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Abstract: This paper applied the space-time generalized finite difference scheme for solving the 

nonlinear dispersive shallow water waves as the modified Camassa−Holm equation, modified 

Degasperis-Procesi equation, Fornberg-Whitham equation, and its modified form. The proposed 

meshless numerical scheme was composed of the space-time generalized finite difference method, 

the two-step Newton-Raphson method, and the time-marching method. The space-time approach 

can treat the temporal derivative as one of the spatial derivatives. This numerical technique enables 

all the partial derivatives in the governing equation can be discretized by a spatial discretization 

method, and the mixed derivative can efficiently deal with using the proposed meshless numerical 

scheme. The space-time generalized finite difference method is advanced from the Taylor series 

expansion and the moving-least square method. The numerical discretization process is only related 

to functional data and weighting coefficients on the central node and its nearby nodes. Thus, the 

matrix system composed of nonlinear algebraic equations will be a sparse matrix and can be effi-

ciently solved by the two-step Newton-Raphson method. Furthermore, the time-marching method 

was utilized to proceed with the space-time domain along the time axis. In this paper, several nu-

merical examples were tested to verify the capability of the proposed space-time generalized finite 

difference scheme. 

Keywords: nonlinear shallow water wave; meshless methods; space-time generalized finite differ-

ence method; Degasperis-Procesi equation; Fornberg-Whitham equation 

 

1. Introduction 

The dispersive shallow water wave is a kind of wave propagation phenomenon that has been 

widely studied in engineering. It has many applications in physics, engineering, mechanics, and 

mathematics. In the past few decades [1,2,11,3–10], some partial differential equations (PDEs) have 

been presented to describe the traveling wave phenomenon, and most of these equations are nonlin-

ear time-dependent PDEs such as the Camassa−Holm equation [2,3], the Degasperis−Procesi equation 

[3,8,11], the Fornberg−Whitham equation [1,4–7,9–11], and their modified forms. Mathematically, the 

above-mentioned three equations and their modified forms are transient nonlinear PDE with third 

(3rd)-order time-space mixed partial derivatives. Therefore, how to obtain the numerical solutions of 

those PDEs is a significant issue for analyzing the traveling wave phenomenon. In previous studies, 

there were mainly two types of methods used to obtain solutions for such equations, which included 

the approximate method and numerical simulation.  

To deal with such complicated equations, the exact solution is generally difficult to find, and the 

numerical ways are important numerical treatments for those equations. By using the numerical 

methods for temporal and spatial discretization, the classical numerical treatments were inconven-

ient to adopt due to the high-order mixed partial derivatives. Thus, the approximate methods for 

presenting the deriving the approximate numerical solutions were widely used by researchers. For 

example, Wazwaz [3] used the extended tanh method to establish the new solitary wave solutions of 
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the modified Degasperis−Procesi and Camassa−Holm equations. Abidi and Omrani [4] applied the 

homotopy analysis method (HAM) to acquire the HAM results of the Fornberg−Whitham equation 

and compared it with Adomian’s decomposition method (ADM). Ahmad et al. [10] utilized the mod-

ified variational iteration algorithm (MVIA) to get the approximate numerical solutions of the 

Fornberg−Whitham equation and its modified form. In addition to the above mentioned, there are 

other approximate methods such as the method of phase portraits analysis [5], He’s variational iter-

ation method (VIM) [6], and the reproducing kernel Hilbert space method (RKHSM) [7]. Recently, 

due to the evolution of computer technology and numerical methods, novel numerical schemes have 

also been applied to solve such equations such as the Godunov method [9], the cubic B-spline quasi-

interpolation method [8], and the hybrid radial basis functions method [11]. 

In the numerical discretization methods for PDEs, they can roughly divide into two families as 

mesh-based methods and meshless/free methods. The finite difference method (FDM), finite volume 

method, and finite element method are the famous mesh-based methods that are widely used. Those 

methods were developed and modified for solving the engineering problem and analyzed some 

physical phenomena that are difficult to obtain through practical experiments. Although these mesh-

based methods are highly applied, mesh generation is still a troublesome issue today. Thus, the idea 

that using the numerical discretization methods without mesh becomes one of the important research 

directions. The meshless methods can avoid generating mesh, and make it easy to solve problems in 

a computational domain with complex shapes. In addition, the numerical discretization only needs 

to construct interpolation functions on arbitrary distribution nodes for the governing equation. After 

years of development, meshless methods have the advantages of simple numerical processes, easy 

programming, flexibility, and even the ability to construct a hybrid numerical scheme customized by 

researchers. At present, there are several meshless numerical methods, for example, the radial basis 

functions collocation method (RBFCM) [11], the virtual boundary meshless Galerkin method [12], the 

moving particle semi-implicit method [13], the radial point interpolation meshless method [14], the 

singular boundary method [15], the localized scheme based on boundary-type method [16–18], the 

generalized finite difference method (GFDM) [19,20,29,21–28], etc. 

The GFDM is a localized domain-type meshless collocation method based on the multivariate 

Taylor series expansion theory and the moving least-square method. In 1980, the idea that the FDM 

without mesh was proposed by Liszka and Orkisz [19]. After Benito et al. [20] proposed the explicit 

numerical process in 2001, numerical applications related to the GFDM have been proposed in the 

past two decades. By utilizing the GFDM, the approximate expression of the partial derivative terms 

can be represented by a linear combination of the weight coefficients and function values in a local 

support domain. This support domain only contains the goal node and its nearby nodes. Once the 

nodes are distributed in the computational domain, the governing equation can be discretized into a 

system of algebraic equations. In addition, the resultant matrix system is a sparse matrix due to the 

localized property of the GFDM. The above characteristics make the GFDM enable to apply for com-

plex problems, such as the theoretical analysis [29], shallow water equation [21,22], porous media 

flow [23], wave propagation [24], elliptic interface problems [25], theoretical analysis, extended 

Fisher–Kolmogorov equation [26], stream function formulation [27], and elastic wave [28]. In this 

research, the space-time GFDM (ST–GFDM) was applied as the foundation of the proposed meshless 

numerical scheme, and it is an extended meshless method from the GFDM. 

The space-time (ST) coupled approach is a numerical technique that treated the temporal deriv-

ative as one of a spatial derivative. Before ST coupled approach was used, the original way to solve 

a time-dependent problem is that apply a numerical scheme that combines the spatial discretization 

method and temporal discretization method to solve. That caused the accuracy and stability of the 

numerical scheme to be hard to define. By utilizing the ST coupled approach, an (n)-dimensional 

time-dependent problem will transfer into an (n+1)-dimensional steady-state problem, then all of the 

partial derivatives in the governing equation can be discretized by the numerical method which ap-

plies for spatial discretization. Thus, the properties of the numerical scheme will much easier to de-

termine. Recently, the ST coupled approach is widely combined with meshless methods such as the 

ST localized RBFCM [30], ST kernel-based method [31], ST localized method of fundamental solu-

tions [32,33], ST Trefftz Method [34,35], ST backward substitution method [36] and ST-GFDM [37–
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45]. Based on the flexibility of the ST-GFDM, researchers applied this meshless method for engineer-

ing problems in the past few years, for example, the heat conduction problems [37,46], Burgers’ equa-

tions [38], parabolic PDEs [39], unsteady double-diffusive natural convection [40], thin elastic plate 

bending problem [41], thermoelasticity problems [42], equal-width equation [43], Zakharov–Kuz-

netsov-Modified equal-width equation [44], and hyperbolic PDEs [45], etc. The above achievements 

indicate that the ST-GFDM is one of the meshless method that have potential for engineering appli-

cations. In this research, the ST-GFDM is applied to combine with the two-step Newton’s method 

and time-marching approach for solving the dispersive shallow water wave problem. 

After the motivation and the discussions of relevant works of literature are described in the first 

section. The governing equations of the dispersive shallow water wave are represented in Section 2. 

In the section of proposed ST-GFDM, the numerical process is described and four numerical exam-

ples are simulated to verify the proposed method in section 4. Then, the conclusions are represented 

in the final section. 

2. The mathematical models of the dispersive shallow water waves 

The dispersive shallow water wave represents the behavior of the wave propagation, breaking 

wave, and dynamic system of the fluid. It is an important phenomenon in physics and engineering. 

In the past few decades, several researchers have proposed the mathematical model of the dispersive 

shallow water wave problem, and its general form of the governing equation [1–3] is described as, 

   ( ) 
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where u is the wave speed; x and t are the spatial- and temporal- axis; α, β, k, and q are the constants. 

The initial conditions and boundary conditions are represented as,  
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By applying the constants, a, b, k, and q, three different type of the dispersive shallow water wave 

equation are defined. The first one is the Fornberg–Whitham equation [1,6,7,9,10] that is given with 

α=1, β=1, k=1, and q=3 as,  
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and its modified form [4,7,10] is given (α=1, β=1, k=2, and q=3) as, 

    ( )
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The remaining two are similar; they are the Camassa–Holm equation [2,3] and Degasperis–Pro-

cesi equation [3,8,11], respectively. By giving with α=0, β=3, k=1, and q=2, the Camassa–Holm equation 

can be denote as  
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and the Degasperis–Procesi equation (α=0, β = 4, k = 0, and q=3) is described as  
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As same to the relationship of the Fornberg–Whitham equation and its modified form, the modified 

form of the Camassa–Holm equation [3] and Degasperis–Procesi equation [3,8,11] are represented by 

changing nonlinear term 




u
u

x
 into 





2 u
u

x
. Then, they can be described as follows,  
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and 
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Eqs. (1) and (3)-(7) are highly nonlinear PDEs and have 3rd-order mixed partial derivatives as 


 

3

2

u

x t

. Its complexity caused the original explicit or implicit numerical schemes to be difficult to solve, and 

most of the researchers proposed approximate or exact solutions for dispersive shallow water wave 

equations. Therefore, the applications of the numerical scheme for such equations are still in the early 

stages of enlightenment. In this research, the Fornberg–Whitham equation and its modified form, 

modified Camassa–Holm equation, and modified Degasperis–Procesi equation are solved by the pro-

posed ST-GFDM scheme. The numerical procedures of the proposed ST-GFDM scheme is introduced 

in the next section. 

3. The proposed meshless numerical scheme 

The numerical procedures of the proposed ST-GFDM scheme is described in this section. The 

proposed numerical scheme applies ST-GFDM for numerical discretization to obtain the nonlinear 

algebraic equations. Then, the nonlinear algebraic system is solved by the two-step Newton’s 

method. For saving the computational resource and solving the numerical problems within unpre-

dictable end-time, the simple technique, named time-marching method, is applied.  

3.1. Space-time generalized finite difference method 

In this subsection, the numerical process of ST-GFDM is described. Once the time-dependent 

problem is determined, the distribution nodes can be set in the corresponding computational domain. 

For the one-dimensional (1D) time-dependent problem, the ST approach defines a two-dimensional 

(2D) steady-state problem in an x-t field. Since the ST approach is applied, the distribution nodes are 

set both in the space- and time-axis, and named ST-domain [38,40,41] as Figure. 1(a).  

 

a)                                           (b) 

Figure 1. The schematic diagram of (a) nodes and (b) a supporting domain of the GFDM in the x-t 

domain. 

A supporting domain is set up by choosing ns nearest nodes within central i node in Figure. 1(b), 

and ( ) =, ,  1,2,...,
i i T

x t i N  is defined as the coordinate of the ith node. On the other hand, 

( ) =
, ,

, ,  1,2,...,
i j i j s

x t j n , is represented the coordinates of the nodes in the supporting domain. By ap-

plying the n-order Taylor expansion and the weighting function, a residual function ( )n i
B u  can be 

written as [27,43],  
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where 
i

u  and 
,i j

u  denotes the unknowns at the ith node and unknowns inside the ith support-

ing domain, respectively; 
n

E  is the truncation error of the n-order Taylor expansion; o and m is the 

1

2 3

4


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natural number; = −
, ,i j i i j

h x x ; = −
, ,i j i i j

l t t ; and w  is the quartic spline function and describes as 

follows,  
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 In this study, the 3rd-order ST-GFDM was applied, and Eq. (9) can be written as,  
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and minimalized ( )3 i
B u  respecting to, 
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solving this linear system, the approximate expression of 
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where 
i

E  is the matrix of weighting coefficients within sized ( ) +9 1
s

n . Then, the derivatives 

are denoted as follows, 
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wttt  are the weighting coefficients, and gained by solving Eq. (14). Eq. (15) is a significant 

part of the proposed ST-GFDM in that the partial derivatives are approximated by a linear combina-

tion of the weight coefficients and function values in a local support domain. Thus, the discretized 

governing equations and boundary conditions only relate to the central i node and its nearby ns nodes 

in the local support domain. In addition, the numerical process of Eqs. (9)-(15) will apply for each 

node to obtain the weighting coefficients matrix 
i

E  of each node. Finally, the resultant matrix sys-

tem, formed by the algebraic equations after discretization, is a sparse matrix.  
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F u f a t i N N N N

F u f b t i N N N N N N N

 ( )16  

The remaining domain, 
4
 and  , are both satisfied the governing equation, Eq. (1), and they 

can be discretized by Eq. (15) as, 
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   

 
+ + −  

 
=

  
+ + −    

  
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 



 
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1 1

,0 , ,
1
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1 1
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s s
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j
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i i i j i j i i i j i j
j j

i i i

wt u wt u wxxt u wxxt u

a bu wx u wx u

F

q wx u wx u wxx u wxx u

u wxxx u wxxx
=

 
 
 
 
 
  
 
 
 
 
  
   
   

= + + + + + + + +

 , ,
1

1 2 3 1 2 3

,  

1, 2,..., , 1, 2,..., ,

sn

i j i j
j

b b b b b b B B B T

u

i N N N N N N N N N N

( )17  

 

where 
B

N  is a number of nodes set up on the whole boundary, and defined as 

= + + +
1 2 3 4B b b b b

N N N N N ; 
T

N  is the number of total nodes in the computational domain as 

= +
T B i

N N N . In Eqs. (16)-(17), 
T

N  algebraic equations are acquired, and denoted as 

 = = 

T

1 2
, ,..., ,  1,2,...,

i T
F F F i NF . Meanwhile, 

T
N  unknown values are defined as, 

 = = 

T

1 2
, ,..., ,  1,2,...,

i T
u u u i NU . Then, the two-step Newton’s method is applied to solve this non-

linear algebraic system, and the specific numerical process is described in next subsection. 

3.2. Two-step Newton’s method 

In this research, the famous nonlinear solve, the Newton’s method, was applied for iterating the 

numerical solution of the proposed ST-GFDM. The Newton’s method is a classic solver for nonlinear 

systems, and bases on the first (1st) -order Taylor expansion formula. It has characteristics that simple 

to programming and fast convergence. The iteration formula for the Newton’s method is written as 

follows 

     ( )+ −= − =1 1 , 1,2,3,...,
k

k k k kU U J F                     ( )18  

where J is the Jacobian matrix, and the elements are expressed as =  
,

/
i j i j

J F U ; k is the number of 

iteration; +1kU  and kU  are the vectors of unknowns at the (k +1)-th and k-th  iteration, respectively. 

Although the Newton’s method is simple to apply, the inverse matrix of J is a troublesome issue 

during the simulation. To avoid the computation of the inverse matrix, the two-step iteration of the 

Newton’s method is given [38,40,43] as ,  

       = − ,k k kJ U F           ( )19  

      + = + 1 ,k k kU U U                          ( )20  

where  kU  is the numerical increment at kth-step iteration.  

The inverse matrix of the Jacobian is prevented by using the two-step process of Eqs. (19)-(20), 

and the  kU  can be solved as a linear system. Thus, the nonlinear algebraic system, obtained by the 

ST-GFDM can be solved efficiently. Furthermore, the iterative system will converge once the conver-

gence condition  −=   910kMax U  is reached, and the numerical solutions of the proposed ST-

GFDM are gained. 

3.3. Time-marching approach 

In the previous subsections, the numerical process of the proposed ST-GFDM scheme has actu-

ally been introduced, but those processes only work in a single ST-domain,  =       , 0,dta b . To 

deal with the numerical problems has unpredictable end-time or long temporal scales, the simple 

technique, the time-marching approach, is composed in the proposed numerical scheme. The sche-

matics of the time-marching approach is demonstrated as Figure 2. In Figure 2(a), a small-scale ST 

domain, =       D1 , 0,dta b  is formed when the simulation start, and the distribution of nodes is set 
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up like Figure 1(a). In this ST domain, the initial conditions ( )0
U x  is satisfied along 1

1
, 1

2
 and 

1

3
 are satisfied the boundary conditions ( )1

,f a t  and ( )2
,f b t , respectively. The governing equa-

tion (Eq. (1)) is satisfied on 1

4
 and  . Then, the numerical processes in section 3.1 and 3.3 are ap-

plied for obtaining the numerical solutions in D1 domain. Once the numerical procedures within D1 

are completed, the D1 will be shifted by distance dt along the t-axis, and the 2nd small-scale ST do-

main =       D2 , dt,2dta b  is formed as Figure 2(b). 

 The numerical processes within the D2 are as same as the D1, but the boundary conditions 

along   2

1
 is different. In  2

1
, the numerical solutions at 1

4
 in D1 are treated as the initial condi-

tions for D2. Thus, the numerical solutions in D2 can be solved by the proposed ST-GFDM and the 

two-step Newton’s method. It shall be noticed that the coordinates between D1 and D2 are the rela-

tive locations. Thus, the weighting coefficients of the proposed ST-GFDM in D1 are as same as each 

ST domain generated by the time-marching approach. After moving the ST domain within n-times, 

the n-th ST domain, ( ) =   −   Dn , n 1 dt,n * dta b , is generated (see Figure 2(c)), and the numerical 

solutions are solved. The simulation will finish when n*dt reaches the specified end-time which is 

determined by the numerical example. In the next section, four numerical examples are provided to 

verify the proposed ST-GFDM scheme. 

 
(a)        (b)        (c) 

Figure 2. The schematic diagrams of the time-marching approach in the proposed ST-GFDM. (a) 1st 

domain, (b) 2nd domain, and (c) n-th domain. 

4. Numerical examples  

In this section, four numerical examples are tested to verify the proposed ST-GFDM, there are 

the examples of the Fornberg–Whitham equation and its modified form, modified Camassa–Holm 

equation, and modified Degasperis–Procesi equation, respectively. The following symbols are de-

fined: T is the end time of the numerical problem, ND is the number of times that the ST domain has 

been moved by the time-marching method, and written as = / dt
D

N T . The distribution of nodes for 

each example is displayed in Figure 1(a). To analyze the accuracy of the proposed ST-GFDM, the 

numerical errors are defined in this study as follows, 

     
 


 

 

 


= −


=



n

,n 1

,n

1 n

max ,

max ,

T

D

ext num

i ii N

N

L u u

L L
                      ( )21  

                        

 

=

 


 = −




=





n

n
1

n
1 n

RMSE / ,

RMSE max RMSE ,

T

D

N
ext num

i i T
i

N

u u N
        ( )22  

where superscript ext is the exact solution; num denotes numerical solutions. In Eq. (21), 
 ,n

L  is the 

maximum absolute errors (MAE) in Dn, and 


L  is the maximum MAEs in the entire simulation. 
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Meanwhile, root-mean-squared error (RMSE) in each ST domain is defined as RMSEn in Eq. (22), and 

RMSE is the maximum RMSEs in the whole simulation. In addition, the initial guesses are the initial 

conditions of each numerical problem for iteration in D1, and the numerical solutions in Dn-1 are 

initial guesses of numerical processes in Dn. 

4.1. Example 1 

In this subsection, the Fornberg–Whitham equation [1,5] is solved. This mathematic model is 

presented to describe the behavior of the breaking wave and have the solitary or traveling wave so-

lutions. The exact solution of the 1st numerical example is described as,  

     ( )
 

− 
 =

2

2 3 , ,

x t

extu x t e        ( )23  

and the initial condition and boundary conditions are represented as,  

    ( ) ( ) ( )
   

− −   
   = = =

2 2

2 3 2 32
0 1 2

,  ,  .

a t b tx

U x e f t e f t e              ( )24  

The following parameters are applied in this numerical example: a = -5, b = 5, dt = 0.5, T = 5, and ND = 

10. In Figure 3, the numerical solutions are obtained by applying NT = 8421 and ns = 23. The numerical 

solutions in different time levels are compared with the exact solutions and demonstrated in Figure 

3(a). This figure shows that the numerical solutions have a good agreement with the exact solutions. 

Figure 3(b) is a 3D surface plot of numerical solutions to observe the numerical behavior of the 

Fornberg–Whitham equation through time.  

 

a) 

b)

 

                 (b) 

Figure 3. (a) The comparisons of the uext and unum at different t and (b) the surface plot of unum in the 

entire x-t domain of the example 1. 
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Tables 1 to 3 are presented to verify the accuracy and parameter sensitivity, MAEs and RMSEs are 

obtained by utilizing different numbers of NT and ns at different time levels. In Table 1, the total num-

ber of nodes NT is tested, and MAEs in different time levels are displayed. These error values indicate 

that more accurate numerical solutions will be obtained as NT increases. Meanwhile, MAEs and 

RMSEs are also presented by using different ns in Table 2. These errors show that ns is a parameter 

with low sensitivity. Furthermore, both tables demonstrate that there is no accumulation of errors 

during the numerical simulation, and numerically indicate that the ST approach can effectively avoid 

the accumulation of numerical error that a hybrid numerical scheme may encounter when apply to 

time-dependent problems. 

Table 1. MAEs and RMSEs of the example 1 with ns = 20 by using different NT at different t. 

 t = 1 (n = 2)  t = 3 (n = 6)  t = 5 (n = 10) 

NT  ,2
L  RMSE2  

 ,6
L  RMSE6  

 ,10
L  RMSE10 

2211 1.725e-04 2.424e-05  2.251e-05 4.081e-06  3.250e-05 5.891e-06 

8421 3.267e-05 3.071e-06  6.677e-06 8.855e-07  9.153e-06 1.214e-06 

18631 1.313e-05 9.162e-07  3.856e-06 4.747e-07  4.927e-06 5.949e-07 

Table 2. MAEs and RMSEs of example 1 with NT = 8421 by using different ns at different t. 

 t = 1 (n = 2)  t = 3 (n = 6)  t = 5 (n = 10) 

ns  ,2
L  RMSE2  

 ,6
L  RMSE6  

 ,10
L  RMSE10 

20 3.267e-05 3.071e-06  6.677e-06 8.855e-07  9.153e-06 1.214e-06 

23 5.158e-05 5.737e-06  1.961e-05 2.011e-06  1.301e-05 1.563e-06 

26 5.093e-05 5.713e-06  3.067e-05 3.064e-06  1.264e-05 1.566e-06 

 

In order to further validate the capability of the proposed numerical scheme, the numerical so-

lutions locate at specific positions (x,t) are presented in Table 3, and compared with the exact solu-

tions. In this table, the function values are taken to eight decimal places to show the precision accu-

racy of the proposed ST-GFDM. Besides, the proposed ST-GFDM is compared with the HAM [4], 

ADM [7], RKHSM [7], and MVIA-I [10], those comparisons are shown in Table 3. In these compara-

tive data, it can be seen that the proposed ST-GFDM performs better than the HAM and ADM. Alt-

hough the accuracy is weaker than the RKHSM and MVIA-I, the solutions with numerical errors 

below 10-6 or even 10-7 can be obtained, which is already an acceptable numerical result for engineer-

ing applications. The above discussions show that the proposed ST-GFDM can accurately and stably 

solve the Fornberg–Whitham equation. Since the capability of the proposed ST-GFDM has been ver-

ified in this numerical example, the following numerical tests are solved by using specific parameters, 

and the obtained numerical results are compared with other approximation algorithms. 

Table 3. Comparisons of the numerical results of example 1 with exact solution at various locations 

at different time levels. (NT=8421 and ns=23) 

  t = 1 (n = 2)  t = 3 (n = 6)  t = 5 (n = 10) 

  uext ST-GFDM  uext ST-GFDM  uext ST-GFDM 

x −4 0.06948345 0.06948238  0.01831564 0.01831622  0.00482795 0.00483149 

 −2 0.18887560 0.18887409  0.04978707 0.04978139  0.01312373 0.01312198 

 0 0.51341712 0.51342701  0.13533528 0.13532764  0.03567399 0.03566356 

 2 1.39561243 1.39565330  0.36787944 0.36788606  0.09697197 0.09696040 

 4 3.79366789 3.79371117  1.00000000 1.00001868  0.26359714 0.26359633 

 ,n
L   5.158e-05  1.961e-05  1.301e-05 
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Table. 4. Comparisons of the numerical results of example 1 with exact solution and the other approxima-

tion methods at various locations at t = 5. (n = 10, NT =8421 and ns =23) 

x uext HAM [4] ADM [7] 
RKHSM 

[7] 

MVIA-I 

[10] 
ST-GFDM MAEs 

−4 0.00482795 0.00487526 0.00317192 0.00482795 0.00482795 0.00482958 
1.626e-

06 

−2 0.01312373 0.01325233 0.00862217 0.01312373 0.01312373 0.01312294 
7.893e-

07 

0 0.03567399 0.03602358 0.02343750 0.03567400 0.03567399 0.03566866 
5.337e-

06 

2 0.09697197 0.09792224 0.06370972 0.09697195 0.09697197 0.09696298 
8.992e-

06 

4 0.26359714 0.26618027 0.17318095 0.26359729 0.26359714 0.26359021 
6.925e-

06 

4.2. Example 2 

The 2nd example is a numerical test for the modified Fornberg–Whitham equation [5,7,9–11], 

the exact solution is given as follows,  

       ( ) ( ) ( )( )( )= − − −23
 , 15 5 sech 5 15 ,

4
extu x t c x t          ( )25  

where ( )= −
1

10 5 15
20

c . The initial condition and boundary conditions are denoted as, 

    

( ) ( ) ( )

( ) ( ) ( )( )( )
( ) ( ) ( )( )( )


= −




= − − −



= − − −


2

0

2

1

2

2

3
15 5 sech ,  

4
3

15 5 sech 5 15 ,  
4
3

15 5 sech 5 15 .
4

U x cx

f t c a t

f t c b t

              ( )26  

The following parameters are used in this numerical example: a = -10, b = 10, dt = 0.2, T = 1, ND = 10, 

NT = 40421 and ns = 20. The numerical solutions are displayed in Figure 4. In Figure 4(a), the compar-

ison of the exact solutions and the numerical solutions at specific time levels, t=0.2, 0.4, 0.8, and 1, are 

shown, and these numerical results have a good agreement with the exact solutions. In addition, the 

MAEs at specific (x,t) are listed in Table 5 with the errors of the MVIA[10] and VIM [6]. Obviously, 

the error performance of the proposed numerical scheme is better than the other two approximation 

algorithms and also verifies that the proposed ST-GFDM is fully capable of handling such complex 

PDEs. 
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(a)

 

(b) 

Figure 4. (a) The comparisons of the uext and unum at different t and (b) the surface plot of unum in the 

entire x-t domain of the example 2. 

Table 5. MAEs of example 2 with exact solution and the other numerical methods. 

 x = 2.5    x = 5   

t MVIA [10] VIM [6] ST-GFDM  MVIA [10] VIM [6] ST-GFDM 

0.02 3.780e-05 1.180e-04 1.883e-07  9.966e-06 2.124e-05 4.272e-08 

0.04 7.240e-05 2.363e-04 1.949e-07  1.778e-05 4.797e-05 4.077e-08 

0.06 1.036e-04 3.547e-04 1.996e-07  2.333e-05 8.029e-05 3.867e-08 

0.08 1.313e-04 4.731e-04 2.042e-07  2.653e-05 1.183e-04 3.647e-08 

0.1 1.552e-04 5.914e-04 2.087e-07  2.727e-05 1.622e-04 3.419e-08 

4.3. Example 3 

The 3rd example is the modified Camassa-Holm equations [2,3], the exact solution is given as 

follows,  

        ( )
 

= − − 
 

2 , 2sech ,
2

ext x
u x t t                         ( )26  

The follows are applied in this numerical example: a = -10, b = 10, dt = 0.5, T = 2, ND = 4, NT = 37231 

and ns = 20. The initial condition and boundary conditions are gained by introducing the above pa-
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rameters into Eq. (26). The numerical solutions are demonstrated in Figure 5. In those plots, the ob-

tained numerical results are compared well with the exact solution in Figure 5(a), and the physical 

behavior of the wave transmission can be watched in Figure 5(b). Meanwhile, the numerical results 

located at various locations are presented with the numerical results of the VIM [3] in Table 6. This 

table shows that the proposed ST-GFDM can successfully solve the Camassa-Holm equation, and can 

obtain accurate numerical solutions. 

(a) 

 

(b) 

Figure 5. (a) The comparisons of the uext and unum at different t and (b) the surface plot of unum in the 

entire x-t domain of the example 3. 
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Table 6. Comparisons of the numerical results of example 3 with exact solution and the other numer-

ical methods at various locations at t = 0.05 and t = 0.1. 

x t uext ST-GFDM VIM [3] MAEs 

6 0.05 -0.021795977 -0.021798486 -0.019790189 2.508360E-06 

8 0.05 -0.002963750 -0.002960395 -0.002682964 3.355673E-06 

6 0.1 -0.024074444 -0.024070611 -0.019848303 3.832791E-06 

8 0.1 -0.003275195 -0.003265414 -0.002684058 9.781412E-06 

4.4. Example 4 

The final example is the modified Degasperis−Procesi equation [3,11], the exact solution is given 

as follows, 

        ( )
 

= − − 
 

215 5
 , sech ,

8 2 4
ext x t

u x t                   ( )27  

boundary condition and initial condition can obtain from Eq. (27). The following parameters are used: 

a = -10, b = 10, dt = 0.5, T = 2, ND = 4, NT = 37231 and ns = 20. The numerical solutions and data are given 

in Figure 5 and Table 7, respectively. Due to the similarity of the modified Degasperis−Procesi equa-

tion and the modified Camassa-Holm equation, the behavior of the numerical solutions is similar as 

well. In those comparisons, the proposed ST-GFDM can obtain accurate numerical results as shown 

in the above numerical examples. As has been described above, the proposed ST-GFDM successfully 

solved the shallow water wave problem, and has the capable to stably simulate the long time scale 

problems. 
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(a)

 

(b) 

Figure 5. (a) The comparisons of the uext and unum at different t and (b) the surface plot of unum in the 

entire x-t domain of the example 4. 

Table 7. Comparisons of the numerical results of example 4 with exact solution and the other numer-

ical methods at various locations at t = 0.05 and t = 0.1. 

x t uext ST-GFDM VIM [3] MAEs 

6 0.05 -0.020951831 -0.020948113 -0.018566923 3.717910e-06 

8 0.05 -0.002851900 -0.002848801 -0.002682964 3.099397e-06 

6 0.1 -0.023714184 -0.023719627 -0.018635025 5.443036e-06 

8 0.1 -0.003229560 -0.003227788 -0.002516809 1.771923e-06 

5. Conclusions 

In this research, the proposed ST-GFDM scheme is adopted for numerical solving the nonlinear 

shallow water wave equations in which, the modified Camassa−Holm equation, the modified Degas-

peris-Procesi equation, the Fornberg-Whitham equation, and its modified form. The ST-GFDM is pro-

posed to discretize the governing equations in an ST domain, and the nonlinear algebraic system is 

solved by the two-step Newton’s method. By applying the ST-GFDM, mesh generation is avoided 

and makes the numerical processes simpler. On the other hand, the two-step Newton's method has 
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the characteristic of second-order convergence, it correspondingly improves the efficiency for solving 

the problem that has a heavy computational burden in solving the inverse of a sparse matrix. To deal 

with long-time-scale numerical problems, the time-marching method is applied for moving the ST 

domain and saves the computational resource thereby addressing the shortcomings of the ST ap-

proach.  

Four numerical examples are presented to verify the proposed ST-GFDM scheme. By changing 

different parameters in the first numerical case, it can be concluded that increasing the total number 

of nodes can obtain more accurate numerical solutions. Meanwhile, the tests in adjusting ns in a sup-

porting domain verify that ns is an insensitive parameter. The numerical solutions have good agree-

ments with exact solutions and the solutions of other approximation methods in four examples. Be-

sides, the accumulation of numerical errors is not significant during the process of time progression, 

indicating that the proposed ST-GFDM scheme has a strong advantage for solving transient prob-

lems. In the future, it can be applied to solve more complex PDEs and engineering problems. 
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