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Abstract: This paper applied the space-time generalized finite difference scheme for solving the
nonlinear dispersive shallow water waves as the modified Camassa—-Holm equation, modified
Degasperis-Procesi equation, Fornberg-Whitham equation, and its modified form. The proposed
meshless numerical scheme was composed of the space-time generalized finite difference method,
the two-step Newton-Raphson method, and the time-marching method. The space-time approach
can treat the temporal derivative as one of the spatial derivatives. This numerical technique enables
all the partial derivatives in the governing equation can be discretized by a spatial discretization
method, and the mixed derivative can efficiently deal with using the proposed meshless numerical
scheme. The space-time generalized finite difference method is advanced from the Taylor series
expansion and the moving-least square method. The numerical discretization process is only related
to functional data and weighting coefficients on the central node and its nearby nodes. Thus, the
matrix system composed of nonlinear algebraic equations will be a sparse matrix and can be effi-
ciently solved by the two-step Newton-Raphson method. Furthermore, the time-marching method
was utilized to proceed with the space-time domain along the time axis. In this paper, several nu-
merical examples were tested to verify the capability of the proposed space-time generalized finite
difference scheme.

Keywords: nonlinear shallow water wave; meshless methods; space-time generalized finite differ-
ence method; Degasperis-Procesi equation; Fornberg-Whitham equation

1. Introduction

The dispersive shallow water wave is a kind of wave propagation phenomenon that has been
widely studied in engineering. It has many applications in physics, engineering, mechanics, and
mathematics. In the past few decades [1,2,11,3-10], some partial differential equations (PDEs) have
been presented to describe the traveling wave phenomenon, and most of these equations are nonlin-
ear time-dependent PDEs such as the Camassa—Holm equation [2,3], the Degasperis—Procesi equation
[3,8,11], the Fornberg-Whitham equation [1,4-7,9-11], and their modified forms. Mathematically, the
above-mentioned three equations and their modified forms are transient nonlinear PDE with third
(3rd)-order time-space mixed partial derivatives. Therefore, how to obtain the numerical solutions of
those PDEs is a significant issue for analyzing the traveling wave phenomenon. In previous studies,
there were mainly two types of methods used to obtain solutions for such equations, which included
the approximate method and numerical simulation.

To deal with such complicated equations, the exact solution is generally difficult to find, and the
numerical ways are important numerical treatments for those equations. By using the numerical
methods for temporal and spatial discretization, the classical numerical treatments were inconven-
ient to adopt due to the high-order mixed partial derivatives. Thus, the approximate methods for
presenting the deriving the approximate numerical solutions were widely used by researchers. For
example, Wazwaz [3] used the extended tanh method to establish the new solitary wave solutions of
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the modified Degasperis—Procesi and Camassa—Holm equations. Abidi and Omrani [4] applied the
homotopy analysis method (HAM) to acquire the HAM results of the Fornberg-Whitham equation
and compared it with Adomian’s decomposition method (ADM). Ahmad et al. [10] utilized the mod-
ified variational iteration algorithm (MVIA) to get the approximate numerical solutions of the
Fornberg-Whitham equation and its modified form. In addition to the above mentioned, there are
other approximate methods such as the method of phase portraits analysis [5], He’s variational iter-
ation method (VIM) [6], and the reproducing kernel Hilbert space method (RKHSM) [7]. Recently,
due to the evolution of computer technology and numerical methods, novel numerical schemes have
also been applied to solve such equations such as the Godunov method [9], the cubic B-spline quasi-
interpolation method [8], and the hybrid radial basis functions method [11].

In the numerical discretization methods for PDEs, they can roughly divide into two families as
mesh-based methods and meshless/free methods. The finite difference method (FDM), finite volume
method, and finite element method are the famous mesh-based methods that are widely used. Those
methods were developed and modified for solving the engineering problem and analyzed some
physical phenomena that are difficult to obtain through practical experiments. Although these mesh-
based methods are highly applied, mesh generation is still a troublesome issue today. Thus, the idea
that using the numerical discretization methods without mesh becomes one of the important research
directions. The meshless methods can avoid generating mesh, and make it easy to solve problems in
a computational domain with complex shapes. In addition, the numerical discretization only needs
to construct interpolation functions on arbitrary distribution nodes for the governing equation. After
years of development, meshless methods have the advantages of simple numerical processes, easy
programming, flexibility, and even the ability to construct a hybrid numerical scheme customized by
researchers. At present, there are several meshless numerical methods, for example, the radial basis
functions collocation method (RBFCM) [11], the virtual boundary meshless Galerkin method [12], the
moving particle semi-implicit method [13], the radial point interpolation meshless method [14], the
singular boundary method [15], the localized scheme based on boundary-type method [16-18], the
generalized finite difference method (GFDM) [19,20,29,21-28], etc.

The GFDM is a localized domain-type meshless collocation method based on the multivariate
Taylor series expansion theory and the moving least-square method. In 1980, the idea that the FDM
without mesh was proposed by Liszka and Orkisz [19]. After Benito et al. [20] proposed the explicit
numerical process in 2001, numerical applications related to the GFDM have been proposed in the
past two decades. By utilizing the GFDM, the approximate expression of the partial derivative terms
can be represented by a linear combination of the weight coefficients and function values in a local
support domain. This support domain only contains the goal node and its nearby nodes. Once the
nodes are distributed in the computational domain, the governing equation can be discretized into a
system of algebraic equations. In addition, the resultant matrix system is a sparse matrix due to the
localized property of the GFDM. The above characteristics make the GFDM enable to apply for com-
plex problems, such as the theoretical analysis [29], shallow water equation [21,22], porous media
flow [23], wave propagation [24], elliptic interface problems [25], theoretical analysis, extended
Fisher-Kolmogorov equation [26], stream function formulation [27], and elastic wave [28]. In this
research, the space-time GFDM (ST-GFDM) was applied as the foundation of the proposed meshless
numerical scheme, and it is an extended meshless method from the GFDM.

The space-time (ST) coupled approach is a numerical technique that treated the temporal deriv-
ative as one of a spatial derivative. Before ST coupled approach was used, the original way to solve
a time-dependent problem is that apply a numerical scheme that combines the spatial discretization
method and temporal discretization method to solve. That caused the accuracy and stability of the
numerical scheme to be hard to define. By utilizing the ST coupled approach, an (n)-dimensional
time-dependent problem will transfer into an (n+1)-dimensional steady-state problem, then all of the
partial derivatives in the governing equation can be discretized by the numerical method which ap-
plies for spatial discretization. Thus, the properties of the numerical scheme will much easier to de-
termine. Recently, the ST coupled approach is widely combined with meshless methods such as the
ST localized RBFCM [30], ST kernel-based method [31], ST localized method of fundamental solu-
tions [32,33], ST Trefftz Method [34,35], ST backward substitution method [36] and ST-GFDM [37-
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45]. Based on the flexibility of the ST-GFDM, researchers applied this meshless method for engineer-
ing problems in the past few years, for example, the heat conduction problems [37,46], Burgers’ equa-
tions [38], parabolic PDEs [39], unsteady double-diffusive natural convection [40], thin elastic plate
bending problem [41], thermoelasticity problems [42], equal-width equation [43], Zakharov—-Kuz-
netsov-Modified equal-width equation [44], and hyperbolic PDEs [45], etc. The above achievements
indicate that the ST-GFDM is one of the meshless method that have potential for engineering appli-
cations. In this research, the ST-GFDM is applied to combine with the two-step Newton’s method
and time-marching approach for solving the dispersive shallow water wave problem.

After the motivation and the discussions of relevant works of literature are described in the first
section. The governing equations of the dispersive shallow water wave are represented in Section 2.
In the section of proposed ST-GFDM, the numerical process is described and four numerical exam-
ples are simulated to verify the proposed method in section 4. Then, the conclusions are represented
in the final section.

2. The mathematical models of the dispersive shallow water waves

The dispersive shallow water wave represents the behavior of the wave propagation, breaking
wave, and dynamic system of the fluid. It is an important phenomenon in physics and engineering.
In the past few decades, several researchers have proposed the mathematical model of the dispersive
shallow water wave problem, and its general form of the governing equation [1-3] is described as,

2 3
e 8x26t+ +ﬂuk)2—z:q%27?+u%,asyc£b,t20, (1)
where u is the wave speed; x and t are the spatial- and temporal- axis; a, 5, k, and g are the constants.
The initial conditions and boundary conditions are represented as,
u(x,O) =U, (x)
u(a,t) = f, (t) ) (2)
u(bt)=f£(t)
By applying the constants, a, b, k, and g, three different type of the dispersive shallow water wave

equation are defined. The first one is the Fornberg—Whitham equation [1,6,7,9,10] that is given with
a=1, p=1, k=1, and ¢=3 as,

ou ou (

3 2 3
%—ﬂ ( u)@:3%6_u+u6_u, a<x<b, t>0, (3)
ot ox*ot ox  oxox? o
and its modified form [4,7,10] is given (a=1, =1, k=2, and g=3) as,
3 2 3
ou__Ou +(1+u2)%=3%6—u+uﬂ. (4)
ot  ox*ot ox  oxoxt o’

The remaining two are similar; they are the Camassa—Holm equation [2,3] and Degasperis—Pro-
cesi equation [3,8,11], respectively. By giving with a=0, =3, k=1, and 4=2, the Camassa—Holm equation
can be denote as
ou Ju ou oudu ou
o AN T =2 U, (5)
ot  Ox“ot Ox  Ox Ox ox

and the Degasperis—Procesi equation (a=0, $ =4, k=0, and 4=3) is described as

— U—= u—:r-,

ot ox’ot ox  oxoxt X’
As same to the relationship of the Fornberg-Whitham equation and its modified form, the modified
form of the Camassa—Holm equation [3] and Degasperis—Procesi equation [3,8,11] are represented by

3 2 3
6u_6u+48_u_ 6_u6_u+ o’u (6)

changing nonlinear term uZ—u into u? Z_u . Then, they can be described as follows,
X X

= 1 u—,
ot ox*ot ox  oxox?  ox’

3 2 3
6u_8u+ 26_u=26_uﬂ+ o'u (7)

and
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. Its complexity caused the original explicit or implicit numerical schemes to be difficult to solve, and
most of the researchers proposed approximate or exact solutions for dispersive shallow water wave
equations. Therefore, the applications of the numerical scheme for such equations are still in the early
stages of enlightenment. In this research, the Fornberg—Whitham equation and its modified form,
modified Camassa—Holm equation, and modified Degasperis—Procesi equation are solved by the pro-
posed ST-GFDM scheme. The numerical procedures of the proposed ST-GFDM scheme is introduced
in the next section.

Egs. (1) and (3)-(7) are highly nonlinear PDEs and have 3rd-order mixed partial derivatives as

3. The proposed meshless numerical scheme

The numerical procedures of the proposed ST-GFDM scheme is described in this section. The
proposed numerical scheme applies ST-GFDM for numerical discretization to obtain the nonlinear
algebraic equations. Then, the nonlinear algebraic system is solved by the two-step Newton's
method. For saving the computational resource and solving the numerical problems within unpre-
dictable end-time, the simple technique, named time-marching method, is applied.

3.1. Space-time generalized finite difference method

In this subsection, the numerical process of ST-GFDM is described. Once the time-dependent
problem is determined, the distribution nodes can be set in the corresponding computational domain.
For the one-dimensional (1D) time-dependent problem, the ST approach defines a two-dimensional
(2D) steady-state problem in an x-t field. Since the ST approach is applied, the distribution nodes are
set both in the space- and time-axis, and named ST-domain [38,40,41] as Figure. 1(a).

o0 4, 0 o©
t * interior nodes o] o o
r, * boundary nodes o 0 ="~
7 e 0o ©O ©
o /' ® \
o ’ ]
b e © o
° $it e .'l o]
e
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e 0 o,
x o] o ©O (o]
2) (b)
Figure 1. The schematic diagram of (a) nodes and (b) a supporting domain of the GFDM in the x-t

domain,

A supporting domain is set up by choosing ns nearest nodes within central i node in Figure. 1(b),
and (xz.,tl.), i=12,.,N, is defined as the coordinate of the ith node. On the other hand,

(xi,j,ti,]. ), j=1,2,..,n_, is represented the coordinates of the nodes in the supporting domain. By ap-

plying the n-order Taylor expansion and the weighting function, a residual function B, (ul.) can be
written as [27,43],
2
m, 1 au+mui X .
O GO XA L | P
where u; and u,; denotes the unknowns at the ith node and unknowns inside the ith support-

ing domain, respectively; E is the truncation error of the n-order Taylor expansion; o and m is the
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natural number; hi], =X, —X, ; l,,], =t, =t ; and w is the quartic spline function and describes as

.\ (d,) [(d,Y
1— ij | _ ij  <dm.
w(hi,j,li,j)= 6(dmi] +8[dml} 3[dmi] 4 <dm‘, (10)

0 oA >dm,

follows,

where d, ; is a distance between the ith node and the each node inside the ith supporting do-

main, and 4, , =4/hf/}. +lij ;and dm, is the maximum distance.
In this study, the 3rd-order ST-GFDM was applied, and Eq. (9) can be written as,

ou ou| h, u ul| L o%u
u—u . +h —| +l.. —| +——| +h [ ——| +——
w0 x| e 2 ox?| Y oxot|, 2 o
B u. )= Z Z i 7
3( z) ; hi;‘ ou +hi2,]_li,]_ o*u | +hi,jli2,j o’u | +13J_ o*u i
6 o'l 2 are 2 x| 6o
’ (11)
and minimalized B, (u,.) respecting to,
T
O O Y Y O R
" | ox| o) ax?| oxot| "o | ox®| ax*ot| exat*| o | |

a linear system AD, Z =bU, is obtained. In this linear system, the matrix A is denoted as

A =P"W?P, where

I Y
il i1 2 i,17,1 2 6 2 2 6
T N A R
i,2 i,2 2 1,271,2 2 6 2 2 6
P= 2 . 2 3 2: : 2 3 ’ (13)
M 2 v 2 6 2 2 6
hizn llzn hlsn hiznlin hinlizn l?n
hin lin — hinlin — — — — —
L 2 G ) 6 2 2 6 1o
W:diug(wl.’],wi/z,---,wm ) ; b is a coefficient matrix whose size is 9><(ns +1) and is written as

b :[PTW PTWZJ ; U, :[ui,ui,],uilz,...,ui’ns T ; and the superscript T is a symbol of transpose. By
solving this linear system, the approximate expression of D, can be written as,
D, =A"bU, =EU,, (14)
where E, is the matrix of weighting coefficients within sized 9x (nS + 1). Then, the derivatives

are denoted as follows,
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aZu ng
th ol + D wxt, u.
8x6t p= BT
aZu n,
—wtt ol + D Wit U,
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1
0° &
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ax = i,j70,f
83u s
—wxxt ol + Q) wxxt, u,
6x26t = B
3 n,
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axatz = B
a3u m,
= witt, ju, + Y whtt, u, (15)
6t3 ) i L]
1

where {wxi,].}:, {wt }" , {wxxi,].}l_ls , {th }" , {wtt }" , {wxxx,.’j}és , {wxxti,j}jio,{thti,].}io,

j j=0 j=0 j=0 j=0 j=0
and {wttti ; }n , are the weighting coefficients, and gained by solving Eq. (14). Eq. (15) is a significant
S

part of the proposed ST-GFDM in that the partial derivatives are approximated by a linear combina-
tion of the weight coefficients and function values in a local support domain. Thus, the discretized
governing equations and boundary conditions only relate to the central i node and its nearby #ns nodes
in the local support domain. In addition, the numerical process of Egs. (9)-(15) will apply for each
node to obtain the weighting coefficients matrix E, of each node. Finally, the resultant matrix sys-

tem, formed by the algebraic equations after discretization, is a sparse matrix.

The following contexts demonstrate the numerical discretization for the governing equation
and boundary conditions to form the nonlinear algebraic systems. Since the simulate start, Niz, N,
Nz and Nw nodes are set up along the I, I',, I';and T',, respectively. Meanwhile, Ni nodes are

distributed inside the computational domain € . (see Figure. 1(a)). Thenodes along T, are satisfied
the initial conditions U (x) and thenodesalong T', and T, are satisfied the boundary conditions

fl(a,t) and f, (b,t),respectively. Therefore, the algebraic equations along the I',, T, and I', are

described as,

Fo=u-U(x,), i=12,.,N,,
F =u-f(at),i=N,+1,N, +2,.,N, +N,, (16)
F =u—f(bt), i=N,+N,+LN, +N,,+2,.,N, +N,, +N,;,

The remaining domain, I', and Q, are both satisfied the governing equation, Eq. (1), and they
can be discretized by Eq. (15) as,
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i1 =

ns
(a+bu(‘)[wx, U+ wx, U J—
i 1,077 i,j1,]

j=1

! ng n,
q (wxiloui + Z wxi,].ui,j J[wxxi’oui + wxxl.’].ui’j ] — .

j=1 j=1

g 1,
(wt, u + ) wt u }—(wxxt. u. + > wxxt. u. J+
i,0771 i,j1,] i,0771 i,j1,]

i,ji,f

g
U, (wxxxi ol + wxxx. .u. J
j=1

i=N,+N,+N,_,+1,N, +N,,+N,,+2,.,N,, N, +1,N, +2,..,N_,

where N, is a number of nodes set up on the whole boundary, and defined as
N,=N,+N,+N_+N, ; N
N,=N,+N, . In Egs. (16)-(17), N

; is the number of total nodes in the computational domain as

; algebraic equations are acquired, and denoted as

F:[Fl,l-"z,...,Fi JT, i=12,.,N, . Meanwhile, N, unknown values are defined as,

U= [u] JUy e U T ,1=1,2,..,N,. Then, the two-step Newton’s method is applied to solve this non-

linear algebraic system, and the specific numerical process is described in next subsection.

3.2. Two-step Newton’s method

In this research, the famous nonlinear solve, the Newton’s method, was applied for iterating the
numerical solution of the proposed ST-GFDM. The Newton’s method is a classic solver for nonlinear
systems, and bases on the first (1st) -order Taylor expansion formula. It has characteristics that simple
to programming and fast convergence. The iteration formula for the Newton’s method is written as
follows

U = U —(J1) F k=1,2,3,., (18)
where J is the Jacobian matrix, and the elements are expressed as ]Z,,], =0F / GU], ; k is the number of

iteration; U and U" are the vectors of unknowns at the (k+1)-th and k-th  iteration, respectively.
Although the Newton’s method is simple to apply, the inverse matrix of J is a troublesome issue
during the simulation. To avoid the computation of the inverse matrix, the two-step iteration of the
Newton’s method is given [38,40,43] as,

J*AU* = —F*, (19)
UM =U* +AU", (20)
where AU* is the numerical increment at kth-step iteration.
The inverse matrix of the Jacobian is prevented by using the two-step process of Egs. (19)-(20),

and the AU* can be solved as a linear system. Thus, the nonlinear algebraic system, obtained by the
ST-GFDM can be solved efficiently. Furthermore, the iterative system will converge once the conver-

gence condition = Mux|AUk| <107 is reached, and the numerical solutions of the proposed ST-

GFDM are gained.

3.3. Time-marching approach

In the previous subsections, the numerical process of the proposed ST-GFDM scheme has actu-
ally been introduced, but those processes only work in a single ST-domain, Q= [u,b]x[o,dt] . To
deal with the numerical problems has unpredictable end-time or long temporal scales, the simple

technique, the time-marching approach, is composed in the proposed numerical scheme. The sche-
matics of the time-marching approach is demonstrated as Figure 2. In Figure 2(a), a small-scale ST

domain, D1= [a, b} X [O,dt] is formed when the simulation start, and the distribution of nodes is set
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up like Figure 1(a). In this ST domain, the initial conditions U, (x) is satisfied along I'}, I', and
'} are satisfied the boundary conditions f, (a,t) and f, (b,t), respectively. The governing equa-

tion (Eq. (1)) is satisfied on I'; and Q. Then, the numerical processes in section 3.1 and 3.3 are ap-
plied for obtaining the numerical solutions in D1 domain. Once the numerical procedures within D1
are completed, the D1 will be shifted by distance dt along the t-axis, and the 2nd small-scale ST do-
main D2 = [a, b] x [dt, 2dt} is formed as Figure 2(b).

The numerical processes within the D2 are as same as the D1, but the boundary conditions
along T is different. In I'?, the numerical solutions at I'} in D1 are treated as the initial condi-

tions for D2. Thus, the numerical solutions in D2 can be solved by the proposed ST-GFDM and the
two-step Newton’s method. It shall be noticed that the coordinates between D1 and D2 are the rela-
tive locations. Thus, the weighting coefficients of the proposed ST-GFDM in D1 are as same as each
ST domain generated by the time-marching approach. After moving the ST domain within n-times,
the n-th ST domain, Dn = [a,b] x [(n —1)dt,n* dt] , is generated (see Figure 2(c)), and the numerical
solutions are solved. The simulation will finish when n*dt reaches the specified end-time which is

determined by the numerical example. In the next section, four numerical examples are provided to
verify the proposed ST-GFDM scheme.

Dn
t
N I'":GE.
: D1 . D2 n*dt - -
A A I',:GE. 2
| 2t ‘ I3: /(0 o I 4()
1
! : : -1)*dt- -
. T £() o Tz f(n)  (l)rdt-o]
' I :GE 2 e i T : Numerical solutions along I} ~*
dt-- dt-- !
Flz A0 o F; -, (f) i Ff : Numerical solutions along I'} i
>  EEnEEEEEEEEE > ¢ R EEEEEEEEEEEE > ¢
: U, (x) : '
(a) (b) (c)

Figure 2. The schematic diagrams of the time-marching approach in the proposed ST-GFDM. (a) 1st
domain, (b) 2nd domain, and (c) n-th domain.

4. Numerical examples

In this section, four numerical examples are tested to verify the proposed ST-GFDM, there are
the examples of the Fornberg—Whitham equation and its modified form, modified Camassa—Holm
equation, and modified Degasperis—Procesi equation, respectively. The following symbols are de-
fined: T is the end time of the numerical problem, Nb is the number of times that the ST domain has
been moved by the time-marching method, and writtenas N, =T /dt. The distribution of nodes for

each example is displayed in Figure 1(a). To analyze the accuracy of the proposed ST-GFDM, the
numerical errors are defined in this study as follows,

ext num
= U.

1 1

L =max

0 N
M 1INy

L =max {Loo,n } ,

1<n<N,

u

ext num

u.
i

/N,

Ny
RMSE, = JZ /

i=1

RMSE = max{RMSE, },
1<n<Np
where superscript ext is the exact solution; num denotes numerical solutions. In Eq. (21), L, _ is the

n

maximum absolute errors (MAE) in Dn, and L, is the maximum MAEs in the entire simulation.


https://doi.org/10.20944/preprints202306.0814.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 June 2023 d0i:10.20944/preprints202306.0814.v1

Meanwhile, root-mean-squared error (RMSE) in each ST domain is defined as RMSEn in Eq. (22), and
RMSE is the maximum RMSEs in the whole simulation. In addition, the initial guesses are the initial
conditions of each numerical problem for iteration in D1, and the numerical solutions in Dn-1 are
initial guesses of numerical processes in Dn.

4.1. Example 1

In this subsection, the Fornberg—Whitham equation [1,5] is solved. This mathematic model is
presented to describe the behavior of the breaking wave and have the solitary or traveling wave so-
lutions. The exact solution of the 1st numerical example is described as,

™ (x,t) = e(g_%] , (23)

and the initial condition and boundary conditions are represented as,
a 2t

0l g
Uy(x)=e?, f,(t)=e? >, f,(t)=e? . (24)

The following parameters are applied in this numerical example: a=-5,b=5, dt=0.5, T=5, and Npo =
10. In Figure 3, the numerical solutions are obtained by applying Nr= 8421 and ns=23. The numerical
solutions in different time levels are compared with the exact solutions and demonstrated in Figure
3(a). This figure shows that the numerical solutions have a good agreement with the exact solutions.
Figure 3(b) is a 3D surface plot of numerical solutions to observe the numerical behavior of the
Fornberg-Whitham equation through time.

a)

7 -
—t=1

or --t=2
e =3

5t ~t=4

4k “t=5

u o Exact solutions
(b)

Figure 3. (a) The comparisons of the u** and ™ at different t and (b) the surface plot of u"" in the
entire x-t domain of the example 1.
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Tables 1 to 3 are presented to verify the accuracy and parameter sensitivity, MAEs and RMSEs are
obtained by utilizing different numbers of Nt and #s at different time levels. In Table 1, the total num-
ber of nodes Nris tested, and MAEs in different time levels are displayed. These error values indicate
that more accurate numerical solutions will be obtained as Nt increases. Meanwhile, MAEs and
RMSEs are also presented by using different ns in Table 2. These errors show that ns is a parameter
with low sensitivity. Furthermore, both tables demonstrate that there is no accumulation of errors
during the numerical simulation, and numerically indicate that the ST approach can effectively avoid
the accumulation of numerical error that a hybrid numerical scheme may encounter when apply to
time-dependent problems.

Table 1. MAEs and RMSE:s of the example 1 with #s = 20 by using different Nt at different t.

t=1(n=2) t=3(n=6) t=5(n=10)

Nr L, RMSE: L, RMSEs L, ., RMSE1
2211 1.725e-04  2.424e-05 2.251e-05  4.081e-06 3.250e-05  5.891e-06
8421  3.267e-05  3.071e-06 6.677e-06  8.855e-07 9.153e-06  1.214e-06
18631  1.313e-05  9.162e-07 3.856e-06  4.747e-07 4927e-06  5.949e-07

Table 2. MAEs and RMSEs of example 1 with Nt = 8421 by using different ns at different ¢.

t=1(n=2) t=3(n=6) t=5(n=10)

s L, RMSE: L, RMSEs L, ., RMSE10
20 3267e-05  3.071e-06 6.677e-06  8.855e-07 9.153e-06  1.214e-06
23 5.158e-05  5.737e-06 1.961e-05  2.011e-06 1.301e-05  1.563e-06
26 5.093e-05  5.713e-06 3.067e-05  3.064e-06 1.264e-05  1.566e-06

In order to further validate the capability of the proposed numerical scheme, the numerical so-
lutions locate at specific positions (x,t) are presented in Table 3, and compared with the exact solu-
tions. In this table, the function values are taken to eight decimal places to show the precision accu-
racy of the proposed ST-GFDM. Besides, the proposed ST-GFDM is compared with the HAM [4],
ADM [7], RKHSM [7], and MVIA-I [10], those comparisons are shown in Table 3. In these compara-
tive data, it can be seen that the proposed ST-GFDM performs better than the HAM and ADM. Alt-
hough the accuracy is weaker than the RKHSM and MVIA-I, the solutions with numerical errors
below 10- or even 107 can be obtained, which is already an acceptable numerical result for engineer-
ing applications. The above discussions show that the proposed ST-GFDM can accurately and stably
solve the Fornberg-Whitham equation. Since the capability of the proposed ST-GFDM has been ver-
ified in this numerical example, the following numerical tests are solved by using specific parameters,
and the obtained numerical results are compared with other approximation algorithms.

Table 3. Comparisons of the numerical results of example 1 with exact solution at various locations
at different time levels. (N1=8421 and ns=23)

t=1(n=2) t=3(n=6) t=5 (n=10)
pest ST-GFDM piest ST-GFDM piest ST-GFDM
x -4 006948345 0.06948238  0.01831564 0.01831622  0.00482795  0.00483149
2 0.18887560 0.18887409  0.04978707 0.04978139 0.01312373  0.01312198
051341712  0.51342701 0.13533528  0.13532764  0.03567399  0.03566356
139561243  1.39565330  0.36787944  0.36788606  0.09697197  0.09696040
3.79366789  3.79371117 1.00000000 1.00001868  0.26359714  0.26359633

L 5.158e-05 1.961e-05 1.301e-05

0,1
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Table. 4. Comparisons of the numerical results of example 1 with exact solution and the other approxima-
tion methods at various locations at t = 5. (n = 10, Nt =8421 and ns =23)

RKHSM MVIA-I

x s HAM[4]  ADM[7] o YA stamm MaEs
~4 000482795 000487526 000317192 000482795 000482795 000482958 O
2 001312373 001325233 000862217 001312373 001312373 001312294 >
0 003567399 003602358 002343750 0.03567400 0.03567399 0.03566866 <
2 009697197 009792224 0.06370972 009697195 0.09697197 009696298
4 026359714 026618027 017318095 026359729 026359714 026359021 T

4.2. Example 2

The 2nd example is a numerical test for the modified Fornberg—Whitham equation [5,7,9-11],
the exact solution is given as follows,

um(x,t):%(\/ﬁ—S)sechz (c(x—(5—x/ﬁ)t)), (25)
where c= 2—10 10(5 ~J15 ) . The initial condition and boundary conditions are denoted as,
u, (x) = %(«/E—S)sechz (cx),
fl(t):Z(«/ﬁ—5)sech2 (c(a—(S—x/ﬁ)t)), (26)

f, (t) = Z(\/E—S)sechz (c(b —(5—@)1?)).

The following parameters are used in this numerical example: 2 =-10, b=10,dt=0.2, T=1, No =10,
Nr=40421 and #ns = 20. The numerical solutions are displayed in Figure 4. In Figure 4(a), the compar-
ison of the exact solutions and the numerical solutions at specific time levels, t=0.2, 0.4, 0.8, and 1, are
shown, and these numerical results have a good agreement with the exact solutions. In addition, the
MAE:s at specific (x,t) are listed in Table 5 with the errors of the MVIA[10] and VIM [6]. Obviously,
the error performance of the proposed numerical scheme is better than the other two approximation
algorithms and also verifies that the proposed ST-GFDM is fully capable of handling such complex
PDEs.
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Figure 4. (a) The comparisons of the u** and u" at different t and (b) the surface plot of ™" in the

entire x-t domain of the example 2.

Table 5. MAESs of example 2 with exact solution and the other numerical methods.

x=25 x=5
t MVIA [10] VIM [6] ST-GFDM MVIA [10] VIM [6] ST-GFDM

0.02 3.780e-05 1.180e-04 1.883e-07 9.966e-06 2.124e-05 4.272e-08
0.04 7.240e-05 2.363e-04 1.949e-07 1.778e-05 4.797e-05 4.077e-08
0.06 1.036e-04 3.547e-04 1.996e-07 2.333e-05 8.029e-05 3.867e-08
0.08 1.313e-04 4.731e-04 2.042e-07 2.653e-05 1.183e-04 3.647e-08
0.1 1.552e-04 5.914e-04 2.087e-07 2.727e-05 1.622e-04 3.419e-08

4.3. Example 3

The 3rd example is the modified Camassa-Holm equations [2,3], the exact solution is given as
follows,

u™ (x,t) = —2sech? (g—t], (26)

The follows are applied in this numerical example: a =-10, b =10, dt =0.5, T =2, Npo = 4, Nr = 37231
and #s = 20. The initial condition and boundary conditions are gained by introducing the above pa-
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rameters into Eq. (26). The numerical solutions are demonstrated in Figure 5. In those plots, the ob-
tained numerical results are compared well with the exact solution in Figure 5(a), and the physical
behavior of the wave transmission can be watched in Figure 5(b). Meanwhile, the numerical results
located at various locations are presented with the numerical results of the VIM [3] in Table 6. This
table shows that the proposed ST-GFDM can successfully solve the Camassa-Holm equation, and can
obtain accurate numerical solutions.

(@)

(b)

Figure 5. (a) The comparisons of the u** and u" at different t and (b) the surface plot of ™" in the
entire x-t domain of the example 3.
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Table 6. Comparisons of the numerical results of example 3 with exact solution and the other numer-

ical methods at various locations at £ =0.05 and ¢ =0.1.

t uext ST-GFDM VIM [3] MAEs
0.05 -0.021795977 -0.021798486 -0.019790189 2.508360E-06
0.05 -0.002963750 -0.002960395 -0.002682964 3.355673E-06

0.1 -0.024074444 -0.024070611 -0.019848303 3.832791E-06
0.1 -0.003275195 -0.003265414 -0.002684058 9.781412E-06

4.4. Example 4

The final example is the modified Degasperis—Procesi equation [3,11], the exact solution is given
as follows,

ue’“(x,t):—%ssech2 [g—%j, (27)

boundary condition and initial condition can obtain from Eq. (27). The following parameters are used:
a=-10,b=10,dt=0.5, T=2, Np=4, Nr=37231 and ns =20. The numerical solutions and data are given
in Figure 5 and Table 7, respectively. Due to the similarity of the modified Degasperis—Procesi equa-
tion and the modified Camassa-Holm equation, the behavior of the numerical solutions is similar as
well. In those comparisons, the proposed ST-GFDM can obtain accurate numerical results as shown
in the above numerical examples. As has been described above, the proposed ST-GFDM successfully
solved the shallow water wave problem, and has the capable to stably simulate the long time scale
problems.
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Figure 5. (a) The comparisons of the u®* and u™ at different t and (b) the surface plot of " in the
entire x-f domain of the example 4.

Table 7. Comparisons of the numerical results of example 4 with exact solution and the other numer-
ical methods at various locations at t=0.05 and ¢ =0.1.

t uext ST-GFDM VIM [3] MAEs
0.05 -0.020951831 -0.020948113 -0.018566923 3.717910e-06
0.05 -0.002851900 -0.002848801 -0.002682964 3.099397e-06

0.1 -0.023714184 -0.023719627 -0.018635025 5.443036e-06
0.1 -0.003229560 -0.003227788 -0.002516809 1.771923e-06

5. Conclusions

In this research, the proposed ST-GFDM scheme is adopted for numerical solving the nonlinear
shallow water wave equations in which, the modified Camassa-Holm equation, the modified Degas-
peris-Procesi equation, the Fornberg-Whitham equation, and its modified form. The ST-GFDM is pro-
posed to discretize the governing equations in an ST domain, and the nonlinear algebraic system is
solved by the two-step Newton’s method. By applying the ST-GFDM, mesh generation is avoided
and makes the numerical processes simpler. On the other hand, the two-step Newton's method has
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the characteristic of second-order convergence, it correspondingly improves the efficiency for solving
the problem that has a heavy computational burden in solving the inverse of a sparse matrix. To deal
with long-time-scale numerical problems, the time-marching method is applied for moving the ST
domain and saves the computational resource thereby addressing the shortcomings of the ST ap-
proach.

Four numerical examples are presented to verify the proposed ST-GFDM scheme. By changing
different parameters in the first numerical case, it can be concluded that increasing the total number
of nodes can obtain more accurate numerical solutions. Meanwhile, the tests in adjusting #s in a sup-
porting domain verify that #s is an insensitive parameter. The numerical solutions have good agree-
ments with exact solutions and the solutions of other approximation methods in four examples. Be-
sides, the accumulation of numerical errors is not significant during the process of time progression,
indicating that the proposed ST-GFDM scheme has a strong advantage for solving transient prob-
lems. In the future, it can be applied to solve more complex PDEs and engineering problems.
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