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Abstract: In this study, the partial least squares regression (PLSR) models were developed using no 

preprocessing, traditional preprocessing, multi-preprocessing 5 range, multi-preprocessing 3 range, 

genetic algorithm (GA), and successive projection algorithm (SPA) to assess the higher heating value 

(HHV) and ultimate analysis of grounded biomass for energy usage employing near-infrared (NIR) 

spectroscopy. A novel approach was utilized based on the assumption that using multiple pretreat-

ment methods across different sections in the entire NIR wavenumber range would enhance the 

performance of the model. The performance of the model obtained from 200 biomass samples for 

HHV and 120 samples for ultimate analysis was compared, and the best model was selected based 

on the coefficient of determination of validation set, root mean square error of prediction, and the 

ratio of prediction to deviation values. Based on model performance results, the proposed HHV 

model from GA-PLSR, and the N and O models from the multi-preprocessing PLSR 5 range method 

could be used for most applications, including research, whereas the C and H models from GA-

PLSR performance is fair and applicable only for rough screening. The overall findings highlight 

that the multi-preprocessing 5-range method, which was attempted as a novel approach in this 

study to develop the PLSR model, demonstrated better accuracy for HHV, C, N, and O, improving 

by 4.1839%, 8.1842%, 3.7587%, and 35.9404%, respectively. Therefore, it can be considered a reliable 

and non-destructive alternative method for rapidly assessing biomass properties for energy usage 

and can also be used effectively in biomass trading. However, due to the smaller number of samples 

used in the model development, more samples are needed to update the model for a robust appli-

cation. 

Keywords: Higher heating value; Ultimate analysis; Spectral multi-preprocessing method; Near-

infrared spectroscopy; Partial least squares regression. 
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Highlights: 

• NIRS was developed using PLSR to access HHV and ultimate 

analysis parameters of ground biomass for energy usage. 

• Ground biomass scanning in transflectance mode could im-

prove model accuracy compared to the diffuse reflectance 

mode in NIRS. 

• The novel PLSR multi-preprocessing 5 range method im-

proved the model accuracy of HHV, C, N, and O models by 

4.1839%, 8.1842%, 3.7587%, and 35.9404%, respectively. 

• PLSR combined with GA improved model accuracy for HHV, 

C, and H by 8.5069%, 15.2159 %, and 0.0092 %, respectively. 

• The use of the multi-preprocessing PLSR model could be ben-

eficial for biomass trading. 
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1. Introduction 

Biomass is an important carbon-neutral, renewable bio-resource that is widely available 

throughout the world. It mainly consists of three polymers: cellulose, hemicellulose, and lignin, 

whose composition varies based on the type of biomass [1]. Hardwood and herbaceous biomass con-

tain approximately 43-47% and 33-38% cellulose, 25-35% and 26-32% hemicellulose, and 16-24% and 

17-19% lignin, respectively [2]. This composition of biomass can be converted into useful energy 

through various processes such as combustion, gasification, torrefaction, or fermentation, making it 

a suitable alternative to fossil fuels. However, its low energy density, high moisture content, and high 

oxygen-carbon ratio make it challenging to store, transport, and utilize effectively. Therefore, a deep 

understanding of biomass properties is necessary to design the best thermal conversion methods [3-

% = percentage 

C = carbon 

CHNS = CHNS Elemental analyzer 

GA = genetic algorithm 

H = hydrogen 

HHV = higher heating value 

LVs = latent variable number 

Max = maximum 

Min = minimum 

MP = multi-preprocessing 

MSC = multiplicative scatter correction 

N = nitrogen 

NT = total number of sample 

Nc = number of sample in calibration 

set 

NIRS = near infrared spectroscopy  

Np = number of sample in validation set 

PLSR = partial least squares regression 

R2 = coefficient of determination 

R2C = coefficient of determination of calibration set 

R2p = coefficient of determination of validation set 

RMSEC = root mean square error of calibration set 

RMSEP = root mean square error of prediction set 

RPD = ratio of prediction to deviation 

S = sulfur 

SD = standard deviation 

SEC = standard error of calibration set 

SEL = standard error of laboratory 

SEP = standard error of validation set 

SNV = standard normal variate 

SPA = successive projection algorithm 

SW = selected wavenumber 

wt.% = weight percentage 
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5]. In the current scenario, biomass is used mainly by the residential (cooking and heating) and in-

dustrial (combined heat and power) sectors through direct combustion, which negatively impacts 

health, the economy, energy, and the environment [6]. Research on bio-based energy technologies 

such as clean cooking stoves, gasifiers, biogas, bio-char, bio-briquettes, and pellets have yielded 

strong results in laboratory settings. However, due to inadequate and unreliable knowledge regard-

ing the properties of biomass fuel, the overall efficiency and performance of these technologies re-

main only satisfactory. Additionally, various operation and maintenance challenges persist. Trading 

biomass based on volume and weight rather than its actual energy properties is still common. There-

fore, rapid, reliable, and non-destructive assessment of biomass properties is of utmost importance 

for identifying the actual energy potential and for proper technical and monetary management and 

utilization [5]. 

Biomass can be assessed for energy usage by evaluating its HHV and ultimate analysis. The 

HHV is an important and standard indicator of the energy content of biomass [7]. A bomb calorimeter 

is used to measure the HHV, which is destructive in nature [8]. The ultimate analysis provides infor-

mation on the elemental composition of biomass in terms of wt.% of C, H, N, S, and O. The heating 

value of the biomass is directly correlated with C, H, and O composition [9].  Biomass with higher C 

and H and/or O and H contents and lower N and S contents is recommended for energy usage as it 

improves the HHV of the biomass [9, 10].  

Biomass is a good absorber of NIR radiation in the range of 3,595 to 12,489 cm-1. It predominantly 

interacts with the bonds of nonsymmetrical molecules, including C, O, H, and N [11, 12], making it 

suitable for use in conjunction with NIRS and chemometrics for assessing the energy-related proper-

ties of biomass, including HHV and ultimate analysis parameters such as C, H, N, S, and O [13]. 

Several previous studies have utilized NIRS to develop models for rapid and accurate measurement 

of various biomass properties for energy usage. For instance, Posom et al. [14] developed a reliable 

online method for measuring the HHV of sugarcane using NIRS. Phuphaphud et al. [15] developed 

spectroscopic models using visible and shortwave NIR to predict and classify the energy content of 

growing cane stalks for breeding programs. Huang et al. [10] developed a prediction model for the 

HHV as well as the elemental composition (C, H, and N) of straw using NIRS. Posom et al. predicted 

the HHV [16]  and  elemental composition (C, H, N, O, and S) [17] of grounded bamboo using NIRS. 

Skvaril et al. [18] reviewed the application of NIRS in biomass energy conversion processes.  Zhang 

et al. [19] studied the fast analysis of HHV and elemental composition of sorghum biomass using 

NIRS. Xue et al. [20] studied the use of an online NIRS system for measurement of crop straw fuel 

properties. These studies demonstrate the potential for NIRS to provide rapid, reliable, and non-de-

structive alternative methods for characterizing biomass for energy usage compared to traditional 

destructive thermal analysis techniques. 

Despite NIRS being a rapid, reliable, and non-destructive analytical method, individual calibra-

tion models based on spectral data and each reference parameter must be developed for the NIR-

based assessment of biomass properties. This procedure might be time-consuming and costly; how-

ever, in the long term, it will be beneficial for rapid and reliable evaluation procedures to assess bio-

mass properties for their different applications.   

In this study, a built-in code in MATLAB-R2020b was used to develop PLSR calibration models 

using spectral data from ten different biomass varieties (including five fast-growing tree varieties and 

five agricultural residue varieties), reference data obtained from a bomb calorimeter for HHV(J/g), 

and a CHNS/O elemental analyzer for wt.% of C, N, H, S, and O. The main objectives of this research 

are: 

1. To develop PLSR models using no preprocessing, traditional preprocessing, multi-prepro-

cessing 5-range and 3-range methods, GA, and SPA for assessing biomass properties for energy usage 

employing NIRS. 

2. To compare the performance of the PLSR models based on R2C, RMSEC, R2P, RMSEP, RPD, 

and bias.  

3. To select the better-performing PLSR-based model for each parameter and establish it as a 

reliable and non-destructive alternative method for rapidly assessing biomass properties for energy 

usage. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 June 2023                   doi:10.20944/preprints202306.0811.v1

https://doi.org/10.20944/preprints202306.0811.v1


 

2. Materials and Methods 

Figure 1 shows the overall research methodology for the evaluation of HHV and ultimate analysis 

parameters of grounded biomass for energy usage using NIRS combined with PLSR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Flowchart of the overall research methodology for the evaluation of the HHV and ultimate 

analysis parameters of grounded biomass for energy usage using NIRS combined with PLSR. 

2.1 Sample preparation 

The biomass samples were collected from the Terai low flatland and mid-hill regions of Nepal, 

with altitudes ranging from 86 to 1,940 meters above sea level. The study included five fast-growing 

species: (1) Alnus nepalensis, (2) Pinux roxiburghii, (3) Bombusa vulagris, (4) Bombax ceiba, and (5) Euca-

lyptus camaldulensis. Also included were five agricultural residues: (1) Zea mays (cob), (2) Zea mays 

(shell), (3) Zea mays (stover), (4) Oryza sativa, and (5) Saccharum officinarun. Alnus nepalensis and Pinux 
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roxiburghii were collected from the mid-hill region; Bombax ceiba, Eucalyptus camaldulensis, and Sac-

charum officinarum were collected from the Terai region; and Zea mays (cob, shell, stover), Bombusa 

vulagris and Oryza sativa were collected from both Terai and mid-hill region of Nepal.  

During preparation, all collected samples except for Oryza sativa were manually chopped into 

smaller pieces, i.e. less than 30 mm × 15 mm (refer to figure 2a); dried in the open sun; and stored in 

an airtight aluminum bag to maintain their biomass properties by preventing the exchange of air 

and moisture during transport to the Near-Infrared Spectroscopy Research Center for Agricultural 

Product and Food at School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, 

Thailand. The samples were ground using a multi-functional high-speed disintegrator (WF-04, Thai 

grinder, Thailand). The particle size of the grounded biomass was evaluated at Scientific and Tech-

nological Research Equipment Center (STREC) at Chulalongkorn University, Bangkok, Thailand, 

using the instrument Mastersizer 3000 (MAL1099267, Hydro MV). Figure 3 shows the representa-

tive particle size distribution of the ground biomass used in this research, ranging from 0.01 to 3080 

µm. The ground samples were stored in airtight plastic zip lock bags before and during the experi-

ment. 

 

 

 

 

 

Figure 2. Nepal biomass in a) chips form (> 30 mm ×15 mm), b) grounded form (1.88-3080 

µm), c) FT-NIRS (MPA, Bruker, Ettlingen, Germany) scanning between the wavenumber 

range 3,595 to 12,489 cm-1, and d) ground sample presentation by transflectance mode. 

 

Figure 3. Representative particle size distribution of the ground biomass ranging from 0.01 to 3080 

µm. 

2.2. Spectral data collection 

As shown in figures 2c) and 2d), the grounded biomass samples were placed in a glass vial (20 

mm diameter and 48 mm height) and scanned using an FT-NIR spectrometer (MPA, Bruker, Et-

tlingen, Germany) in a transflectance mode at the controlled temperature of 25±2 oC. The spectrome-

ter operates with a resolution of 16 cm-1, with a background scan time and sample scan time of 32 

scans (average), logging absorbance data - log(1/R) within wavenumber range of 3,595 to 12,489 cm-

1, where R is the diffuse reflectance detected from the grounded biomass sample. Prior to scanning, 

the FT-NIR spectrometer was normalized by performing a gold plate background scan. The primary 
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purpose of performing a background scan on every new ground sample was to compensate for in-

strumental drift and ambient environmental influences such as temperature, light, relative humidity, 

etc. on the measurement setup [12]. 

All the grounded samples were scanned twice without changing their positions, with no NIR leak-

age occurring during scanning. The average absorbance value for each sample, with respect to its 

wavenumber, was considered spectroscopic data for model development. Figure 4a) shows the raw 

spectrum of ten different grounded biomasses within the wavenumber range between 3,595 to 

12,489 cm-1, which were used to evaluate HHV and ultimate analysis parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. a) Raw spectra of grounded biomass.  Pretreated spectra of the grounded biomass 

using b) the multi-preprocessing five range method (0, 5, 1, 6, and 0) and the multi-preprocessing 3-

range method (0, 4, and 1). 

 

2.3. Reference analysis 

Due to the complex nature of NIR absorbance data, it must be correlated with reference values 

obtained using a standard laboratory method [21]. Thus, the reference data, which include HHV, C, 

H, N, S, and O, were evaluated after being scanned from a FT-NIR spectrometer.  

 

2.3.1 Higher heating value (HHV) 

The HHV of the grounded biomass is measured using the isoperibol method with an automatic 

bomb calorimeter (IKA C 200, Germany). Before the start of the experiment, the bomb calorimeter 

was calibrated with two tablets of benzoic acid (IKA C 723), each with a total weight of 1.0092 g and 

a gross calorific value of 26,462 J/g. To verify the calibration, the test was repeated with a single tablet 

of benzoic acid, and the results were compared. A cotton thread (IKA C 170.4) with a gross calorific 

value of 50 J/cotton twist was used for ignition in the bomb to measure the HHV of the grounded 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 June 2023                   doi:10.20944/preprints202306.0811.v1

https://doi.org/10.20944/preprints202306.0811.v1


 

sample. To ensure that the space in the bomb was saturated with water vapor throughout the entire 

experiment period, 2 ml of aqua pro (IKA C5003.1) were added into 1 liter of water and poured into 

the bomb calorimeter vessel [14]. The HHV (J/g) of each grounded sample was replicated twice, and 

the average value was considered as reference data for model development. A quantity of 0.5±0.2 g 

of grounded sample was weighted using an electronic balance (Mettler Toledo JS1203C) with a reso-

lution of 0.0001 g. Including preparation, the total experimental time to measure HHV for each sam-

ple was approximately 40 minutes. 
2.3.2 Ultimate analysis 

The ultimate analysis includes measurement of C, H, N, S, and O. The wt.% of C, H, N, and S in 

the ground sample were measured using the CHNS/O analyzer (Thermo ScientificTM FLASH 2000). 

The wt.% of O in the grounded biomass sample was calculated as a difference: 

wt.% O = 100 – (wt.% C + wt.% H + wt.% N + wt.% S)          (3) 

Outliers for all the measured reference data were calculated using the following equation, where 

Xi is the measured value of sample i, and X̅ and SD are the average and standard deviation of the 

measured values of all samples, respectively: 
(Xi−X̅)

SD
≥ ±3                                 (4) 

If equation (4) is satisfied for any sample i, the sample is considered as an outlier and is not 

considered in the total data set for model development [22]. 

Similarly, the standard error of laboratory (SEL), which explains the precision of the reference 

method, was calculated for the bomb calorimeter and CHNS/O elemental analyzer using the follow-

ing equation, where, y1 and y2 are the replicates of each sample reference value measurement and NT 

is the total number of experiment samples: 

SEL = √
∑ (y1−y2)2N

i=1

NT
                      (5) 

2.4. Spectral preprocessing  

Spectral preprocessing is one of the important components of NIR calibration. Ten different va-

rieties of grounded biomass samples were scanned to collect spectral data, whose physical, chemical, 

and biological properties may vary from sample to sample. Although the raw spectrum for all the 

biomass samples appears similar, instrumental errors, variations in light scattering during sample 

scanning, and a large number of redundant and interfering variables can introduce unwanted and 

harmful signals into the spectrum (refer to figure 4a). To improve spectral features, remove noise, 

address overlapping peaks and baseline shifts, handle collinearity within the spectral data, and ena-

ble easy data interpretation for calibration [23, 24], NIR spectral preprocessing is necessary before 

model development. 

In this study, the raw spectrum was pre-treated with two approaches. The first approach was a 

traditional approach involving the entire raw spectrum, i.e. the full wavenumber range from 3,595 to 

12,489 cm-1 using no preprocessing or traditional preprocessing methods. The second approach was 

a novel multi-preprocessing approach, where the entire wavenumber range was divided into differ-

ent sections and pretreated using a combination set of various preprocessing methods. 

For the traditional approach, ten different types of spectrum pretreatment methods were used 

for calibration models. These included (1) first derivative (segment=5 and gap=5), (2) second deriva-

tive (segment=5 and gap=5), (3) constant offset, (4) SNV, (5) MSC, (6) vector normalization, (7) min-

max normalization, (8) mean centering, (9) first derivative (segment=5 and gap=5) + vector normali-

zation, and (10) first derivative (segment=5 and gap=5) + MSC.  

For the multi-preprocessing approach, the entire wavenumber range was divided into different 

sections and pre-treated with various pretreatment combination sets obtained from seven different 

preprocessing methods and marked as follows: 0 = empty (all the absorbance values = 0), 1 = raw 

spectra, 2 = SNV, 3 = MSC, 4 = first derivative (5,5), 5 = second derivative (5,5) and 6 = constant offset.  

For the multi-preprocessing 5-range method, the entire wavenumber range was equally divided 

into five sections: 3,625.72–5,392.30 cm-1, 5,400.02–7,166.59 cm-1, 7,174.31–8,940.89 cm-1, 8,948.60–

10,715 cm-1, and 10,722.9–12,489.48 cm-1. However, the wavenumber range from 3,595 to 12,489 cm-1 
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could not be equally divisible by 5, so the last four independent variables were removed from the 

total dataset, leaving 1150 out of 1154 considered for model development. Similarly, for the multi-

preprocessing 3-range method, the entire wavenumber range was divided into three sections: 

3594.87–5492.59 cm-1, 7498.314–5500.30 cm-1, and 7506.02–12489.48 cm-1.  

Figures 4b) and 4c) show the spectrum of the grounded biomass obtained from the multi-pre-

processing method with a) 5-range and b) 3-range methods, respectively. In figure 4b), the raw spec-

trum was pre-treated with the preprocessing combination set of 0, 5, 1, 6, and 0, i.e. empty (zero 

absorbance) from 3,625.72–5,392.30 cm-1, second derivative from 5,400.02–7,166.59 cm-1, raw spectra 

from 7,174.31–8,940.89 cm-1, constant offset from 8,948.60–10,715 cm-1, and empty (zero absorbance) 

from 10,722.9–12,489.48 cm-1. Similarly, in figure 4c), the raw spectrum was pre-treated with the pre-

processing combination set of 0, 4, and 1, i.e. empty (zero absorbance) from 3594.87–5492.59 cm-1, first 

derivative from 7498.314–5500.30 cm-1, and raw spectrum from 7506.02–12489.48 cm-1. The best com-

bination set for multi-preprocessing is determined by the optimum LVs obtained from full cross-

validation.  

MATLAB-R2020b (MathWorks, USA) built-in code was used to select the optimal combination 

set of multi-preprocessing methods for developing a PLSR calibration model.  

2.5. Model development 

The accuracy of the model is one of the major concerns in the NIRS. Accuracy can be improved 

by using different spectral pretreatments and appropriate data analysis methods. Various research 

articles related to NIR modeling have concluded that PLSR is one of the effective and commonly used 

quantitative analysis techniques [14, 25-27]. Therefore, this study proposes PLSR-based models that 

can handle highly collinear spectroscopic data [28] for the assessment of grounded biomass proper-

ties. In this study, the following models were developed to match its objectives: (1) full wavenumber 

range – PLSR with no preprocessing and traditional preprocessing techniques, (2) multi-prepro-

cessing PLSR 3-range method, (3) multi-preprocessing PLSR 5-range method, (4) GA-PLSR, and (5) 

SPA-PLSR.  

To develop PLSR models using different methods, the total data set obtained after the removal 

of outliers was manually divided into an 80% calibration set and a 20% validation set as shown in 

Figure 1. The calibration set was designed to include the maximum and minimum reference values, 

thereby representing a wider range to generate a regression model [24]. The calibration set was first 

subjected to full cross-validation to select the optimal number of LVs. This number ensures the small-

est possible standard error for data analysis; considering too few LVs leads to underfitting, and con-

sidering too many LVs leads to overfitting. If several LVs show similar or comparatively better model 

performance, the smallest number of LVs was selected for model development [29].  The PLSR mod-

els for assessing biomass properties for energy usage were created using in-house code in MATLAB-

R2020b (Mathworks, USA). 

GA and SPA are the wavelength selection methods that select the highly influential wave-

numbers from the spectra and have been shown to provide better performance when combined with 

PLSR compared to PLSR with full wavenumber range only, thus avoiding overfitting [30-32]. SPA 

selects the variables with minimum collinearity and assesses them based on the value of the root 

mean square error obtained from the validation set. In SPA, uninformative variables are eliminated 

until the model’s performance no longer increases [33]. GA selects variables with a minimum amount 

of redundant information, starting with one variable and adding a new one to the loop in each itera-

tion, maximizing its fitness. The model developed with GA-PLSR shows the lowest prediction error 

as it maximizes the fitness and covariance between the spectral and reference data [34, 35]. In GA-

PLSR and SPA-PLSR, the new calibration dataset was processed through full-cross validation to se-

lect the optimum LVs, which were then considered for PLSR model development. 

The accuracy of the NIR model should be compared with the reference method. Therefore, the perfor-

mance of the model was determined in terms of R2
c, RMSEC, R2

v, RMSEP, RPD, and bias [36]. These param-

eters can be calculated as follows, where y is the measured value, y ̂is the predicted value, i is subscript 

indicate number of sample,  y̅ is the mean of the measured value, NT is the number of samples, SD 

is the standard deviation of the measured values of the validation set and n is the number of samples 

in the validation set:  
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R2c, R2p = 1 −
∑ (𝑦𝑖− 𝑦̂𝑖)2𝑁

𝑖=1

 ∑ (yi−y̅)
2𝑁

𝑖=1

                  (5) 

RMSEC, RMSEP = √
∑ (𝑦𝑖− 𝑦̂𝑖)2𝑁

𝑖=1

NT
                   (6) 

RPD =
SD

RMSEP
              (7) 

Bias =
∑ (yi−ŷi)

𝑛
𝑖=1

𝑛
           (8) 

The better model was selected based on the tradeoff value between the highest R2
c, R2

P, and RPD 

and the lowest RMSEC, RMSEP, and bias. In this study, the performance results, namely R2 and RPD value, 

were interpreted based on the recommendations of Williams et al. (2019) [37] and Zornoza et al. (2008) [38], 

respectively.  

As per recommendations of Williams et al. (2019), R2 up to 0.25 are not usable for NIRS calibration; 0.26-

0.49 indicates poor calibration, and reasons for this should be researched; 0.50-0.64 is considered okay for 

rough screening; 0.66-0.81 is okay for rough screening and some other appropriate calibrations; 0.83-0.90 is 

usable with caution for most applications, including research; 0.92-0.96 is usable in most applications, including 

quality assurance; and 0.98+ is excellent and can be used in any application [37]. Similarly, according to Zor-

noza et al. (2008), an RPD value of less than 2 is considered insufficient for applications; RPD between 2 and 

2.5 makes approximate quantitative predictions possible; RPD values between 2.5 and 3 are considered good 

for prediction, and RPD greater than 3 indicates an excellent prediction [38]. 

 

3.0. Result and Discussion 

The energy potential and conversion efficiency of fast-growing trees and agricultural residues 

can be influenced by the composition of lignocellulosic matter [39]. Fast-growing trees tend to have 

a higher energy conversion efficiency than agricultural residues as their lignocellulosic matter con-

tains less lignin and more cellulose and hemicellulose [40]. Figure 5 shows the near-infrared spectra 

of pure cellulose and pure lignin along with 90 samples of fast-growing trees and 110 samples of 

agricultural residues, all with average absorbance values. The raw spectra of the fast-growing trees 

and agricultural residues was compared with that of pure cellulose and pure lignin, revealing that 

both contain lignocellulosic matter as evidenced by the presence of the same distinct peaks. Signifi-

cant positive or negative peaks in absorbance value relative to wavenumber can indicate important 

vibrations of particular bonds occurring at those frequencies, which could have a significant impact 

on the model’s performance. Figure 5 clearly shows that the vibration band between approximately 

5181-6150 cm-1  corresponds to the lignin band (with low absorbance for cellulose), while the range 

between approximately 6150-6800 cm-1 corresponds to cellulose band (with low absorbance for lig-

nin) [25]. Additionally, important peaks were observed at approximately 4019 cm-1, 4405 cm-1, 4762 

cm-1, 5181 cm-1 and 6897 cm-1. The peak at 4019 cm-1 results from the combination of C-H stretching 

and C-C stretching in cellulose, whereas the peak at 4405 cm-1 corresponds to the combination of O-

H stretching and C-O stretching in cellulose. The peak at 4762 cm-1 corresponds to the combination 

of O-H bending and C-O stretching in polysaccharides. The peak at 5181 cm-1 corresponds to the 

combination of O-H stretching and HOH bending in polysaccharides. The peak at 6897 cm-1 corre-

sponds to the first overtone of fundamental O-H stretching band in water and starch [41].  
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Figure 5. Spectra of fast-growing tree and agricultural residues compared to pure cellulose and 

pure lignin. 

Table 1 presents the average HHV and ultimate analysis parameters (C, N, H and O) of different 

fast-growing trees and agricultural residues included as reference data for developing the model. As 

per previous research, the HHV of biomass is positively correlated with C and H contents, while it is 

negatively correlated with O and N contents [42]. Table 1 indicates that fast-growing trees have 

higher average values of HHV, C, and H contents and lower O and N contents compared to agricul-

tural residues. These results are consistent with the correlation observed between measured data of 

the HHV and elemental composition of ground biomass. 

 

Table 1. Average reference value of HHV and Ultimate analysis parameter of fast-growing trees 

and agricultural residues. 

Category Particular 
HHV 

(J/g) 

C 

(wt.%) 

N 

(wt.%) 

H 

(wt.%) 

O 

(wt.%) 

Fast growing tree 

Alnus nepalensis 17932 45.9115 0.3115 5.7255 48.0515 

Pinus roxiburghii 18349 46.8367 0.0606 5.8283 47.2744 

Bombusa vulagris 17310 45.6132 0.2327 5.7536 48.4005 

Eucalyptus camaldulensis 17105 44.5536 0.0896 5.6164 49.7404 

Bombax ceiba 17077 44.8557 0.3162 5.8179 49.0102 
       

Agricultural resi-

due 

Zea mays (cob) 17297 44.7794 0.2488 5.7619 49.2100 

Zea mays (shell) 16409 45.6518 0.4318 6.2113 47.7050 

Zea mays (stover) 16753 44.3988 0.7069 5.6697 49.2245 

Oryza sativa 15417 40.4261 0.4996 5.3042 53.7701 

Saccharum officinarum 17029 43.6413 0.1047 5.7047 50.6827 

  

Table 2 shows the statistical summary data for the HHV (J/g) and ultimate analysis parameters, 

i.e. wt.% of C, N, H, and O used in the calibration set and validation set for the model development.  

 

 

 

 

 

 

 

0

0.2

0.4

0.6

0.8

1

3598 4598 5598 6598 7598 8598 9598 10598 11598

A
b

so
r
b

a
n

c
e
-L

o
g

 (
1

/R
)

Wavenumber (cm-1)

Pure Cellulose Pure Lignin

Fast growing trees Agricultural residues

6897

51814405

4019

4762

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 June 2023                   doi:10.20944/preprints202306.0811.v1

https://doi.org/10.20944/preprints202306.0811.v1


 

Table 2. Statistical data of the HHV and ultimate analysis parameters of the grounded biomass used 

in PLSR model development. 

Nc Max Min Mean SD Np Max Min Mean SD

HHV (J/g) Bomb Calorimeter 196 157 18616 14682 16962 848 39 18553 14965 17049 836

C (wt.% ) CHNS/O 108 87 48.0000 38.3950 44.3278 2.1161 21 47.7400 40.8550 44.9039 1.8910

N (wt.% ) CHNS/O 95 76 0.8300 0.0000 0.2807 0.1870 19 0.8200 0.0000 0.3187 0.2506

H (wt.% ) CHNS/O 93 74 6.4800 4.9500 5.7448 0.3044 19 6.2550 5.1850 5.6911 0.3053

O (wt.% ) CHNS/O 96 77 54.3600 46.2600 49.5235 1.9326 19 53.5500 46.6167 49.3122 1.8671

Parameter Experimental Method NT

Calibration Set Validation Set

 

 

3.1. Higher heating value 

Out of the 200 samples, four were identified as outliers and were removed from the total data 

set to develop PLSR-based models for evaluating the HHV. The SEL for the bomb calorimeter used 

to evaluate HHV was calculated to be 255.7708 J/g. Table 3 displays the optimum result of various 

PLSR-based models using the full wavenumber range (3,594.87–12,489.5 cm-1) to evaluate the HHV 

of the ground biomass from the fast-growing tree and agricultural residues.  

Figure 6a) shows the scatter plot of HHV measured and predicted value from the calibration 

and validation sets using GA-PLSR. The GA-PLSR with LVs 14 and spectral pretreatment first deriv-

ative using 692 important wavenumbers yielded the best performance result, with R2C of 0.9505, 

RMSEC of 188.0117 J/g, R2P of 0.9574, RMSEP of 170.3282 J/g, RPD of 4.89, and bias of -21.9648 J/g. 

The model included a sufficient number of homogenous samples, from both fast-growing tree and 

agricultural residue, for model development and had a wider HHV range, resulting in higher R2C, 

R2P, and RPD, and lower RMSEC, and RMSEP values compared to other models. Compared to the 

full-PLSR model performance, the GA improved the PLSR model accuracy by 8.5069%. Similarly, the 

multi-preprocessing 5 range method improved the accuracy of the full-PLSR model by 4.1839%. Ac-

cording to Williams et al. (2019) [37] and Zornoza et al. (2008) [38], the GA-PLSR model for evaluating 

HHV is acceptable for most applications with excellent prediction, including quality assurance.   
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Figure 6. Measured versus predicted value in calibration and validation sets for the a) HHV, b) 

wt.% of C, c) wt.% of H, d) wt.% of O, and e) wt.% of N. 

 

Figure 7 shows the average absorbance values obtained after preprocessing with the first deriv-

ative, highlighting the 692 selected wavenumbers (marked in red) obtained from GA, within the full 

spectral range of 3594.87–12489.5 cm-1. The figure highlights important peaks in the following ranges: 

4003.73–4111.73 cm-1, 4366.3–4451.16 cm-1, 5091.45–5114.59 cm-1, and 5130.02–5292.02 cm-1, which may 

significantly influence the model performance. 
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In the range of 4003.73–4111.73 cm-1, the wavenumber 4019 cm-1 represents the combination of 

C-H stretching and C-C stretching in cellulose and is used as a reference. Similarly, the range of 

4366.3–4451.16 cm-1 includes the reference wavenumber 4405 cm-1, which corresponds to the combi-

nation of O-H and C-O stretching in cellulose. Polysaccharides are characterized by the combination 

of O-H stretching and HOH bending, which is represented by the reference wavenumber 5102 cm-1 

in the range of 5091.45–5114.59 cm-1. Additionally, the range of 5130.02–5292.02 cm-1 includes the ref-

erence wavenumber 5200 cm-1, which corresponds to the combination of O-H stretching and HOH 

deformation of O-H molecular water [41]. Lignocellulosic biomass derives its primary energy from 

cellulose, hemicellulose, and lignin [43, 44]. As can be seen in Figure 7, the important peaks with 

vibration bonds of C-H, C-C, O-H, and C-O stretching and HOH deformation of O-H molecular water 

correspond to the structure of cellulose and lignin. Therefore, they are likely to have the greatest 

influence on the assessment of the HHV of ground fast-growing trees and agricultural residues. This 

study is in line with previous studies by Sirisomboon et al. [45] and Lestander et al. [46], in which the 

authors reported that vibration bonds C-H, C-C, and O-H stretching contribute significantly to the 

HHV of bamboo and biofuels, respectively. Additionally,  Zhang et al. [19] reported that the vibra-

tion bond of C-H stretching in aromatic and CH3 structure can be used to assess the HHV of sorghum 

biomass. Posom et al. [5] indicated in their study that the vibration of C-H stretching highly influences 

the prediction of the HHV of leucaena Leucocephala pellets.  

 

 

 

 

 

 

 

 

 

Figure 7. The average absorbance value of HHV (J/g) obtained using the first derivative prepro-

cessing with a selection of important wavenumbers obtained from GA, within the full wavenumber 

range of 3594.87–12489.5 cm-1.  
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Table 3. Results of the PLSR-based model for the HHV (J/g) and ultimate analysis (wt.%) of grounded 

biomass, bolded model showing the best performance. 

R
2

c RMSEC R
2

p
RMSEP RPD bias

Full-PLSR
First derivative( 5,5) + Vector 

normalization
14 0.9527 183.6910 0.9491 186.1651 4.44 -13.5781

SPA-PLSR First derivative (SW = 479) 15 0.9469 194.7442 0.9486 187.0927 4.41 -0.1578

GA-PLSR First derivative (SW = 692) 14 0.9505 188.0117 0.9574 170.3282 4.89 -21.9648

MP-PLSR: 3 range Combination set: 5,5,4 15 0.9538 181.5744 0.9470 189.9072 4.35 -12.3121

MP-PLSR: 5 range Combination set: 4,4,5,4,3 13 0.9546 180.0513 0.9533 178.3761 4.72 -35.5676

Full-PLSR Raw spectra 13 0.8433 0.8326 0.6129 1.1488 1.67 0.3193

SPA-PLSR
First derivative + vector normalization 

(SW=70)
9 0.8001 0.9405 0.6316 1.1207 1.76 0.4010

GA-PLSR First derivative (g = 5, s = 5) (SW=50) 9 0.7851 0.9753 0.7217 0.9740 1.93 0.1877

MP-PLSR: 3 range Combination set:  5,0,6 13 0.8791 0.7315 0.6765 1.0502 1.78 0.1739

MP-PLSR: 5 range Combination set:  3,0,1,3,0 12 0.8451 0.8280 0.6737 1.0548 1.88 0.3807

Full-PLSR First derivative (g = 5, s= 5) 9 0.8457 0.0730 0.8284 0.1011 2.63 -0.0403

SPA-PLSR
Second derivative (g = 5, s= 

5)(SW=601)
11 0.9091 0.0560 0.7691 0.1173 2.20 -0.0381

GA-PLSR
Second derivative (g = 5, s= 

5)(SW=990)
10 0.9026 0.0580 0.8010 0.1089 2.36 -0.0338

MP-PLSR: 3 range Combination set: 4,4,5 10 0.9196 0.0527 0.7960 0.1102 2.36 -0.0383

MP-PLSR: 5 range Combination set: 4,4,5,3,4 9 0.8682 0.0675 0.8410 0.0973 2.65 -0.0309

Full-PLSR SNV 14 0.8335 0.1234 0.7678 0.1434 2.10 -0.0234

SPA-PLSR Raw (SW=1148) 14 0.8286 0.1252 0.6439 0.1776 1.68 0.0014

GA-PLSR SNV (SW=457) 14 0.8814 0.1041 0.7678 0.1434 2.14 -0.0356

MP-PLSR: 3 range Combination set: 4,5,6 13 0.8800 0.1047 0.6422 0.1780 1.68 -0.0145

MP-PLSR: 5 range Combination set: 4,0,6,4,6 13 0.8864 0.1019 0.6040 0.1872 1.60 -0.0254

Full-PLSR MSC 14 0.8902 0.6363 0.6589 1.0612 1.76 -0.2534

SPA-PLSR Mean Centering (SW: 1082) 14 0.8942 0.6245 0.5945 1.1570 1.58 -0.1242

GA-PLSR Raw (SW:113) 14 0.8610 0.7160 0.8329 0.7426 2.45 -0.0267

MP-PLSR: 3 range Combination set:  5,4,6 13 0.8918 0.6316 0.7183 0.9643 1.94 -0.2229

MP-PLSR: 5 range Combination set: 3,0,1,0,1 14 0.8979 0.6136 0.8600 0.6798 2.78 -0.1909

HHV (J/g)

wt.% C

wt.% N

wt.% H

wt.% O

Validation set
Parameter Algorithm Pre-processing LVs

Calibration Set

  

3.2. Ultimate analysis 

The sulfur content in the ground biomass samples of fast-growing trees and agricultural residue 

was not detected using the CHNS/O analyzer (Thermo ScientificTM FLASH 2000). This may be be-

cause the S content in the biomass is too low to be detected[47]. Therefore, PLSR-based models for 

the wt.% of S were not developed in this study.  

3.2.1. wt.% of C 

The SEL for the CHNS/O elemental analyzer used to evaluate the wt.% of C content in grounded 

biomass was calculated as 1.6936 wt.%. Table 3 shows the overall optimum results of PLSR-based 

models for the evaluation of wt.% of C content in the grounded biomass within the full wavenumber 

range of 3,594.87–12,489.5 cm-1. Out of the 120 samples, 11 samples were identified as an outlier and 

removed from the total data set for model development. The model developed through GA-PLSR 

with spectrum preprocessing of first derivative (gap=5 and segment=5) and LVs 9 provided better 

results with R2C, RMSEC, R2P, RMSEP, RPD, and bias value as 0.7851, 0.9753 wt.%, 0.7217, 0.9740 wt.%, 

1.93, and 0.1877 wt.%, respectively. Compared with full-PLSR, the GA-PLSR method improved the 

model accuracy by 8.5069%. Similarly, the multi-preprocessing 5 range method improved the PLSR 

model by 8.1842%. The scatter plot of the GA-PLSR method for the wt.% of C content in grounded 

biomass is shown in Figure 6b). According to the  recommendation by Williams et al. (2019) [37], the 

PLSR model with GA method is usable for rough screening and some other appropriate calibrations, 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 June 2023                   doi:10.20944/preprints202306.0811.v1

https://doi.org/10.20944/preprints202306.0811.v1


 

based on the obtained R2 value. Similarly, considering the RPD value, as suggested by Zornoza et al. 

(2008) [38], the model is acceptable for the prediction of wt.% C content in the grounded biomass.  

Figure 8 shows the average absorbance values obtained after preprocessing with the first deriv-

ative, highlighting the 50 selected wavenumbers (marked in red) obtained from GA, within the full 

spectral range of 3,594.87–12,489.5 cm-1. The high peaks with positive values marked in red at a spe-

cific wavenumber indicate the functional group, spectra-structure, and material type, which might 

be significant in the assessment of wt.% of C. In Figure 8, significant peaks can be noticed at 3650, 

4019, 4405, 4878, and 7042 cm-1, respectively. 

The peak at 3650 cm-1 corresponds to the functional group of O-H, the spectral structure with 

the fundamental stretching vibrational absorption band of O-H (-CH2-OH), and material type of pri-

mary alcohols. The peak at 4019 cm-1 corresponds to the functional group of C-H/C-C, the spectral 

structure of the C-H stretching and C-C stretching combination, and the material type of cellulose. 

The positive peaks at 4405 cm-1 and 4878 cm-1 are associated with the functional group O-H/C-H, and 

combination of N-H/C-N/N-H amide II and amide III; spectral structure O-H stretching and C-O 

stretching; N-H in-plane bend, C-N stretching and N-H in plane bend combination with material 

type cellulose and amides/proteins, respectively. The peak at 7042 cm-1 corresponds to O-H aromatic 

with the spectral structure of O-H first overtone of the fundamental stretching band, and the material 

type of hydrocarbons [41]. Lignin contains a high carbon content [48]. According to Zhang et al. [19], 

vibration bands related to C-H stretching, CH2, C-H aromatics, O-H stretching, and HOH defor-

mation are essential for predicting the C content of sorghum biomass. Similarly, Posom and Sirisom-

boon [49] found that N-H stretching, N-H deformation, C-N stretching, O-H stretching, and C-O 

stretching of starch significantly contribute to the model development of C content in bamboo. The 

average absorbance plot for wt.% of C shows the peaks at 3650, 4019, 4405, 4878, and 7042 cm-1, which 

complement vibration bands reported in previous studies and also the spectra of pure lignin and 

pure cellulose. While these observed vibration bands at different peaks may have a significant impact 

on the overall performance of the model, this study suggests that the FT-NIRS may not provide suf-

ficiently high resolution spectra to create an accurate prediction model for wt.% of C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. The average absorbance value of wt.% of C obtained using the first derivative prepro-

cessing with a selection of important wavenumbers obtained from GA, within the full wavenumber 

range of 3594.87–12489.5 cm-1. 
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of wt.% of H within the full wavenumber range were presented in Table 3. Before modeling, outliers 

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

3500 4500 5500 6500 7500 8500 9500 10500 11500 12500 13500

A
v
er

a
g
e 

a
b

so
rb

a
n

ce
 -

L
o
g
 (

1
/R

)

Wavenumber (cm-1)

First Derivative GA selected wavenumber

7042

4019

4405

4878

3650

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 June 2023                   doi:10.20944/preprints202306.0811.v1

https://doi.org/10.20944/preprints202306.0811.v1


 

from the reference values were calculated, and 27 out of the 120 samples were detected as outliers. 

Therefore, 93 grounded biomass samples were used for the model development. The best model was 

developed from the wavelength selection method, GA-PLSR, within the wavenumber range of 3,595–

12,489 cm-1 and spectral preprocessing from SNV. The best performing model for the evaluation of 

wt.% of H content in the grounded biomass produced R2C of 0.8814, RMSEC of 0.1041 wt.%, R2P of 

0.7678, RMSEP of 0.1434 wt.%, RPD of 2.14, and bias of -0.0356 wt.%. The GA-PLSR model exhibits a 

minimal improvement in model accuracy of 0.0092% compared to the full-PLSR model. 

Figure 6c) shows the scatter plot of measured versus predicted wt.% of H content in the 

grounded biomass obtained using GA-PLSR. According to William et al. (2019) [37], based on the R2 

value, the model can be used for rough screening and some other appropriate calibrations. To im-

prove the performance of the model, it is recommended to include additional representative biomass 

samples with high concentration and wide range of wt.% of H content that are uniformly and repre-

sentatively distributed in both the calibration and validation sets and are obtained from both fast-

growing trees and agricultural residue varieties.  

Figure 9 shows the average absorbance spectrum pre-treated with the SNV and highlights with 

red marks the important wavenumbers obtained using GA. The important peaks selected at 4019, 

4608, 5155, 6897, and 8163 cm-1 may have a significant influence on the performance of the model for 

the evaluation of wt.% of H content in the grounded biomass samples. The peak at 4019 cm-1 is asso-

ciated with the functional group of C-H/C-C, the spectral structure of C-H stretching and C-C stretch-

ing combination, with material type cellulose. The peak at 4608 cm-1 is associated with the combina-

tion of C-H stretching and C-H deformation in alkenes. Similarly, the peak at 5155 cm-1 corresponds 

to combination of O-H stretching and HOH bending in water. The peak at 6897 cm-1 corresponds to 

spectral structure O-H, arising from the first overtone of fundamental stretching band, with material 

type starch/polymeric alcohol. The peak at 8163 cm-1 is associated with second overtone of C-H fun-

damental stretching band and material type hydrocarbons [41]. The selected peaks mostly fall within 

a similar range compared to the study conducted by Posom and Sirisomboon [49]. This finding sup-

ports the results of the current study, indicating that these selected peaks are likely to have a signifi-

cant influence on the performance of the models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. The average absorbance value of wt.% of H obtained using SNV preprocessing with a 

selection of important wavenumbers obtained from GA within full wavenumber range of 3594.87–

12489.5 cm-1.  
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3.3.3. wt.% of O 

Based on the assumption that the sulphur content in biomass is zero, as it wt.% is too low to be 

detected by instrument, the wt.% of O in biomass is calculated using equation (3). The optimum re-

sults of the PLSR-based models for predicting the wt.% of O content in the grounded biomass are 

shown in Table 3. The best result was obtained from the multi-preprocessing PLSR 5-range method 

with a spectral preprocessing combination set of 3, 0, 1, 0, and 1, i.e. MSC, empty, raw spectra, empty, 

and raw spectra, respectively, from the range 3,625.72–12,489.5 cm-1, which are equally divided into 

five sections. Figure 6d) shows the scatter plot for measured and predicted wt.% of O. With LVs 14, 

the best performing model for evaluating the wt.% of O content in the grounded biomass produced 

an R2C of 0.8979, RMSEC of 0.6136 wt.%, R2P of 0.8600, RMSEP of 0.6798 wt.%, RPD of 2.78, and a bias 

of -0.1909 wt.%. Compared with full-PLSR, the multi-preprocessing 5-range method improved the 

model accuracy by 35.9404%. Based on Williams et al. (2019) [37] and Zornoza et al. (2008) [38], the 

model with multi-preprocessing PLSR 5-range method is usable for good prediction with caution for 

most applications, including research.  

Figure 10 shows the regression plot versus the entire wavenumber range for identifying the im-

portant wavenumbers that might play a significant role in producing better model results for evalu-

ating wt.% of O. Important peaks were noticed at 3650, 4307, 4405, 5495, 8163, 8754, 11655, and 12300 

cm-1. The peak at 3650 cm-1 corresponds to the functional group of O-H with material type primary 

alcohols. Similarly, the peaks at 4307 cm-1 and 4405 cm-1 are associated with the spectra-structure of 

the C-H stretching and CH2 deformation combination and the O-H stretching and C-O stretching 

combination, respectively, with material types polysaccharides and cellulose, respectively. The peaks 

at 5495 cm-1 and 8163 cm-1 might correspond to second overtone O-H stretching and C-O stretching 

combination, and C-H stretching, respectively, with cellulose and hydrocarbon as the respective ma-

terials. The peaks at 8754 cm-1 and 11655 cm-1 corresponds to the second overtone of the fundamental 

stretching band of C-H and the third overtone of the fundamental stretching band of C-H, with ma-

terial type for both peaks as hydrocarbons and aromatic. Similarly, the peak at 12300 cm-1 is associate 

with the spectra-structure of C-H combination, with material type as hydrocarbon and aliphatic. A 

previous study by Posom and Sirisomboon [49] showed peaks at similar wavenumbers with vibra-

tion bands of C-H aromatic, C-H aliphatic, and O-H stretching of alcohol, which supports the finding 

of this study. Therefore, these vibration bands may have significant influence on the development of 

the model for the assessment of wt.% of O in ground biomass. 

 

Figure 10. The regression coefficient for the wt.% O of grounded biomass using the multi-pre-

processing PLSR 5 range method. 
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3.3.4. wt.% of N 

The SEL of the CHNS elemental analyzer for evaluating wt.% of N content in grounded biomass 

was calculated as 0.0761 wt.%. Table 3 shows the optimal outcomes of the PLSR-based models for 

predicting the wt.% of N content in grounded biomass. The best prediction result of the wt.% of N in 

grounded biomass was obtained using the multi-preprocessing PLSR 5-range method with a spectral 

preprocessing combination set of 4, 4, 5, 3, and 4, which included the first derivative followed by the 

first derivative, second derivative, MSC, and first derivative, respectively, in five equally divided 

sections from 3,625.72–12,489.48 cm-1. Figure 6e) shows the scatter plot of measured versus predicted 

wt.% of N content in the grounded sample using the multi-preprocessing PLSR 5-range method. The 

best performance for evaluating wt.% of N content in the grounded biomass resulted in an R2C of 

0.8682, RMSEC of 0.0675 wt.%, R2P of 0.8410, RMSEP of 0.0973 wt.%, RPD of 2.65, and bias of -0.0309 

wt.%. Compared with full-PLSR, the multi-preprocessing 5-range method improved the model accu-

racy by 3.7587%. According to William et al. (2019) [37], the model is suitable for most applications, 

including research. Based on the recommendation of Zornoza et al. (2008) [38], the prediction of wt.% 

of N content from the multi-preprocessing PLSR 5-range method with RPD value of 2.65 is considered 

good for prediction. 

Figure 11 shows the regression coefficient plot for wt.% of N content in the grounded biomass 

obtained from the multi-preprocessing PLSR 5-range method. The figure displays numerous positive 

and negative high and low peaks. The high peaks at 4019, 4307, 4673, 5200, 5952, 6711, and 12453 cm-

1 might significantly contribute to the evaluation of wt.% of N content. The negative peak at 4019 cm-

1 might correspond to C-H stretching and C-C stretching combination with material type as cellulose. 

The positive peaks at 4307 cm-1, 4673 cm-1, 5200 cm-1, and 5952 cm-1  might be associated with the 

structure of C-H stretching and CH2 deformation combination (material: polysaccharides), C-H 

stretching and C=O stretching combination and C-H deformation combination (material: lipids), O-

H stretching and HOH deformation combination (material: O-H molecular water), and C-H (first 

overtone of fundamental stretching band), aromatic C-H (material: hydrocarbons, aromatic), respec-

tively. The peak at 6711 cm-1 might be associated with O-H (first overtone of fundamental stretching 

band) with material type as starch/polymeric alcohol. Common natures of peaks were noticed in the 

range between 11500 and 12500 cm-1, for which 12453 cm-1 is described as a reference, which might 

correspond to the spectral structure of C-H combination, with material type as hydrocarbon and ali-

phatic [41]. The selected regression coefficient peaks show similar peaks compared to the study per-

formed by Posom and Sirisomboon [49], with vibration bands of  C-H stretching, C-C stretching, O-

H stretching, and H-O-H deformation combination. This supports the findings of our study and sug-

gests that these peaks are likely to have a vital influence on the performance of the model. 

Figure 11. The regression coefficient for the wt.% of N of grounded biomass using the multi-

preprocessing PLSR 3 range method. 

-3

-2

-1

0

1

2

3

4

3500 4500 5500 6500 7500 8500 9500 10500 11500 12500 13500

R
eg

re
ss

io
n

 c
o

ef
fi

ci
en

t 
(b

)

Wavenumber (cm-1)

4019

4307
4673

5200 5952 6711 12453

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 June 2023                   doi:10.20944/preprints202306.0811.v1

https://doi.org/10.20944/preprints202306.0811.v1


 

 

3.4. Comparison with previous work 

Although various studies have been conducted on the development of models for the evaluation 

of HHV and ultimate analysis parameters using NIRS with a similar wavenumber range and refer-

ence mean value combined with chemometrics, no research or reports on fast-growing trees and ag-

ricultural residues of Nepalese biomass with ten different biomass varieties using NIRS have been 

reported to date.  

In a previous study, Nakawajana et al. [50] evaluated the HHV of grounded cassava rhizome 

using PLSR and achieved an R2 of 0.90. Similarly, Nakawajana et al. [25],  Posom et al. [3], Zhang et 

al. [51], and Posom et al. [5] developed PLSR models for rick husk, grounded bamboo, sorghum bio-

mass, and Leucaena leucocephala pellets, respectively,  with R2 0.79, 0.92, 0.96, and 0.96. All the studies 

used NIRS scanning of biomass on diffuse reflectance mode. However, the GA-PLSR model in this 

study outperformed previous research by using NIRS scanning of biomass in transflectance mode for 

evaluating HHV.  

The PLSR-based models developed from multi-preprocessing 5-range methods for ultimate 

analysis showed better performance in evaluating oxygen content compared to the PLS model devel-

oped by Jetsada et al [49] for bamboo, which had R2P values of 0.52 for oxygen. However, the results 

of this study for the evaluation of C, N, and H contents were lower, with Jetsada et al. [49] for bamboo 

showing R2P values of 0.80 for C, 0.85 for H, and 0.97 for N. Similarly, the models developed by Zhang 

et al. [51] for sorghum biomass with R2P values of 0.96 for wt.% of C, 0.87 for wt.% of H, 0.86 for wt.% 

of N, and 0.83 for wt.% of O and by Huang et al. [10] for straw with R2P values of 0.97 for wt.% of C, 

0.77 for wt.% of H, and 0.87 for wt.% of N showed better results than the PLSR-based model in this 

study. Nhuchhen [52] predicted the ultimate parameters of torrified biomass with respect to proxi-

mate analysis, resulting in R2 values of 0.83 for wt.% of C, 0.70 for wt.% of H, and 0.84 for wt.% of O, 

respectively. The proposed model in this study showed better performance for H and O, but the 

performance of C content in the grounded biomass could be improved.  

In general, having a sufficient number of homogenous biomass samples with a wider range of 

reference values and low SEL from bomb calorimeter and CHNS/O elemental analyzer could have 

played a catalytic role in achieving higher model performance when evaluating HHV, N, and O. 

However, lower model performance for evaluating C and H content may be due to a lower number 

of relevant variables or the selected variables in the calibration set not having a strong correlation 

with C and H content in biomass. To enhance the model performance for evaluating C and H content, 

the number of representative samples with high concentration of C and H should be increased, and 

possible contamination during sample preparation should be avoided. Additionally, the ambient en-

vironment of the laboratory should be properly controlled, and possible NIR radiation leakage dur-

ing sample scanning should be rechecked. Outliers should be addressed properly, instrumental and 

analysis errors should be monitored correctly, or alternative modeling techniques should be consid-

ered for accurate evaluation.  

Based on comparison with previous studies, this research provides strong evidence that the 

model’s performance can be enhanced by conducting NIRS scanning of ground biomass in transflec-

tance mode rather than diffuse reflectance mode. To update the model for robust application, the 

number of ground biomass samples must be increased and validated using unknown samples. 

 

4.0 Conclusion 

PLSR-based models were developed and compared using NIRS to evaluate HHV, and ultimate 

analysis, i.e. wt.% of C, H, N, and O content in the grounded biomass in transflectance mode, was 

employed for assessing the biomass properties for energy usage. The model with the optimum per-

formance was selected based on the parameters R2C, RMSEP, R2P, RMSEP, RPD, and bias. The models 

for HHV, N, and O are suitable for most applications, including research, while the model for wt.% 

of C and wt.% of H was only fair and usable for rough screening. The performance of fair models 

could be improved by incorporating more representative samples collected from various geograph-

ical locations in Nepal, considering the wide statistical range of the reference values.  
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This study showed that multi-preprocessing 5-range method, a new approach to spectral pre-

processing for PLSR model development, improved model accuracy compared to the traditional 

method of preprocessing NIR spectra across the entire wavenumber range with a single process. 

Therefore, this research provides foundation in NIRS, indicating that preprocessing the entire wave-

number range with various preprocessing techniques could enhance model accuracy. The recom-

mended models can serve as a reliable and non-destructive alternative method for rapidly assessing 

biomass properties for energy usage employing NIRS. However, to create a robust model, it is nec-

essary to expand the model with data from various samples and validate it with unknown samples. 

Adopting these models could significantly reduce the economic gap between biomass traders for 

energy usage and other applications. Furthermore, the research outcomes could guide academic and 

research institutions and policy-making think tanks in planning for the proper identification, man-

agement, and utilization of bio-resources to meet future energy demand and supply. 
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