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Abstract: Computer vision models of salient object detection attempt to mimic the ability of the
human visual system to select relevant objects in images. To this end, the development of deep
neural networks on high-end computers has recently made it possible to achieve high performance.
However, it remains a challenge to develop deep neural network models of the same performance for
devices with much more limited resources. In this work, we propose a new approach for a lightweight
salient object detection neural network model, inspired by the cone and spatial opponent processes
of the primary visual cortex (V1), that inextricably link color and shape in human color perception.
Our proposed model, namely CoSOV1net, is trained from scratch, without using backbones from
image classification or other tasks. Experiments, on the most widely used and challenging datasets
for salient object detection, show that CoSOV1Net achieves competitive performance (i.e. Fβ = 0.931
on the ECSSD dataset) with state-of-the-art salient object detection models, while having low number
of parameters (1.14M), low FLOPS (1.4G) and high FPS (211.2) on GPU (nvidia Geforce RTX 3090 TI)
compared to the state-of-the-art in the salient object detection or lightweight salient object detection
task. Thus, CoSOV1net turns out to be a lightweight salient object detection that can be adapted to
mobile environments and resource-constrained devices.

Keywords: lightweight salient object detection; salient object detection; object detection; lightweight
neural network; color opponent; cone-opponent; double-opponent; vision sensing

1. Introduction

The human visual system (HVS) has the ability to select, among the large amount of
information received, which is relevant and to process in detail only the relevant one. This
relevant information in an image is called salient objects [1]. The salient object detection
models in computer vision try to mimic this phenomenon by detecting and segmenting
salient objects in images.

The salient object detection is an important task given its many applications in com-
puter vision such as object tracking, recognition and detection [2] , advertisements opti-
mization [3], image/video compression [4], image correction [5], analysis of iconographic
illustrations [6], images retrieval [7], aesthetic evaluation [8], image quality evaluation [9],
image retargeting [10], image editing [11], image collage [12], to name a few. Thus, it has
been the subject of intensive research in recent years and is still being investigated [13].

Salient object detection models generally fall into two categories, namely conventional
and deep learning-based models, which differ by the feature extraction process. The first
use hand-crafted features, while the latter use features learned from a neural network.
Thanks to the powerful representation learning methods, deep learning-based salient object
detection models have recently shown superior performance over conventional models
[13,14].

The high performance of deep learning-based salient object detection models is unde-
niable, however, they are also generally heavy if we consider their number of parameters
and memory occupied in addition to their high computational cost and slow detection
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speed. This makes these models less practical for resource-limited vision sensors or mobile
devices that have many constraints on their memory, computational capabilities and for
real-time applications [15,16]. Hence, the need for lightweight salient object detection
models, whose performance is comparable to state-of-the-art models, with the advantage of
being deployed on resource-limited vision sensors or mobile devices and having a detection
speed allowing them to be used in real time applications.

The authors of these existing models of lightweight salient object detection authors
have used different methodologies such as imitating primate hierarchical visual perception
[17], human attention mechanism [16,17], etc.

In this work, we propose an original approach for a new lightweight neural network
model of salient object detection that can be therefore adapted to mobile environments
and limited or resources-constrained devices with the following additional interesting
properties of being able to be trained from scratch, without having to use backbones
developed from image classification tasks and with few parameters but while having
comparable performance with state-of-the-art models.

Given that detecting salient objects is a capability of the human visual system, and
that a normal human visual system does this quickly and correctly, we used images or
scenes encoding mechanism research advances in neuroscience especially for the human
visual system early stage [18–20]. Our strategy in this model is therefore inspired by two
neuroscience discoveries in human color perception, namely:

1. the color-opponency encoding in the HVS (Human Visual System) early stage [21–24];
2. the fact that the color and pattern are linked inextricably in human color perception

[18,25].

Inspired by these neuroscience discoveries, we propose a Cone- and Spatial-Opponency
Primary Visual cortex (CoSOV1) module that extracts the features at the spatial level and
between the color channels at the same time to integrate color in the patterns. This pro-
cess is applied first on opposing color pairs channels two by two and then to grouped
feature maps through our deep neural network. Thus, based on the CoSOV1 module, we
build a novel lightweight encoder-decoder deep neural network for salient object detec-
tion: CoSOV1Net. Our proposed neural network CoSOV1Net has only 1.14M parameters
while having comparable performance with state-of-the-art salient object detection models.
CoSOV1Net predicts salient maps on a speed of 4.4 f ps on an Intel CPU, i7-11700F, and
211.2 f ps on a NVIDIA Geforce RTX 3090 TI GPU for 384× 384 images; and has a low
FLOPS = 1.4G. Therefore, CoSOV1net is a lightweight salient object detection that can be
adapted for mobile environments and limited resources devices.

Our contribution is threefold:

• we propose a novel approach to extract features from opposing color pairs in a
neural network to exploit the strength of color opponent principle from human color
perception. This approach permits to accelerate neural network learning;

• we propose a strategy to integrate color in patterns in a neural network by extracting
features locally and between color channels at the same time in successively grouped
feature maps that results in reducing the number of parameters and the depth of that
neural network, while keeping good performance;

• we propose a lightweight salient object detection neural network architecture based
on the proposed approach for learning opposing color pairs along with the strategy of
integrating color in patterns. This lightweight salient object detection neural network
has few parameters while having performance comparable to the state-of-the-art
methods

The rest of this work is organized as follows: Section 2 presents some lightweight
models related to this approach ; Section 3 presents our proposed lightweight salient object
detection model; Section 4 describes the datasets used, evaluation metrics, our experimental
results and the comparison of our model with state-of-the-art models; Section 5 discusses
our results ; Section 6 concludes this work.
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2. Related work

Many salient object detection models have been proposed and most of the influential
advances in image-based salient object detection have been reviewed by Gupta et al. [13].
Herein, we present some conventional models and lightweight neural network models
related to this approach.

2.1. Lightweight Salient Object Detection

In recent years, lightweight salient object detection models have been proposed with
different strategies and architectures. Qin et al. [26] designed U2net a lightweight salient
object detection with a two-level nested Unet[27] neural network able to capture more
contextual information from different scales thanks to the mixture of receptive fields of
different sizes. Other models are based on streamlined architecture to build lightweight
deep neural networks. MobileNets [28,29] and ShuffleNets [30,31] with their variants are
among the latter models. MobileNets [28] uses architecture based on depth-wise separable
convolutions. ShuffleNets [30] used architecture based on point-wise group convolution
and channel shuffle and depth-wise convolution to greatly reduce computation cost while
maintaining accuracy. Other authors have been inspired by primate or human visual system
process. Thus, Liu et al. [17] designed the HVPNet, a lightweight salient object detection
network, based on a hierarchical visual perception (HVP) module which mimic the primate
visual cortex for hierarchical perception learning. Liu et al. [16] were inspired by human
perception attention mechanism in designing SAMNet a lightweight salient object based on
a stereoscopically attentive multiscale (SAM) module that adopts a stereoscopic attention
mechanism for effective and efficient multi-scale learning.

2.2. Opponent Color models

The color opponency, which is a human color perception propriety, has inspired many
authors who have defined channels or feature maps to tackle their image processing tasks.
Frintrop et al. [32] used three opponent channels RG, BY and I to extract features for their
salient object detection model.

To extract features for salient object detection, Ndayikengurukiye et Mignotte [1], used
nine (9) opponent channels for RGB color space (RR: Red-Red, RG: Red-Green, RB: Red-
Blue, GR: Green-Red, GG: Green-Green, GB: Green-Blue, BR: Blue-Red, BG: Blue-Green and
BB: Blue-Blue) with a non linear combination thanks to the OCLTP (opponent color local
ternary pattern) texture descriptor which is an extension of the OCLBP (opponent color local
binary pattern)[33,34] and Fastmap [35] which is a fast version of MDS (Multi-dimensional
Scaling).

Most authors apply the opponent color mechanism to the input image color space
channels and not on the resulting feature maps. However, Jain et Healey [36] used opponent
features computed from Gabor filter outputs. These authors compute opponent features
by combining information across different spectral bands at different scales obtained by
Gabor filters for color texture recognition [36]. Yang et al. [37] proposed a framework based
on the color-opponent mechanisms of color-sensitive double-opponent (DO) cells in the
human visual system primary visual cortex (V1) in order to combine brightness and color
to maximize the boundary detection reliability in natural scenes.

In this work, we propose a model inspired by the human visual system but different
from other models because our model uses the primary visual cortex (V1) cone- and spatial-
opponency principle to extract features at channels spatial level and between color channels
at the same time to integrate color into patterns in a manner allowing lightweight deep
neural network design.

3. Materials and Methods
3.1. Introduction

Our model for tackling the lightweight salient object detection challenge is inspired by
the human visual system (HVS) early visual color process especially its cone-opponency
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and spatial-opponency in the primary visual cortex (V1). Indeed, the human eye retina (the
retina is located in the inner surface of the human eye) has two types of photoreceptors
namely rods and cones. Rods are responsible for monochromatic vision under low levels of
illumination while cones are responsible for color vision at normal levels of illumination.
There are three classes of cones: the L, M and S. When light is absorbed by cone photore-
ceptors, the L cones absorbs long wavelength visible light, the M cones the middle ones
and the S cones the short wavelength [22,23,25].

The cone signals are then processed by single-opponent retina ganglion cells. The
single-opponent operates an antagonistic comparison of the cone signals [21,23,24,38]:

• L - M opponent for Red - Green;
• S - (L + M) opponent for Blue - Yellow.

The Red - Green as well as the Blue - Yellow signals are carried by specific cells (cells
for Red - Green and different cells for Blue - Yellow) through the lateral geniculate nucleus
(LGN) to primary visual cortex (V1).

Shapley [25] and Shapley et Hawken [18] showed that the primary visual cortex (V1)
plays an important role in color perception through the combined activity of two kinds of
color-sensitive cortical neurons namely single-opponent and double-opponent cells. Single-
opponent cells in V1 operate in the same manner as those of retina ganglion cells and could
provide neuronal signals that could be used for estimating the color of the illumination
[25]. Double-opponent cells in V1 compare cone signals across space as well as between
cones [19,20,22,25]. Double-opponent thus have two oppenencies: spatial-opponency and
cone-opponency. These properties permit them to be sensitive to color edges and color
spatial patterns. They are thus able to link color and pattern inextricably in human color
perception [18,25].

As the primary visual cortex (V1) is known to play a major role in visual color per-
ception as highlighted above, we propose in this work a deep neural network based on
the primary visual cortex (V1) to tackle lightweight salient object detection challenge. We
especially use two neuroscience discoveries in human color perception, namely:

1. the color-opponency encoding in the HVS early stage;
2. the fact that the color and pattern are linked inextricably in human color perception.

These two discoveries in neuroscience inspired us to design a neural network archi-
tecture for lightweight salient object detection, which hinges on two main ideas. First, at
the beginning of the neural network, our model opposes color channels two by two by
grouping them (R-R, R-G, R-B, G-G, G-B, B-B) and extract from each channels pair the
features at the channels spatial level and between the color channels at the same time to
integrate color in patterns. So, instead of doing a subtractive comparison or an OCLTP
(opponent color linear ternary pattern) like Ndayikengurukiye et Mignotte [1], we let the
neural network learn the features that represent the comparison of the two color pairs.
Second, this idea of grouping and then extracting the features at the channels spatial level
and between the color channels at the same time is applied on feature maps at each neural
network level until the saliency maps are obtained. This process allows the proposed model
to mimic the human visual system capability of linking inextricably color and pattern in
color perception [18,25].

It is this idea that differentiates our model from other models that use depth-wise
convolution first and after point-wise convolution [28,29] to extract features at each indi-
vidual color channel level (or feature map) first not through a group of color channels (or
feature maps) at same time as our model does. This idea differentiates also our model from
models that combine a group of color channels (or feature maps) pixel by pixel first and
apply depth-wise convolution after[30,31]. The idea of grouping color channels in pairs (or
feature maps groups) differentiates our model from models that, while extracting features
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at color channels spatial level and between color channels at the same time, consider all
color channels (or feature maps) as a single group.

Our model takes into account non-linearities in the image at the beginning as well as
through our neural network. For this purpose, we use an encoder-decoder neural network
type whose core is a module that we called CoSOV1 (Cone- and Spatial-Opponency Primary
Visual Cortex) module.

3.2. CoSOV1 : Cone- and Spatial-Opponency Primary Visual Cortex module

The CoSOV1 (Cone- and Spatial-Opponency Primary Visual Cortex) module is com-
posed of two parts (see Figure 1).

Figure 1. The CoSOV1 (Cone- and Spatial-Opponency Primary Visual Cortex) module is the core of
our neural network model.

In the first part, input color channels (or input feature maps) are split into groups of
equal depth. Convolution (3× 3) operations are then applied on each group of channels
(or feature maps) in order to extract features from each group as opposing color channel
(or opposing feature maps). This is done thanks to a set of filters that convolve the group
of color channels (or feature maps). Each filter is applied to the color channels (or input
feature maps) through a convolution operation which detects local features at all locations
on the input. Let I g ∈ RW×H×S be a input group of feature maps whereW and H are
respectively the width and the height of each group’s feature map and W ∈ R3×3×S, a filter
with learned weights, S being the depth of each group or the number of the channels in
each group g. The output feature map Og ∈ RW×H for this group g ∈ {1, . . . ,G} has pixel
value in (k, l) position defined as follow:

Og
k,l =

S

∑
s=1

2

∑
i=0

2

∑
j=0

Wi,j,sI
g
k+i−1,l+j−1,s (1)

The weights matrix W ∈ R3×3×S is the same across the whole group of channels or
feature maps. So, each resulting output feature map represents a particular feature at
all locations in the input color channels (or input feature maps) [39]. We call the 3× 3
convolution on grouped channels (or grouped feature maps) a group-wise convolution.
The zero padding is applied during the convolution process to keep the input channels
size for the output feature maps. After the group-wise convolution, we apply the batch
normalization transform which is known to enable faster and more stable training of deep
neural networks [40,41]. Let B = {X1, . . . , Xm} be a mini-batch that contains m examples
from the dataset {X1, . . . , Xm}, the mini-batch mean is

µB =
1
m

m

∑
i=1

Xi
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and the mini-batch variance is

σ2
B =

1
m

m

∑
i=1

(Xi − µB)2

The batch normalization transform BNγ,β : {X1, . . . , Xm} −→ {Y1, . . . , Ym} (γ and β
being parameters to be learned):

Yi = γX̂i + β (2)

where i ∈ {1, . . . , m} and

X̂i =
Xi − µB√

σ2
B + ε

and ε is a very small constant to avoid division by zero.
In order to take into account the non-linearities present in the color channels input

(or feature maps input), given that group-wise is a linear transformation, the batch nor-
malization is followed by a non-linear function, Exponential Linear Unit (ELU) defined as
follows:

ELU(x) =

{
x if x ≥ 0,
α× (exp(x)− 1.) otherwise

α = 1 by default.

The non-linear function which is the activation function is placed after batch normal-
ization as recommended by Chollet [42].

The second part of the module searches the best representation of the obtained feature
maps. It is similar to the first part of the module except for group-wise convolution which
is replaced by the point-wise convolution but the input feature maps for the point-wise
convolution in this model are not grouped. The point-wise convolution allows us to learn
the filters weights and thus obtain feature maps that best represent the input channels (or
input feature maps) for the salient object detection task while having few parameters.

Let O ∈ RW×H×M be the output of the first part of the module, M being the number
of feature maps in this output,W ,H the width and the height respectively. Let a filter of
the learned weights V ∈ RM and FM ∈ RW×H, its output feature map by a point-wise
convolution. Its pixel’s value FMk,l in (k, l) position is:

FMk,l =
M

∑
m=1

VmOk,l,m (3)

Thus, V ∈ RM is a vector of learned weights which, to the input feature maps
O ∈ RW×H×M associates a feature map FM ∈ RW×H which is the best representation of
the input feature maps O ∈ RW×H×M. The point-wise convolution in this module uses
many filters and thus it outputs many feature maps that are the best representation of the
input feature maps O. As point-wise convolution is a linear combination, we apply again a
batch normalization followed by a exponential linear unit function (ELU) on the feature
map FM, to get the best representation of the input feature maps for the learned weights
V ∈ RM that takes into account non-linearities in the feature maps O ∈ RW×H×M.

Our scheme is different from depth-wise separable convolution in that depth-wise con-
volution does not use the convolution of a group of channels but each channel individually
[28,43]

In addition, after the non-linear function, noise is injected in the resulting feature
maps during the neural network learning stage thanks to dropout process (but not in the
prediction stage) to facilitate the learning process. We used in this model the dropblock [44]
if the width of the feature map is greater than 5 and the common dropout [45] otherwise.

The CoSOV1 module allows to have few parameters but also good performance for
our neural network.
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3.3. CoSOV1Net neural network model architecture

Our proposed model is built on the CoSOV1 module (see Figure 1). It is a neural
network of the U-net encoder-decoder type [27] and is illustrated in Figure 2. Thus, our
model consists of three main blocks:

1. The input RGB color channel pairing;
2. The encoder;
3. The decoder.

Figure 2. Our model CoSOV1 neural network architecture: (a) Red block (input RGB color channel
pairing for opposing color pairs; (b) Violet blocks for the encoder; (c) Grey block for the middle of
the model; (d) Pink blocks for the decoder residual block; (e) Blue blocks for the deconvolution and
upsampling of all scales feature maps to the initial scale.

3.3.1. Input RGB color channel pairing

At this stage, the input RGB image is paired in 6 opposing color channels pairs R-R,
R-G, R-B, G-G, G-B, B-B [1,33,46]. These pairs are then concatenated which give 12 channels
R,R,R,G,R,B,G ,G,G,B,B,B as illustrated in Figure 3. This is the step for choosing the color
channels to oppose. The set of color channels concatenated are then fed to the encoder.
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Figure 3. Input RGB color image transformed in 6 opposing color channels pairs, these are then
concatenated to get 12 color channels.

3.3.2. Encoder

The Encoder, in our proposed neural network model, is a convolutional neural network
(CNN) [47] where an Encoder Unit (see Figure 2) is repeated eight times. Each Encoder
Unit is followed by a max pooling (2× 2) with strides=2 except for the 8th neural network
level where the max pooling is 3× 3 with strides=3 (the max pooling is a downsampling
operation, like a filtering with a maximum filter). While the size of each feature map is
reduced by half, the depth of the feature maps is doubled except for the first level where it
is kept at 12 and the last two levels where it is kept at 128 to have few parameters.

The Encoder Unit (see Figure 4 (a)) is composed of a residual block (Figure 4 (b))
repeated three (3) times.
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Figure 4. Encoder Unit: (a) Encoder Unit, (b) the residual block , (c) CoSOV1 module.
We used residual block because this kind of block is known to improve training deeper

neural networks [48]. The residual block consists of two CoSOV1 modules with a residual
link. The reason of all these repetitions is to encode more information and thus allow to
increase our network performance.

In the encoder, schematically, as explained above (Section 3.2), the CoSOV1 module
(Figure 4 (c)) splits the input channels in groups and apply a group-wise convolution (3× 3
convolution). After a point-wise convolution is applied to the outputs of the concatenated
groups (see Figure 5 for the first level input illustration). Each of these convolutions is
followed by a batch normalization and a non-linear function (ELU: Exponential Linear
Unit activation). After these layers, during the model training, the regularization is done
in the CoSOV1 module using the dropout [45] method for small feature maps (dimension
smaller than 5× 5) and the Dropblock [44] for feature maps with dimension greater than
5× 5 which is a variant of dropout that zeroes a block instead of pixels individually as
Dropout does.
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Figure 5. Simplified flowchart in CoSOV1 module for processing pairs of opposing color pairs (or
group of feature maps).

At its end, the encoder is followed by the middle unit (see Figure 6 (a) ) which is the
CoSOV1 module (see Figure 6 (b)) where we remove the group-wise convolution, since at
this stage the feature maps are 1× 1× 128 in size, and add a residual link.

Figure 6. (a) The Middle Unit, (b) the CoSOV1 module.

3.3.3. Decoder

The decoder transforms the features from the encoder to obtain the estimate of the
salient object(s) present in the input image. This transformation is achieved through a
repeating block, namely the Decoder Unit (see Figure 7 (a)). The Decoder Unit consists of
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two parts: the Decoder Residual Block (see Figure 7 (b)) and the Decoder Deconvolution
block (see Figure 7 (c)). The Decoder Residual Block is a modified CoSOV1 module that
allows the model to take into account the output of the corresponding level in the encoder.
The output of the Decoder Residual Block took two directions. On the one hand, it is passed
to the next level of the Decoder and on the other to the second part of the Decoder Unit
which is the Decoder Deconvolution block. The latter deconvolves this output obtaining
two feature maps having the size of the input image (384× 384× 2 in our case). At the last
level of the decoder, all the outputs from the Deconvolution blocks are concatenated and
fed to a convolution layer followed by a softmax activation layer which gives the estimation
of the salient object detection map.

Figure 7. (a) The Decoder Unit; (b) the Decoder Residual Block; (c) the Decoder Deconvolution Block.

4. Experimental Results
4.1. Implementation Details

For our proposed model implementation, we used the deep learning platform Tensor-
Flow with Keras deep learning application programming interface (API) [49]. All input
images are resized to 384× 384 and pixels values are normalized (each pixel channel value
∈ [0.0, . . . , 1.0] and ground truth pixels ∈ {0, 1}). Experiments were conducted on a single
GPU, nvidia Geforce RTX 3090 TI (24 GB) and an Intel CPU, i7-11700F.

4.2. Datasets

Our proposed model’s experiments were conducted on public datasets which are the
most widely used in the salient object detection field [50]. Thus, we used Extended Complex
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Scene Saliency dataset (ECSSD) [51], DUT-OMRON (Dalian University of Technology—
OMRON Corporation) [52], DUTS [53], HKU-IS [54], THUR15K [55] datasets.

The ECSSD [51] contains 1000 natural images and their ground truth. Many of its
images are semantically meaningful, but structurally complex for saliency detection [51].

DUT-OMRON [52] contains 5168 images and their binary mask with diverse variations
and complex background.

DUTS dataset [53] is divided into DUTS-TR (10553 training images) and DUTS-TE
(5019 test images). We train and validate our proposed model on the DUTS-TR and DUTS-
TE was used for tests.

HKU-IS [54] is composed by 4447 complex images, which contains many disconnected
objects with different spatial distributions. Furthermore, it is very challenging for the
similar foreground/background appearance [56].

THUR15K is a dataset of images taken from the “Flickr” web site divided into five
categories (butterfly, coffee mug, dog jump, giraffe, plane), which contains 3000 images.
The images of this dataset represent real world scenes and are considered complex for
obtaining salient objects [55] (6232 images with ground truths).

4.3. Model Training Settings

For the reproducibility of the experiments, we set the seed=123. We train our proposed
model on DUTS-TR (10553 training images). We split DUTS-TR dataset in a train set (9472
images) and a validation set (1056 images). That is approximately 90% of the dataset for
the training set and 10% for the validation set. We didn’t use the 25 images because we
wanted the training set and the validation set to be divisible by batch size which is 32.

Our proposed model is trained on scratch without pre-trained backbones from images
classification (i.e. VGG [57], etc.) or lightweight backbones (i.e. MobileNets [28,29] or
ShuffleNets [30,31]). As DUTS-TR is not a big dataset, we used data augmentation during
training and many epochs in order to overcome this problem. Indeed, more there are
epochs more the data augmentation process transforms data. Thus, our proposed model
training has two successive stages:

• The first stage is with data augmentation. The data augmentation is applied on each
batch with random transformation (40% zoom in or horizontal flip or vertical flip).
This stage has 480 epochs: 240 epochs with learning rate = 0.001 and the following 240
epochs with learning rate=0.0001;

• The second stage is without data augmentation. It has 620 epochs: 240 epochs with
learning rate = 0.001, followed by 140 epochs with learning rate = 0.0001 and 240
epochs with learning rate = 0.00005.

We also use a same initializer for all layers in the neural network: HeUniform keras ini-
tializer [58] which draws samples from a uniform distribution within [-limit, limit], where

limit =
√

6
f an_in ( f an_in is the number of input units in the weight tensor). The dropout

rate is set to 0.2. We used the RMSprop [59] keras optimizer with default values except for
the learning rate, the centered which is set to true and the clipnorm=1. The loss function
used is the “sparse_categorical_crossentropy” keras function; the keras metrics is “Sparse-
CategoricalAccuracy; the keras check point monitor is “val_sparse_categorical_accuracy”

4.4. Evaluation Metrics
4.4.1. Accuracy

The metrics used to evaluate our proposed model accuracy are: Fβ measure, MAE
(mean absolute error), weighted Fw

β measure [60]. We also used Precision-Recall and Fβ

measures curves.
The Fβ-measure (Fβ ) is the weighted harmonic mean of Precision and Recall:

Fβ =
(1 + β2)× Precision× Recall

β2 × Precision + Recall
(4)
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During evaluation β2 = 0.3 as it is often suggested [16,56].
Let S be the saliency map estimation with pixels values normalized in order to be in

[0.0, . . . , 1.0] and G, its ground truth also normalized in {0; 1}. The MAE (mean absolute
error) is:

MAE =
1

W × H

W

∑
x=1

H

∑
y=1
|S(x, y)− G(x, y)| (5)

where W and H are the width and the height respectively of the above maps (S and G).
The Fw

β measure [60] fixes the interpolation flaw, dependence flaw, and equal impor-
tance flaw in traditional evaluation metrics and its value is:

Fw
β = (1 + β2)

Precisionw × Recallw

β2 × Precisionw + Recallw (6)

Precisionw and Recallw are the weighted Precision and the weighted Recall respec-
tively.

4.4.2. Lightweight measures

Since, in this work we proposed a lightweight salient object detection model, thus, we
also evaluate the model with lightweight measures: the number of parameters, the saliency
maps estimation speed (FPS: frames per second) and the computational cost by measuring
the FLOPS (the number of floating-point operations). The FLOPS is related to the devices
energy consumption (more FLOPS more energy consumption).

4.5. Comparison with state-of-the-art

We compare our proposed model with 20 salient object detection state-of-the-art and
10 lightweight salient object detection state-of-the-art models. We divided these methods
because the lightweight methods outperform others with respect to lightweight measures.
However, the lightweight methods accuracy is lower than the accuracy of those with huge
parameters. We mainly use the salient object detection results provided by Liu et al. [16]
except for Fβ measure and Precision-Recall curves where we use saliency maps provided
by these authors. We also used saliency maps provided by the HVPNet authors [17] to
compute HVPNet Fω

β measures.

In this section we describe the comparison with the 20 salient object detection namely
DRFI[61], DCL [62], DHSNet [63], RFCN [64], NLDF [65], DSS [66], Amulet [67], UCF [68],
SRM [69], PiCANet [70], BRN [71], C2S [72], RAS [73], DNA [74], CPD [75], BASNet [76],
AFNet [77], PoolNet [78], EGNet [79] and BANet [80].

Table 1 shows that our proposed model CoSOV1Net outperforms all the 20 salient
object detection state-of-the-art for lightweight measures (#parameters, FLOPS and FPS)
with a large margin ( i.e. the best among them for the FLOPS is DHSNet [63] with FLOPS =
15.8G and Fβ = 0.903 for ECSSD; the worst is EGNet [79] with FLOPS = 270.8G and
Fβ = 0.938 for ECSSD; while our proposed model CoSOV1Net has FLOPS = 1.4G and its
Fβ = 0.931 for ECSSD) (see Table 1).

Table 1 also shows that CoSOV1Net is among the top 6 models for ECSSD, among the
top 7 for DUT-OMRON around the top 10 for the other three datasets for F-measure. Table 2
and Table 3 compare our model with the state-of-the-art models for respectively MAE and
Fω

β measures. From this comparison, we see that our model is ranked around the top 10

for all the 4 datasets and the 15th rank for the HKU-IS dataset. This demonstrates that our
model is also competitive with respect to the performance of state-of-the-art models.
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Table 1. Our proposed model F-measure (Fβ ↑, β2 = 0.3) compared with 20 state-of-the-art models
(Best value in bold).

Methods #Param
(M)↓

FLOPS
(G) ↓

Speed
(FPS) ↑ ECSSD DUT-

OMRON
DUTS-

TE
HKU-

IS THUR15K

DRFI[61] - - 0.1 0.777 0.652 0.649 0.774 0.670
DCL
[62] 66.24 224.9 1.4 0.895 0.733 0.785 0.892 0.747

DHSNet
[63] 94.04 15.8 10.0 0.903 - 0.807 0.889 0.752

RFCN
[64] 134.69 102.8 0.4 0.896 0.738 0.782 0.892 0.754

NLDF
[65] 35.49 263.9 18.5 0.902 0.753 0.806 0.902 0.762

DSS
[66] 62.23 114.6 7.0 0.915 0.774 0.827 0.913 0.770

Amulet
[67] 33.15 45.3 9.7 0.913 0.743 0.778 0.897 0.755

UCF
[68] 23.98 61.4 12.0 0.901 0.730 0.772 0.888 0.758

SRM
[69] 43.74 20.3 12.3 0.914 0.769 0.826 0.906 0.778

PiCANet
[70] 32.85 37.1 5.6 0.923 0.766 0.837 0.916 0.783

BRN
[71] 126.35 24.1 3.6 0.919 0.774 0.827 0.910 0.769

C2S
[72] 137.03 20.5 16.7 0.907 0.759 0.811 0.898 0.775

RAS
[73] 20.13 35.6 20.4 0.916 0.785 0.831 0.913 0.772

DNA
[74] 20.06 82.5 25.0 0.935 0.799 0.865 0.930 0.793

CPD
[75] 29.23 59.5 68.0 0.930 0.794 0.861 0.924 0.795

BASNet
[76] 87.06 127.3 36.2 0.938 0.805 0.859 0.928 0.783

AFNet
[77] 37.11 38.4 21.6 0.930 0.784 0.857 0.921 0.791

PoolNet
[78] 53.63 123.4 39.7 0.934 0.791 0.866 0.925 0.800

EGNet
[79] 108.07 270.8 12.7 0.938 0.794 0.870 0.928 0.800

BANet
[80] 55.90 121.6 12.5 0.940 0.803 0.872 0.932 0.796

CoSOV1Net
(OURS) 1.14 1.4 211.2 0.931 0.789 0.833 0.912 0.773
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Table 2. Our proposed model MAE (↓) compared with 20 state-of-the-art models (Best performance
in bold).

Methods #Param
(M)↓

FLOPS
(G) ↓

Speed
(FPS) ↑ ECSSD DUT-

OMRON
DUTS-

TE
HKU-

IS THUR15K

DRFI[61] - - 0.1 0.161 0.138 0.154 0.146 0.150
DCL
[62] 66.24 224.9 1.4 0.080 0.095 0.082 0.063 0.096

DHSNet
[63] 94.04 15.8 10.0 0.062 - 0.066 0.053 0.082

RFCN
[64] 134.69 102.8 0.4 0.097 0.095 0.089 0.080 0.100

NLDF
[65] 35.49 263.9 18.5 0.066 0.080 0.065 0.048 0.080

DSS
[66] 62.23 114.6 7.0 0.056 0.066 0.056 0.041 0.074

Amulet
[67] 33.15 45.3 9.7 0.061 0.098 0.085 0.051 0.094

UCF
[68] 23.98 61.4 12.0 0.071 0.120 0.112 0.062 0.112

SRM
[69] 43.74 20.3 12.3 0.056 0.069 0.059 0.046 0.077

PiCANet
[70] 32.85 37.1 5.6 0.049 0.068 0.054 0.042 0.083

BRN
[71] 126.35 24.1 3.6 0.043 0.062 0.050 0.036 0.076

C2S
[72] 137.03 20.5 16.7 0.057 0.072 0.062 0.046 0.083

RAS
[73] 20.13 35.6 20.4 0.058 0.063 0.059 0.045 0.075

DNA
[74] 20.06 82.5 25.0 0.041 0.056 0.044 0.031 0.069

CPD
[75] 29.23 59.5 68.0 0.044 0.057 0.043 0.033 0.068

BASNet
[76] 87.06 127.3 36.2 0.040 0.056 0.048 0.032 0.073

AFNet
[77] 37.11 38.4 21.6 0.045 0.057 0.046 0.036 0.072

PoolNet
[78] 53.63 123.4 39.7 0.048 0.057 0.043 0.037 0.068

EGNet
[79] 108.07 270.8 12.7 0.044 0.056 0.044 0.034 0.070

BANet
[80] 55.90 121.6 12.5 0.038 0.059 0.040 0.031 0.068

CoSOV1Net
(OURS) 1.14 1.4 211.2 0.051 0.064 0.057 0.045 0.076
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Table 3. Our proposed model Weighted F-measure (Fω
β ↑, β2 = 1) compared with 20 state-of-the-art

models (Best value in bold).

Methods #Param
(M)↓

FLOPS
(G) ↓

Speed
(FPS) ↑ ECSSD DUT-

OMRON
DUTS-

TE
HKU-

IS THUR15K

DRFI[61] - - 0.1 0.548 0.424 0.378 0.504 0.444
DCL
[62] 66.24 224.9 1.4 0.782 0.584 0.632 0.770 0.624

DHSNet
[63] 94.04 15.8 10.0 0.837 - 0.705 0.816 0.666

RFCN
[64] 134.69 102.8 0.4 0.725 0.562 0.586 0.707 0.591

NLDF
[65] 35.49 263.9 18.5 0.835 0.634 0.710 0.838 0.676

DSS
[66] 62.23 114.6 7.0 0.864 0.688 0.752 0.862 0.702

Amulet
[67] 33.15 45.3 9.7 0.839 0.626 0.657 0.817 0.650

UCF
[68] 23.98 61.4 12.0 0.805 0.573 0.595 0.779 0.613

SRM
[69] 43.74 20.3 12.3 0.849 0.658 0.721 0.835 0.684

PiCANet
[70] 32.85 37.1 5.6 0.862 0.691 0.745 0.847 0.687

BRN
[71] 126.35 24.1 3.6 0.887 0.709 0.774 0.875 0.712

C2S
[72] 137.03 20.5 16.7 0.849 0.663 0.717 0.835 0.685

RAS
[73] 20.13 35.6 20.4 0.855 0.695 0.739 0.849 0.691

DNA
[74] 20.06 82.5 25.0 0.897 0.729 0.797 0.889 0.723

CPD
[75] 29.23 59.5 68.0 0.889 0.715 0.799 0.879 0.731

BASNet
[76] 87.06 127.3 36.2 0.898 0.751 0.802 0.889 0.721

AFNet
[77] 37.11 38.4 21.6 0.880 0.717 0.784 0.869 0.719

PoolNet
[78] 53.63 123.4 39.7 0.875 0.710 0.783 0.864 0.724

EGNet
[79] 108.07 270.8 12.7 0.886 0.727 0.796 0.876 0.727

BANet
[80] 55.90 121.6 12.5 0.901 0.736 0.810 0.889 0.730

CoSOV1Net
(OURS) 1.14 1.4 211.2 0.861 0.696 0.731 0.834 0.688

We also compare our proposed model CoSOV1Net with the lightweight salient object
detection state-of-the-art: MobileNet [28], MobileNetV2 [29], ShuffleNet [30], ShuffleNetV2
[31], ICNet [81], BiSeNet R18 [82], BiSeNet X39 [82], DFANet [83], HVPNet [17], SAMNet
[16].

For the comparison with lightweight state-of-the-art, Table 4 shows that our proposed
model outperforms these lightweight state-of-the-art for the models parameters number
and Fβ measure for ECSSD dataset and is competitive for other measure and dataset. Table 5
shows that our model outperforms these lightweight state-of-the-art for MAE measure for
ECSSD and DUTS-TE datasets, is ranked 1st ex aequo with HVPNet for DUT-OMRON,
ranked 1st ex aequo with HVPNet and SAMNet for HKU-IS dataset and 2nd for THUR15K
dataset. Our model also outperforms these lightweight state-of-the-art for Fω

β measure for
ECSSD and DUTS-TE and is competitive for the 3 other datasets (see Table 6).

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 June 2023                   doi:10.20944/preprints202306.0899.v1

https://doi.org/10.20944/preprints202306.0899.v1


17 of 28

Table 4. Our proposed model F-measure (Fβ ↑, β2 = 0.3) compared with lightweight salient object
detection state-of-the-art models (Best value in bold).

Methods #Param
(M)↓

FLOPS
(G) ↓

Speed
(FPS) ↑ ECSSD DUT-

OMRON
DUTS-

TE
HKU-

IS THUR15K

MobileNet*

[28]
4.27 2.2 295.8 0.906 0.753 0.804 0.895 0.767

MobileNetV2*

[29]
2.37 0.8 446.2 0.905 0.758 0.798 0.890 0.766

ShuffleNet*

[30]
1.80 0.7 406.9 0.907 0.757 0.811 0.898 0.771

ShuffleNetV2*

[31]
1.60 0.5 452.5 0.901 0.746 0.789 0.884 0.755

ICNet
[81] 6.70 6.3 75.1 0.918 0.773 0.810 0.898 0.768

BiSeNet
R18 [82] 13.48 25.0 120.5 0.909 0.757 0.815 0.902 0.776

BiSeNet
X39 [82] 1.84 7.3 165.8 0.901 0.755 0.787 0.888 0.756

DFANet
[83] 1.83 1.7 91.4 0.896 0.750 0.791 0.884 0.757

HVPNet
[17] 1.23 1.1 333.2 0.925 0.799 0.839 0.915 0.787

SAMNet
[16] 1.33 0.5 343.2 0.925 0.797 0.835 0.915 0.785

CoSOV1Net
(OURS) 1.14 1.4 211.2 0.931 0.789 0.833 0.912 0.773

* SAMNet where the encoder is replaced by this backbone.

Table 5. Our proposed model MAE (↓) compared with lightweight salient object detection state-of-the
art models (Best value in bold).

Methods #Param
(M)↓

FLOPS
(G) ↓

Speed
(FPS) ↑ ECSSD DUT-

OMRON
DUTS-

TE
HKU-

IS THUR15K

MobileNet*

[28]
4.27 2.2 295.8 0.064 0.073 0.066 0.052 0.081

MobileNetV2*

[29]
2.37 0.8 446.2 0.066 0.075 0.070 0.056 0.085

ShuffleNet*

[30]
1.80 0.7 406.9 0.062 0.069 0.062 0.050 0.078

ShuffleNetV2*

[31]
1.60 0.5 452.5 0.069 0.076 0.071 0.059 0.086

ICNet
[81] 6.70 6.3 75.1 0.059 0.072 0.067 0.052 0.084

BiSeNet
R18 [82] 13.48 25.0 120.5 0.062 0.072 0.062 0.049 0.080

BiSeNet
X39 [82] 1.84 7.3 165.8 0.070 0.078 0.074 0.059 0.090

DFANet
[83] 1.83 1.7 91.4 0.073 0.078 0.075 0.061 0.089

HVPNet
[17] 1.23 1.1 333.2 0.055 0.064 0.058 0.045 0.076

SAMNet
[16] 1.33 0.5 343.2 0.053 0.065 0.058 0.045 0.077

CoSOV1Net
(OURS) 1.14 1.4 211.2 0.051 0.064 0.057 0.045 0.076

* SAMNet where the encoder is replaced by this backbone.
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Table 6. Our proposed model Weighted F-measure (Fω
β ↑, β2 = 1) compared with lightweight salient

object detection models (Best value in bold).

Methods #Param
(M)↓

FLOPS
(G) ↓

Speed
(FPS) ↑ ECSSD DUT-

OMRON
DUTS-

TE
HKU-

IS THUR15K

MobileNet*

[28]
4.27 2.2 295.8 0.829 0.656 0.696 0.816 0.675

MobileNetV2*

[29]
2.37 0.8 446.2 0.820 0.651 0.676 0.799 0.660

ShuffleNet*

[30]
1.80 0.7 406.9 0.831 0.667 0.709 0.820 0.683

ShuffleNetV2*

[31]
1.60 0.5 452.5 0.812 0.637 0.665 0.788 0.652

ICNet
[81] 6.70 6.3 75.1 0.838 0.669 0.694 0.812 0.668

BiSeNet
R18 [82] 13.48 25.0 120.5 0.829 0.648 0.699 0.819 0.675

BiSeNet
X39 [82] 1.84 7.3 165.8 0.802 0.632 0.652 0.784 0.641

DFANet
[83] 1.83 1.7 91.4 0.799 0.627 0.652 0.778 0.639

HVPNet
[17] 1.23 1.1 333.2 0.854 0.699 0.730 0.839 0.696

SAMNet
[16] 1.33 0.5 343.2 0.855 0.699 0.729 0.837 0.693

CoSOV1Net
(OURS) 1.14 1.4 211.2 0.861 0.696 0.731 0.834 0.688

* SAMNet where the encoder is replaced by this backbone.

4.6. Comparison with SAMNet and HVPNet state-of-the-art

We chose to compare our CoSOV1Net model specifically with SAMNet [16] and
HVPNet [17] because they are among the best state-of-the-art models. Figure 8 and Figure 9
show that the proposed model is competitive with these two lightweight salient object
detection state-of-the-art with respect to precision-recall and Fβ measure curves.
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Figure 8. Precision Recall curves for (a) ECSSD, (b) DUT-OMRON, (c) DUTS-TE, (d) HKU-IS and (e)
THUR15K datasets.
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Figure 9. Fβ measure curves for (a) ECSSD, (b) DUT-OMRON, (c) DUTS-TE, (d) HKU-IS and (e)
THUR15K datasets.
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For qualitative comparison, Figure 10 shows some images highlighting that our pro-
posed model (CoSOV1Net) is competitive with regard to the state-of-the-art SAMNet [16]
and HVPNet [17] models which are among the best ones.

Images from columns 1 and 2 show a big salient object on a cloudy background, and a
big object on a complex background respectively: CoSOV1Net (ours) performs better than
HVPNet on these saliency maps. Columns 3 shows salient objects with same colors and
column 4 shows salient objects with multiple colors: SAMNet and CoSOV1Net saliency
maps are slightly identical and HVPNet saliency map is slightly better. Column 5 shows
image with 3 salient objects with different sizes and colors: 2 are big and 1 is very small;
CoSOV1Net saliency map is better than the SAMNet’s and the HVPNet’s. Column 6 shows
red salient objects on black and yellow background; SAMNet’s saliency map is worst
while CoSOV1Net and HVPNet perform well on that image. Column 7 shows a complex
background and multiple salient objects with different colors: CoSOV1Net performs better
than SAMNet and HVPNet. Column 8 shows tiny salient objects: the 3 models perform
well. On column 9, SAMNet has worst performance while CoSOV1Net is the best. Column
10 shows colored glasses as salient objects: the CoSOV1Net performance is better than the
SAMNet’s and HVPNet’s. On column 11, SAMNet has worst performance. On column
12 and 13, CoSOV1Net has the best performance. Column 18 shows a sub-marine image:
CoSOV1Net is better than SAMNet.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

(a)

(b)

(c)

(d)

(e)

Figure 10. Comparison between SAMNet [16], HVPNet [17] and our proposed model CoSOV1Net on
some images saliency maps:(a) Images; (b) Ground Truth; (c) SAMNet; (d) HVPNet; (e) CoSOV1Net
(Ours).

5. Discussion

The results shows the performance of our model CoSOV1Net for accuracy measures
and lightweight measures. The CoSOV1Net’s rank, when compared to state-of-the-art
models, shows that CoSOV1Net behaves as a lightweight salient object detection by domi-
nating the lightweight measures and having good performance for accuracy measures (see
Table 7).

Table 7. Our proposed model (CoSOV1Net) ranking with respect to existing salient object detection.

Measure #Param
(M)↓

FLOPS
(G) ↓

Speed
(FPS) ↑ ECSSD DUT-

OMRON
DUTS-

TE
HKU-

IS THUR15K

Fβ 1st 1st 1st 6th 7th 9th 11th 11th

MAE 1st 1st 1st 10th 10th 11th 11th 10th

Fω
β 1st 1st 1st 11th 9th 11th 15th 11th

The results also showed that when the proposed model CoSOV1Net is compared to
the lightweight salient object detection state-of-the-art, its measures results are ranked
generally among the best for datasets and measures used. Thus, we can conclude that
CoSOV1Net behaves as a competitive lightweight salient object detection model.
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Table 8. Our proposed model (CoSOV1Net) ranking with respect to lightweight salient object
detection models.

Measure #Param
(M)↓

FLOPS
(G) ↓

Speed
(FPS) ↑ ECSSD DUT-

OMRON
DUTS-

TE
HKU-

IS THUR15K

Fβ 1st 6th 7th 1st 3rd 3rd 3rd 4th

MAE 1st 6th 7th 1st 1st 1st 1st 2nd

Fω
β 1st 6th 7th 1st 3rd 1st 3rd 3rd

As we didn’t use backbones from images classification (i.e. VGG [57],. . .) or lightweight
backbones (i.e. MobileNets [28,29] or ShuffleNets [30,31]), we conclude that our proposed
model CoSOV1Net performance is intrinsic to this model itself.

Finally, putting together the measures for the salient object detection models and the
lightweight salient object detection models in a graphic, we notice that the CoSOV1Net
model is located for Fβ measures with respect to FLOPS and for the number of parameters
up left while for the FPS measure it is located up right thus showing its performance as
lightweight salient object detection model (see Figure 11). This shows that our proposed
model CoSOV1Net is competitive with the best state-of-the-art models used.
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Figure 11. Example of trade-off between (a) Fβ measure and #parameters, (b) Fω
β measure and

#parameters, (c) Fβ measure and FLOPS, (d )Fβ measure and FPS, for ECSSD.
The quantitative and the qualitative comparisons with SAMNet [16] and HVPNet

[17] showed that our proposed model has good performance, given these state-of-the-art
models are among the best ones.

6. Conclusion

In this work, we presented a lightweight salient object detection deep neural network,
CoSOV1Net with very low parameters number (1.14M), low floating-point operations
number (FLOPS=1.4G) thus low computational cost and respectable speed (FPS = 211.2 on
GPU: nvidia Geforce RTX 3090 TI) yet with comparable performance with state-of-the-art
salient object detection models that use significantly more parameters and other lightweight
salient object detection such as SAMNet [16] and HVPNet [17].

The novelty of our proposed model (CoSOV1Net) is that it uses the principle of
integrating color in pattern in a salient object detection deep neural network, since according
to Shapley [25] and Shapley et Hawken [18] color and pattern are inextricably linked in
color human perception. This is implemented by taking inspiration from the primary visual
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cortex (V1) cells especially cone- and spatial-opponent cells. Thus, our method extracts
features at the color channels spatial level and between the color channels at the same time
on a pair of opposing color channels. The idea of grouping color pushed us to group feature
maps through the neural network and extract features at the spatial level and between
feature maps as done for color channels.

Our results showed that this strategy generates a model which is very promising,
competitive with most salient object detection state-of-the-art and lightweight salient object
detection state-of-the-art, and practical for mobile environments and limited resources
devices.

As future work, our proposed CoSOV1Net model, based on integrating color into
patterns, can be improved by coupling it with human visual system attention mechanism,
which is the basis of many lightweight models, to produce a more efficient lightweight
salient object detection model.
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