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Abstract: Multimodal medical image fusion is a fundamental but challenging problem in the fields 

of brain science research and brain disease diagnosis, and it is challenging for sparse representation 

(SR)-based fusion to characterize activity level with single measurement and no loss of effective 

information. In this paper, the Kronecker-criterion-based SR framework is applied for medical 

image fusion with a patch-based activity level integrating salient features of multiple domains. 

Inspired by the formation process of vision system, the spatial saliency is characterized by textural 

contrast (TC), which is composed of luminance and orientation contrasts to promote more 

highlighted texture information to participate in the fusion process. As substitution of the 

conventional l1-norm-based sparse saliency, a metric of sum of sparse salient features (SSSF) is used 

for promoting more significant coefficients to participate in the composition of activity level 

measure. The designed activity level measure is verified to be more conducive to maintain the 

integrity and sharpness of detailed information. Various experiments on multiple groups of clinical 

medical images verify the effectiveness of the proposed fusion method on both visual quality and 

objective assessment. Furthermore, the research work of this paper is helpful for further detection 

and segmentation of medical images. 

Keywords: Multimodality medical image; Image fusion; Sparse representation (SR); Kronecker 

criterion; Activity level measure 

 

1. Introduction 

Over the past decades, medical image fusion has undergone major achievements in clinical 

diagnosis research [1]. The main purpose of medical image fusion is to combine the complementary 

information from various sensors to construct a new image to assist the diagnosis for medical experts. 

Despite simplicity of the idea, many challenges related to the theoretical background and the nature 

of medical images that need to be resolved. For instance, computed tomography (CT) imaging is 

informative for the dense tissues but lacks of soft tissue information. In contrast, magnetic resonance 

imaging (MRI) is more suitable for soft tissue but short of dense tissue information. More crucially, 

it tends to be ineffective to characterize the symptoms of different diseases with single imaging. 

To overcome these challenges, varieties of image fusion methods have been proposed. Image 

content can be either visual (i.e. color, shape, texture) or textual (i.e. identify dataset appearing within 

image), some new advances in the fusion field consider above of the two aspects simultaneously [2, 

3], and to further improve fusion performance, some new features such as different image moments 

[4-6] can also be used in image fusion.  

The mainstream directions of image fusion mainly focus on the visual content including spatial 

domain [7, 8] and transform domain [9, 10]. The former usually addresses the fusion issue via image 

blocks or pixel-wise gradient information for the multi-focus fusion [11]-[13] and the multi-exposure 
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fusion [14]-[16] tasks. The latter merges the transform coefficients relevant to source images with 

different reconstruction algorithms to obtain the fused image, which is recognized to be effective for 

multimodal image fusion [17, 18]. The multi-scale transforms (MST)-based medical image fusion is a 

mainstream research direction. Dual-tree complex wavelet transform (DTCWT) [19], non-

subsampled shearlet transform (NSST) [20] and non-subsampled contourlet transform (NSCT) [21] 

are the conventional MST methods for image fusion. In recent years, some novel MST-based methods 

have been proposed. Xia combines sparse representation with pulse coupled neural network (PCNN) 

in NSCT domain for medical image fusion [22]. Yin proposes a parameter-adaptive pulse coupled 

neural network in NSST domain (NSST-PAPCNN)-based medical image fusion strategy [23]. Dinh 

proposes a Kirsch compass operator with marine predator algorithm based method for medical 

image fusion [24].  

Different from MST, the principle of SR is much in accord with the human visual system (HVS), 

and compared to the MST-based methods, two main distinctions are involved in the SR-based 

methods. For the former distinction, the fixed basis limits the MST-based methods to express 

significant features, while the SR-based methods are flexible to procure more intrinsic features with 

dictionary learning. For the latter distinction, the MST-based methods are sensitive to noise and mis-

registration with large decomposition level settings, while the SR-based methods with overlapping 

patch-wise mode are robust to mis-registration, and this guarantees the accuracy of spatial location 

of tissues. Therefore, a widely range of research on SR-based medical image fusion is attracted in 

recent years [25]-[27]. 

However, there still remain drawbacks. Firstly, it may be insufficient to handle fine details with 

the over-complete dictionary, and the high redundant dictionary will lead to visual artifacts in fused 

result [28]. Secondly, the dictionary atoms are updated in column vector form result in the loss of 

correlation and structural information. In addition to the drawbacks of SR itself, it may reduce the 

fusion weight accuracy inevitably with unreasonable fusion strategy of coefficients. One issue focuses 

on the activity level measure which helps to recognize the distinct features in fusion process, and 

another issue concentrates on the integration of coefficients into counterparts of fused image. For the 

former issue, the l1-norm mode is a conventional solution to describe the detailed information 

contained in sparse vectors [29], while the solution is insufficient to express the sparse saliency well 

since detail information characterizes activity level with same weight cannot be highlighted. 

Furthermore, as SR is an approximate technique, it tends to fail to reflect the salient features of sparse 

coefficient maps accurately with single measurement of activity level, thereby further leading to the 

loss of detailed information. For the latter issue, it may reduce the contrast of fused image with the 

weighted averaging rule, and the maximum absolute rule enables the fused image to absorb the main 

visual information of source images with the cost of minor information loss. 

Based on the above discussion, we adopt a promising signal decomposition model, known as 

the Kronecker-criterion-based SR [30], to the medical image fusion problem. The main contributions 

of this work are illustrated as follows: 

a) The Kronecker-criterion-based SR with a designed activity level measure integrating salient 

features of multiple domains will effectively reduce the loss of structural detailed information in 

fusion process. 

b) Inspired by the formation process of vision system, the spatial saliency by textural contrast 

consisted of luminance and orientation contrasts can promote more highlighted texture information 

to participate in fusion process. 

c) Compared with the l1-norm based activity level measure in sparse vectors, the transform 

saliency by sum of sparse salient features can highlight more coefficients to composite activity level 

measure through sum of differences of the adjacent areas. 

The rest of this paper is organized as follows. Section 2 gives a brief description of conventional 

sparse representation theory and the Kronecker-criterion-based SR, i.e. separable dictionary learning 

algorithm. The detailed fusion scheme is described in Section 3. Experimental results and discussion 

are given in Section 4. Finally, Section 5 concludes the paper. 
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2. Related work 

2.1. SR-based image fusion 

SR reflects the sparsity of natural signals with minimal sparse coefficients, and this is consistent 

with the principle of HVS [31]. Given
my R in vector mode of signal sample 

m m
R


Y and an over-

complete dictionary 
m nD R  (m<n), the objective function of dictionary learning consisted of fidelity 

term and penalty term is defined as 
2

2,

1
arg min ( )

2D
y D R


                           (1) 

where means the sparse vector, 2

2
 means the L2-norm and means the regularization parameter 

of penalty term ( )R  . SR can be roughly divided into two categories as the greedy scheme (e.g. 

matching pursuit (MP) [32] and orthogonal matching pursuit (OMP) [33]) with
0

( )=R   and the 

convex optimization scheme (e.g. alternating direction method of multipliers (ADMM) [34]) with

1
( )=R   . The extremely high complexity inhibits the practicality of the convex optimization scheme, 

while the greedy scheme has superiority in this regard. 

In the process of conventional SR-based image fusion, it may be insufficient to handle fine details 

with over-complete dictionary, since atoms (i.e. vectors) of the pre-trained over-complete dictionary 

are updated one-by-one with the methods of optimal directions (MOD) or k-singular value 

decomposition (K-SVD), and this can be understood as extracting image texture information from 

only one dimensional direction, while this breaks the potential correlations within image, and thus 

causes the obtained pre-trained dictionary unstructured. Meanwhile, the high redundant dictionary 

is sensitive to random noise and may cause visual artifacts. Therefore, there is a deviation between 

source and fused images to some extent. 

2.2. Separable dictionary learning algorithm 

To overcome the aforementioned deficiencies of SR for image fusion, the Kronecker-criterion-

based separable structure has received significant attention [30]. On premise of ensuring the quality 

of image reconstruction, the penalty in L0-norm with
0

( )=R    , and the corresponding objective 

function of separable dictionary learning is defined as 

0, ,
arg min such that ,

A B

T n n
A B

D S D
S D SD Y S R =                  (2) 

where S means a sparse matrix. As cross product of the over-complete dictionary D, the sub-

dictionaries m n
AD R  and m n

BD R  are obtained by the Kronecher product criterion, and for 

simplicity, we set the both sub-dictionaries with same size. 

The steps of separable dictionary learning algorithm include sparse coding and dictionary 

update, and the dictionary optimization problems will be carried out by the extensional 2-dimension 

OMP (2D-OMP) greedy algorithm and the ASeDiL (Analytic Separable Dictionary Learning) 

algorithm to get the sparse coefficients and the pre-trained sub-dictionaries{ , }A BD D , respectively 

through [35], and the dictionary pre-training model is shown in Figure 1. 
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Figure 1. Dictionary pre-trained model on Riemannian manifold. 

The process of sparse coding consists of a four-step iterative loop, including the determination 

of most relevant dictionary atom, updates of the support set, updates of the sparse matrix S, and 

refactoring residual updates. To get the sparsest representation under current dictionary, the 

objective function of sparse coding is expressed as 
2

0 2
arg min such that T

A B
S
S D SD Y                      (3) 

where  means the tolerance of reconstruction error, and when
2T

A j B j F
D S D Y   , the condition of 

iterations will be terminated. 

Combining the constraints with the L2-norm of dictionary atoms equaling to 1 and no correlation 

of atoms in dictionary, log function is employed to fit the full rank and column irrelevance of sub-

dictionaries. Then, the objective function of dictionary update is written as 
2

2,
arg min - [ ( ) ( )] [ ( ) ( )]

A B

T
A B A B A B

D D
D SD Y p D p D h D h D                 (4) 

where and mean the fitting parameters, and ( ), ( ),A Ah D Dp ( ), ( )B Bh D Dp are defined as 

21 1
( ) logdet( ),

log( )
( ) log(1 (( ) ( )) )T T

A A A A A Ah D D D
m m n

p D D D                (5) 

21 1
( ) logdet( ),

log( )
( ) log(1 (( ) ( )) )T T

B B B B B Bh D D D
m m n

p D D D   
           (6) 

By means of geodesics on Riemannian manifold, the dictionary update adopts conjugate 

gradient method to correct the most rapid descent direction of the iteration point of dictionary 

update, which ensures the rapid convergence of cost function and improves the efficiency of 

dictionary update. 

With the above separable structure, the obtained sparse matrix composed by correlation 

coefficients can characterize more textural and structural information, and this can not only increase 

dimensions of texture extraction without adding dictionary redundancy, but also ameliorate the 

accuracy of texture extraction with effective noise suppression performance. Through the above 

separable dictionary learning algorithm, the pre-trained sub-dictionaries can be obtained. Then, the 

pre-trained sub-dictionaries will participate in the subsequent transform saliency measure 

characterization process to extract features from source images. 

3. Proposed fusion method 

The framework of the proposed method is shown in Figure 2. Suppose that there are K pre-

registered source images denoted as , {1, 2, , }
k
I k K  , the r-th overlapping image patch of the k-th 

source image
r
kI is obtained through the sliding window technique, and the corresponding sparse 

coefficient map
r
kS is learned through sparse coding process in the separable dictionary learning 

algorithm with the pre-trained sub-dictionaries { , }
A B
D D . The proposed SR-based medical image 
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fusion with measurement integrating spatial saliency and transform saliency consists of the following 

two steps. 

 

Figure 2. Overall framework of the proposed method. 

3.1. The measurement of activity level for fusion 

3.1.1. Spatial saliency by textural contrast 

In general, salient area is recognized by vision system from retina to visual cortex, and one of 

the early information in retina is luminance contrast, and orientation contrast in visual cortex is 

involved to understand the context at higher levels. We are inspired to attempt to express spatial 

saliency by allowing textural contrast defined by luminance contrast and orientation contrast. 

First of all, the luminance contrast is defined by considering the distinctive of intensity attribute 

between each pixel and the corresponding image patch. To increase useful dynamic ranges to 

suppress high contrast effectively in the background, the n-th order statistic is applied as 

'( , )

1
ˆ( , ) - ( , )

n

r r r
k k k

x y

LC x y I x y
M 

                        (7) 

where ˆ r
k denotes the mean of luminance values over the r-th patch in the k-th source image

r
kI . ' and 

M represent a 3 3 neighborhood with pixel ( , )x y centered and its size, respectively. 

Along with luminance contrast, the local image structure is captured by orientation contrast 

through weighted structure tensor. It is worth noting that we focus on weighted gradient information 

rather than gradient itself, and this highlights main features of source images. The weighted structure 

tensor can effectively summarize the dominant orientation and the energy along this direction based 

on the weighted gradient field as 
2

2

1 1

2

2

1 1

( , ) ( , )

( , )

( , ) ( , )

r
k

r r r
K Kk k k

k kk k

I
r r r

K Kk k k
k kk k

I I I
x y x y

x x y
G x y

I I I
x y x y

x y y

 

 

    
  

    
 

    
      

 

 

 

 

                   (8) 
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where r
kI x  and r

kI y  denote the gradients along x and y directions, respectively at given pixel

( , )x y . The weight function ( , )k x y is calculated by 

2

1

( , )
( , )

( ( , ))

r
k

k K r
kk

LSM x y
x y

LSM x y




                        (9) 

where ( , )r

k
LSM x y means the local salient metric, which reflects the importance of pixel ( , )x y by 

computing the sum of intensity around it, defined as 

'( , )

( , ) ( , )
( , )

r r
r k k
k

x y

I x y I x y
LSM x y

x y

  
  

  
                    (10) 

where  denotes the absolute value operator. The local salient metric is sensitive to the edges and 

texture while insensitive in the flat part. To express local image structure, the weighted structure 

tensor as a semi-definite matrix can be decomposed by eigenvalue decomposition as 
2

T1

2
2

r
kI

G V V
 

  
 




                           (11) 

The orientation contrast related to the eigenvalues of 1 and 2 of this matrix is calculated as 

2 2
1 2 1 2( , ) ( ) ( )r

kOC x y                          (12) 

where 1   , this parameter can determine the relative emphasis of the orientation contrast to the 

corner-like structures effectively. 

Since it is assumed that salient area contains luminance contrast and orientation contrast as 

mentioned, the texture contrast is then defined with the two parts as 

( , ) ( , ) ( , )r r r
k k kTC x y LC x y OC x y                    (13) 

Here, each part is smoothed by Gaussian filtering as in [36] and
r

k
TC is normalized to [0,255] for 

gray-scale representation. 

3.1.2. Spatial saliency by textural contrast 

Compared with the conventional transform-based activity level measure which uses the L1-norm 

to describe the detail information contained in sparse vectors, SSSF metric is able to highlight more 

significant coefficients to participate in the composition of activity level measure through the sum of 

differences of adjacent areas, which is defined as 

2( , ) [ ( , )]
QP

r r
k k

p P q Q

SSSF x y LSSF x p y q
 

                      (14) 

where P and Q determine a sliding window with the size of sparse matrix equal to the r-th patch in 

the k-th source image
r
kI . The local sparse salient feature (LSSF) metric is defined by the sparse 

saliency diversity of adjacent pixels and is calculated as 

2

( , )

( , ) [ ( , ) ( , )]r r r
k k k

m n

LSSF x y S x y S m n


                   (15) 

where denotes a square window centered with certain sparse coefficient that corresponding to the 

pixel ( , )x y in the source image patch
r
kI . 

3.2. Fusion scheme 

Combining the transform saliency and the spatial saliency of image patch, the proposed activity 

level measure is defined as 

( , ) ( , ) ( , )r r r
k k kx y SSSF x y TC x y                    (16) 

where
r
k is the measurement result of the source image patch

r
kI . Then, the maximum weighted 

activity level measure is used to achieve the fused coefficient map as 
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*

* arg max [ ( , )]( , ) ( , ), r

k
k

r r
F k

k x yS x y S x y                  (17) 

Then, the fusion result is obtained by sparse reconstruction as 
Tr r

F A F BI D S D                               (18) 

The final fused image FI is constituted by the overall fused image patches. 

4. Experiments 

4.1. Experimental setting 

4.1.1. Source images 

In our experiments, three categories “Acute stroke”, “Hypertensive encephalopathy” and 

“Multiple embolic infarctions” of clinical multimodal image pairs from the Whole Brain Atlas 

Medical Image (WBAMI) Database are used as test images. The spatial resolution of all test images is 

set to 256 256 , and to make sure the registration has been realized, we take the feature-based 

registration algorithm for each pair, i.e. the method of complementary Harris feature point extraction 

based on mutual information [37], which has strong robustness and is able to adapt to various image 

characteristics and variations. 

4.1.2. Objective evaluation metrics 

Table 1. Objective assessment of different fusion methods. 

Category Metirc Symbol   Description 

Texture features 

preservation 

based metrics 

Normalized mutual 

information 

QNMI           It measures the mutual information of a fused image and source 

images. 

Edge-dependent 

sharpness based 

metrics 

Normalized weighted 

performance index 

Overall image 

quality index 

QAB/F           It measures the amount of edge and orientation information of the 

fused image using the Sobel edge detection operator. 

Q0              It evaluates structural distortions of the fused image. 

Comprehensive 

evaluation based 

metrics 

Weighted fusion 

quality index 

Structural similarity 

index 

Universal image index 

QW           It values the structure similarity by addressing coefficient correlation,  

illumination, and contrast. 

QS         It determines the structural similarity by taking comparisons of 

luminance, contrast, and structure. 

QU             It is designed by modeling image distortion as a combination of the  

loss of correlation, luminance distortion, and contrast distortion. 

Since there are limitations of a single objective metric to reflect fusion result accurately, thus the 

six popular objective metrics, namely, Xydeas–Petrovic index [38], the structural similarity index QS 

[39], the universal image quality index QU [40], the overall image quality index Q0 [40], the weighted 

fusion quality index QW [41], and the mutual information index QNMI [42], are adopted to evaluate 

fusion performance in this letter. The higher scores of the above metrics, the better fusion result of 

the corresponding fusion method. The classification of these metrics are shown in table 1. 
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4.1.3. Methods for comparison 

Since it is inspired by the transform domain based method [29] to design the activity level 

measure and fusion scheme in our method, to make a fair and clear comparison, the conventional l1-

norm based scheme [29] and the sum of sparse salient features (SSSF) based scheme are used in the 

context of this letter to verify the advantages of the proposed activity level measure. Meanwhile, in 

each of the medical image fusion categories, some latest published representative medical image 

fusion methods, such as LRD [43], NSST-MSMG-PCNN [44] and CSMCA [45], are used for 

comparison with the proposed method. The competitors adopt the default parameters in the 

corresponding literatures. 

4.1.4. Algorithm parameters setting 

For the proposed method, to obtain the pre-trained sub-dictionaries, we choose 104 patches of 

size 8×8 from different uncorrupted images as training dataset, and the training patches are 

normalized with zero mean and unit L2-norm, and the initial sub-dictionaries are obtained by the 

MATLAB function randn with normalized columns. Following the experimental setup of the previous 

work in [35], the spatial size of sliding window is set to 8×8, the patch-wise step size is set to 1 to keep 

shift invariant of SR, the two Kronecker-criterion-based separable dictionaries are set to the same size 

of 8×16，the tolerance of reconstruction error is set to 0.01. 

In addition to the above general settings, variable n and variable  are the key parameters to 

affect the luminance contrast and the orientation contrast separately, and the parameters setting 

through quantitative experiments are shown in Figure 3. It can be seen that variable n will affect 

luminance contrast and the retention of effective information in subsequent fusion results. On the 

basis, we set n=3 as a compromise. As increase of variable  , texture structure of the source image is 

clearer, and it is conducive for extracting orientation contrast information. On the basis, we set 0.5 . 

 
Source image  n=1      n=2      n=3      n=4      n=5      n=6      n=7      n=8 

 
Source image 0.5  0.4    0.3    0.2    0.1     0.1     0.2    0.3      0.4    

0.5  

Figure 3. Parameters setting through quantitative experiments: The first line indicates the effect of n 

on luminance contrast, and the second line indicates the effect of on orientation contrast. 

4.2. Comparison to other fusion methods 

The subjective visual and objective metrics are used to evaluate the proposed method. The 

comparison experiment contains three categories of clinical multimodal medical images, including 

“Acute stroke” with 28 pairs of CT/MR-PD and CT/MR-T2, “Hypertensive encephalopathy” with 28 

pairs of CT/MR-Gad and CT/MR-T2, and “Multiple embolic infarctions” with 60 pairs of CT/MR-PD, 

CT/MR-T1 and CT/MR-T2. 
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4.2.1. Subjective Visual Evaluation 

 
Figure 4. Source images and the corresponding fusion results with nine pairs of CT/MRI images: (a1), (b1) image 

group 1 (CT and MR-PD); (a2), (b2) image group 2 (CT and MR-T2); (a3), (b3) image group 3 (CT and MR-T2); 

(a4), (b4) image group 4 (CT and MR-Gad); (a5), (b5) image group 5 (CT and MR-T2); (a6), (b6) image group 6 

(CT and MR-T2); (a7), (b7) image group 7 (CT and MR-T1); (a8), (b8) image group 8 (CT and MR-PD); (a9), (b9) 

image group 9 (CT and MR-T2); fused images (c1)-(c9) LRD-based method; fused images (d1)-(d9) NSST-MSMG-

PCNN-based method; fused images (e1)-(e9) CSMCA-based method; fused images (f1)-(f9) l1-norm-based 

method; fused images (g1)-(g9) SSSF-based method; and fused images (h1)-(h9) the proposed method. 

In the experiments of multimodal medical image fusion, CT and MRI image fusion is the most 

common, since the information provided by CT and MRI images can create a good supplement, while 

the multimodal combination category can be expanded to other types with the fusion method of this 
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paper. Figure 4 shows the randomly selected nine groups of multimodal medical fused image in 

subjective visual experiments, and the first three groups belongs to “Acute stroke”, the second three 

groups belongs to “Hypertensive encephalopathy”, and the last three groups belongs to “Multiple 

embolic infarctions”. To better intuitively reflect the superiority of the proposed method, one group 

of typical fusion example is selected from each of the three WBAMI categories to conduct a detail 

analysis of the amplification of representative regions, as shown in Figure 5- Figure 7, respectively. 

The CT/MR-T2 fusion results and the red box selections of the proposed method and competitors 

are shown in Figure 5. The fusion results of LRD and NSST-MSMG-PCNN are blurred since artificial 

interference is unsuppressed (see (c) and (d) in Figure 5), while CSMCA, l1-norm, SSSF and Proposed 

as SR-based methods are robust to artificial interference, and the fused edges are more distinct (see 

(e), (f), (g) and (h) in Figure 5). However, the luminance loss of CSMCA causes the reduction of 

contrast (see (e) in Figure 5), and CSMCA, l1-norm and SSSF are in the situation of partial details 

reduction (see (e), (f) and (g) in Figure 5). In contrast, more details from source images are extracted 

by the proposed method with artificial interference suppressed effectively (see (h) in Figure 5). 

 

(e) (f) (g) (h)  
Figure 5. The CT/MR-T2 image pair from “Acute stroke” category and the corresponding fusion results with 

different methods: (a) and (b) are the CT image and MR-T2 image, respectively; (c) is the fusion result of LRD; 

(d) is the fusion result of NSST-MSMG-PCNN; (e) is the fusion result of CSMCA; (f) is the fusion result of l1-

norm; (g) is the fusion result of SSSF; (h) is the fusion result of the proposed method. 

The CT/MR-T2 fusion results and the red box selections of the proposed method and competitors 

are shown in Figure 6. We can clear see that the results of LRD and NSST-MSMG-PCNN are disturbed 

by noise (see (c) and (d) in Figure 6). CSMCA, l1-norm and SSSF lost a significant amount of structural 

information (see (e), (f) and (g) in Figure 6). In contrast, the proposed method performs better in 

structural integrity and robustness to artificial interference (see (h) in Figure 6). 

 

 
Figure 6. The CT/MR-T2 image pair from “Hypertensive encephalopathy” category and the corresponding 

fusion results with different methods: (a) and (b) are the CT image and MR-T2 image, respectively; (c) is the 

fusion result of LRD; (d) is the fusion result of NSST-MSMG-PCNN; (e) is the fusion result of CSMCA; (f) is the 

fusion result of l1-norm; (g) is the fusion result of SSSF; (h) is the fusion result of the proposed method 

The CT/MR-T2 fusion results and the red box selections of the proposed method and competitors 

are shown in Figure 7. It is clear that artifacts appear when using LRD method (see (c) in Figure 7). 

NSST-MSMG-PCNN, CSMCA, l1-norm and SSSF have lost luminance, and all of them are in the 

situation of partial details reduction (see (d), (e), (f) and (g) in Figure 7). In contrast, the proposed 
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method is obviously superior to competitors in luminance and detail information retention (see (h) 

in Figure 7). 

 

 

Figure 7. The CT/MR-T2 image pair from “Multiple embolic infarctions” category and the corresponding fusion 

results with different methods: (a) and (b) are the CT image and MR-T2 image, respectively; (c) is the fusion 

result of LRD; (d) is the fusion result of NSST-MSMG-PCNN; (e) is the fusion result of CSMCA; (f) is the fusion 

result of l1-norm; (g) is the fusion result of SSSF; (h) is the fusion result of the proposed method. 

Through the subjective comparison experiments, it is hard to contain completed information for 

the SR-based image fusion with single measurement of activity level, such as the CSMCA, l1-norm 

and SSSF, while the proposed method could not only retain luminance and detail information from 

source images, but also performs better in robustness to artificial interference to keep the fused edges 

more distinct. Therefore, the proposed method offers better subjective visual performance than the 

competitors. 

4.2.2. Objective Quality Evaluation 

Objective quality evaluation is an important approach to evaluate fusion performance. Table 2 

reports the objective assessment results of the proposed method and competitors. The average scores 

over all test examples from each of the three WBAMI categories are calculated, and the highest value 

of each row shown in bold indicates the best fusion performance. It can be seen that the proposed 

method performs best in all six metrics through the “Acute stroke” category with 28 pairs of 

multimodal medical images. In the “Hypertensive encephalopathy” category with 28 pairs of 

multimodal medical images, except Q0 ranking second, the other five metrics of the proposed method 

are the best. In the “Multiple embolic infarctions” category with 60 pairs of multimodal medical 

images, metric ranks second and the other five metrics of the proposed method are the best. As a 

whole, the average results of the six metrics of the proposed method are the best in the three clinical 

categories experiments. Therefore, based on the above subjective analysis and objective evaluation, 

the proposed method has considerable advantages over the latest published methods of LRD, NSST-

MSMG-PCNN and CSMCA. 

Furthermore, with no changing the fusion framework, the ablation experiments are carried out 

to verify the universal advantages of the proposed method over the l1-norm- and SSSF-based 

schemes, which only consider the transform domain situation of activity level measure. Through the 

six commonly used fusion metrics, QNMI metric of the proposed method has the most obvious 

advantage over the two ablation competed experiments, which indicates that the proposed new 

activity level measure plays a significant role in the retention of texture information of source images. 

Furthermore, it is worth noting that the SSSF-based scheme has a slightly significant superiority than 

the l1-norm-based scheme over all test examples, and this reveals the reasonality of SSSF as a 

substitute of l1-norm to participate in the construction of activity level measure in transform domain. 

 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 June 2023                   doi:10.20944/preprints202306.0922.v1

https://doi.org/10.20944/preprints202306.0922.v1


 

Table 2. Objective assessment of different fusion methods. 

WBAMI Metircs 

       NSST- 

LRD   MSMG-  CSMCA  l1-norm   SSSF     Proposed 

       PCNN 

Acute stroke 

(28 pairs of  

CT/MR -PD, CT/MR-

T2) 

QAB/F 

QS 
QU 
Q0 
QW 
QNMI 

0.4821    0.5187     0.5513     0.5863     0.5844       0.5880 
0.7244    0.6972     0.7254     0.7359     0.7366       0.7418 
0.6709    0.4628     0.5862     0.6803     0.6809       0.6866 
0.3008    0.2984     0.3038     0.3271     0.3270       0.3319 
0.5633    0.5791     0.5873     0.6035     0.6061       0.6090 
0.7466    0.6693     0.7097     0.8554     0.8357       0.8827 

Hypertensive 

encephalopathy 

(28 pairs of CT/MR-

Gad, CT/MR-T2) 

QAB/F 

QS 
QU 
Q0 
QW 
QNMI 

0.5062    0.5343     0.5840     0.6242     0.6248       0.6290 
0.6974    0.6699     0.7165     0.7144     0.7163       0.7211 
0.6283    0.4506     0.5825     0.6395     0.6413       0.6474 
0.3152    0.3051     0.3130     0.3540     0.3563       0.3541 
0.5984    0.6254     0.6419     0.6607     0.6671       0.6736 
0.6883    0.6240     0.6680     0.7091     0.7040       0.7464 

Multiple embolic 

infarctions 

(60 pairs of CT/MR -

PD, CT/MR-T1, 

CT/MR-T2) 

QAB/F 

QS 
QU 
Q0 
QW 
QNMI 

0.4584    0.5140     0.5545     0.5850     0.5784       0.5840 
0.6893    0.6785     0.7002     0.6939     0.6952       0.7016 
0.6146    0.4438     0.6146     0.6331     0.6343       0.6412 
0.3211    0.3158     0.3111     0.3449     0.3458       0.3488 
0.5562    0.5851     0.5842     0.5962     0.5977       0.5994 
0.6951    0.6327     0.6536     0.7204     0.7095       0.7575 

5. Conclusions 

In this paper, a multi-modal medical image fusion method with Kronecker-criterion-based SR is 

proposed. The main contribution of the proposed method is summarized in three parts. Firstly, a 

novel activity level measure integrates spatial saliency and transform saliency is proposed to 

represent more abundant texture structure features. Secondly, inspired by the formation process of 

vision system, the spatial saliency is characterized by textural contrast that consists of luminance 

contrast and orientation contrast to promote more highlighted texture information to participate in 

fusion process. Thirdly, as a substitution of the conventional l1-norm based sparse saliency, the sum 

of sparse salient features metric characterizes the transform saliency to promote more significant 

coefficients participate in the composition of activity level measure. Experimental results of different 

clinical medical image categories demonstrate the effectiveness of the proposed method. Extensive 

experiments demonstrate the state-of-the-art performance of the proposed method in terms of visual 

perception and objective assessment. Taking into account the influence of computational efficiency, 

some measures can be try to get a more compact and adaptive dictionary, such as taking source 

images as training sample and testing sample simultaneously, and some feature selection rules can 

be used to exclude unfeatured image patches. 

Supplementary Materials: The Whole Brain Atlas Medical Image (WBAMI) Database information can be 

downloaded at: http://www.med.harvard.edu/aanlib/ home.htm. 
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