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Abstract: Multimodal medical image fusion is a fundamental but challenging problem in the fields
of brain science research and brain disease diagnosis, and it is challenging for sparse representation
(SR)-based fusion to characterize activity level with single measurement and no loss of effective
information. In this paper, the Kronecker-criterion-based SR framework is applied for medical
image fusion with a patch-based activity level integrating salient features of multiple domains.
Inspired by the formation process of vision system, the spatial saliency is characterized by textural
contrast (TC), which is composed of luminance and orientation contrasts to promote more
highlighted texture information to participate in the fusion process. As substitution of the
conventional /i-norm-based sparse saliency, a metric of sum of sparse salient features (SSSF) is used
for promoting more significant coefficients to participate in the composition of activity level
measure. The designed activity level measure is verified to be more conducive to maintain the
integrity and sharpness of detailed information. Various experiments on multiple groups of clinical
medical images verify the effectiveness of the proposed fusion method on both visual quality and
objective assessment. Furthermore, the research work of this paper is helpful for further detection
and segmentation of medical images.

Keywords: Multimodality medical image; Image fusion; Sparse representation (SR); Kronecker
criterion; Activity level measure

1. Introduction

Over the past decades, medical image fusion has undergone major achievements in clinical
diagnosis research [1]. The main purpose of medical image fusion is to combine the complementary
information from various sensors to construct a new image to assist the diagnosis for medical experts.
Despite simplicity of the idea, many challenges related to the theoretical background and the nature
of medical images that need to be resolved. For instance, computed tomography (CT) imaging is
informative for the dense tissues but lacks of soft tissue information. In contrast, magnetic resonance
imaging (MRI) is more suitable for soft tissue but short of dense tissue information. More crucially,
it tends to be ineffective to characterize the symptoms of different diseases with single imaging.

To overcome these challenges, varieties of image fusion methods have been proposed. Image
content can be either visual (i.e. color, shape, texture) or textual (i.e. identify dataset appearing within
image), some new advances in the fusion field consider above of the two aspects simultaneously [2,
3], and to further improve fusion performance, some new features such as different image moments
[4-6] can also be used in image fusion.

The mainstream directions of image fusion mainly focus on the visual content including spatial
domain [7, 8] and transform domain [9, 10]. The former usually addresses the fusion issue via image
blocks or pixel-wise gradient information for the multi-focus fusion [11]-[13] and the multi-exposure
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fusion [14]-[16] tasks. The latter merges the transform coefficients relevant to source images with
different reconstruction algorithms to obtain the fused image, which is recognized to be effective for
multimodal image fusion [17, 18]. The multi-scale transforms (MST)-based medical image fusion is a
mainstream research direction. Dual-tree complex wavelet transform (DTCWT) [19], non-
subsampled shearlet transform (NSST) [20] and non-subsampled contourlet transform (NSCT) [21]
are the conventional MST methods for image fusion. In recent years, some novel MST-based methods
have been proposed. Xia combines sparse representation with pulse coupled neural network (PCNN)
in NSCT domain for medical image fusion [22]. Yin proposes a parameter-adaptive pulse coupled
neural network in NSST domain (NSST-PAPCNN)-based medical image fusion strategy [23]. Dinh
proposes a Kirsch compass operator with marine predator algorithm based method for medical
image fusion [24].

Different from MST, the principle of SR is much in accord with the human visual system (HVS),
and compared to the MST-based methods, two main distinctions are involved in the SR-based
methods. For the former distinction, the fixed basis limits the MST-based methods to express
significant features, while the SR-based methods are flexible to procure more intrinsic features with
dictionary learning. For the latter distinction, the MST-based methods are sensitive to noise and mis-
registration with large decomposition level settings, while the SR-based methods with overlapping
patch-wise mode are robust to mis-registration, and this guarantees the accuracy of spatial location
of tissues. Therefore, a widely range of research on SR-based medical image fusion is attracted in
recent years [25]-[27].

However, there still remain drawbacks. Firstly, it may be insufficient to handle fine details with
the over-complete dictionary, and the high redundant dictionary will lead to visual artifacts in fused
result [28]. Secondly, the dictionary atoms are updated in column vector form result in the loss of
correlation and structural information. In addition to the drawbacks of SR itself, it may reduce the
fusion weight accuracy inevitably with unreasonable fusion strategy of coefficients. One issue focuses
on the activity level measure which helps to recognize the distinct features in fusion process, and
another issue concentrates on the integration of coefficients into counterparts of fused image. For the
former issue, the 11-norm mode is a conventional solution to describe the detailed information
contained in sparse vectors [29], while the solution is insufficient to express the sparse saliency well
since detail information characterizes activity level with same weight cannot be highlighted.
Furthermore, as SR is an approximate technique, it tends to fail to reflect the salient features of sparse
coefficient maps accurately with single measurement of activity level, thereby further leading to the
loss of detailed information. For the latter issue, it may reduce the contrast of fused image with the
weighted averaging rule, and the maximum absolute rule enables the fused image to absorb the main
visual information of source images with the cost of minor information loss.

Based on the above discussion, we adopt a promising signal decomposition model, known as
the Kronecker-criterion-based SR [30], to the medical image fusion problem. The main contributions
of this work are illustrated as follows:

a) The Kronecker-criterion-based SR with a designed activity level measure integrating salient
features of multiple domains will effectively reduce the loss of structural detailed information in
fusion process.

b) Inspired by the formation process of vision system, the spatial saliency by textural contrast
consisted of luminance and orientation contrasts can promote more highlighted texture information
to participate in fusion process.

c) Compared with the 11-norm based activity level measure in sparse vectors, the transform
saliency by sum of sparse salient features can highlight more coefficients to composite activity level
measure through sum of differences of the adjacent areas.

The rest of this paper is organized as follows. Section 2 gives a brief description of conventional
sparse representation theory and the Kronecker-criterion-based SR, i.e. separable dictionary learning
algorithm. The detailed fusion scheme is described in Section 3. Experimental results and discussion
are given in Section 4. Finally, Section 5 concludes the paper.
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2. Related work

2.1. SR-based image fusion

SR reflects the sparsity of natural signals with minimal sparse coefficients, and this is consistent

Nmfm

with the principle of HVS [31]. Given y € R" in vector mode of signal sample ¥ € R and an over-

mxn

complete dictionary D € R™" (m<n), the objective function of dictionary learning consisted of fidelity
term and penalty term is defined as

arg min |y - Dalf + AR(@) (1)

where @ means the sparse vector, |||, means the L>-norm and 4 means the regularization parameter
of penalty term R(). SR can be roughly divided into two categories as the greedy scheme (e.g.
matching pursuit (MP) [32] and orthogonal matching pursuit (OMP) [33]) with R(a)=||a||0 and the

convex optimization scheme (e.g. alternating direction method of multipliers (ADMM) [34]) with
R(a)=|a],- The extremely high complexity inhibits the practicality of the convex optimization scheme,

while the greedy scheme has superiority in this regard.

In the process of conventional SR-based image fusion, it may be insufficient to handle fine details
with over-complete dictionary, since atoms (i.e. vectors) of the pre-trained over-complete dictionary
are updated one-by-one with the methods of optimal directions (MOD) or k-singular value
decomposition (K-SVD), and this can be understood as extracting image texture information from
only one dimensional direction, while this breaks the potential correlations within image, and thus
causes the obtained pre-trained dictionary unstructured. Meanwhile, the high redundant dictionary
is sensitive to random noise and may cause visual artifacts. Therefore, there is a deviation between
source and fused images to some extent.

2.2. Separable dictionary learning algorithm

To overcome the aforementioned deficiencies of SR for image fusion, the Kronecker-criterion-
based separable structure has received significant attention [30]. On premise of ensuring the quality

of image reconstruction, the penalty in Lo-norm with R(a):”a ,» and the corresponding objective

function of separable dictionary learning is defined as
arg min [, such that D,SD; =¥.S € R"™ 2)

where S means a sparse matrix. As cross product of the over-complete dictionary D, the sub-
dictionaries D, € RY™" and D, e R'™ are obtained by the Kronecher product criterion, and for
simplicity, we set the both sub-dictionaries with same size.

The steps of separable dictionary learning algorithm include sparse coding and dictionary
update, and the dictionary optimization problems will be carried out by the extensional 2-dimension
OMP (2D-OMP) greedy algorithm and the ASeDiL (Analytic Separable Dictionary Learning)
algorithm to get the sparse coefficients and the pre-trained sub-dictionaries{D,,D,}, respectively

through [35], and the dictionary pre-training model is shown in Figure 1.
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Figure 1. Dictionary pre-trained model on Riemannian manifold.

The process of sparse coding consists of a four-step iterative loop, including the determination
of most relevant dictionary atom, updates of the support set, updates of the sparse matrix S, and
refactoring residual updates. To get the sparsest representation under current dictionary, the
objective function of sparse coding is expressed as

. 2
argmsln”S”O such that HDASDg —YH2 <& (3)
2
where & means the tolerance of reconstruction error, and when HDAS,-Dg -Y pr >¢, the condition of

iterations will be terminated.

Combining the constraints with the L>-norm of dictionary atoms equaling to 1 and no correlation
of atoms in dictionary, log function is employed to fit the full rank and column irrelevance of sub-
dictionaries. Then, the objective function of dictionary update is written as

arg min [D,SD; - Y[, + @ p(D,) + p(D)1+YTh(D,)+ (D, ) )
where @ and i mean the fitting parameters, and (D)), p(D,), h(Dy), p(D,)are defined as
1 1
D)= gt D, (D) =logl1=((D,) (D)) ®)
1 1
h(Dg) = “riogm) log det(— D,D;), p(Dy) =~log(1-((D,)"(D,))")
(6)

By means of geodesics on Riemannian manifold, the dictionary update adopts conjugate
gradient method to correct the most rapid descent direction of the iteration point of dictionary
update, which ensures the rapid convergence of cost function and improves the efficiency of
dictionary update.

With the above separable structure, the obtained sparse matrix composed by correlation
coefficients can characterize more textural and structural information, and this can not only increase
dimensions of texture extraction without adding dictionary redundancy, but also ameliorate the
accuracy of texture extraction with effective noise suppression performance. Through the above
separable dictionary learning algorithm, the pre-trained sub-dictionaries can be obtained. Then, the
pre-trained sub-dictionaries will participate in the subsequent transform saliency measure
characterization process to extract features from source images.

3. Proposed fusion method

The framework of the proposed method is shown in Figure 2. Suppose that there are K pre-
registered source images denoted as /,,k € {1,2,..., K}, the r-th overlapping image patch of the k-th

source image /, is obtained through the sliding window technique, and the corresponding sparse
coefficient map S, is learned through sparse coding process in the separable dictionary learning

algorithm with the pre-trained sub-dictionaries {D,,D,}. The proposed SR-based medical image
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fusion with measurement integrating spatial saliency and transform saliency consists of the following
two steps.

Source image [/,
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Figure 2. Overall framework of the proposed method.
3.1. The measurement of activity level for fusion

3.1.1. Spatial saliency by textural contrast

In general, salient area is recognized by vision system from retina to visual cortex, and one of
the early information in retina is luminance contrast, and orientation contrast in visual cortex is
involved to understand the context at higher levels. We are inspired to attempt to express spatial
saliency by allowing textural contrast defined by luminance contrast and orientation contrast.

First of all, the luminance contrast is defined by considering the distinctive of intensity attribute
between each pixel and the corresponding image patch. To increase useful dynamic ranges to
suppress high contrast effectively in the background, the n-th order statistic is applied as

n

r A1 1 r
LC (x,y)=|ft-— > I (x,») )

(x.)e®
where i, denotes the mean of luminance values over the r-th patch in the k-th source image /, . ® and

M represent a 3x3 neighborhood with pixel (X, )’) centered and its size, respectively.

Along with luminance contrast, the local image structure is captured by orientation contrast
through weighted structure tensor. It is worth noting that we focus on weighted gradient information
rather than gradient itself, and this highlights main features of source images. The weighted structure
tensor can effectively summarize the dominant orientation and the energy along this direction based
on the weighted gradient field as

Zlf_l(@(x,y)ai] Zf:lai(st’) 9,

a; ai; ay
Zf:la‘f(xa)’)g Y Zf—l(@(x»)/) ay]

G, (x.0)=
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where oI} /6x and or] /8y denote the gradients along x and y directions, respectively at given pixel
(x, ). The weight function @, (x, ) is calculated by
LSM, (x,))

5 (LSM] (x, )

where LSM [ (x, y) means the local salient metric, which reflects the importance of pixel (x, y) by

. (x,y) = )

computing the sum of intensity around it, defined as

. |61’(x,y)| |51r(xay)|j
LSM(x,y) = ‘ " 19
(x,») (x%id[ ox |+| oy

where |o| denotes the absolute value operator. The local salient metric is sensitive to the edges and

texture while insensitive in the flat part. To express local image structure, the weighted structure
tensor as a semi-definite matrix can be decomposed by eigenvalue decomposition as

ﬂZ
G, =V( ! ,BijT (11)

The orientation contrast related to the eigenvalues of 3 and /3, of this matrix is calculated as

OC; (x,3) =J(B, + B +1(B, ~ B.)’ (12)

where 7 > —1, this parameter can determine the relative emphasis of the orientation contrast to the

corner-like structures effectively.
Since it is assumed that salient area contains luminance contrast and orientation contrast as
mentioned, the texture contrast is then defined with the two parts as

TG (x,y) = LC(x,y)xOC[(x, ) (13)
Here, each part is smoothed by Gaussian filtering as in [36] and 7C; is normalized to [0,255] for

gray-scale representation.

3.1.2. Spatial saliency by textural contrast

Compared with the conventional transform-based activity level measure which uses the Li-norm
to describe the detail information contained in sparse vectors, SSSF metric is able to highlight more
significant coefficients to participate in the composition of activity level measure through the sum of
differences of adjacent areas, which is defined as

P 0

SSSF{ (x.y)= 2 2 [LSSF/ (x+p,y+q)f (14)

p=—Pq=-0

where P and Q determine a sliding window with the size of sparse matrix equal to the r-th patch in
the k-th source image /, . The local sparse salient feature (LSSF) metric is defined by the sparse

saliency diversity of adjacent pixels and is calculated as

LSSFZ(xsy) = z [S;(xsy)_Slr(m7n)]2 (15)

(m,n)ed

where ® denotes a square window centered with certain sparse coefficient that corresponding to the

pixel (X, ) in the source image patch /, .

3.2. Fusion scheme

Combining the transform saliency and the spatial saliency of image patch, the proposed activity
level measure is defined as

@y (x,y) = SSSE{ (3, ) xTC, (%, ) (16)
where @, is the measurement result of the source image patch /; . Then, the maximum weighted

activity level measure is used to achieve the fused coefficient map as
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S; (%, 1) =87 (x,»), k' = argmax [@](x, )] (17)
Then, the fusion result is obtained by sparse reconstruction as
I, =D,S.D, (18)

The final fused image /. is constituted by the overall fused image patches.

4. Experiments
4.1. Experimental setting

4.1.1. Source images

In our experiments, three categories “Acute stroke”, “Hypertensive encephalopathy” and
“Multiple embolic infarctions” of clinical multimodal image pairs from the Whole Brain Atlas
Medical Image (WBAMI) Database are used as test images. The spatial resolution of all test images is
set to 256x256 , and to make sure the registration has been realized, we take the feature-based
registration algorithm for each pair, i.e. the method of complementary Harris feature point extraction
based on mutual information [37], which has strong robustness and is able to adapt to various image
characteristics and variations.

4.1.2. Objective evaluation metrics

Table 1. Objective assessment of different fusion methods.

Category Metirc Symbol  Description
Texture features Normalized mutual Onm It measures the mutual information of a fused image and source
preservation information images.

based metrics

Normalized weighted QABF It measures the amount of edge and orientation information of the
Edge-dependent

performance index fused image using the Sobel edge detection operator.
sharpness based
metrics Overall image

Qo It evaluates structural distortions of the fused image.
quality index
Weighted fusion Qw It values the structure similarity by addressing coefficient correlation,
i quality index illumination, and contrast.

Comprehensive
evaluation based  Structural similarity Qs It determines the structural similarity by taking comparisons of
metrics index luminance, contrast, and structure.

Universal image index Qu It is designed by modeling image distortion as a combination of the

loss of correlation, luminance distortion, and contrast distortion.

Since there are limitations of a single objective metric to reflect fusion result accurately, thus the
six popular objective metrics, namely, Xydeas—Petrovic index [38], the structural similarity index Qs
[39], the universal image quality index Qu [40], the overall image quality index Qo [40], the weighted
fusion quality index Qw [41], and the mutual information index Qnmr [42], are adopted to evaluate
fusion performance in this letter. The higher scores of the above metrics, the better fusion result of
the corresponding fusion method. The classification of these metrics are shown in table 1.
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4.1.3. Methods for comparison

Since it is inspired by the transform domain based method [29] to design the activity level
measure and fusion scheme in our method, to make a fair and clear comparison, the conventional /-
norm based scheme [29] and the sum of sparse salient features (SSSF) based scheme are used in the
context of this letter to verify the advantages of the proposed activity level measure. Meanwhile, in
each of the medical image fusion categories, some latest published representative medical image
fusion methods, such as LRD [43], NSST-MSMG-PCNN [44] and CSMCA [45], are used for
comparison with the proposed method. The competitors adopt the default parameters in the
corresponding literatures.

4.1.4. Algorithm parameters setting

For the proposed method, to obtain the pre-trained sub-dictionaries, we choose 10* patches of
size 8x8 from different uncorrupted images as training dataset, and the training patches are
normalized with zero mean and unit L>-norm, and the initial sub-dictionaries are obtained by the
MATLARB function randn with normalized columns. Following the experimental setup of the previous
work in [35], the spatial size of sliding window is set to 8x8, the patch-wise step size is set to 1 to keep
shift invariant of SR, the two Kronecker-criterion-based separable dictionaries are set to the same size
of 8x16, the tolerance of reconstruction error ¢ is set to 0.01.

In addition to the above general settings, variable n and variable 77 are the key parameters to
affect the luminance contrast and the orientation contrast separately, and the parameters setting
through quantitative experiments are shown in Figure 3. It can be seen that variable n will affect
luminance contrast and the retention of effective information in subsequent fusion results. On the
basis, we set n=3 as a compromise. As increase of variable 77, texture structure of the source image is

clearer, and it is conducive for extracting orientation contrast information. On the basis, we setnp =0.5.

Source image n=1 n=3 n=5 n=6 n=7 n=8

Source imagenn=-05n=-04 n=-03 n=-02 n=-01 7n=01 n=02 7n=03 n=04
n=0.5

Figure 3. Parameters setting through quantitative experiments: The first line indicates the effect of n
on luminance contrast, and the second line indicates the effect of 7 on orientation contrast.

4.2. Comparison to other fusion methods

The subjective visual and objective metrics are used to evaluate the proposed method. The
comparison experiment contains three categories of clinical multimodal medical images, including
“Acute stroke” with 28 pairs of CT/MR-PD and CT/MR-T2, “Hypertensive encephalopathy” with 28
pairs of CT/MR-Gad and CT/MR-T2, and “Multiple embolic infarctions” with 60 pairs of CT/MR-PD,
CT/MR-T1 and CT/MR-T2.
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4.2.1. Subjective Visual Evaluation

(a9) (b9) (c9) (d9) (e9) (f9) (29) (h9)

Figure 4. Source images and the corresponding fusion results with nine pairs of CT/MRI images: (al), (b1) image
group 1 (CT and MR-PD); (a2), (b2) image group 2 (CT and MR-T2); (a3), (b3) image group 3 (CT and MR-T2);
(a4), (b4) image group 4 (CT and MR-Gad); (a5), (b5) image group 5 (CT and MR-T2); (a6), (b6) image group 6
(CT and MR-T2); (a7), (b7) image group 7 (CT and MR-T1); (a8), (b8) image group 8 (CT and MR-PD); (a9), (b9)
image group 9 (CT and MR-T2); fused images (c1)-(c9) LRD-based method; fused images (d1)-(d9) NSST-MSMG-
PCNN-based method; fused images (e1)-(e9) CSMCA-based method; fused images (f1)-(f9) i-norm-based
method; fused images (g1)-(g9) SSSF-based method; and fused images (h1)-(h9) the proposed method.

In the experiments of multimodal medical image fusion, CT and MRI image fusion is the most
common, since the information provided by CT and MRI images can create a good supplement, while
the multimodal combination category can be expanded to other types with the fusion method of this
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paper. Figure 4 shows the randomly selected nine groups of multimodal medical fused image in
subjective visual experiments, and the first three groups belongs to “Acute stroke”, the second three
groups belongs to “Hypertensive encephalopathy”, and the last three groups belongs to “Multiple
embolic infarctions”. To better intuitively reflect the superiority of the proposed method, one group
of typical fusion example is selected from each of the three WBAMI categories to conduct a detail
analysis of the amplification of representative regions, as shown in Figure 5- Figure 7, respectively.

The CT/MR-T2 fusion results and the red box selections of the proposed method and competitors
are shown in Figure 5. The fusion results of LRD and NSST-MSMG-PCNN are blurred since artificial
interference is unsuppressed (see (c) and (d) in Figure 5), while CSMCA, li-norm, SSSF and Proposed
as SR-based methods are robust to artificial interference, and the fused edges are more distinct (see
(e), (f), (g) and (h) in Figure 5). However, the luminance loss of CSMCA causes the reduction of
contrast (see (e) in Figure 5), and CSMCA, i-norm and SSSF are in the situation of partial details
reduction (see (e), (f) and (g) in Figure 5). In contrast, more details from source images are extracted
by the proposed method with artificial interference suppressed effectively (see (h) in Figure 5).

Figure 5. The CT/MR-T2 image pair from “Acute stroke” category and the corresponding fusion results with
different methods: (a) and (b) are the CT image and MR-T2 image, respectively; (c) is the fusion result of LRD;
(d) is the fusion result of NSST-MSMG-PCNN; (e) is the fusion result of CSMCA; (f) is the fusion result of [1-
norm; (g) is the fusion result of SSSF; (h) is the fusion result of the proposed method.

The CT/MR-T2 fusion results and the red box selections of the proposed method and competitors
are shown in Figure 6. We can clear see that the results of LRD and NSST-MSMG-PCNN are disturbed
by noise (see (c) and (d) in Figure 6). CSMCA, [1-norm and SSSF lost a significant amount of structural
information (see (e), (f) and (g) in Figure 6). In contrast, the proposed method performs better in
structural integrity and robustness to artificial interference (see (h) in Figure 6).

Figure 6. The CT/MR-T2 image pair from “Hypertensive encephalopathy” category and the corresponding
fusion results with different methods: (a) and (b) are the CT image and MR-T2 image, respectively; (c) is the
fusion result of LRD; (d) is the fusion result of NSST-MSMG-PCNN; (e) is the fusion result of CSMCA,; (f) is the
fusion result of li-norm; (g) is the fusion result of SSSF; (h) is the fusion result of the proposed method

The CT/MR-T2 fusion results and the red box selections of the proposed method and competitors
are shown in Figure 7. It is clear that artifacts appear when using LRD method (see (c) in Figure 7).
NSST-MSMG-PCNN, CSMCA, i-norm and SSSF have lost luminance, and all of them are in the
situation of partial details reduction (see (d), (e), (f) and (g) in Figure 7). In contrast, the proposed
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method is obviously superior to competitors in luminance and detail information retention (see (h)
in Figure 7).

Figure 7. The CT/MR-T2 image pair from “Multiple embolic infarctions” category and the corresponding fusion
results with different methods: (a) and (b) are the CT image and MR-T2 image, respectively; (c) is the fusion
result of LRD; (d) is the fusion result of NSST-MSMG-PCNN; (e) is the fusion result of CSMCA; (f) is the fusion
result of li-norm; (g) is the fusion result of SSSF; (h) is the fusion result of the proposed method.

Through the subjective comparison experiments, it is hard to contain completed information for
the SR-based image fusion with single measurement of activity level, such as the CSMCA, li-norm
and SSSF, while the proposed method could not only retain luminance and detail information from
source images, but also performs better in robustness to artificial interference to keep the fused edges
more distinct. Therefore, the proposed method offers better subjective visual performance than the
competitors.

4.2.2. Objective Quality Evaluation

Objective quality evaluation is an important approach to evaluate fusion performance. Table 2
reports the objective assessment results of the proposed method and competitors. The average scores
over all test examples from each of the three WBAMI categories are calculated, and the highest value
of each row shown in bold indicates the best fusion performance. It can be seen that the proposed
method performs best in all six metrics through the “Acute stroke” category with 28 pairs of
multimodal medical images. In the “Hypertensive encephalopathy” category with 28 pairs of
multimodal medical images, except Qo ranking second, the other five metrics of the proposed method
are the best. In the “Multiple embolic infarctions” category with 60 pairs of multimodal medical
images, metric ranks second and the other five metrics of the proposed method are the best. As a
whole, the average results of the six metrics of the proposed method are the best in the three clinical
categories experiments. Therefore, based on the above subjective analysis and objective evaluation,
the proposed method has considerable advantages over the latest published methods of LRD, NSST-
MSMG-PCNN and CSMCA.

Furthermore, with no changing the fusion framework, the ablation experiments are carried out
to verify the universal advantages of the proposed method over the li-norm- and SSSF-based
schemes, which only consider the transform domain situation of activity level measure. Through the
six commonly used fusion metrics, Qnwvr metric of the proposed method has the most obvious
advantage over the two ablation competed experiments, which indicates that the proposed new
activity level measure plays a significant role in the retention of texture information of source images.
Furthermore, it is worth noting that the SSSF-based scheme has a slightly significant superiority than
the li-norm-based scheme over all test examples, and this reveals the reasonality of SSSF as a
substitute of i-norm to participate in the construction of activity level measure in transform domain.
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Table 2. Objective assessment of different fusion methods.

NSST-
WBAMI Metircs LRD MSMG- CSMCA h-norm SSSF Proposed
PCNN
QaBrE 0.4821  0.5187 0.5513 0.5863 0.5844 0.5880
Acute stroke Qs 0.7244  0.6972 0.7254 0.7359 0.7366 0.7418
(28 pairs of Qu 0.6709  0.4628 0.5862 0.6803 0.6809 0.6866
CT/MR -PD, CT/MR- Qo 0.3008  0.2984 0.3038 0.3271 0.3270 0.3319
T2) Qw 0.5633  0.5791 0.5873 0.6035 0.6061 0.6090
Onmi 0.7466  0.6693 0.7097 0.8554 0.8357 0.8827
) Qabrr 0.5062  0.5343 0.5840 0.6242 0.6248 0.6290
Hypertensive Qs 0.6974  0.6699 0.7165 0.7144 0.7163 0.7211
encephalopathy Qu 0.6283  0.4506 0.5825 0.6395 0.6413 0.6474
(28 pairs of CT/MR- Qo 0.3152  0.3051 0.3130 0.3540 0.3563 0.3541
Gad, CT/MR-T2) Qw 0.5984  0.6254 0.6419 0.6607 0.6671 0.6736
Onm 0.6883  0.6240 0.6680 0.7091 0.7040 0.7464
) . Qabrr 0.4584  0.5140 0.5545 0.5850 0.5784 0.5840
Multiple embolic 5 0.6893  0.6785 07002 06939  0.6952 0.7016
infarctions Qu 0.6146  0.4438 0.6146 0.6331 0.6343 0.6412
(60 pairs of CT/MR - Qo 0.3211  0.3158 0.3111 0.3449 0.3458 0.3488
PD, CT/MR-T1, Ow 0.5562  0.5851 0.5842 0.5962 0.5977 0.5994
CT/MR-T2) Onm 0.6951  0.6327 0.6536 0.7204 0.7095 0.7575

5. Conclusions

In this paper, a multi-modal medical image fusion method with Kronecker-criterion-based SR is
proposed. The main contribution of the proposed method is summarized in three parts. Firstly, a
novel activity level measure integrates spatial saliency and transform saliency is proposed to
represent more abundant texture structure features. Secondly, inspired by the formation process of
vision system, the spatial saliency is characterized by textural contrast that consists of luminance
contrast and orientation contrast to promote more highlighted texture information to participate in
fusion process. Thirdly, as a substitution of the conventional /i-norm based sparse saliency, the sum
of sparse salient features metric characterizes the transform saliency to promote more significant
coefficients participate in the composition of activity level measure. Experimental results of different
clinical medical image categories demonstrate the effectiveness of the proposed method. Extensive
experiments demonstrate the state-of-the-art performance of the proposed method in terms of visual
perception and objective assessment. Taking into account the influence of computational efficiency,
some measures can be try to get a more compact and adaptive dictionary, such as taking source
images as training sample and testing sample simultaneously, and some feature selection rules can
be used to exclude unfeatured image patches.

Supplementary Materials: The Whole Brain Atlas Medical Image (WBAMI) Database information can be
downloaded at: http://www.med.harvard.edu/aanlib/ home.htm.
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