SBP) were 

significantly associated with the CKD state: VSC 1, ketones 8, alcohols 2, halo-hydrocar-

bon 2, alkanes 8, terpenes 4, aromatics 5, acetate 1, aldehydes 2, and others 3 (10 VOC 

groups) (Table 2). In general, the heat plot analysis showed a greater and more distinct 

increase in breath VOCs as CKD progressed (Figure 2). 

 

Figure 2. Heat plot of 36 breath volatile organic compounds and two clinical variables related to 

chronic kidney disease in the univariate analysis (Order is the same as that in the Table 2). Abbre-

viations: CKD-ND (non-dialysis CKD); HD-BF (before hemodialysis). 

Table 2. Thirty-six breath VOCs and two clinical variables that were significant in CKD (non dialysis 

CKD + Hemodialysis) compared to normal healthy control groups by using univariate analysis in 

the order of p-value. (OR: odds ratio). 

Name of VOC or 

clinical variable 
VOC group OR 95 % CI p_value 

DEP_VA

R 
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Decane Alkane 2.79 1.67-5.44 0.0005 A_152 

Heptane Alkane 5.85 2.47-20.09 0.0006 A_134 

Acetophenone Ketones 10.04 3.15-50.01 0.0008 A_35 

m-Xylene Aromatics 2.27 1.5-4.13 0.0010 A_222 

Trichloroethene 
Halo-

Hydrocarbons 
4.00 1.88-10.48 0.0013 A_100 

Cyclohexanone Ketones 3.60 1.83-9.04 0.0014 A_31 

Acetic acid ethyl ester Acetate 3.63 1.86-9.5 0.0014 A_239 

n-Nonane Alkane 2.69 1.52-5.68 0.0025 A_147 

Age  1.08 1.03-1.14 0.0035 AGE 

1,2-Dichloro- ethane 
Halo-

Hydrocarbons 
16.48 3.27-169.2 0.0043 A_93 

2-Butanone Ketones 2.07 1.29-3.77 0.0069 A_23 

Systolic BP  1.07 1.02-1.13 0.0085 PE_SBP 

Sulfur dioxide VSC 3.03 1.45-7.84 0.0085 A_4 

2-Methyl pentane Alkane 2.92 1.42-7.54 0.0099 A_130 

Phenol Alcohol 0.78 0.61-0.91 0.0105 A_62 

3-Heptanone Ketones 5.56 1.63-26.17 0.0135 A_25 

Acetone Ketones 1.05 1.01-1.11 0.0159 A_21 

p-Xylene Aromatics 2.14 1.26-4.54 0.0166 A_219 

Dihydro-2(3H)-

furanone 
Ketones 2.59 1.26-6.17 0.0171 A_27 

Nonadecane Alkane 0.80 0.62-0.91 0.0175 A_178 

2-Pentanone Ketones 0.72 0.53-0.92 0.0176 A_28 

Isoprene Terpens 0.96 0.91-0.99 0.0188 A_187 

Octadecane Alkane 0.51 0.26-0.82 0.0241 A_177 

2-Ethyl-1-Hexanol Alcohol 2.64 1.34-8.7 0.0264 A_67 

Ethylene oxide Other 1.49 1.06-2.17 0.0269 A_294 

3-Carene Terpens 0.65 0.42-0.91 0.0271 A_197 

o-Xylene Aromatics 0.79 0.63-0.96 0.0282 A_221 
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Myrcene Terpens 0.73 0.54-0.93 0.0293 A_196 

Octanal Aldehyde 3.03 1.31-10.64 0.0309 A_281 

2-Methylpropyl 

methyl ketone 
Ketones 2.74 1.14-7.4 0.0327 A_33 

Azulene Aromatics 4.71 1.52-37.23 0.0351 A_228 

Acetaldehyde Aldehyde 0.85 0.7-0.97 0.0353 A_273 

1,8-Cineol Other 0.85 0.69-0.96 0.0378 A_297 

γ-Terpinene Terpens 0.72 0.5-0.95 0.0387 A_192 

Ethyl cyclohexane Alkane 5.99 1.48-61.03 0.0444 A_139 

Pentadecane Alkane 0.71 0.45-0.91 0.0450 A_169 

(1-Methylethyl)-

benzene 
Aromatics 2.41 1.11-6.59 0.0468 A_223 

Dimethyl selenide Other 0.69 0.46-0.98 0.0481 A_285 

 

3.3.2. Multivariate analysis to extract prediction model of discriminating patients with 

CKD from normal controls 

We assessed the overall breath metabolite variation between groups using PCA. This 

analysis using 36 VOCs and two clinical variables from the univariate analysis showed 

the ability of TD-GCMS to detect changes in breath VOCs resulting from renal dysfunc-

tion by reducing many variables to their first- and second-order principal components 

(PC). PC1 was the first component that explained the largest degree of variation (57.9%) 

in the dataset, followed by PC2 (9.2%) and PC3 (8.0%) in the PCA model. PCA showed 

that the hemodialysis group could be separated from the normal group; further, the CKD-

ND group was distributed between the HD and control groups (Figure 3). 
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Figure 3. Multivariate analysis. Principal component analysis (PCA) of metabolomic profiles of 

breath samples from the control (NORMAL), non-dialysis chronic kidney disease (CKD_ND), and 

hemodialysis (HD) groups using 36 significant volatile organic compounds and 2 significant clinical 

variables in univariate analysis (as shown in Table 2). PC1 and PC2 indicate the first and second 

component that explained the largest degree of variation (57.9%, and 9.2%) in the dataset of the PCA 

model, respectively. 

To narrow down the variables, we selected continuous variables in the first step of 

the multivariate analysis through a hundred times repeated training and test set analyses 

(Table S3). The average accuracy of 100 times multivariate models drawn from the train-

ing set was 71.4%. The selected significant continuous variables were age, 2-methyl-pen-

tane (alkane), cyclohexanone (ketone), acetic acid ethyl ester (acetate), systolic blood pres-

sure, and heptane (alkane). In Table S4, we list these variables in order of frequency used 

in 100 times multivariate models.  

We integrated four significant categorical variables of comorbidities (diabetes, hy-

pertension, dyslipidemia, and CHD) in the second step of multivariate modeling; how-

ever, there were no significant independent categorical variables. The final multivariate 

logistic regression model included three variables: age, 2-methyl-pentane (alkane), and 

cyclohexanone (ketone). The model was logit(p) = -12.92 + 0.18 x age + 2.10 x 2-methyl-

pentane + 2.31 x cyclohexanone, where p is the probability of being a patient with CKD. 

This model which incorporated age [OR 0.18 (95% CI:0.07–2.49), P = 0.013], 2-methyl-pen-

tane (alkane) [OR 2.10 (95% CI:0.94–2.24), P = 0.025], and cyclohexanone (ketone) [OR 2.31 

(95% CI:0.88–2.64), P = 0.008] showed high performance in identifying patients with CKD, 

with accuracy of 86.3% when applied to all 51 participants (Table 3). Receiver operating 

characteristic analysis revealed a high area under the curve (AUC) of 0.960 (Figure 4). The 

mean eGFR of patients in the CKD-ND group was 50.8 ± 26.9 ml/min/1.73 m2, which in-

cluded many patients with CKD in the early stage, but the final model discriminated pa-

tients with CKD from normal controls with high accuracy. Figure 5 shows the significant 

changes in cyclohexanone and 2-methyl-pentane levels in the normal, CKD-ND, and HD 

groups (before and after hemodialysis).  
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Figure 4. Receiver operating characteristic analysis of the final multivariate model incorporating 

age and levels of 2-methyl-pentane and cyclohexanone. Abbreviations: AUC (area under the curve). 
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Figure 5. Estimated glomerular filtration rate (GFR) and the three features that most contributed to 

the final model. a, Distribution of eGFR (CKD-EPI) of the normal control group versus the CKD 

groups (CKD_ND and HD). b, age. c, cyclohexanone (ketone). d, 2-methyl-pentane (alkane). Boxes 

show from 25 to 75 percentile distribution, whereas whiskers indicate 95% confidence interval. The 

y-axis of breath volatile organic compounds (VOCs) in c and d represents the scaled-down VOC 

values according to the following modification: SQRT (breath VOC value - background air VOC 

value)/1000. Abbreviations: CKD-ND (non-dialysis CKD), HD-BF (before hemodialysis), and HD-

AF (after hemodialysis). 

Table 3. Final multivariate logistic regression model was built and accuracy was obtained by apply-

ing the final model to 51 participants (AIC, Akaike information criterion = 30.3). 

DEP_VAR OR 2.50% 97.50% p-value 

(Intercept) -12.92 4.80 -2.69 0.007 

Age 0.18 0.07 2.49 0.013 

2-Methyl-pentane 

(A_130) 
2.10 0.94 2.24 0.025 

Cyclohexanone 

(A_31) 
2.31 0.88 2.64 0.008 

 

STATUS_NM 0 1  

0 15 3  

1 4 29 Accuracy = 86.3 % 

 

4. Discussion 

In this untargeted breath analysis study using TD-GCMS, we identified and meas-

ured 303 VOCs from human breath, excluding 21 contaminant siloxane compounds. We 

showed that breath VOCs are a good marker for discriminating between patients with 

CKD and healthy controls, even after correcting for many clinical confounding variables. 

Thirty-six breath VOCs were significantly different between patients with CKD and nor-

mal controls in the univariate analysis. We also derived a final multivariate model that 

incorporated age and breath 2-methyl-pentane and cyclohexanone, producing a high ac-

curacy of 86.3% in predicting CKD.  

Considering the accumulation of putative uremic retention metabolites as a result of 

progressive kidney dysfunction, it is reasonable to assume that CKD leads to a character-

istic chemical profile of breath VOCs. The list of uremic retention solutes is constantly 

evolving as new compounds are discovered [5]. In this context, an untargeted approach 

to breath analysis is more appropriate than focusing on specific breath VOCs to identify 

CKD breath markers. To our knowledge, this is the first study to provide a general over-

view of breath VOCs in patients with CKD as well as ESRD. TD-GCMS is a powerful an-

alytical technique that is often used to analyze VOCs in air and human breath. One of the 

main advantages of TD-GCMS is its ability to separate and identify a wide range of VOCs. 

TD-GDMS is considered one of the most sensitive and selective techniques available [17]. 

We controlled for the effect of VOCs in the room air by subtracting the VOC value of the 

room air from the VOC values of the participants. In this study, we showed that 36 breath 

VOCs were significantly related to CKD in the univariate analysis, and the heat plot of 

these VOCs revealed that many of these breath VOCs increased with decreasing renal 

function. Changes in breath VOCs associated with decreased renal function were also 
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confirmed using PCA. As renal dysfunction progressed from the normal group to the he-

modialysis group, the spectrum of breath VOC patterns shifted accordingly.  

In previous animal and human studies, cyclohexanone was used as a solvent in the 

production of extracorporeal circuits and intravenous bags and was considered one of the 

contaminants from extracorporeal materials, for example, during hemodialysis. The in-

crease in breath cyclohexanone levels after hemodialysis (Figure 5c) was in good agree-

ment with the results of previous reports [18,19]. However, in our study, cyclohexanone 

was detected in the breath of normal participants and non-dialysis patiwnts with CKD 

and hemodialysis and showed an increasing trend with decreasing renal function, with 

the highest level in hemodialysis patients after adjusting for room-air cyclohexanone. Cy-

clohexanone (CAS No. 108-94-1), a six-carbon cyclic compound with a ketone group, is an 

organic compound with the chemical formula (CH2)5CO that is miscible with water. This 

colorless liquid had a sweet and pungent smell reminiscent of acetone. One of the most 

common uses of cyclohexanone is the production of nylon, which is used in various end-

use industries, including automotive, construction, consumer goods, and electronics [20]. 

Cyclohexanone is a synthetic compound that is not produced by the human body. How-

ever, limited information is available regarding the role of cyclohexanone in human me-

tabolism. Cyclohexanone is well absorbed through the skin, respiratory tract, and alimen-

tary tract and metabolized to cyclohexanol, which is conjugated with glucuronic acid and 

excreted mainly in the urine [21-23]. However, cyclohexanone toxicity has rarely been 

documented in humans or experimental animals [24]. Subacute tubular nephrotoxicity of 

intraperitoneally injected cyclohexane has been reported in female Sprague-Dawley rats, 

as evidenced by a significant increase in ß2-microglobulinuria [25]. Ong et al. studied oc-

cupational exposure to cyclohexanone by analyzing the breath and urine of 59 workers 

[26]. The possible source of breath cyclohexanone detected in normal controls and non-

dialysis patients with CKD in this study is not certain and may be exposure through the 

use of products or inhalation of gases that contain cyclohexanone-related chemicals. How-

ever, a decrease in kidney function resulted in significantly increased levels of breath cy-

clohexanone. Cyclohexanone was retained after hemodialysis as shown in Figure 5c be-

cause it is a soluble chemical and may be relatively slowly removed from the blood by 

exhalation in hemodialysis patients in whom urinary excretion of its metabolites is almost 

absent. Mochalski et al. reported that uremic breath is affected by contaminants from ex-

tracorporeal circuits, and cyclohexanone, one of those contaminants, can play a role as a 

uremic toxin because it is retained after hemodialysis [19]. 

2-methyl-pentane (C6H14, CAS NO. 107-83-5), also known as isohexane (an isomer 

of hexane), is a branched-chain alkane (subclassification of hydrocarbons) with a gasoline-

like odor that floats on water. It is a colorless, flammable liquid commonly used as a sol-

vent in industry. Solvents containing hexane are primarily used to extract vegetable oils 

from crops such as soybeans. These solvents are used as cleaning agents in the printing, 

textile, furniture, and shoe-making industries [27]. It is also used in several consumer 

products, such as gasoline, quick-drying glues, and rubber cement [28]. 2-methyl-pentane 

is distributed throughout the body in the blood and metabolized by mixed-function oxi-

dases in the liver into a number of metabolites [29]. It has been detected in the feces, 

breath, saliva, and blood of healthy humans [30,31]. Further, it has also been reported that 

2-methyl-pentane increases the breathing of preschool asthmatic children [32]. 2-methyl-

pentane was detected in the blood and breath of hemodialysis patients and was classified 

as a contaminant from dialyzers and bloodlines [19]. We do not know the origin and met-

abolic fate of the 2-methyl-pentane detected in this study. It was rarely detected in the 

breath of normal controls, except in three patients but was increased in the breath of non-

dialysis patients with CKD, was higher in those of hemodialysis patients, and was not 

removed after hemodialysis (Figure 5d). 

This study had several limitations. The results were obtained from the analysis of 

VOCs in a small number of breath samples in a hospital environment. Therefore, these 

results require further validation. The mean age of patients with CKD was higher than 

that of normal participants. We did not measure the blood levels of the corresponding 
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breath VOCs, and hence the significance of VOCs needs to be explored in the context of 

internal and external metabolism. Unexpectedly, some chemicals exposed to the environ-

ment were measured through exhalation, and they accumulated as kidney function de-

creased, even if a person did not receive hemodialysis. This study and earlier studies have 

shown that as kidney function deteriorates, various uremic retention metabolites accumu-

late in the body, which is reflected in increased breath VOCs. Further research is needed 

to fully understand the relationship between CKD and breath VOCs and to determine 

whether breath VOCs can be used as a diagnostic tool for CKD. However, the presence of 

certain VOCs in the breath of patients with CKD may provide valuable information re-

garding disease progression and treatment efficacy.  

5. Conclusions 

We determined the breath metabolomic signatures of patients with CKD. Knowledge 

of these specific breath VOC profiles may enable the transition from blood to breath anal-

ysis and the development of non-invasive point-of-care tests for CKD screening.  
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