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Abstract: This article examines the wavelet transforms and the machine learning methods in accelerat-
ing large eddy simulations of turbulent flows. An overarching challenge of large eddy simulations is
to accurately represent the cascade of kinetic energy across the cut-off length scale. Taylor hypothesis
suggests that the energy cascade occurs through the process of vortex stretching. However, Richard-
son hypothesis assumes the self-amplification of the strain field and a hierarchical break down of large
eddies lead the energy cascade. The large eddy simulations typically employs the self-amplification
of the strain in formulating subgrid models. However, several studies also proposed subgrid models
based on vortex stretching. The wavelet-based coherent vortex simulation of turbulence directly
accounts for vortex stretching in overall forward scatter of energy, while allowing local backscatter.
The wavelet-based large eddy simulation adapts the grid to capture the creation of small-scale eddies,
while adopting subgrid models based on the self-amplification of strain. The advancement of artificial
intelligence in turbulence modelling is currently evolving around accelerating the numerical simu-
lations of turbulent flow. However, there is a clear connection between the application of wavelet
transfroms and neural networks for directly solving the Navier-Stokes equation, indicating some
potential benefits of wavelet methods over the neural networks.
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1. Introduction

Turbulence is a multiscale process consisting of localized coherent vortices that coexist
at a wide range of length and time scales [1-3]. Therefore, identifying and capturing
the localized flow features in turbulence are crucial to understanding and controlling
turbulence [4,5]. Recent advances in wavelet method (e.g. [6,7]) and machine learning
(e.g- [8,9]) aim to address these issues and complement the existing turbulence modeling
approaches [10]. This article reviews the recent progresses in applications of machine
learning and wavelet transforms in turbulence modeling. These two approaches have great
promise and potential to become the methodological portfolio of turbulent fluid dynamics.

Machine learning and turbulence modeling are two distinct fields that offer fertile
ground to the data-driven paradigm [8]. Both fields exploit the coherence property un-
derlying high-dimensional systems. Machine learning leverages the coherence of data to
improve performance on some sets of tasks. It uses optimization algorithms to learn a set
of parameters and gradually enhance its learning rates. Machine learning methods are
an essential part of the methodological portfolio of the growing field of data science. Re-
searchers have recently applied machine learning methods to fluid mechanics ranging from
flow control to turbulence modeling [11-14]. As machine learning continues to augment
traditional methods, the demand of dedicated algorithms for solving the Navier-Stokes
equations has also grown simultaneously.

The Navier-Stokes equations characterize turbulence at large Reynolds numbers (Re).
Solving these equations at high Re remains daunting. The study of the Naiver-Stokes
equations and turbulence plays a significant role in all technologies involving fluids. For
instance, turbulence-induced drag causes vehicles to emit 2 Gigatons of CO, annually,
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about 5% of the world’s energy usage. Capturing a turbulent flow at typical values of
Re ~ 108 requires millions of terabytes of data. The growth of turbulence data from
experiments, field measurements, and numerical simulations is remarkable. Moreover, the
growth of methods in handling such a fluid data have put current generation researchers at
the confluence of vast and increasing volumes of data and algorithms. The wavelet method
aims to optimize such algorithms. Using wavelet-based algorithms in turbulence modeling,
our goal is to optimize first-principle conservation laws by predicting the evolution of the
coherent structures of turbulent fluid flows.

In the early 1990, Farge [3] reviewed the application of wavelet transforms to study
turbulence, covering a general presentation of both the continuous wavelet transform
and the discrete wavelet transform. In 2010, Schneider and Vasilyev [6] reviewed the
application of wavelet transforms in computational fluid dynamics (CFD). Recently, Mehta
et al. [15] documented the new developments of the adaptive wavelet collocation method
(AWCM) as a technique for solving partial differential equations (PDEs). Brunton et al. [8]
documented the concept of machine learning in fluid dynamics. In this article, we outline
recent progresses in classical turbulence modelling, focus on the application of machine
learning in turbulence modeling, and finally, discuss the potential route to address current
turbulence modelling issues by combining wavelet method with machine learning.

1.1. Outline

Section 2 provides an overview of turbulence modeling in the context of large eddy
simulation (LES). Section 3 summarizes current trends in advancements of machine learning
algorithms in CFD and turbulence modeling. Section 4 summarizes the wavelet-based
turbulence modelling strategy.

2. Turbulence modeling background

The direct numerical simulation (DNS) uses a fine grid to capture the entire spec-
trum of turbulence eddies. In contrast, the Reynolds averaged Navier-Stokes simulation
(RANS) uses a coarse to represent the full range of turbulence eddies through the closure
approximation scheme. LES is intermediate to DNS and RANS, which resolves a significant
fraction of turbulent eddies and uses a subgrid model for the unresolved eddies. We see
from the following discussion that the primary difference between LES and RANS comes
from the turbulence closure models for the partially unresolved and entirely unresolved
turbulent motions, respectively.

2.1. Filtering

The first step in formulating LES is the convolution of the velocity u(x, ) : [a,b] X
[0, T] — R with a kernel G(r) such that

i(x,t) = / u(x —r,t)G(r)dt.
—00

In the following, we say that i7;(x, t) is the i-th component of the wavelet-filtered velocity
if G(r) is a wavelet; otherwise, it is called filtered velocity. We use bold-faced symbols
to denote a quantity in the 3D Euclidean space and subscript i (or j and k) to denote
standard tensorial representations considered in fluid dynamics. We remind readers that
the discretization technique serves as an implicit filter G(r) unless an explicit filter is
mentioned. Moreover, the wavelet filter is a special form of the explicit filter.

2.2. The filtered Navier-Stokes system
The temporal evolution of the large-scale dynamics of a fluid system is given by
filtered Navier-Stokes equations:

o1; .
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and

1
Tij — 3 Tkdij = —2VrSij. @)
The filtering operator (-) extracts the energy containing significant motion. The effect of
discarding residual motion is represented by the subfilter-scale turbulence stress 7;; =

it — itjij. In Eqs (2-3), the subgrid scale stress 7;; is an approximation of the subfilter
scale stress Tisj' We keep this notation to clarify that subgrid scale stresses are not the same
as the true subfilter scale stresses. The divergence of the symmetric part of the velocity

gradient tensor, S;; = (1/2)(du;/du; + du;/du;), becomes a Laplacian due to Eq (1), and
thus, Eq (3) is an ideal candidate to model turbulence, where v (x, t) = cs(x, HA%, /28;;Si;.

The amplification of the strain-rate tensor S;; plays a direct role in the classical subgrid
models of LES.

2.3. Classical LES

In classical LES, we treat a coarse-grid approximation of the fluid velocity i;(x, t) as a
filtered representation of the ground truth u;(x, t) and employ the closure scheme to model
the subfilter-scale stress Tisj [10,16]. Over the last three decades, there have been promising
progresses in LES of turbulence [16]. Various developments of subgrid-scale models have
been an integral part of the LES of turbulence. In general, LES finds an approximation
of the subfilter-scale stress Tisj as a function of the symmetric part of the velocity gradient
tensor and a dynamic parameter cs(x, t), such as

Tl?;j ~ Ti]' = H(Cs,Si]').

Note that
strain, S,]
e N

aui 1 aui au] 1 aui au]

— ==+ +5=-2)

ax]- 2 ax] E)xi 2 Bx] axi
———

vorticity, R”

Clearly, the subgrid model Eq (3) excludes the vorticity. Also, the dynamic evaluation of
cs(x, t) has been a major focus in turbulence modeling. This is one of the most challenging
and computationally intensive elements of LES.

A principal open challenge is to represent the eddy viscosity v, in Eq (3) when the
discretization of Eqs (1-2) becomes sufficient to capture a major proportion of large eddies
(i.e. about 80% of the kinetic energy [10]). Each of the commonly used models differs
depending on how we calculate ¢s(x, t) to dynamically adapt the eddy viscosity vz to the
multiscale nature of the problem. A fine grid that is sufficient to resolve most of the eddies
at a particular time in a region may become insufficient at another time. The range of grid
resolution in which turbulence is insufficiently resolved in some part of the domain and
becomes full resolved is other parts called the grey zone of atmospheric turbulence. For
instance, in the atmospheric boundary layer turbulence, the energy-containing eddies’ size
is locally reduced by both the frictional effects of the earth’s surface and the thermal stratifi-
cation. Honnert et al. [17] reviewed the current state-of-the-art in ‘grey-zone’ turbulence
modelling, where neither the LES nor the RANS model is appropriate [18].

For LES of wall-bounded turbulent flows, specialized treatments of the eddy viscos-
ity v become essential, which is called wall-modelled LES. Bose and Park [19] recently
reviewed various formulations of the wall-modelled LES. Readers interested in other de-
velopments of the eddy viscosity v+ may consider the recent work of Moser et al. [16]. An
interesting open question is whether the existing LES techniques adequately capture a
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number of geometric and statistical phenomena, such as the alignment of vorticity with
respect to the strain rate eigenvectors, non-Gaussian statistics, and intermittency [20-22].
Another question is whether the dynamic adaption of ¢; in formulating the eddy viscosity
by Eq (3) can account for the subgrid scale production via vortex stretching [22,23].

Recent developments in machine learning and wavelet methods aim to address some
of the above questions. Kurz et al. [24] covers the recent progresses, challenges and promises
of machine learning methods applied to large eddy simulation (LES) of turbulence (see also
[25]). Schneider and Vasilyev [6], and De Stefano and Vasilyev [26] have thoroughly covered
the promise of wavelet methods in addressing the above questions. In the atmosphere and
oceans, turbulence is heterogenous, anisotropic, and scale-dependent. Scale-aware subgrid
models automatically adjust their effects according to the changes of grid resolution, grid
orientation, and fraction of resolved flow.

2.4. Scale-adaptive LES

Recently, we have developed the scale-adaptive LES methodology to formulate the
eddy viscosity v; in Eq (3) via the idea of energy casecade by vortex stretching. Menter and
Egorov [27] presented a scale-adaptive simulation, which adapts the RANS model with
the LES model. For example, RANS model is applied in a particular region, where the
grid is locally insufficient to capture energetic fluctuations (such as in a close proximity
of walls), and switches off to LES model otherwise. In the atmospheric boundary layer
simulations, such hybrid RANS/LES methods are applied at O(100) m to O(1000) m
horizontal grid spacing. If we achieve the scale adaptivity by blending two models, the
turbulence dissipation from RANS model may also suppress the generation of LES content
in the RANS/LES interface [28,29].

The scale-adaptive LES may address such a problem by considering that turbulence
consists of vortices in nonlinear interactions. However, we do not have a sufficient knowl-
edge of the vorticity production by nonlinear instabilities, e.g., in boundary layers due
to the duality between physical localization and spectral localization. To account for the
vorticity dynamics in scale-adaptive LES of atmospheric turbulence over complex terrain,
Bhuiyan and Alam [30] considered the scale-similarity assumption [31], which states that
the subfilter scale stress TZ-S]- equals the resolved stresses Tigf = ii;il i~ il;il jat scales between A
and aA (with « > 1) [32,33]. Here, we apply an explicit filtering in addition to the implicit
filtering, where A and aA refer to the resolved length scales of implicit and explicit LES
filtering, respectively.

Using the Taylor expansion of u;(x,t) surrounding an arbitrary point in the flow
the Leonard (resolved) stress is analytically equivalent to Tl% = Azgikgk]-, where G;; =
ou;/ axj [33,34]. That is to say, the second invariant of the Leonard stress, as it can be
expressed in the following form

1 1
Qr=—7 [Sijszikwk + 3(91']‘91';‘)2}

accounts for vortex stretching S;jw;Sjxwy and the relative significance of the vorticity over
the strain. Here, Q = —(1/2)(G;;Gij)? is the Q-criterion for vortex identification. Further,
the energy flux associated with the Leonard stress

1

*Sl‘jTi? = CkA2 [Sijsjkski + 1

wiw]-Sij}

indicates that a negative skewness of the strain —§;;SjxSy; along with a positive value of
the enstrophy production by vorticity stretching w;w;S;; would extract energy by small-
scale vortex stretching when the large-scale strain is enhanced. This observation suggest
the existence of a functional of Ti?, which may be in the form of its second invariant,
and represents the local rate of dissipation in turbulent flows. Based on the dimensional
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reasoning, we form a functional that maps the space of the velocity gradient tensor to that
of turbulence kinetic energy, which takes the following form:

3
A (%Sijszikwk + %(gijgij)z)

ko (%, 1) = )

5/41%
[(Sij'sij)S/z + (%Sijijikwk + %(gzjgz‘j)2) ]

To further extend the aforementioned discussion, we follow Deardorff [35] to form the
following subgrid scale model:

1
Tij — 3 Tkdij = — kB ke Sije ©)

In Eq (4), the consideration of vorticity is important from a dynamical point of view because
Helmholtz and Kelvin theorems have set vorticity as the essential field that triggers the
fluctuations of velocity. This view shares that of Farge [3] and Chorin [36] who advocate
for vorticity as the computational element of turbulent flows.

2.5. Remark

In this section, we show that the turbulence energy cascade occurs through the process
of vortex stretching, but vortex stretching is not the main elements of the commonly used
subgrid models in LES. We illustrate one way of incorporating vortex stretching in scale-
adaptive LES. We have considered an explicit form the Leonard stresses to lay a vortex
stretching-based LES framework. We show in the later section that the wavelet transforms
and the proper orthogonal decomposition (POD) method are two promising and attractive
tools to explicitly compute the Leonard stresses for scale-adaptive LES. Machine learning
of suibgrid models provide one possible route to the evarlasting problem of turbulence
given the availabiblity of high-resolution taining data.

3. Machine learnig in computational fluid dynamics

Machine learning is a modeling framework for artificial intelligence, which has re-
cently become a core technology in data science [37]. In fluid dynamics, we are interested
in adopting some of the advantages of machine learning to accelerate CFD/DNS calcula-
tions [5], improve subgrid-scale modeling [13], or derive reduced order models of fluid
flows [38]. CFD/DNS caculations are often computationally demanding but highly ac-
curate. In contrast, machine learning models may run faster than CFD models [8]. For
instance, solving the Poisson equation for pressure is one of the computationally extensive
step of CFD/DNS, which can be accelerated by adopting a machine learning algorithm [39].
Thus, our parsimonious objectives are twofold. First, we want to employ machine learning
to extract a compact latent representation of high-dimensional dynamics, while accounting
for the underlying non-linearity into a low-dimensional manifold [40]. In other words, we
need to learn both the (nonlinear) differential operator underlying a data and the associated
forces, e.g., if the data represents some fluid-structure interactions. Second, we want an
optimal reconstruction/prediction of the high-dimensional data in a low-dimensional man-
ifold. Thus, to accelerate CFD calculations, we look for solutions from a low-dimensional
manifold, while penalizing the size of the solution vector [41].

A machine learning algorithm finds an approximation ¢(x, y, w) that assigns an input
x to an output y with respect to a set of parameters w. Given a set of observations y(x), we
look for parameters w to formulate an approximation y(x) ~ ¢(x,y, w). The approximation
is weighted by some probability distribution o(x, y) that constrains the parameter w with
respect to observations y(x). The expected loss or the residual of such approximation is
given by

Rl = [ Ly, ¢(x,y,0))o(x,y)dxdy ©)
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where L(-) is a measure of some objectives such as accuracy, smoothness, cost, etc. The
precise form of ¢(x, y, w) is found during the learning (aka training) phase. In other words,
a set of parameters w is determined to minimize the expected loss R [w]. Once the model
is learned, it can determine the best match of a new input x to a target output y. Various
algorithms of machine learning are grouped into three main catagories.

Unsupervised learning is an algorithm that finds an approximation ¢(x,y, w) to rep-
resent the self-organization of input x to groups of output y. Examples of unsupervised
learning in data science include clustering, anomaly detection, etc. In fluid mechanics,
the energy spectrum is a low-dimensional projection of turbulent flows, which clusters
turbulence kinetic energy in spherical shells of wavenumbers. The POD method organizes
the variability of turbulent flow to recognize coherent patterns of turbulence.

Supervised machine learning is the process that comprises some existing observations
of the target output corresponding to the approximate model ¢(x, y, w). For instance, neural
networks can approximate the underlying functional between observations and targets.
The observations allow to explicitly define the loss, e.g., R[w] = ||y — ¢(x,y, w)||?, which
may be regularized, such as R[w] = ||y — ¢(x,y, w)||? + (1/2)||w]||?. The direct numerical
simulation (DNS) of turbulent flows observes velocity and pressure and minimizes the loss
of mapping the observations to the solution (i.e. target) of Navier-Stokes equations. DNS of
incompressible flows employs various regularization algorithms to minimize additional
pressure loss. Researchers have extensively utilized the DNS algorithm to learn fluids and
control various machines that operate through fluids. The potential for artificial intelligence
in aerospace and fluid machinary evolved several new numerical optimization schemes
through the developments in CFD in the early 1980s.

Reinforcement learning finds suitable actions to take in a given situation to maximize a
reward. The idea is that a learning algorithm would discover the optimal model for a target
by trial and error. For instance, in LES of turbulence, each grid point is an agent that learns
the subgrid-scale turbulent environment receiving rewards in the form of dissipation rates
or eddy viscosity.

The brief discussion above has set the common CFD portfolio in the machine learning
framework. It is necessary to understand the algorithmic framework if we want to develop
machine learning techniques in fluid dynamics. Machine learning can undoubtedly become
a critical tool in several other aspects of CFD and flow modeling, which have not been
discussed above. Developing and adapting machine learning algorithms that accelerate a
CFD approach is crucial. Fluid dynamics presents additional challenges from its underlying
physics and dynamics, which differs from those in data science. CFD utilizes centuries-old
developments in fluid dynamics, which are based on first principles. Combining first
principles with data-driven algorithms has the potential to impact both CFD and machine
learning.

3.1. Neural networks and LES

To improve the performance of LES, such as in atmospheric boundary layer flows, the
SGS quantity cs(x, t) and the wall shear stress 7, (x1, x2,0,t) are computed dynamically
as the calculation progresses. This step of LES is computationally expensive, and strictly
related to the local conditions of the flow [19,42]. The Reynolds number scaling for LES
of such wall-bounded turbulent flows is in the range of Re®/® to Re'*/7. Resolving the
relevant detail of the flow phenomena requires trillions of grid points.

Machine learning of cs(x, t) and/or T, (x1, x2,0,t) can significantly reduce the com-
putational cost of LES. Here, we consider data-driven turbulence closure models based
on supervised machine learning by neural network (NN) [43,44]. The artificial NNs are
parameterized class of nonlinear maps, ¢(x,y, w). The application of NNs in subgrid
scale turbulence modelling is a very innovative idea [45]. It is important to note that NNs
provide universal approximations of nonlinear maps, albeit the same could be achieved by
conventional orthogonal bases. In the following discussion, we consider 9 components of
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the velocity gradient tensor and 6 components of the resolved Reynolds stress to define the
subgrid scale quantity c¢s(x, t). NNs are trained to learn the following nonlinear map

cs(x,t) =11 (%, ’L'i]'> . (7)

]

Thus, for a subset of grid points, we need to find the best weight vector w of 15 elements
so that the bias between ¢s; and IT are minimized. Sarghini et al. [45] observed that the
LES data for a duration of two eddy turn over time units were sufficient to model cs(x, t)
for turbulent channel flow at Taylor scale Reynolds number 180. We also highlight the
work of Novati et al. [46] regarding reinforcement learning of c;(x,t) for homogeneous
isotropic turbulence at moderate Reynolds numbers. Several recent investigations have
applied NNs to predict a “perfect” SGS stress tensor that accelerates the LES of turbulent
flows [13,47-50].

Note that reinforcement learning is a type of machine learning framework that employs
artificial intelligence in complex applications, such as self-driving cars, and more. Bae and
Koumoutsakos [9] proposed the multi-agent reinforcement learning method to approximate
the subgrid scale quantity c;(x, t). To briefly illustrate the NN-based reinforcement learning
of the near-wall turbulence, we illustrate the conceptual framework in Fig 1. In this
approach, we consider several fluid parcels to act like agents learning the flow environment
at each time step. Each agent performs an action according to a desired wall-modelled
LES (see [19]) and receives a scalar reward to update the wall shear stress. In order for
the reinforcement learning of agents to be universally applicable, the machine learning
algorithm establishes a relationship between the wall friction velocity and the wall shear
stress (see [9]).

/—> state: sa(,2)

action: aa(z, 2) ~ 7(-[sx(z, 2))

S reward: m(@,2) — "

Figure 1. Distribution of agents, where each agent obtains state information at a distance of /™ from
the wall, computes the reward at the wall, and executes the policy 7 to obtain actions for the next
time step. Reproduced with permission from [9]

3.2. Solving PDEs with neural networks

The application of NNs to construct numerical solution methods for PDEs date back
to the early 1990s [51-53]. Recently, physics-informed neural networks (PINN) [54] have
initiated a surge of ensuing research activity in the deep learning of nonlinear PDEs. The
PINN approach employs NNs to solve PDEs in the simultaneous space-time domain. Here,
we illustrate the PINN method for approximating the solution u : [0, T] x 0 — R of the
following evolutionary PDE [55] :

?)_7;‘+N(u) =0 (xt)€Qx][0,T] 8)

subject to boundary condtions u(x,t) = uy(x,t) for (x,t) € (0,T) x 9Q) and initial con-
ditions u(x,0) = up : QO — R. Using the neural network approach, we find the best
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parameter w for the approximation uy(x,t) =~ u(x,t), where the initial condition and
the boundary conditions provide training data. Then, we minimize the residual (or loss)
R[uw) := 0ty — N U] over a set of scattered grid points in the simultaneous space-time
domain. To construct a solution by a purely data-driven approach, PINN considers a set
of N state-value pairs {(x;, t;, ;) } N, where u; := u(x; t;) is unknown. Then, we seek
for a neural network approximation u(x;, t;) and find the best fit parameter w such that
uw(xi, t;) = u(x;, t;) fori =1,...,N. Finally, uy(x, t) : Q x [0, T] — R denotes a solution
realized by the neural network using the optimal values of the parameter w. Note that the
PINN approach does not require past solution as training data. Instead of minimizing the
standard error |uy (x;,t;) — u(x;, t;)|, the PINN method takes the PDE as the underlying
physics and minimizes the least square residual ||R [u]||5 to find the optimal values of
the parameter w. Several publications [56] reviewed the application of the PINN method
to solve the Navier-Stokes equations. For incompressible flows, PINNs form the neural
network approximation of each velocity components and pressure by minimizing the
residual of Navier-Stokes equations on a set of space-time collocation points.

3.3. Remark

In this section, we have briefly reviewed machine learning framework to accelerate
the LES of turbulent flows. Machine learning of new subgrid models from high-resolution
flow field is a promising approach, but such an artificial inteligence have been prone to
instabilities and their performance on different grid spacing has not been investigated. We
illustrate the neural network pathway to turbulence modelling. The universal approxima-
tion theorem implies that neural networks can find appropriate weights w and minimizes
the bias b to represent a wide variety of interesting functions, such that [57]

y = f(x) =~ wx+b.

The NN approach is a powerful framework that we can adapt to the computation of various
turbulent quantities.

We show that the PINN approach can directly solve a nonlinear PDE. Nevertheless,
solving the Navier-Stokes equations at very large Reynolds number require PINNs to
incorporate a suitable turbulence modelling scheme, which is currently a work-in-progress.
For solving Eq (8), the PINN approach has the flexibility of incorporating subgrid scale
terms through supervised or reinforcement learning approaches. Note that a principle
of machine learning is to provide a probability distribution ¢(x,y) of input-output pair,
while minimizing the loss function (6). Thus, we have enough flexibility “to inform” the
underlying “physics” as we construct universal approximation of fluid flows by neural
networks.

4. Wavelets in computational fluid dynamics
4.1. Background

The wavelet method evolved as a nonlinear approximation of the critical information
in high-dimensional systems. The wavelet-based CFD techniques are efficient algorithms
that map a high-dimensional fluid dynamics phenomena onto a low-dimensional manifold.
Our classical CFD approach is not suitable to deal with the large number of the degrees
of freedom of turbulent flows. The wavelet method projects the turbulent flow onto a
low-dimensional manifold to capture the energy containing motion with a relatively small
number of the wavelet modes (or grid points). The wavelet transform is a convolution
with wavelets, which is translation covariant. It is thus suitable to extract multiscale energy
containing eddies of turbulent motions [58].

In the late 1980s, FARGE and RABREAU [59] introduced for the first time the novel
idea of wavelet-based turbulence modeling (see [3,60-62]). Over the last decade, a number
of new developments have been made. The wavelet method in CFD has evolved in two
directions. First, the coherent vortex simulation (CVS) methodology is based on the idea that
vortex stretching drives the energy cascade phenomena in turbulent flows [63—66]. Since
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nonlinear terms of the Navier-Stokes equations represent vortex stretching, the vorticity
is an appealing candidate for turbulence modelling. Farge et al. [60] have discussed more
details in this direction. The second approach is the adaptive wavelet collocation method
(AWCM) that generalizes the classical turbulence modelling toward a new direction of the
wavelet-based CFD techniques. AWCM follows the hypothesis that the energy cascade
occurs through a hierarchical breakdown of eddies in a localized manner [67]. Many of
the recent developments of AWCM include wavelet adaptive DNS (WA-DNS), wavelet
adaptive LES (WA-LES), wavelet adaptive RANS (WA-RANS), wavelet adaptive DES
(WA-DES), and wavelet adaptive climate model (WAVTRISK) [26,68-71].

Here, we want to highlight the fundamental differences between the CVS and AWCM
in the context of turbulent flows. CVS treats vortex tubes as ‘sinews’ of turbulence [4].
Vortex tubes with diameters between Kolmogorov micro scale and Taylor micro scale are
usually surrounded by the strain field [4]. When a vortex tube is stretched, its circulation is
conserved and it exerts a tensile stress onto the surrounding strain, which cascades energy
toward smaller scales. Since the tube-like vortices occupy a relatively small fraction (~ 1%)
of the total volume, a relatively small number of grid points is necessary to account for a
much larger fraction (10% — 20%) of the turbulence energy dissipation. The main strategy
of CVS is thus to employ wavelets for projecting coherent vortices onto a low-dimensional
manifold, and solve the Navier-Stokes equations on a wavelet basis.

The AWCM is based on the assumption that the energy dissipation is confined to
high wavenumber Fourier modes that are highly localized, whereas the injection of energy
is confined to the low wavenumber Fourier modes. Thus, AWCM employs wavelets to
dynamically adapt the computational grid to capture the localized energy dissipation rates.
AWCM requires a subgrid scale model (e.g. WA-LES) unless the smallest resolved scale
is about the same as the dissipation scale (e.g. WA-DNS). This approach is not compati-
ble with the local production of small-scale vorticity in boundary layers or shear layers.
Nevertheless, simulations of homogeneous isotropic turbulence show that the Reynolds
number scaling of CVS, O(Re?), is slightly higher than that of AWCM (specifically WA-
LES), O (R€2‘75). Recently, Mehta et al. [15], Ge et al. [7], and De Stefano and Vasilyev [26]
covered a detailed review of turbulence modelling by the AWCM approach. Such studies
primarily focused on the promise of wavelet compression and grid adaptation. Below, we
provide a technical overview of the above discussion regarding vortex stretching. Readers
interested in more details are referred to (in particular chapter 5 of) Davidson [4].

4.2. Coherent structure extraction by the CVS and the AWCM methods

Considering that the velocity u as a diagnostic variable via vorticity w = V x u,
three-dimensional Navier-Stokes equations read:
ow 1

—+u-Vwo=w- -Vu+

2
Y e Vow. )

Using the wavelet-based solution @ of Eq (9) in @ = V x i, we find a wavelet filtered
velocity 7, which is an approximation to the solution of the wavelet filtered Navier-Stokes
equations, Eqgs (1-2).

To extract coherent structures by the CVS approach, we split each snapshot of a turbu-
lent flow into two parts. The wavelet filtered vorticity @(x) is given by the inverse wavelet
transform applied to wavelet coefficients whose modulus is larger than the threshold
€ = VAZInN'/3, where Z = (1/2) [ |w|*dx is the total enstrophy. The residual part
w’ = w(x) — @(x) represents the incoherent background. It is worth mentioning that the
CVS decomposition follows one of the best known mathematical results, due to Foias and
Temam [72], that the regularity and uniqueness of the velocity are guaranteed up to a finite
time if the enstrophy (Z) of the flow remains bounded. According to Donoho [73], the
optimal wavelet thresholding corresponds to negligible subfilter scale stresses (via Leonard
decomposition). By the Helmholtz vortex theorem, the vortex-flux through a vortex tube is
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conserved as the tube is stretched, and the strength of a stretched vortex increases in direct
proportion to its length [4].

Taylor [74] considered experimental data to analyze the production of enstrophy in
decaying turbulence generated from wind-tunnel measurements of the velocity. Based upon
the equation for enstrophy production, Taylor [74] argued that enstrophy will be created
when the mean rate of vortex stretching is positive and exceeds the mean destruction of
enstrophy by viscosity. In the AWCM approach, we consider the wavelet filtered velocity
il to extract coherent vortices @ = V X i and solve the wavelet filtered momentum
equations (1-2), instead of directly solving Eq (9). Here, the cumulative effect of discarding
all wavelet modes is associated with the total energy E = (1/2) [ |u|?dx instead of the
total enstrophy, Z [70,75]. Note also that AWCM solves the momentum equations (1-2)
considering the subfilter scale stress terms [7,70], where the effects of the subfilter-scale
stress T° = [u;11; — 11;11;] is not negligible [75,76]. A comparison of the evolution of enstrophy
between CVS and AWCM approaches is crucial in the context of enstrophy production by
vortex stretching.

Applying the curl operator onto Eq (2), we get the vorticity equation associated with
the AWCM approach, which leads to the following form of the wavelet filtered enstrophy
equation:

21—2 — T —7L -2 _ 571 s -
8t(2|w|>_ Sw R€|Vw| [V (T 3trT (VX w). (10)

subgrid enstrophy

The first term on the righthand side of Eq (10) represents inertial-range vortex-stretching.
The last term in Eq (10) (denoted by ‘subgrid enstrophy’) represents the enstrophy flux
to unresolved scales, which is due to the subgrid-scale turbulence modelling because the
AWCM solves Eq (2). Removing the last term from Eq (10) provided the enstrophy evo-
lution of the CVS method. Clearly, in Eq (10), the last term accounts for the enstrophy
production associated with the subgrid model (3). In other word, Eq (10) suggests that a
primary role of the subgrid model (in WA-LES) is to dissipate the subgrid-scale production
of enstrophy [72]. Moreover, CVS method directly accounts for the conservation of circula-
tions, which is essential to ensure that the mean rate of positive vortex-stretching cause the
forward energy cascade to small-scales.

4.2.1. CVS modes of near-wall dynamics

The CVS method employs a nonlinear approximation that designs a good nonlinear
dictionary, and finds the optimal approximation as a linear combination of A/ elements
of the dictionary. The main goal is to identify the CVS modes leading to the best N/-term
approximation of a turbulent flow. CVS is a two stage process. First, we identify the
dictionary of wavelets extracting hidden information of the vorticity field. Second, we
extract the CVS modes by finding the best wavelets associated with the dominant vortical
structures.

Here, we briefly illustrate the CVS method for capturing the near-wall vortices from the
DNS data of a turbulent channel flow. The technical details of the channel flow simulation
is given by Sakurai et al. [77]. Applying the CVS method onto vorticity field, we extract
the coherent flow structure in the near-wall region. It is worth mentioning that standard
techniques, such as the Q-criteria identifies the region where vorticity dominates over the
strain. A region of negative A, the second largest eigenvalue of the tensor Sl-kSk]- + RixRyj,
captures the vortical flow structures. Standard vortex identification criteria uses the velocity
gradient tensor in physical space. In contrast, the CVS modes extracts the hidden patterns
of the vorticity field in Fourier space.

On the top of Fig 2, we show the total vorticity |@| (green) of the DNS of 256 x 256 x
2048 (i.e. ~ 130 millions) grid points. Then, wavelet decomposition was applied to the total
vorticity. On the middle of Fig 2, we show the vorticity |@| (red) of the CVS modes. We
observe that these vortices have been captured by about 7 x 10° of the CVS modes (Fig 2,
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Figure 2. Visualization of total vorticity |w| (green), coherent vorticity |wc| (red) and incoherent
vorticity w; (blue). Reproduced with permission from [77]

red). This number of CVS degrees of freedom is only about 0.55% of the original number of
grid points. The incoherent vorticity is the residual |w — @|, which is shown at the bottom
of Fig 2 (blue). The CVS modes captures the coherent flow, which retains 99.9% of the total
energy and 99.7% of the total enstrophy.

4.2.2. The POD modes of coherent structures

In the late 1960’s, Lumley [2] introduced the POD method, which is an orthogonal
decomposition of a function, u(x, t) : [a,b] x [0, T] — R, given by

e}

u(x, t) = Y cr(t)e(x). (11)

k=0

The decomposition (11) is said to be complete if it converges to all u(x,t) € L2[a, b] for all
t € [0, T]'. The Bessel’s inequality and the Parseval’s equality

[ee) [ee)
Y lloe()P < [Jul> < oo and |[|ul> =Y fll@e(x)|[> < [[u]|>, respectively,
k=0 k=0

guarantee that a finite number of coefficients ¢, = (u, @i)/||@x||? is sufficient for the best
approximation of all u € L?[a,b] for all t € [0, T]. The same decomposition, Eq (11), is
applied to three-dimensional flow field. The coherent structures detected by the POD
modes ¢ (x) represent statistical correlation of the dynamics at various time snapshots.
The POD is a widely used unsupervised machine learning technique in fluid dynamics
to study turbulent flows, but it’s application to turbulence modelling is relatively new. For
3D turbulent flows, the POD method constructs a data-driven basis { ¢ (x) }QL 1 With a near-
optimal dimension N, which represents the spatial coherence of the flow kinematics, while

1 Some texts refer to this a generalized Fourier series of functions satisfying periodic boundary conditions.
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the time evolution of the coefficients {Ck(t)}i\i 1 captures the low-dimensional coherent
dynamics. Thus, the POD method essentially offers an optimal low-dimensional approxi-
mations of high-dimensional fluid data using an orthogonal basis in a certain least-squares
optimal sense.

Here, we employ the best approximation by the POD modes to formulate the Leonard
decomposition of a turbulent flow. Let us consider the POD of velocity snapshots, U,
toward a decomposition of the form ¢ = U +U", where U contains most of the turbulence
kinetic energy if ||[U{”||; is minimized. Such a decomposition is obtained by minimizing the
following Lagrangian

LU, V) = lUl] + MU+ VU= U = U") + gllu —u-u'llp 2

to extract the energy containing motion captured by the POD modes. Note that minimizing
the nuclear norm || - ||, ensures to maximize the TKE over a low-dimensional subspace.
Also, minimizing the norm ||{{"'||; aims to capture the intermittency of turbulence fluc-
tuations. Based on the POD method, we have the Leonard stress Til]f = i;il; — ;1. Here,
we have considered the ensemble average of the low-dimensional POD reconstructions to
form the Leonard stress. The POD method captures the most energy containing coherent
structures, thereby leading to a residual stress to account for the spatio temporal variability
of turbulent flows (see Shinde [78]). Combining a spatial filtering process with the POD
method, we get

uiuj —

j i — i (13)

i

I

=

Su

il = 1

L T
7 ij

Eq (13) takes the standard form of a mixed model [79], where the Leonard stress T is

1

obtained through the POD method and subgrid scale stress 7;; is obtained throug{q a
classical approach. The linear combination of the Leonard (resolved) stress (Tl.l]f) with the
subgrid scale stress (7;;) improves the prediction of the true subfilter scale stress (TZ-S]-). Kang
et al. [80] proposed a mixed subgrid scale model using the NN approach and tested the
performance by simulating isotropic turbulence and turbulent channel flow. In the context
of the present article, we suggest to use the POD method for the resolved stress and the
wavelet method for the subgrid scale stress.

Let us now briefly review the wavelet method and the POD method for dimensionality
reduction while extracting coherent structures. Here, we consider the velocity snapshots
U for a two-dimensional flow past a circular cylinder at Re = 14440 [81]. A column of
U € R2N*M consists of two velocity components [11(x;, yj, tn), v(x;,yj, ta)]" at N grid points
(i,j) and n-th time step. Consider the one-dimensional wavelet transform of each row
of . The wavelet transform produces coefficients that contain energetic information of
the relative local contribution of various frequency bandwidth at each level of wavelet
transform. Fig 3a shows the energy distribution of wavelet components. The cumulative
energy at each successive level of wavelet decomposition is also show.

We have compared the relative energy per wavelet modes with that of the POD modes.
Fig 3b shows the energy distribution of POD modes. Fig 3 compares the energy distribution
of wavelet modes (Fig 34) and POD modes (Fig 3b). The first four wavelet components
contain 88% of the total kinetic energy. The wavelet components of levels 1 and 2 makes the
largest contribution, accounting for 32% and 45% energy, respectively. The first four POD
modes are the most energetic, containing 80% of the total kinetic energy. The first and the
second POD modes contribute 41% and 32% energy, respectively). The energy distribution
of first two wavelet components is similar with first two POD modes [82].

4.3. Space-time wavelet and neural networks

Here, we solve the one-dimensional Burgers equation to illustrate both the space-time
adaptive wavelet method [83] and the PINN method [55] for solving PDEs. The wavelet
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Figure 3. The distribution of energy a) in wavelet modes and b) POD modes. Reproduced with

permission from [81].

method finds the optimal number of the wavelet modes to formulate the best approximation
uw(x,t) = u(x,t) of the solution. Each wavelet mode is associated with a grid point. Thus,
discarding a wavelet mode discards the corresponding grid point. Interested readers may
find a technical details of the space-time wavelet method given by Alam et al. [83].

This work has implemented the PINN method in Python using the TensorFlow envi-
ronment. Our code has been adapted from Raissi et al. [55]. Note that the PINN method
finds the best approximation uy (x, t) ~ u(x, t) of the solution by finding the optimal values
of the parameter w. Both methods minimize the residual R [u,] given by Eq (6), and capture
the solution on a set of collocation points in the simultaneous space-time domain.

(a) (b)

0.4

+ 0.2

f
+~ 0.21

A m -

Figure 4. (a) The approximate solution u(x, t) by the PINN method. (b) A comparison of u(x, t) at
t = 0and t = 0.4 between the PINN method and the wavelet method. (c) The grid used by the PINN
method. (d) The grid used by the wavelet method (reproduced with permission from [83].

Fig 4a,b compares the solution u(x, t) between the two methods. We see from Fig 4c
that PINNSs aim to optimize the values of the parameter w on a set of collocation points.
There is no requirement to adjust the location or the number of grid points. Moreover, PINN
seeks for a linear approximation of the form y = wx + b, where the activation through
hidden layers accounts for the underlying nonlinearity.
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5. Conclusion and future direction

Wavelet-based turbulence modelling is only over a 30 years old research topic. While
many researchers have thoroughly investigated the AWCM and the CVS methods, their
applicability remains limited by the underlying mathematical complexity of wavelet trans-
forms [26,84]. The CVS method has evolved under the assumption that vortex-stretching is
a primary mechanism for the energy cascade. CVS does not require to solve a turbulence
closure problem. The computational complexity of the CVS method is about the same
as that of the wavelet-based LES method [15]. In contrast, the AWCM assumes that the
fidelity of subgrid models depends on the local grid refinement to ensure that subgrid
scales are approximately isotropic. Thus, the AWCM can drastically reduce the compu-
tational complexity of the LES method. A substantial number of articles demonstrated
wavelet-based RANS, DES, and LES techniques for numerical simulation of compressible
and incompressible flows [15].

The applications of wavelet transforms and artificial intelligence in turbulence mod-
elling are relatively new areas of research. This review clearly identifies two overarching
challenges in the development of artificial intelligence in subgrid models of turbulence. In
turbulence modelling, we first need an optimal low-dimensional representation of nonlin-
ear dynamics and the large-scale turbulent motion. This is a principal hypothesis of LES,
where (implicit) filtering captures the low-dimensional, coarse-grained flow features. A
comparison of PINNs solution of Burgers equation with that for space-time wavelet indi-
cate that neural networks are efficient to learn the dynamics; however, wavelets are efficient
for a compressed representation of the dynamics. Thus, neural networks may provide a
good approximation to the turbulence closure problem. In contrast, the wavelet-based LES
learns the physics of turbulence.

Recent developments in the applications of neural networks in turbulence modelling
aims to speed-up the computational cost of solving the Navier-Stokes equations. A formal
description of the speed-up of CFD calculations by neural networks is not available from
the literature. Some studies indicate a 20% speed-up of CFD calculations if machine
learning takes care of some of the costly elements of turbulence modelling. The space-time
adaptive wavelet collocation method developed by Alam et al. [83] is similar to the recent
developments of physics informed neural networks proposed by Raissi et al. [55]. There
are potential new research directions on the applications of neural networks and wavelet
transfroms in understanding many unresolved problems of fluid’s turbulence.
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