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Abstract: The integration of spray drying and agglomeration offers significant advantages, such us 

continuous production with lower energy consumption. However, it is a knife-edge process with a 

narrow operating window and limited degrees of freedom that decide between successful agglom-

eration and fluidized bed blockage due to excessive moisture. In this contribution, factors influenc-

ing the spray-through agglomeration process of skim milk powder as a model system were investi-

gated via a design of experiments. Three in-line monitoring methods were applied and tested to 

observe the most important parameters in the agglomeration process: product moisture and particle 

size distribution. Regarding the moisture content, a capacitive moisture sensor was calibrated with 

linear regression and a near-infrared sensor with partial least squares regression. Near-infrared 

spectroscopy was found to be the suitable method for determining moisture content, while the ca-

pacitive moisture sensor mainly provides information on the bulk density, the filling level or fluid-

ization state in the fluidized bed. Additionally, particle size distribution data was extracted from 

the spectral data using in-line data of a spatial filter velocimetry probe in the fluidized bed. This 

opens the potential to monitor both parameters in real-time with a single non-invasive sensor. 

Keywords: Process integration, In-line measurement, Capacitive moisture measurement, Near-in-

frared spectroscopy, Fluidized bed agglomeration, Spray drying  

 

1. Introduction 

Skim milk powder (SMP) is a frequently used ingredient in various food applications 

including infant formula, ice cream, confectionery and bakery [1, 2]. The powder is typi-

cally produced by spray drying, where liquid skim milk concentrate is atomized into fine 

drops and then dried in a stream of hot air, resulting in a bulk solid. The size of the drops, 

as well as the inlet and outlet air temperatures, can be adjusted to control the final particle 

size of the SMP. However, a major challenge with this process is the generation of fine 

material [2, 3]. These fine particles cause problems in certain applications due to their 

dusting properties and poor wettability. This makes it challenging for customers to effec-

tively incorporate the product into their formulations, as they may struggle to achieve a 

consistent mix and accurate dosing [4, 5]. 

To improve the product quality SMP can be further processed by agglomeration to 

increase its flowability, solubility, and dispersibility [3, 5]. An effective agglomeration 

equipment is a fluidized bed [6 – 8], where a bulk solid is subjected to a flow of heated 

gas, which causes the particles to behave in a fluid-like manner. A binding agent or plas-

ticizer, such as water, is then sprayed onto the particles. Collisions of moist surfaces cause 

them to form clusters through the formation of liquid bridges, which are solidified by the 

evaporation of the solvent [8]. 

Besides batch processes, integrated spray drying and agglomeration solutions have 

been reported in literature as design concepts since the 1980s. Their development was 

driven by the need for more efficient and cost-effective powder manufacturing processes, 
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especially for more difficult-to-dry products such as fine or sticky materials [9]. These in-

tegrated solutions have the advantage of being able to perform the entire production pro-

cess in a single plant and also allow for continuous production. They also have certain 

disadvantages, such as increased process complexity. The mean residence time, i.e. the 

agglomeration time, is determined by the installed bed volume and the throughput of the 

spray dryer. Spraying too much binder in this time interval will result in sticky material 

and bed blockage, spraying too little will not achieve the target particle size and therefore 

the target powder properties making this a knife-edge process. One of the most important 

parameters for forced agglomeration with binding agents is the product moisture content. 

Monitoring the moisture content is thus crucial, as it directly impacts the formation and 

properties of the agglomerates. In addition, it ensures effective use of binding agent and 

energy. Properly implemented, operating parameters, such as the fluidization air velocity 

or binding agent amount, can be adjusted as needed to achieve the required particle size 

and shape [8, 10]. 

Measurement technology can be used to monitor and control these parameters. By 

utilizing reliable and widespread methods, like temperature and mass flow rate measure-

ments, only process conditions can be monitored. Advanced techniques are needed to 

measure product moisture and particle size, but sampling-based methods are not suitable 

for real-time control. Methods like near-infrared spectroscopy (NIR) and dielectric prop-

erties (CM: capacitance measurement) for moisture, as well as spatial filter velocimetry 

(IPP: in-line particle probe), focused beam reflectance measurement (FBRM) or even im-

age analysis for particle size, can be used [11 – 13]. In some cases, attempts have been 

made to determine basic size information in addition to moisture from NIR spectral data 

[14]. Multi-sensor approaches are already available, but mostly in the context of individ-

ual unit operations and not in the integrated spray agglomeration process [13]. Advanced 

monitoring and control strategies are especially needed for a continuous integrated pro-

cess as bed blockages lead to a shutdown of the entire process. However, the implemen-

tation is more challenging due to the high complexity. 

The practical implementation for this study involved a pilot-scale two-stage spray-

through agglomeration process with an integrated fluidized bed. Fluidization velocity, 

temperature, and the amount of moisture injected into the system were varied within the 

scope of a full factorial design of experiments. In addition, further trials were conducted 

to optimize the agglomeration process and expand the data set. The integrated fluidized 

bed was equipped with measurement ports allowing for the simultaneous operation of 

two sensors, NIR, CM or IPP. The sensors used in this study vary in terms of measurement 

location as well as principle, they can be non-invasive (NIR) or invasive (CM, IPP) and 

thus come into contact with the product. The former can be operated through a glass win-

dow. From a hygienic perspective, non-invasive techniques are preferred in the context of 

food production. 

The objective of this work was to optimize the two-stage spray-through agglomera-

tion process with an integrated fluidized bed. An in-line-monitoring system was estab-

lished with special focus on the product moisture content and the particle size. The use of 

these measurement techniques allows the monitoring and controlling of the agglomera-

tion process. This is particularly important with respect to the moisture added to the sys-

tem with a binder, regardless of varying air temperature and mass flow, enabling to 

achieve the desired powder properties within the short residence time of a two-stage 

spray dryer without risking a bed blockage. 

2. Materials and Methods 

The study involved calibration and validation trials using skim milk that had been 

dried using a spray-through method in a pilot-scale spray dryer. A detailed explanation 

of the spray drying process is given below. 

2.1 Spray drying and agglomeration 
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The starting material was low heat SMP (Sachsenmilch Leppersdorf GmbH, Leppers-

dorf, Germany) which was rehydrated with demineralized water to a total solid content 

of 30 %. The concentrate was then atomized using either a Schlick type 100 hollow cone 

pressure nozzle (Düsen-Schlick Coburg, Germany) with orifice diameters between 0.3 and 

0.5 mm and a pressure of 8 MPa, or a two-fluid nozzle (GEA Niro Søborg, Denmark) with 

an orifice of 2 mm. The two-fluid nozzle was operated at a constant air-to-liquid ratio 

(ALR = 1) to ensure comparable droplet sizes at varying mass flow rates [15]. The mass 

flow rate was adjusted to maintain a constant outlet temperature of 75 °C at varying pro-

cess conditions. 

The multi-stage drying process, including the fines return and nozzle zone agglom-

eration, is described in detail in [16]. Beyond that, the process parameters were optimized 

for the product with the inlet air temperature set to 200 °C, drying air mass flow to 

200 kg h-1 and the fines return airflow to 25 kg h-1. On average, the selected spray condi-

tions correspond to a solids mass flow of about 60 g min-1. The perforated plate in the 

fluidized bed had a pressure drop of 510 Pa at an empty pipe fluidization air velocity of 

0.8 m s-1. 

A second two-fluid nozzle Schlick type 970/7-1 S 1 (Düsen-Schlick Coburg, Germany) 

with an orifice diameter of 0.8 mm was mounted into the fluidized bed as a bottom-spray 

configuration. Water was introduced into the fluidized bed at rates between 0 and 

18 g min-1 as binding agent. The cap was set on position four. To measure the properties 

of the agglomerates formed, measurement ports were mounted at a distance of 60 and 

160 mm above the perforated plate. 

The equipment configuration is shown in Figure 1. The fluidized bed is located below 

the spray dryer with the fluidization air entering through a perforated plate and exiting 

the system at the top of the spray dryer. Either the IPP or CM sensor is mounted on meas-

urement port one. While the IPP sensor protrudes into the fluidized bed, the NIR sensor 

is mounted on sapphire glass at port two. Powder discharge is automated to maintain a 

constant residence time and filling level based on differential pressure (sensor 3). The dis-

charge valve triggered for 0.2 seconds as soon as the bulk material causes a pressure drop 

of 140 Pa. 

 

Figure 1. Spray through agglomeration system with an integrated NIR, CM or IPP sensor. 

Different combinations of measurement probes were used to gather the necessary 

data. These combinations included the NIR and IPP probe, the NIR probe and CM sensor, 

or the CM sensor at the lower position and the IPP at the upper position. This approach 
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allowed the simultaneous measurement of different properties using different probes. 

However, it should be noted that the measuring positions did not always align in every 

comparison. 

2.2 Experimental design 

A total of N = 85 individual trials were conducted for calibration and validation. 18 

of these trials were part of a full factorial design of experiments (DoE) with three param-

eters, two levels, and the inclusion of the center point. The DoE was duplicated into two 

blocks with one block for each nozzle type. The remaining trials were performed as pre-

liminary tests for optimization and additional systematic trials for calibration (blue circles 

in Figure 2). 26 of the 85 trials were conducted using the high-pressure nozzle. The data 

were randomly split into a calibration and validation set in a 7:3 ratio, with 60 data sets 

being used for the calibration of the model. 

An excerpt from the experimental design is shown in Figure 2. The binder addition 

rate was varied equidistantly from 0 to 5 g min-1, the temperature was also varied equi-

distantly from 60 to 100 °C and the fluidization velocity from 0.6 to 1 m s-1. 

 

 

Figure 2. Excerpt from the experimental design used in this study. Green squares: full factorial DoE. 

Blue circles: systematic extension for calibration. 

2.3 Capacitive moisture measurement 

The Litronic FMS II (Liebherr-Mischtechnik GmbH, Bad Schussenried, Germany) 

was used for capacitive moisture measurement by measuring the dielectric properties of 

the agglomerates. With changing moisture content, the dielectric properties of the matrix 

changes, which is represented at the output as a change in voltage. [17] The sensor had a 

sampling cycle of one measurement per second and was positioned flush with the wall. 

The corresponding values from the capacitive sensor were collected over 30 seconds for 

each measurement and then averaged to obtain an accurate representation of the dielectric 

properties. 

2.4 Near-infrared spectroscopy 

NIR spectra were recorded via reflection using a Polytec contact probe PSS-H-B02 

version 1.7 (Polytec GmbH, Waldbronn, Germany) equipped with a fiber optic system 

and a halogen lamp. The probe was connected to a PSS 1720 spectrometer over a 3 m op-

tical fiber cable. The software PAS-LAB version 1.2 was used for settings and exporting 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 June 2023                   doi:10.20944/preprints202306.0844.v1

https://doi.org/10.20944/preprints202306.0844.v1


 

 

the NIR spectra taken. The spectra were obtained with an exposure time of 7 ms and 500 

accumulators covering a wavelength range from 850 to 1650 nm with 401 measurement 

points. Dark and reference measurements were performed prior to each measurement. 

Offline spectra were taken in triplicate (100 accumulation) with a measurement cylinder, 

which was filled approximately to a height of 150 mm. 

Partial least squares (PLS) regression was used for calibration. The samples were ran-

domly split 70:30 in a calibration and validation data set. An in-house developed Matlab® 

(MathWorks, Natick, USA) program automatically tested different number of factors, pre-

processings and responses based on statistical parameters. The statistical parameters are: 

coefficient of determination (R²), root mean square error (RMSE), standard error (SE), as 

well as systematic error (Bias). Wavelength and sample selections were tested, but will 

not be shown in this work. 

2.5 Spatial filter velocimetry 

The IPP measures the velocity and flight time of particles in a fluidized bed. The data 

is used to calculate the geometrical length of the particles and stored in a ring buffer. This 

information is then used to determine the particle size distribution and velocity distribu-

tions. The IPP, which is capable of measuring particles ranging from 50 to 6000 µm in size 

and velocities of up to 50 m s-1, is described in detail, including its technical specifications, 

in [18]. The internal air flush for dispersion was set to 15 L min-1, and the external channel 

was flushed for cleaning every 20 seconds for two seconds with 2.5 L min-1. The adjust-

ment factor was set to one and no offset was defined. The ring buffer was set to 50000 

particles which is the data set from which the current size distribution curve is calculated. 

The maximal loading was set to 50 %. At an average particle rate of approximately 1550 s-1, 

depending on the degree of fluidization, the ring buffer is overwritten about every 30 sec-

onds. 

2.5. Off-line powder analysis 

Particle size was measured by laser diffraction with a Mastersizer 2000 (Malvern In-

struments GmbH, Herrenberg, Germany) with a dry dispersion unit at a dispersion pres-

sure of 0.3 MPa. The moisture content was analyzed using Karl Fischer titration according 

to the method in [19]. A solvent consisting of 10 ml formamide and 20 ml methanol at a 

temperature of 50 °C and a titration time of 300 s was used for this purpose. Bulk density 

was measured according to EN ISO 60 using the bulk density tester SMG 53466 from Pow-

tec Maschinen und Engineering GmbH (Remscheid, Germany). Measurements were per-

formed in triplicate. 

3. Results and Discussion 

The results are presented in two parts. Firstly, the findings of the DoE are presented, 

and conclusions are drawn regarding the influence of the investigated factors (nozzle 

type, fluidization temperature and velocity, as well as binder spray rate) on the particle 

properties. Secondly, in-line monitoring systems for the product moisture content and the 

particle size distribution are evaluated. Regarding the product moisture content, capaci-

tive moisture measurement and NIR measurement approaches were tested. The particle 

size distribution was measured in-line via the IPP, fitted to the Rosin-Rammler function 

and used for a PLS regression of the NIR spectra. 

3.1 Spray through agglomeration with an integrated fluidized bed 

Agglomeration in an integrated fluidized bed can be optimized by choosing the ap-

propriate combination of process parameters. Therefore, the process conditions were var-

ied in a wide range to give an overview of the spray through agglomeration process. In 

the following each investigated factor and its influences on the responses is described sep-

arately. Afterwards correlations between the responses are shown. Lastly, selected DoE 

results are illustrated. 

Firstly, the nozzle type influences the size distribution obtained. For example, the 

results of the reference trials (80 °C, 0.8 m s-1) under the same process conditions without 
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binder addition are shown in Figure 3. The pressure nozzle (diameter 0.3 mm) produced 

smaller agglomerates (d50,3 = 43.82 µm) than the two-fluid nozzle (d50,3 = 70.61 µm). The 

nozzle also affects the resulting bulk density, with the pressure nozzle producing higher 

bulk densities (535 to 609 kg m-³) than the two-fluid nozzle (469 to 552 kg m-³). The differ-

ence can be attributed to changes in the morphology and porosity of the primary particles, 

as well as the agglomerate structure. As stated in literature, without atomizing gas the 

porosity is lower, which can result in higher bulk densities. The pressure nozzle does not 

incorporate air into the droplets resulting in a decrease in bulk density. This higher den-

sity can result in faster sedimentation into the fluidized bed and potentially longer resi-

dence time. However, the smaller size and higher density of the particles produced by the 

pressure nozzle may also result in smaller agglomerates, probably due to collision proba-

bilities, as sedimentation depends on size, shape and density of the particles [20]. The res-

idence time in the system is determined by the powder level, and once this is constant, the 

powder is discharged. 

 

Figure 3. Particle size distributions of the reference (center) trial at the same process conditions with 

different nozzles used. The central experimental parameters were: Fluidized bed temperature: 

80 °C, fluidization 0.8 m s-1 and no binding agent. 

The second factor to consider is the influence of the fluidization temperature on the 

particle properties. Results show that the temperature alone had only minor effects on the 

particle properties. This is indicated by the highest correlations of this factor being found 

for humidity and water activity, with correlation coefficients of -0.34 and -0.39, respec-

tively. Normally, an impact of temperature on the particle stickiness, as well as the corre-

sponding changes in particle size, is expected due to the glass transition as thermal bind-

ing mechanism [8]. In the trial conducted with the two-phase nozzle at 0.6 m s-1 fluidiza-

tion, 100 °C, and maximum binder dosage, a moisture level of 6.49 % was achieved. Liter-

ature shows that glass transition temperatures for SMP at this moisture level are around 

26 °C. The glass transition temperature depends on material properties and the amount 

of plasticizer, e.g. water. In the viscous state above the onset glass transition temperature 

the surface viscosity is reduced and material stickiness enables agglomeration of particles. 

The sticky point is reached when the surface viscosity of the particles falls below a critical 

value, typically around 10 to 20°C above the onset glass transition temperature. [21] The 

fluidizing air was considerably above the sticky point temperature (55 K) indicating a high 
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particle cohesion probability. However, the measured particle size was 60.46 µm, which 

is similar for all DoE trials using the same nozzle. In addition to the cohesion probability, 

the collision probability influenced by the fluidization velocity is a factor controlling the 

agglomeration. Since the fluidization velocity showed only minor effects on particle prop-

erties, a better understanding of the cohesion and collision probabilities is necessary. 

The amount of binding agent used had an impact on several factors, particularly 

moisture content (r = 0.67) and water activity. With increasing binder spray rate the mois-

ture content of the particles increases, considering all samples in a common boxplot (Fig-

ure 4). The moisture content can be adjusted via the process parameters without the addi-

tion of binders. Median moisture contents of 4 % have been achieved, at which efficient 

agglomeration cannot be expected as the product is not sticky enough at the powder tem-

peratures reached. The addition of binding agent enables the particles to enter the sticky 

region for agglomeration. 

 

Figure 4. Boxplot of particle moisture as a function of binder addition. Evaluated are all experiments 

from the DoE, classified by spray rate. 

The responses of the product were further analyzed (Table 1). As expected, a strong 

correlation was observed between moisture and water activity, which can be described by 

a product-specific sorption isotherm. Additionally, moisture was also moderately positive 

correlated moderately with particle size parameters, such as with the D3,2 or the scale pa-

rameter. Conversely, the shape parameter correlated moderately negatively with mois-

ture meaning that the distribution becomes broader with an increasing amount of binding 

agent. This is further supported by the increase of the span. The bulk density correlated 

both, offline and strongly in-line, with the CM sensor response. 

Table 1. Correlation matrix of the investigated DoE responses. 

 
Water  

activity 
D3,2 

x’ scale  

parameter 

n shape  

parameter 
CM offline CM in-line 

Moisture 0.920** 0.596* 0.592* -0.650* 0,170 -0,403 

Bulk density -0,182 0,070 -0,289 0,216 0,520* 0.968** 

*: moderate correlation, **: strong correlation 
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To understand the effect of the process on particle moisture and to determine the 

major influencing factors analysis of variance (ANOVA) techniques was used. To select a 

suited model description the center point was included to check for nonlinear correlations. 

The results showed that the moisture content curvature was not significant. Thus, the null 

hypothesis was rejected, and an unadjusted model was formed. The model mainly in-

cluded effects of the binder spray rate (56.52 %), the fluidized bed temperature (14.22 %) 

and the interaction between the nozzle type and fluidization velocity (10.67 %). Non-sig-

nificant interaction terms were also included to form a physically hierarchical model. The 

resulting model was significant (p = 0.0002) with an adjusted R² of 0.87. The diagnostic 

parameters were found to be acceptable, however, the residuals for the two-phase nozzle 

were observed to be larger but still within acceptable limits. The expected moisture is 

plotted as a function of the main influencing factors (Figure 5). The moisture content in-

creases with higher binder spray rates and lower temperature providing a systematic un-

derstanding of how moisture can be influenced. This allows the moisture in the applica-

tion to be changed if the sensors detect a deviation from the nominal value. 

 

Figure 5. Contour plot of predicted moisture as a function of process conditions. Nozzle type is set 

to average and fluidization velocity to reference condition (0.8 m s-1). 

The variation of product moisture as shown in Figure 5, covering a range of 3.5 to 

6 %, is relatively small. However, the product changes within this range from a full cohe-

sionless material to a highly sticky powder that agglomerates easily. Controlling this crit-

ical product change is the challenge to be solved by the use of the implemented in-line 

measurement and control system. The multi-stage design of the process has the benefit of 

a process integration, but also the particular drawback that less control parameters can be 

adjusted to ensure a robust and optimal performance. 

3.2 Capacitive sensor responses 

The objective was to determine if the CM sensor can accurately and reliably measure 

the moisture content. Firstly, regression was performed for the offline sensor responses, 

but it was found that the coefficients of determination were low. Specifically, the R² value 

was 0.33 for the pressure nozzle and 0.28 for the two-phase nozzle. Combining the data 

sets for a combined regression did not improve the model (data not shown). Kupfer [21] 

emphasized the bulk density as one of the most important influences on indirect water 

determination. When the offline sensor response is correlated to the bulk densities of the 

powder, a R² of 0.76 is achieved for the pressure nozzle and of 0.91 for the two-phase 
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model (Figure 6). Consequently, the effect of the bulk density on the sensor response is 

more pronounced than the effect of the moisture content. 

 

Figure 6. Linear regression of the offline measurement data from the capacitive moisture sensor to 

the bulk density. 

The in-line sensor response showed no correlation with the water content, indicated 

by an R² of 0.14 for the pressure nozzle trials and 0.01 for the two-phase nozzle trials. (data 

not shown) However, it was found to be positively correlated with the pressure drop and 

filling level of the fluidized material. The correlation was affected by the interval at which 

pneumatic hammers release material from the spray dryer wall occurring every 60 sec-

onds. This relationship is illustrated as an example (Figure 7). By varying the frequency 

of the pneumatic hammers, frequency dependency was demonstrated (data not shown). 

Similar effects with capacitive sensors have been reported in literature, where it was 

necessary to calibrate at high moisture levels (up to 70 %), assuming consistent material 

thickness and density [23]. Due to variances and a lack of mathematical patterns, correc-

tions for material thickness and density were unsuccessful. Li et al. [24] summarized con-

straints for the moisture measurement of corn related to product properties, i.e. flow state 

or pore distribution. In these circumstances, NIR sensors have been favored. Recent re-

search indicates that in fluidized beds, a dependence on process and product conditions 

is more prevalent for CM sensors compared to NIR sensors [25]. One possible way to gain 

a better understanding of the underlying mechanisms is using pressure fluctuation anal-

ysis, as demonstrated by J. C. Schouten and colleagues. This method can provide valuable 

insights that can help refine and optimize the multi-sensor approach for early detection 

of system changes [26]. 
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Figure 7. Sensor response over time of the CM Sensor. The 60 seconds intervals of the pneumatic 

hammers are reflected in the sensor signal. 

3.3 Calibration of near-infrared spectra to the moisture content 

In this chapter, the building of the NIR model via PLS regression to predict the mois-

ture content in the integrated fluidized bed in-line is presented. Different selection of spec-

tral data was tested as the NIR spectra varied with the type of nozzle used for atomizing 

the feed. Despite these differences, a joint model was established to predict the properties 

of the powder samples independent of the nozzle type used. However, if necessary, better 

correlations with fewer resulting factors from the PLS can be achieved by using separate 

models for each nozzle type. The last minute before taking the sample was averaged for 

further evaluation. 

To correct the spectral data for noise, baseline shifts or scaling differences various 

pre-processing techniques were tested systematically. This can enhance the model robust-

ness or reduce the number of factors needed. The optimum number of factors for each 

pre-processing was evaluated using multivariate statistical parameters (Table 2). After-

wards, a pre-processing is suggested according to the lowest number of factors, highest 

R² and lowest errors of the model as indicated in the table. The most suitable method 

chosen was the standard normal variate (SNV) with eight factors. 

Table 2. Comparison of different pre-processing techniques and the number of factors included in 

the PLS model. 

Pre- 

processing 

No. of 

factors 
R² (C) R² (V) RMSEC RMSEP SEC SEP Bias 

None 2 0.30 0.31 1.17 1.16 1.18 1.19 2e-16 

Smoothing 2 0.30 0.30 1.17 1.16 1.18 1.19 -4e-16 

Detrending 3 0.75 0.69 0.70 0.78 0.70 0.80 5e-16 

SNV 8 0.94 0.83 0.33 0.58 0.33 0.59 -3e-15 

1st derivative 5 0.81 0.71 0.62 0.75 0.62 0.76 7e-16 

2nd derivative 4 0.75 0.65 0.70 0.83 0.70 0.85 9e-16 

MSC 8 0.95 0.81 0.33 0.61 0.33 0.62 -3e-14 
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The scores indicate the coordinates of the objects in the factor space. A selection of 

scores for two factors classified in four groups of different moisture contents (Figure 8a) 

shows a lower moisture content for lower factors 3 and 6 and vice versa. However, using 

only two factors the samples could not be separated clearly in the factor space according 

to their moisture content. This emphasizes the need for more factors in the PLS model due 

to various influences in-line in the spray dryer on the spectral data. When considering the 

loadings for these two factors (Figure 8b), the wavelength region between 1400 and 

1500 nm (blue) shows a positive impact on the moisture content. This region correlates 

with the second overtone of the OH, CH and CH2 group. The wavelength region between 

1350 and 1400 nm (green), where the second overtone of the CH2 and CH3 group is lo-

cated, has an opposed effect for factor 3 and 6. 

  

(a) (b) 

Figure 8. Selection of (a) the scores and (b) the loadings of factor 3 and 6 for prediction of the mois-

ture content via PLS regression. 

The predicted moisture is plotted over the measured moisture based on titration (Fig-

ure 9). The R² was 0.94 and the root mean square error (RMSE) was 0.33 %. The linear 

regression with confidence and prediction interval is illustrated for the calibration data 

set. 
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Figure 9. Measured water content compared to predicted water content for calibration and valida-

tion data set (n = 80) with linear regression. 

The model predicts a moisture content of the agglomerates between 3 and 9.5 %. 

From pre-trials, it has been shown that low moisture contents (< 3 %) can only be achieved 

without the addition of binders and with extended post-drying, while high moisture con-

tents above about 10 % led to blockage of the fluidized bed. To conclude, the final model 

includes all relevant process regions for the manufacture of SMP in this spray drying set-

up. 

In the literature, the pre-processings and number of factors vary for comparable PLS 

models. SNV pre-processing was used in predictions from offline and online built models 

[27-28]. This standardization corrects for scattering effects due to differences in the phys-

ical properties of the samples, mainly the particle size, and is commonly used for particu-

late systems. The number of factors depended on the complexity of the samples. While 

only a few factors were needed for models measured offline [27] or with similar material 

[29], more than 10 factors were considered for dairy samples with different fat content, 

animal type, producer, etc [28]. Maltesen et al. [27] also found, that the morphology of the 

samples had a significant impact on the predictive ability of the models and recommended 

using smooth and spherical particles. This explains the number of factors used for the PLS 

model in this study as different nozzle types produce different particle morphology. Fur-

ther, different process conditions can lead to a change in the in-line NIR signal. 

3.4 Calibration of near-infrared spectra to particle size distribution using Rosin-Rammler fit 

Analogous to the moisture content, the aim was to estimate the particle size within 

the fluidized bed using the scattered light data from the NIR spectra. Instead of basing the 

model on the particle sizes measured externally in the laboratory the model was based on 

the cumulative distribution curves obtained in-line using the IPP probe. The advantage of 

this approach is that the process can be continuously reflected, and a higher number of 

samples can be analyzed over time with varying process parameters. Further, the acqui-

sition of the particle size is less complex compared to a subsequent laboratory analysis as 

no samples need to be taken. However, it should be noted that the in-line measurement 
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method also deviates from the laboratory results. This deviation is attributed to the dif-

ferent measurement principles as well as the limitations in the lower particle size. The 

measuring position within the fluidized bed may also lead to a non-representative sam-

pling of the particles. The use of a single, non-invasive probe to simultaneously obtain 

information about both, the moisture and particle size distribution of the sample, holds 

potential by indicating the success of agglomeration in real time. 

After fitting the IPP data to the cumulative distribution function (CDF) of the Rosin-

Rammler distribution (Equation 1, [30]), the scale and shape parameters were extracted as 

output variables for the models. A separate model was developed for each parameter 

𝑄3(𝑥) =  1 − 𝑒𝑥𝑝 (− (
𝑥

𝑥′
)

𝑛

) (1) 

with 𝑥’ as scale and 𝑛 as shape parameter. 

The selected number of factors and the corresponding statistical parameters for the 

different pre-processings are listed in Table 3. The algorithm suggests no pre-processing 

and 15 factors. Alternatively, the second derivative with 17 factors could be considered, 

but was excluded as the model did not show an improvement in the prediction. 

Table 3. Comparison of different pre-processing techniques and the number of factors included in 

the PLS model. 

Pre- 

processing 

No. of 

factors 
R² (C) R² (V) RMSEC RMSEP SEC SEP Bias 

None 15 0.96 0.94 8.18 9.63 8.20 9.68 9e-13 

Smoothing 13 0.92 0.92 10.94 10.69 10.96 10.76 4e-13 

Detrending 12 0.94 0.93 10.09 10.09 9.86 10.14 1e-13 

SNV 3 0.33 0.32 31.79 31.79 34.38 31.97 3e-15 

1st derivative 14 0.94 0.93 9.62 9.62 9.54 9.68 3e-14 

2nd derivative 17 0.94 0.84 9.12 9.12 7.82 9.17 4e-14 

MSC 12 0.90 0.90 12.40 12.40 11.76 12.47 -9e-13 

 

The scores and loadings for factor 8 and 9 of the PLS model are evaluated as an ex-

ample. For those two factors the scale parameter is lowest with negative score values and 

increases with increasing score values, which is indicated via 4 differently colored groups 

(Figure 10a). However, no explicit separation is possible by only two factors. Regarding 

the loadings, a clear peak over both factors was not noticeable and opposing trends per 

wavelength can be seen (Figure 10b). 

  

(a) (b) 

Figure 10. Selection of (a) the scores and (b) the loadings of factor 8 and 9 for prediction of the scale 

parameter via PLS regression. 
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The resulting prediction from the PLS with 15 factors and no pre-processing is com-

pared with the measured values (Figure 11). The scale parameter 𝑥’ in µm is shown and 

fitted well between 60 and 210 µm. The precision of the fit is represented by R² values 

with 0.96 and a RMSE of 8.18. The maximum deviation of the validation set predictions 

was 24 µm or 16 % of the data spread of 150 µm. This indicates that the model is able to 

make reliable predictions. 

 

Figure 11. Measured compared to predicted scale parameter 𝑥’ for calibration and validation data 

set (n = 294) with linear regression. 

The same procedure was followed for the shape parameters 𝑛 in a range between 

1.8 and 3.1. Different pre-processings were compared according to multivariate statistics 

and the raw spectra with 17 factors, a R² of 0.92 and a RMSE of 0.06 were suggested by the 

algorithm (Table 4). The maximum deviation of the validation set predictions was 0.34 or 

20 % of the data spread of 1.7 µm. The particle size distribution and the resulting fluidi-

zation behavior can lead to a changed scattering effect, which is a change in amount and 

direction of the reflected light. This change results mainly in baseline shifting and noise 

[31]. As the principle of pre-processing is to reduce the noise and the baseline shift from 

the spectral data, the information about particle size is only present in the models without 

any pre-processing or those without baseline correction. 

Table 4. Comparison of different pre-processing techniques and the number of factors included in 

the PLS model. 

Pre- 

processing 

No. of 

factors 
R² (C) R² (V) RMSEC RMSEP SEC SEP Bias 

None 17 0.92 0.89 0.06 0.07 0.06 0.07 -6e-15 

Smoothing 4 0.29 0.28 0.18 0.19 0.18 0.19 6e-16 

Detrending 17 0.93 0.90 0.05 0.07 0.05 0.07 -8e-16 

SNV 2 0.22 0.24 0.19 0.19 0.19 0.20 -2e-16 

1st derivative 9 0.82 0.79 0.09 0.10 0.09 0.10 -8e-16 

2nd derivative 5 0.64 0.68 0.13 0.13 0.13 0.13 -1e-16 

MSC 2 0.32 0.27 0.17 0.19 0.18 0.19 6e-16 
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The scores of factors 15 and 16 are illustrated as an example grouped by shape pa-

rameter via different colors (Figure 12a). The smaller shape parameters < 2 are located in 

the third quadrant with negative score values for both factors, while the bigger shape pa-

rameters > 3 are present in the first quadrant with positive score values. However, no sep-

aration in the factor space is possible via two factors. The loadings show no clear peaks 

and high noise for the lower wavelengths (Figure 12b). 

  

(a) (b) 

Figure 12. Selection of (a) the scores and (b) the loadings of factor 15 and 16 for prediction of the 

shape parameter via PLS regression. 

The predicted shape parameter is plotted over the reference shape parameter for the 

calibration and the validation data set with a linear regression and corresponding 95 % 

confidence and prediction intervals (Figure 13). The evaluated range represents similar 

particle size distributions and shows a lower data density with shape parameters above 

2.7. For a robust prediction the extension of the model is necessary. 

 

Figure 13. Measured compared to predicted shape parameter 𝑛 or calibration and validation data 

set (n = 294) with linear regression. 
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The model building methodology employed in this study was successful, as it al-

lowed for the fitting of the particle size distribution, not only through a single parameter, 

such as the median particle diameter [32], but also by approximating the entire distribu-

tion curve using a Rosin-Rammler fit. The model is able to predict the particle size distri-

bution in application from the raw spectra with 15 and 17 factors, as demonstrated by the 

results in Figures 11 and 13. A high number of factors needed was expected, because phys-

ical information about particle size distribution and morphology can be found in baseline 

offset and noise across the entire spectrum [27, 31]. Contrary, Higgins et al [33] were able 

to predict the d90 in an online milling process with one factor, where their samples had a 

broad size range, but did not differ in chemical composition. This emphasizes the influ-

ence of the particle morphology on the spectrum [27]. In literature different effects of the 

particle size distribution on the spectral data are observed, but additional investigation of 

the underlying principle is required, especially regarding the influence of the particle mor-

phology. Further, an effect from the movement of the particles in the fluidized bed on the 

NIR signal cannot be excluded. 

4. Conclusions 

This study analyzed the spray drying process with forced agglomeration in an integrated 

fluidized bed in terms of nozzle type and key influencing factors such as binder rate, flu-

idization velocity and temperature. These factors were varied to examine their effect on 

the particle moisture and size. The NIR sensor calibration allowed to determine the mois-

ture content with an RMSE of 0.33 %, although the CM sensor calibration was insufficient. 

It is currently believed that the primary effect seen in CM measurements is due to changes 

in cohesion, resulting in changes in fluidization patterns. Further investigation and vali-

dation of these assumptions is necessary to ensure the accuracy and effectiveness of this 

approach. Surprisingly, the non-invasive NIR sensor enabled the prediction of particle 

size distribution with scale and shape parameters of the Rosin-Rammler fit. The use of a 

multi-sensor approach as a tool for very early detection of system changes is a promising 

concept with enormous potential for improving quality control by checking for unex-

pected deviations from the sensors. Regarding the process integration, this approach is 

particularly useful in knife-edge process situations where even small changes in the sys-

tem may have a significant impact on product quality or process stability. However, to 

fully realize the potential of this method, it will be necessary to conduct more detailed 

analyses of a broader range of systems. 
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