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Abstract: This article examines the wavelet transforms and the machine learning methods in accelerat- 1

ing large eddy simulations of turbulent flows. An overarching challenge of large eddy simulations is 2

to accurately represent the cascade of kinetic energy across the cut-off length scale. Taylor hypothesis 3

suggests that the energy cascade occurs through the process of vortex stretching. However, Richard- 4

son hypothesis assumes the self-amplification of the strain field and a hierarchical break down of large 5

eddies lead the energy cascade. The large eddy simulations typically employs the self-amplification 6

of the strain in formulating subgrid models. However, several studies also proposed subgrid models 7

based on vortex stretching. The wavelet-based coherent vortex simulation of turbulence directly 8

accounts for vortex stretching in overall forward scatter of energy, while allowing local backscatter. 9

The wavelet-based large eddy simulation adapts the grid to capture the creation of small-scale eddies, 10

while adopting subgrid models based on the self-amplification of strain. The advancement of artificial 11

intelligence in turbulence modelling is currently evolving around accelerating the numerical simu- 12

lations of turbulent flow. However, there is a clear connection between the application of wavelet 13

transfroms and neural networks for directly solving the Navier-Stokes equation, indicating some 14

potential benefits of wavelet methods over the neural networks. 15

Keywords: large eddy simulation; vortex stretching; subgrid model; isotropic turbulence. 16

1. Introduction 17

Turbulence is a multiscale process consisting of localized coherent vortices that coexist 18

at a wide range of length and time scales [1–3]. Therefore, identifying and capturing 19

the localized flow features in turbulence are crucial to understanding and controlling 20

turbulence [4,5]. Recent advances in wavelet method (e.g. [6,7]) and machine learning 21

(e.g. [8,9]) aim to address these issues and complement the existing turbulence modeling 22

approaches [10]. This article reviews the recent progresses in applications of machine 23

learning and wavelet transforms in turbulence modeling. These two approaches have great 24

promise and potential to become the methodological portfolio of turbulent fluid dynamics. 25

Machine learning and turbulence modeling are two distinct fields that offer fertile 26

ground to the data-driven paradigm [8]. Both fields exploit the coherence property un- 27

derlying high-dimensional systems. Machine learning leverages the coherence of data to 28

improve performance on some sets of tasks. It uses optimization algorithms to learn a set 29

of parameters and gradually enhance its learning rates. Machine learning methods are 30

an essential part of the methodological portfolio of the growing field of data science. Re- 31

searchers have recently applied machine learning methods to fluid mechanics ranging from 32

flow control to turbulence modeling [11–14]. As machine learning continues to augment 33

traditional methods, the demand of dedicated algorithms for solving the Navier-Stokes 34

equations has also grown simultaneously. 35

The Navier-Stokes equations characterize turbulence at large Reynolds numbers (Re). 36

Solving these equations at high Re remains daunting. The study of the Naiver-Stokes 37

equations and turbulence plays a significant role in all technologies involving fluids. For 38

instance, turbulence-induced drag causes vehicles to emit 2 Gigatons of CO2 annually, 39
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about 5% of the world’s energy usage. Capturing a turbulent flow at typical values of 40

Re ∼ 108 requires millions of terabytes of data. The growth of turbulence data from 41

experiments, field measurements, and numerical simulations is remarkable. Moreover, the 42

growth of methods in handling such a fluid data have put current generation researchers at 43

the confluence of vast and increasing volumes of data and algorithms. The wavelet method 44

aims to optimize such algorithms. Using wavelet-based algorithms in turbulence modeling, 45

our goal is to optimize first-principle conservation laws by predicting the evolution of the 46

coherent structures of turbulent fluid flows. 47

In the early 1990, Farge [3] reviewed the application of wavelet transforms to study 48

turbulence, covering a general presentation of both the continuous wavelet transform 49

and the discrete wavelet transform. In 2010, Schneider and Vasilyev [6] reviewed the 50

application of wavelet transforms in computational fluid dynamics (CFD). Recently, Mehta 51

et al. [15] documented the new developments of the adaptive wavelet collocation method 52

(AWCM) as a technique for solving partial differential equations (PDEs). Brunton et al. [8] 53

documented the concept of machine learning in fluid dynamics. In this article, we outline 54

recent progresses in classical turbulence modelling, focus on the application of machine 55

learning in turbulence modeling, and finally, discuss the potential route to address current 56

turbulence modelling issues by combining wavelet method with machine learning. 57

1.1. Outline 58

Section 2 provides an overview of turbulence modeling in the context of large eddy 59

simulation (LES). Section 3 summarizes current trends in advancements of machine learning 60

algorithms in CFD and turbulence modeling. Section 4 summarizes the wavelet-based 61

turbulence modelling strategy. 62

2. Turbulence modeling background 63

The direct numerical simulation (DNS) uses a fine grid to capture the entire spec- 64

trum of turbulence eddies. In contrast, the Reynolds averaged Navier-Stokes simulation 65

(RANS) uses a coarse to represent the full range of turbulence eddies through the closure 66

approximation scheme. LES is intermediate to DNS and RANS, which resolves a significant 67

fraction of turbulent eddies and uses a subgrid model for the unresolved eddies. We see 68

from the following discussion that the primary difference between LES and RANS comes 69

from the turbulence closure models for the partially unresolved and entirely unresolved 70

turbulent motions, respectively. 71

2.1. Filtering 72

The first step in formulating LES is the convolution of the velocity u(x, t) : [a, b]×
[0, T]→ R with a kernel G(r) such that

ū(x, t) =
∫ ∞

−∞
u(x− r, t)G(r)dt.

In the following, we say that ūi(x, t) is the i-th component of the wavelet-filtered velocity 73

if G(r) is a wavelet; otherwise, it is called filtered velocity. We use bold-faced symbols 74

to denote a quantity in the 3D Euclidean space and subscript i (or j and k) to denote 75

standard tensorial representations considered in fluid dynamics. We remind readers that 76

the discretization technique serves as an implicit filter G(r) unless an explicit filter is 77

mentioned. Moreover, the wavelet filter is a special form of the explicit filter. 78

2.2. The filtered Navier-Stokes system 79

The temporal evolution of the large-scale dynamics of a fluid system is given by 80

filtered Navier-Stokes equations: 81

∂ūi
∂xi

= 0, (1)
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82

∂ūi
∂t

+ ūj
∂ūi
∂xj

= −1
ρ

∂P̄
∂xi

+
∂

∂xj

(
2νSij − τij

)
, (2)

and 83

τij −
1
3

τkkδij = −2ντSij. (3)

The filtering operator (·) extracts the energy containing significant motion. The effect of 84

discarding residual motion is represented by the subfilter-scale turbulence stress τs
ij = 85

uiuj − ūiūj. In Eqs (2-3), the subgrid scale stress τij is an approximation of the subfilter 86

scale stress τs
ij. We keep this notation to clarify that subgrid scale stresses are not the same 87

as the true subfilter scale stresses. The divergence of the symmetric part of the velocity 88

gradient tensor, Sij = (1/2)(∂ui/∂uj + ∂uj/∂ui), becomes a Laplacian due to Eq (1), and 89

thus, Eq (3) is an ideal candidate to model turbulence, where ντ(x, t) = cs(x, t)∆2
√

2SijSij. 90

The amplification of the strain-rate tensor Sij plays a direct role in the classical subgrid 91

models of LES. 92

2.3. Classical LES 93

In classical LES, we treat a coarse-grid approximation of the fluid velocity ūi(x, t) as a
filtered representation of the ground truth ui(x, t) and employ the closure scheme to model
the subfilter-scale stress τs

ij [10,16]. Over the last three decades, there have been promising
progresses in LES of turbulence [16]. Various developments of subgrid-scale models have
been an integral part of the LES of turbulence. In general, LES finds an approximation
of the subfilter-scale stress τs

ij as a function of the symmetric part of the velocity gradient
tensor and a dynamic parameter cs(x, t), such as

τs
ij ≈ τij ≡ Π(cs,Sij).

Note that

∂ui
∂xj

=

strain, Sij︷ ︸︸ ︷
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
+

1
2

(
∂ui
∂xj
−

∂uj

∂xi

)
︸ ︷︷ ︸

vorticity, Rij

.

Clearly, the subgrid model Eq (3) excludes the vorticity. Also, the dynamic evaluation of 94

cs(x, t) has been a major focus in turbulence modeling. This is one of the most challenging 95

and computationally intensive elements of LES. 96

A principal open challenge is to represent the eddy viscosity ντ in Eq (3) when the 97

discretization of Eqs (1-2) becomes sufficient to capture a major proportion of large eddies 98

(i.e. about 80% of the kinetic energy [10]). Each of the commonly used models differs 99

depending on how we calculate cs(x, t) to dynamically adapt the eddy viscosity ντ to the 100

multiscale nature of the problem. A fine grid that is sufficient to resolve most of the eddies 101

at a particular time in a region may become insufficient at another time. The range of grid 102

resolution in which turbulence is insufficiently resolved in some part of the domain and 103

becomes full resolved is other parts called the grey zone of atmospheric turbulence. For 104

instance, in the atmospheric boundary layer turbulence, the energy-containing eddies’ size 105

is locally reduced by both the frictional effects of the earth’s surface and the thermal stratifi- 106

cation. Honnert et al. [17] reviewed the current state-of-the-art in ‘grey-zone’ turbulence 107

modelling, where neither the LES nor the RANS model is appropriate [18]. 108

For LES of wall-bounded turbulent flows, specialized treatments of the eddy viscos- 109

ity ντ become essential, which is called wall-modelled LES. Bose and Park [19] recently 110

reviewed various formulations of the wall-modelled LES. Readers interested in other de- 111

velopments of the eddy viscosity ντ may consider the recent work of Moser et al. [16]. An 112

interesting open question is whether the existing LES techniques adequately capture a 113
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number of geometric and statistical phenomena, such as the alignment of vorticity with 114

respect to the strain rate eigenvectors, non-Gaussian statistics, and intermittency [20–22]. 115

Another question is whether the dynamic adaption of cs in formulating the eddy viscosity 116

by Eq (3) can account for the subgrid scale production via vortex stretching [22,23]. 117

Recent developments in machine learning and wavelet methods aim to address some 118

of the above questions. Kurz et al. [24] covers the recent progresses, challenges and promises 119

of machine learning methods applied to large eddy simulation (LES) of turbulence (see also 120

[25]). Schneider and Vasilyev [6], and De Stefano and Vasilyev [26] have thoroughly covered 121

the promise of wavelet methods in addressing the above questions. In the atmosphere and 122

oceans, turbulence is heterogenous, anisotropic, and scale-dependent. Scale-aware subgrid 123

models automatically adjust their effects according to the changes of grid resolution, grid 124

orientation, and fraction of resolved flow. 125

2.4. Scale-adaptive LES 126

Recently, we have developed the scale-adaptive LES methodology to formulate the 127

eddy viscosity ντ in Eq (3) via the idea of energy casecade by vortex stretching. Menter and 128

Egorov [27] presented a scale-adaptive simulation, which adapts the RANS model with 129

the LES model. For example, RANS model is applied in a particular region, where the 130

grid is locally insufficient to capture energetic fluctuations (such as in a close proximity 131

of walls), and switches off to LES model otherwise. In the atmospheric boundary layer 132

simulations, such hybrid RANS/LES methods are applied at O(100) m to O(1000) m 133

horizontal grid spacing. If we achieve the scale adaptivity by blending two models, the 134

turbulence dissipation from RANS model may also suppress the generation of LES content 135

in the RANS/LES interface [28,29]. 136

The scale-adaptive LES may address such a problem by considering that turbulence 137

consists of vortices in nonlinear interactions. However, we do not have a sufficient knowl- 138

edge of the vorticity production by nonlinear instabilities, e.g., in boundary layers due 139

to the duality between physical localization and spectral localization. To account for the 140

vorticity dynamics in scale-adaptive LES of atmospheric turbulence over complex terrain, 141

Bhuiyan and Alam [30] considered the scale-similarity assumption [31], which states that 142

the subfilter scale stress τs
ij equals the resolved stresses τL

ij = ˜̄uiūj − ˜̄ui ˜̄uj at scales between ∆ 143

and α∆ (with α ≥ 1) [32,33]. Here, we apply an explicit filtering in addition to the implicit 144

filtering, where ∆ and α∆ refer to the resolved length scales of implicit and explicit LES 145

filtering, respectively. 146

Using the Taylor expansion of ui(x, t) surrounding an arbitrary point in the flow
the Leonard (resolved) stress is analytically equivalent to τL

ij = ∆2GikGkj, where Gij =

∂ui/∂xj [33,34]. That is to say, the second invariant of the Leonard stress, as it can be
expressed in the following form

QL = −1
4

[
SijωjSikωk +

1
3
(GijGij)

2
]

accounts for vortex stretching SijωjSikωk and the relative significance of the vorticity over
the strain. Here, Q = −(1/2)(GijGij)

2 is the Q-criterion for vortex identification. Further,
the energy flux associated with the Leonard stress

−Sijτ
L
ij = ck∆2

[
−SijSjkSki +

1
4

ωiωjSij

]
indicates that a negative skewness of the strain −SijSjkSki along with a positive value of 147

the enstrophy production by vorticity stretching ωiωjSij would extract energy by small- 148

scale vortex stretching when the large-scale strain is enhanced. This observation suggest 149

the existence of a functional of τL
ij , which may be in the form of its second invariant, 150

and represents the local rate of dissipation in turbulent flows. Based on the dimensional 151
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reasoning, we form a functional that maps the space of the velocity gradient tensor to that 152

of turbulence kinetic energy, which takes the following form: 153

ksgs(x, t) =
∆2
(

1
2SijωjSikωk +

1
6 (GijGij)

2
)3

[
(SijSij)5/2 +

(
1
2SijωjSikωk +

1
6 (GijGij)2

)5/4
]2 . (4)

To further extend the aforementioned discussion, we follow Deardorff [35] to form the 154

following subgrid scale model: 155

τij −
1
3

τkkδij = −ck∆
√

ksgsSij. (5)

In Eq (4), the consideration of vorticity is important from a dynamical point of view because 156

Helmholtz and Kelvin theorems have set vorticity as the essential field that triggers the 157

fluctuations of velocity. This view shares that of Farge [3] and Chorin [36] who advocate 158

for vorticity as the computational element of turbulent flows. 159

2.5. Remark 160

In this section, we show that the turbulence energy cascade occurs through the process 161

of vortex stretching, but vortex stretching is not the main elements of the commonly used 162

subgrid models in LES. We illustrate one way of incorporating vortex stretching in scale- 163

adaptive LES. We have considered an explicit form the Leonard stresses to lay a vortex 164

stretching-based LES framework. We show in the later section that the wavelet transforms 165

and the proper orthogonal decomposition (POD) method are two promising and attractive 166

tools to explicitly compute the Leonard stresses for scale-adaptive LES. Machine learning 167

of suibgrid models provide one possible route to the evarlasting problem of turbulence 168

given the availabiblity of high-resolution taining data. 169

3. Machine learnig in computational fluid dynamics 170

Machine learning is a modeling framework for artificial intelligence, which has re- 171

cently become a core technology in data science [37]. In fluid dynamics, we are interested 172

in adopting some of the advantages of machine learning to accelerate CFD/DNS calcula- 173

tions [5], improve subgrid-scale modeling [13], or derive reduced order models of fluid 174

flows [38]. CFD/DNS caculations are often computationally demanding but highly ac- 175

curate. In contrast, machine learning models may run faster than CFD models [8]. For 176

instance, solving the Poisson equation for pressure is one of the computationally extensive 177

step of CFD/DNS, which can be accelerated by adopting a machine learning algorithm [39]. 178

Thus, our parsimonious objectives are twofold. First, we want to employ machine learning 179

to extract a compact latent representation of high-dimensional dynamics, while accounting 180

for the underlying non-linearity into a low-dimensional manifold [40]. In other words, we 181

need to learn both the (nonlinear) differential operator underlying a data and the associated 182

forces, e.g., if the data represents some fluid-structure interactions. Second, we want an 183

optimal reconstruction/prediction of the high-dimensional data in a low-dimensional man- 184

ifold. Thus, to accelerate CFD calculations, we look for solutions from a low-dimensional 185

manifold, while penalizing the size of the solution vector [41]. 186

A machine learning algorithm finds an approximation φ(x, y, w) that assigns an input 187

x to an output y with respect to a set of parameters w. Given a set of observations y(x), we 188

look for parameters w to formulate an approximation y(x) ≈ φ(x, y, w). The approximation 189

is weighted by some probability distribution σ(x, y) that constrains the parameter w with 190

respect to observations y(x). The expected loss or the residual of such approximation is 191

given by 192

R[w] =
∫

L(y, φ(x, y, w))σ(x, y)dxdy (6)
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where L(·) is a measure of some objectives such as accuracy, smoothness, cost, etc. The 193

precise form of φ(x, y, w) is found during the learning (aka training) phase. In other words, 194

a set of parameters w is determined to minimize the expected lossR[w]. Once the model 195

is learned, it can determine the best match of a new input x to a target output y. Various 196

algorithms of machine learning are grouped into three main catagories. 197

Unsupervised learning is an algorithm that finds an approximation φ(x, y, w) to rep- 198

resent the self-organization of input x to groups of output y. Examples of unsupervised 199

learning in data science include clustering, anomaly detection, etc. In fluid mechanics, 200

the energy spectrum is a low-dimensional projection of turbulent flows, which clusters 201

turbulence kinetic energy in spherical shells of wavenumbers. The POD method organizes 202

the variability of turbulent flow to recognize coherent patterns of turbulence. 203

Supervised machine learning is the process that comprises some existing observations 204

of the target output corresponding to the approximate model φ(x, y, w). For instance, neural 205

networks can approximate the underlying functional between observations and targets. 206

The observations allow to explicitly define the loss, e.g.,R[w] = ||y− φ(x, y, w)||2, which 207

may be regularized, such asR[w] = ||y− φ(x, y, w)||2 + (λ/2)||w||2. The direct numerical 208

simulation (DNS) of turbulent flows observes velocity and pressure and minimizes the loss 209

of mapping the observations to the solution (i.e. target) of Navier-Stokes equations. DNS of 210

incompressible flows employs various regularization algorithms to minimize additional 211

pressure loss. Researchers have extensively utilized the DNS algorithm to learn fluids and 212

control various machines that operate through fluids. The potential for artificial intelligence 213

in aerospace and fluid machinary evolved several new numerical optimization schemes 214

through the developments in CFD in the early 1980s. 215

Reinforcement learning finds suitable actions to take in a given situation to maximize a 216

reward. The idea is that a learning algorithm would discover the optimal model for a target 217

by trial and error. For instance, in LES of turbulence, each grid point is an agent that learns 218

the subgrid-scale turbulent environment receiving rewards in the form of dissipation rates 219

or eddy viscosity. 220

The brief discussion above has set the common CFD portfolio in the machine learning 221

framework. It is necessary to understand the algorithmic framework if we want to develop 222

machine learning techniques in fluid dynamics. Machine learning can undoubtedly become 223

a critical tool in several other aspects of CFD and flow modeling, which have not been 224

discussed above. Developing and adapting machine learning algorithms that accelerate a 225

CFD approach is crucial. Fluid dynamics presents additional challenges from its underlying 226

physics and dynamics, which differs from those in data science. CFD utilizes centuries-old 227

developments in fluid dynamics, which are based on first principles. Combining first 228

principles with data-driven algorithms has the potential to impact both CFD and machine 229

learning. 230

3.1. Neural networks and LES 231

To improve the performance of LES, such as in atmospheric boundary layer flows, the 232

SGS quantity cs(x, t) and the wall shear stress τw(x1, x2, 0, t) are computed dynamically 233

as the calculation progresses. This step of LES is computationally expensive, and strictly 234

related to the local conditions of the flow [19,42]. The Reynolds number scaling for LES 235

of such wall-bounded turbulent flows is in the range of Re9/5 to Re13/7. Resolving the 236

relevant detail of the flow phenomena requires trillions of grid points. 237

Machine learning of cs(x, t) and/or τw(x1, x2, 0, t) can significantly reduce the com- 238

putational cost of LES. Here, we consider data-driven turbulence closure models based 239

on supervised machine learning by neural network (NN) [43,44]. The artificial NNs are 240

parameterized class of nonlinear maps, φ(x, y, w). The application of NNs in subgrid 241

scale turbulence modelling is a very innovative idea [45]. It is important to note that NNs 242

provide universal approximations of nonlinear maps, albeit the same could be achieved by 243

conventional orthogonal bases. In the following discussion, we consider 9 components of 244
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the velocity gradient tensor and 6 components of the resolved Reynolds stress to define the 245

subgrid scale quantity cs(x, t). NNs are trained to learn the following nonlinear map 246

cs(x, t) = Π

(
∂ui
∂xj

, τij

)
. (7)

Thus, for a subset of grid points, we need to find the best weight vector w of 15 elements 247

so that the bias between cs and Π are minimized. Sarghini et al. [45] observed that the 248

LES data for a duration of two eddy turn over time units were sufficient to model cs(x, t) 249

for turbulent channel flow at Taylor scale Reynolds number 180. We also highlight the 250

work of Novati et al. [46] regarding reinforcement learning of cs(x, t) for homogeneous 251

isotropic turbulence at moderate Reynolds numbers. Several recent investigations have 252

applied NNs to predict a “perfect” SGS stress tensor that accelerates the LES of turbulent 253

flows [13,47–50]. 254

Note that reinforcement learning is a type of machine learning framework that employs 255

artificial intelligence in complex applications, such as self-driving cars, and more. Bae and 256

Koumoutsakos [9] proposed the multi-agent reinforcement learning method to approximate 257

the subgrid scale quantity cs(x, t). To briefly illustrate the NN-based reinforcement learning 258

of the near-wall turbulence, we illustrate the conceptual framework in Fig 1. In this 259

approach, we consider several fluid parcels to act like agents learning the flow environment 260

at each time step. Each agent performs an action according to a desired wall-modelled 261

LES (see [19]) and receives a scalar reward to update the wall shear stress. In order for 262

the reinforcement learning of agents to be universally applicable, the machine learning 263

algorithm establishes a relationship between the wall friction velocity and the wall shear 264

stress (see [9]).

Figure 1. Distribution of agents, where each agent obtains state information at a distance of hm from
the wall, computes the reward at the wall, and executes the policy π to obtain actions for the next
time step. Reproduced with permission from [9]

265

3.2. Solving PDEs with neural networks 266

The application of NNs to construct numerical solution methods for PDEs date back 267

to the early 1990s [51–53]. Recently, physics-informed neural networks (PINN) [54] have 268

initiated a surge of ensuing research activity in the deep learning of nonlinear PDEs. The 269

PINN approach employs NNs to solve PDEs in the simultaneous space-time domain. Here, 270

we illustrate the PINN method for approximating the solution u : [0, T]×Ω → R of the 271

following evolutionary PDE [55] : 272

∂u
∂t

+N (u) = 0 (x, t) ∈ Ω× [0, T] (8)

subject to boundary condtions u(x, t) = ub(x, t) for (x, t) ∈ (0, T)× ∂Ω and initial con- 273

ditions u(x, 0) = u0 : Ω → R. Using the neural network approach, we find the best 274
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parameter w for the approximation uw(x, t) ≈ u(x, t), where the initial condition and 275

the boundary conditions provide training data. Then, we minimize the residual (or loss) 276

R[uw] := ∂tuw −N [uw] over a set of scattered grid points in the simultaneous space-time 277

domain. To construct a solution by a purely data-driven approach, PINN considers a set 278

of N state-value pairs {(xi, ti, ui)}N
i=1, where ui := u(xi, ti) is unknown. Then, we seek 279

for a neural network approximation uw(xi, ti) and find the best fit parameter w such that 280

uw(xi, ti) = u(xi, ti) for i = 1, . . . , N. Finally, uw(x, t) : Ω× [0, T] → R denotes a solution 281

realized by the neural network using the optimal values of the parameter w. Note that the 282

PINN approach does not require past solution as training data. Instead of minimizing the 283

standard error |uw(xi, ti)− u(xi, ti)|, the PINN method takes the PDE as the underlying 284

physics and minimizes the least square residual ||R[uw]||22 to find the optimal values of 285

the parameter w. Several publications [56] reviewed the application of the PINN method 286

to solve the Navier-Stokes equations. For incompressible flows, PINNs form the neural 287

network approximation of each velocity components and pressure by minimizing the 288

residual of Navier-Stokes equations on a set of space-time collocation points. 289

3.3. Remark 290

In this section, we have briefly reviewed machine learning framework to accelerate
the LES of turbulent flows. Machine learning of new subgrid models from high-resolution
flow field is a promising approach, but such an artificial inteligence have been prone to
instabilities and their performance on different grid spacing has not been investigated. We
illustrate the neural network pathway to turbulence modelling. The universal approxima-
tion theorem implies that neural networks can find appropriate weights w and minimizes
the bias b to represent a wide variety of interesting functions, such that [57]

y = f (x) ≈ wx + b.

The NN approach is a powerful framework that we can adapt to the computation of various 291

turbulent quantities. 292

We show that the PINN approach can directly solve a nonlinear PDE. Nevertheless, 293

solving the Navier-Stokes equations at very large Reynolds number require PINNs to 294

incorporate a suitable turbulence modelling scheme, which is currently a work-in-progress. 295

For solving Eq (8), the PINN approach has the flexibility of incorporating subgrid scale 296

terms through supervised or reinforcement learning approaches. Note that a principle 297

of machine learning is to provide a probability distribution σ(x, y) of input-output pair, 298

while minimizing the loss function (6). Thus, we have enough flexibility “to inform” the 299

underlying “physics” as we construct universal approximation of fluid flows by neural 300

networks. 301

4. Wavelets in computational fluid dynamics 302

4.1. Background 303

The wavelet method evolved as a nonlinear approximation of the critical information 304

in high-dimensional systems. The wavelet-based CFD techniques are efficient algorithms 305

that map a high-dimensional fluid dynamics phenomena onto a low-dimensional manifold. 306

Our classical CFD approach is not suitable to deal with the large number of the degrees 307

of freedom of turbulent flows. The wavelet method projects the turbulent flow onto a 308

low-dimensional manifold to capture the energy containing motion with a relatively small 309

number of the wavelet modes (or grid points). The wavelet transform is a convolution 310

with wavelets, which is translation covariant. It is thus suitable to extract multiscale energy 311

containing eddies of turbulent motions [58]. 312

In the late 1980s, FARGE and RABREAU [59] introduced for the first time the novel 313

idea of wavelet-based turbulence modeling (see [3,60–62]). Over the last decade, a number 314

of new developments have been made. The wavelet method in CFD has evolved in two 315

directions. First, the coherent vortex simulation (CVS) methodology is based on the idea that 316

vortex stretching drives the energy cascade phenomena in turbulent flows [63–66]. Since 317
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nonlinear terms of the Navier-Stokes equations represent vortex stretching, the vorticity 318

is an appealing candidate for turbulence modelling. Farge et al. [60] have discussed more 319

details in this direction. The second approach is the adaptive wavelet collocation method 320

(AWCM) that generalizes the classical turbulence modelling toward a new direction of the 321

wavelet-based CFD techniques. AWCM follows the hypothesis that the energy cascade 322

occurs through a hierarchical breakdown of eddies in a localized manner [67]. Many of 323

the recent developments of AWCM include wavelet adaptive DNS (WA-DNS), wavelet 324

adaptive LES (WA-LES), wavelet adaptive RANS (WA-RANS), wavelet adaptive DES 325

(WA-DES), and wavelet adaptive climate model (WAVTRISK) [26,68–71]. 326

Here, we want to highlight the fundamental differences between the CVS and AWCM 327

in the context of turbulent flows. CVS treats vortex tubes as ‘sinews’ of turbulence [4]. 328

Vortex tubes with diameters between Kolmogorov micro scale and Taylor micro scale are 329

usually surrounded by the strain field [4]. When a vortex tube is stretched, its circulation is 330

conserved and it exerts a tensile stress onto the surrounding strain, which cascades energy 331

toward smaller scales. Since the tube-like vortices occupy a relatively small fraction (∼ 1%) 332

of the total volume, a relatively small number of grid points is necessary to account for a 333

much larger fraction (10%− 20%) of the turbulence energy dissipation. The main strategy 334

of CVS is thus to employ wavelets for projecting coherent vortices onto a low-dimensional 335

manifold, and solve the Navier-Stokes equations on a wavelet basis. 336

The AWCM is based on the assumption that the energy dissipation is confined to 337

high wavenumber Fourier modes that are highly localized, whereas the injection of energy 338

is confined to the low wavenumber Fourier modes. Thus, AWCM employs wavelets to 339

dynamically adapt the computational grid to capture the localized energy dissipation rates. 340

AWCM requires a subgrid scale model (e.g. WA-LES) unless the smallest resolved scale 341

is about the same as the dissipation scale (e.g. WA-DNS). This approach is not compati- 342

ble with the local production of small-scale vorticity in boundary layers or shear layers. 343

Nevertheless, simulations of homogeneous isotropic turbulence show that the Reynolds 344

number scaling of CVS, O(Re3), is slightly higher than that of AWCM (specifically WA- 345

LES), O(Re2.75). Recently, Mehta et al. [15], Ge et al. [7], and De Stefano and Vasilyev [26] 346

covered a detailed review of turbulence modelling by the AWCM approach. Such studies 347

primarily focused on the promise of wavelet compression and grid adaptation. Below, we 348

provide a technical overview of the above discussion regarding vortex stretching. Readers 349

interested in more details are referred to (in particular chapter 5 of) Davidson [4]. 350

4.2. Coherent structure extraction by the CVS and the AWCM methods 351

Considering that the velocity u as a diagnostic variable via vorticity ω = ∇ × u, 352

three-dimensional Navier-Stokes equations read: 353

∂ω

∂t
+ u ·∇ω = ω ·∇u +

1
Re
∇2ω. (9)

Using the wavelet-based solution ω̄ of Eq (9) in ω̄ = ∇× ū, we find a wavelet filtered 354

velocity ū, which is an approximation to the solution of the wavelet filtered Navier-Stokes 355

equations, Eqs (1-2). 356

To extract coherent structures by the CVS approach, we split each snapshot of a turbu- 357

lent flow into two parts. The wavelet filtered vorticity ω̄(x) is given by the inverse wavelet 358

transform applied to wavelet coefficients whose modulus is larger than the threshold 359

εopt =
√

4Z lnN/3, where Z = (1/2)
∫
|ω|2dx is the total enstrophy. The residual part 360

ω′ = ω(x)− ω̄(x) represents the incoherent background. It is worth mentioning that the 361

CVS decomposition follows one of the best known mathematical results, due to Foias and 362

Temam [72], that the regularity and uniqueness of the velocity are guaranteed up to a finite 363

time if the enstrophy (Z) of the flow remains bounded. According to Donoho [73], the 364

optimal wavelet thresholding corresponds to negligible subfilter scale stresses (via Leonard 365

decomposition). By the Helmholtz vortex theorem, the vortex-flux through a vortex tube is 366
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conserved as the tube is stretched, and the strength of a stretched vortex increases in direct 367

proportion to its length [4]. 368

Taylor [74] considered experimental data to analyze the production of enstrophy in 369

decaying turbulence generated from wind-tunnel measurements of the velocity. Based upon 370

the equation for enstrophy production, Taylor [74] argued that enstrophy will be created 371

when the mean rate of vortex stretching is positive and exceeds the mean destruction of 372

enstrophy by viscosity. In the AWCM approach, we consider the wavelet filtered velocity 373

ū to extract coherent vortices ω̄ = ∇ × ū and solve the wavelet filtered momentum 374

equations (1-2), instead of directly solving Eq (9). Here, the cumulative effect of discarding 375

all wavelet modes is associated with the total energy E = (1/2)
∫
|u|2dx instead of the 376

total enstrophy, Z [70,75]. Note also that AWCM solves the momentum equations (1-2) 377

considering the subfilter scale stress terms [7,70], where the effects of the subfilter-scale 378

stress τs = [uiuj− ūiūj] is not negligible [75,76]. A comparison of the evolution of enstrophy 379

between CVS and AWCM approaches is crucial in the context of enstrophy production by 380

vortex stretching. 381

Applying the curl operator onto Eq (2), we get the vorticity equation associated with 382

the AWCM approach, which leads to the following form of the wavelet filtered enstrophy 383

equation: 384

∂

∂t

(
1
2
|ω̄|2

)
= ω̄TSω̄− 1

Re
|∇ω̄|2 −

[
∇ ·

(
τs − 1

3
tr τs

)]
· (∇× ω̄)︸ ︷︷ ︸

subgrid enstrophy

. (10)

The first term on the righthand side of Eq (10) represents inertial-range vortex-stretching. 385

The last term in Eq (10) (denoted by ‘subgrid enstrophy’) represents the enstrophy flux 386

to unresolved scales, which is due to the subgrid-scale turbulence modelling because the 387

AWCM solves Eq (2). Removing the last term from Eq (10) provided the enstrophy evo- 388

lution of the CVS method. Clearly, in Eq (10), the last term accounts for the enstrophy 389

production associated with the subgrid model (3). In other word, Eq (10) suggests that a 390

primary role of the subgrid model (in WA-LES) is to dissipate the subgrid-scale production 391

of enstrophy [72]. Moreover, CVS method directly accounts for the conservation of circula- 392

tions, which is essential to ensure that the mean rate of positive vortex-stretching cause the 393

forward energy cascade to small-scales. 394

4.2.1. CVS modes of near-wall dynamics 395

The CVS method employs a nonlinear approximation that designs a good nonlinear 396

dictionary, and finds the optimal approximation as a linear combination of N elements 397

of the dictionary. The main goal is to identify the CVS modes leading to the best N -term 398

approximation of a turbulent flow. CVS is a two stage process. First, we identify the 399

dictionary of wavelets extracting hidden information of the vorticity field. Second, we 400

extract the CVS modes by finding the best wavelets associated with the dominant vortical 401

structures. 402

Here, we briefly illustrate the CVS method for capturing the near-wall vortices from the 403

DNS data of a turbulent channel flow. The technical details of the channel flow simulation 404

is given by Sakurai et al. [77]. Applying the CVS method onto vorticity field, we extract 405

the coherent flow structure in the near-wall region. It is worth mentioning that standard 406

techniques, such as the Q-criteria identifies the region where vorticity dominates over the 407

strain. A region of negative λ2, the second largest eigenvalue of the tensor SikSkj +RikRkj, 408

captures the vortical flow structures. Standard vortex identification criteria uses the velocity 409

gradient tensor in physical space. In contrast, the CVS modes extracts the hidden patterns 410

of the vorticity field in Fourier space. 411

On the top of Fig 2, we show the total vorticity |ω̄| (green) of the DNS of 256× 256× 412

2048 (i.e. ≈ 130 millions) grid points. Then, wavelet decomposition was applied to the total 413

vorticity. On the middle of Fig 2, we show the vorticity |ω̄| (red) of the CVS modes. We 414

observe that these vortices have been captured by about 7× 106 of the CVS modes (Fig 2, 415
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Figure 2. Visualization of total vorticity |ω| (green), coherent vorticity |ωc| (red) and incoherent
vorticity ωi (blue). Reproduced with permission from [77]

red). This number of CVS degrees of freedom is only about 0.55% of the original number of 416

grid points. The incoherent vorticity is the residual |ω− ω̄|, which is shown at the bottom 417

of Fig 2 (blue). The CVS modes captures the coherent flow, which retains 99.9% of the total 418

energy and 99.7% of the total enstrophy. 419

4.2.2. The POD modes of coherent structures 420

In the late 1960’s, Lumley [2] introduced the POD method, which is an orthogonal 421

decomposition of a function, u(x, t) : [a, b]× [0, T]→ R, given by 422

u(x, t) =
∞

∑
k=0

ck(t)ϕk(x). (11)

The decomposition (11) is said to be complete if it converges to all u(x, t) ∈ L2[a, b] for all
t ∈ [0, T]1. The Bessel’s inequality and the Parseval’s equality

∞

∑
k=0

c2
k ||ϕk(x)||2 ≤ ||u||2 < ∞ and ||u||2 =

∞

∑
k=0

c2
k ||ϕk(x)||2 ≤ ||u||2, respectively,

guarantee that a finite number of coefficients ck = 〈u, ϕk〉/||ϕk||2 is sufficient for the best 423

approximation of all u ∈ L2[a, b] for all t ∈ [0, T]. The same decomposition, Eq (11), is 424

applied to three-dimensional flow field. The coherent structures detected by the POD 425

modes φk(x) represent statistical correlation of the dynamics at various time snapshots. 426

The POD is a widely used unsupervised machine learning technique in fluid dynamics 427

to study turbulent flows, but it’s application to turbulence modelling is relatively new. For 428

3D turbulent flows, the POD method constructs a data-driven basis {ϕk(x)}Nk=1 with a near- 429

optimal dimension N , which represents the spatial coherence of the flow kinematics, while 430

1 Some texts refer to this a generalized Fourier series of functions satisfying periodic boundary conditions.
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the time evolution of the coefficients {ck(t)}Nk=1 captures the low-dimensional coherent 431

dynamics. Thus, the POD method essentially offers an optimal low-dimensional approxi- 432

mations of high-dimensional fluid data using an orthogonal basis in a certain least-squares 433

optimal sense. 434

Here, we employ the best approximation by the POD modes to formulate the Leonard 435

decomposition of a turbulent flow. Let us consider the POD of velocity snapshots, U , 436

toward a decomposition of the form U = Ū + U ′′, where Ū contains most of the turbulence 437

kinetic energy if ||U ′′||1 is minimized. Such a decomposition is obtained by minimizing the 438

following Lagrangian 439

L(Ū ,U ′′], V) = ||Ū ||∗ + λ||U ′′||1 + VT(U − Ū − U ′′) + η

2
||U − Ū − U ′′||2F (12)

to extract the energy containing motion captured by the POD modes. Note that minimizing 440

the nuclear norm || · ||∗ ensures to maximize the TKE over a low-dimensional subspace. 441

Also, minimizing the norm ||U ′′||1 aims to capture the intermittency of turbulence fluc- 442

tuations. Based on the POD method, we have the Leonard stress τL
ij = ũiũj − ũiũj. Here, 443

we have considered the ensemble average of the low-dimensional POD reconstructions to 444

form the Leonard stress. The POD method captures the most energy containing coherent 445

structures, thereby leading to a residual stress to account for the spatio temporal variability 446

of turbulent flows (see Shinde [78]). Combining a spatial filtering process with the POD 447

method, we get 448

ũiuj − ¯̃ui ¯̃uj = ūiūj − ũiũj︸ ︷︷ ︸
τL

ij

+ ũiuj − ūiūj︸ ︷︷ ︸
τij

. (13)

Eq (13) takes the standard form of a mixed model [79], where the Leonard stress τL
ij is 449

obtained through the POD method and subgrid scale stress τij is obtained through a 450

classical approach. The linear combination of the Leonard (resolved) stress (τL
ij ) with the 451

subgrid scale stress (τij) improves the prediction of the true subfilter scale stress (τs
ij). Kang 452

et al. [80] proposed a mixed subgrid scale model using the NN approach and tested the 453

performance by simulating isotropic turbulence and turbulent channel flow. In the context 454

of the present article, we suggest to use the POD method for the resolved stress and the 455

wavelet method for the subgrid scale stress. 456

Let us now briefly review the wavelet method and the POD method for dimensionality 457

reduction while extracting coherent structures. Here, we consider the velocity snapshots 458

U for a two-dimensional flow past a circular cylinder at Re = 14 440 [81]. A column of 459

U ∈ R2N×M consists of two velocity components [u(xi, yj, tn), v(xi, yj, tn)]T at N grid points 460

(i, j) and n-th time step. Consider the one-dimensional wavelet transform of each row 461

of U . The wavelet transform produces coefficients that contain energetic information of 462

the relative local contribution of various frequency bandwidth at each level of wavelet 463

transform. Fig 3a shows the energy distribution of wavelet components. The cumulative 464

energy at each successive level of wavelet decomposition is also show. 465

We have compared the relative energy per wavelet modes with that of the POD modes. 466

Fig 3b shows the energy distribution of POD modes. Fig 3 compares the energy distribution 467

of wavelet modes (Fig 3a) and POD modes (Fig 3b). The first four wavelet components 468

contain 88% of the total kinetic energy. The wavelet components of levels 1 and 2 makes the 469

largest contribution, accounting for 32% and 45% energy, respectively. The first four POD 470

modes are the most energetic, containing 80% of the total kinetic energy. The first and the 471

second POD modes contribute 41% and 32% energy, respectively). The energy distribution 472

of first two wavelet components is similar with first two POD modes [82]. 473

4.3. Space-time wavelet and neural networks 474

Here, we solve the one-dimensional Burgers equation to illustrate both the space-time 475

adaptive wavelet method [83] and the PINN method [55] for solving PDEs. The wavelet 476
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Figure 3. The distribution of energy a) in wavelet modes and b) POD modes. Reproduced with
permission from [81].

method finds the optimal number of the wavelet modes to formulate the best approximation 477

uw(x, t) ≈ u(x, t) of the solution. Each wavelet mode is associated with a grid point. Thus, 478

discarding a wavelet mode discards the corresponding grid point. Interested readers may 479

find a technical details of the space-time wavelet method given by Alam et al. [83]. 480

This work has implemented the PINN method in Python using the TensorFlow envi- 481

ronment. Our code has been adapted from Raissi et al. [55]. Note that the PINN method 482

finds the best approximation uw(x, t) ≈ u(x, t) of the solution by finding the optimal values 483

of the parameter w. Both methods minimize the residualR[uw] given by Eq (6), and capture 484

the solution on a set of collocation points in the simultaneous space-time domain. 485

(a) (b)

(c) (d)

Figure 4. (a) The approximate solution u(x, t) by the PINN method. (b) A comparison of u(x, t) at
t = 0 and t = 0.4 between the PINN method and the wavelet method. (c) The grid used by the PINN
method. (d) The grid used by the wavelet method (reproduced with permission from [83].

Fig 4a, b compares the solution u(x, t) between the two methods. We see from Fig 4c 486

that PINNs aim to optimize the values of the parameter w on a set of collocation points. 487

There is no requirement to adjust the location or the number of grid points. Moreover, PINN 488

seeks for a linear approximation of the form y = wx + b, where the activation through 489

hidden layers accounts for the underlying nonlinearity. 490
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5. Conclusion and future direction 491

Wavelet-based turbulence modelling is only over a 30 years old research topic. While 492

many researchers have thoroughly investigated the AWCM and the CVS methods, their 493

applicability remains limited by the underlying mathematical complexity of wavelet trans- 494

forms [26,84]. The CVS method has evolved under the assumption that vortex-stretching is 495

a primary mechanism for the energy cascade. CVS does not require to solve a turbulence 496

closure problem. The computational complexity of the CVS method is about the same 497

as that of the wavelet-based LES method [15]. In contrast, the AWCM assumes that the 498

fidelity of subgrid models depends on the local grid refinement to ensure that subgrid 499

scales are approximately isotropic. Thus, the AWCM can drastically reduce the compu- 500

tational complexity of the LES method. A substantial number of articles demonstrated 501

wavelet-based RANS, DES, and LES techniques for numerical simulation of compressible 502

and incompressible flows [15]. 503

The applications of wavelet transforms and artificial intelligence in turbulence mod- 504

elling are relatively new areas of research. This review clearly identifies two overarching 505

challenges in the development of artificial intelligence in subgrid models of turbulence. In 506

turbulence modelling, we first need an optimal low-dimensional representation of nonlin- 507

ear dynamics and the large-scale turbulent motion. This is a principal hypothesis of LES, 508

where (implicit) filtering captures the low-dimensional, coarse-grained flow features. A 509

comparison of PINNs solution of Burgers equation with that for space-time wavelet indi- 510

cate that neural networks are efficient to learn the dynamics; however, wavelets are efficient 511

for a compressed representation of the dynamics. Thus, neural networks may provide a 512

good approximation to the turbulence closure problem. In contrast, the wavelet-based LES 513

learns the physics of turbulence. 514

Recent developments in the applications of neural networks in turbulence modelling 515

aims to speed-up the computational cost of solving the Navier-Stokes equations. A formal 516

description of the speed-up of CFD calculations by neural networks is not available from 517

the literature. Some studies indicate a 20% speed-up of CFD calculations if machine 518

learning takes care of some of the costly elements of turbulence modelling. The space-time 519

adaptive wavelet collocation method developed by Alam et al. [83] is similar to the recent 520

developments of physics informed neural networks proposed by Raissi et al. [55]. There 521

are potential new research directions on the applications of neural networks and wavelet 522

transfroms in understanding many unresolved problems of fluid’s turbulence. 523
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