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Abstract: With the advent of deep learning, significant progress has been made in low-light image
enhancement methods. However, deep learning requires enormous paired training data, which
is challenging to capture in real-world scenarios.To address this limitation, this paper presents a
novel unsupervised low-light image enhancement method, which first introduces the frequency
domain features of images in low-light image enhancement tasks. Our work is inspired by imagining
a digital image as a spatially varying metaphoric “field of light”, then subjecting the influence of
physical processes such as diffraction and coherent detection back onto the original image space via
a frequency-domain to spatial-domain transformation (inverse Fourier transform). However, the
mathematical model created by this physical process still requires complex manual tuning of the
parameters for different scene conditions to achieve the best adjustment. Therefore, we proposed
a dual-branch convolution network to estimate pixel-wise and high-order spatial interactions for
dynamic range adjustment of the frequency feature of the given low-light image. Guided by the
frequency feature from the “field of light” and parameter estimation networks, our method enables
dynamic enhancement of low-light images. Extensive experiments have shown that our method
performs well compared to state-of-the-art unsupervised, and its performance approximates the level
of the state-of-the-art supervised methods qualitatively and quantitatively. At the same time, the light
network structure design allows the proposed method to have extremely fast inference speed(near
150 FPS on an NVIDIA 3090 Ti GPU for an image of size 600 x 400 x 3 ). Furthermore, the potential
benefits of our method to object detection in the dark are discussed.

Keywords: low-light image enhancement; unsupervised learning; physics-inspired computer vision

1. Introduction

Image capturing in suboptimal lighting conditions is a common occurrence, leading to images
with low brightness, poor contrast, and color distortion, which consequently hinder computer vision
tasks including object detection and image segmentation. To combat these issues, low-light image
enhancement has emerged as an essential research topic in computer vision, particularly for improving
the visual fidelity of sub-optimal photos. However, suboptimal lighting conditions necessitate a
comprehensive approach rather than simply amplifying brightness to enhance the contrast, as this
may inversely impact the overall quality of the image. Therefore, addressing the fundamental causes
of low light imaging is crucial to produce high-quality images that meet the needs of various tasks in
computer vision and image analysis.

Various traditional methods have been proposed to mitigate further the degradation caused by
low-light conditions. These methods are divided into two main categories. Some of the methods
depended on the Retinex theory[1,2] and the others based on the Histogram equalization[3,4].
The Retinex-based method involves the decomposition of images into reflection and illumination
components. The first component contains information about the scene’s inherent attributes like
texture, edge details, and color. Meanwhile, the second component contains distribution information
on contours and lighting. On the other hand, the main idea behind histogram equalization methods
is to increase the dynamic range of the gray values in an image by adjusting its gray distribution.
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It is achieved by rearranging the pixels of the image to improve its overall dynamic range. These
proposed methods use image-specific curve mapping instead of randomly changing the histogram
distribution or relying on inaccurate physical models, resulting in natural enhancement without
creating unrealistic artifacts. However, previous methods may still have limitations, particularly
concerning their processing of high-noise pictures and their potential to cause insufficient local
brightness enhancement and loss of details.

In recent years, deep convolutional neural networks (CNNs) have established the state-of-the-art
in low-light image enhancement due to their ability to learn superior feature representation. Advanced
techniques have emerged for image enhancement, such as end-to-end learning methods, methods
based on learning the components of illumination, and unsupervised and semi-supervised learning
methods. However, most CNN-based methods necessitate paired training data, which is challenging to
acquire for the same scene with both low-light and normal-light images. To address this, unsupervised
deep learning-based methods have been proposed, but they often rely on carefully selected training
data and may not generalize well. Furthermore, deep neural networks may pose challenges for
practical applications, mainly due to their high memory footprint and long inference time. Thus, the
need arises for deep models with low computational cost and fast inference speed for deployment on
resource-limited and real-time devices, such as mobile platforms.

Through the brief survey of the model-based and data-driven methods, it is not difficult to find
that three significant challenges in low-light image enhancement still exist, which are listed below.

(1) The model-based methods, which aim to build an explicit model to enhance the low-light images,
but the suboptimal lighting conditions dramatically increase model complexity model complexity.
Therefore, these methods require complex manual tuning of parameters and even idealization of
some mathematical processes, making it challenging to achieve dynamic adjustment and even
more difficult to achieve optimal enhancement results;

(2) The data-driven methods typically employ a limited size of convolutional kernels to extract the
image feature, which have a limited receptive field to obtain the global illumination information
for adaptive image enhancement. Consequently, bright areas in the original image may become
overexposed after enhancement processing, leading to poor overall visibility. Furthermore, a
natural concern for data-driven methods is the necessity to acquire large amounts of high-quality
data, which is very costly and difficult, especially when these data have to be acquired under the
real-world illumination condition for the same scenarios;

(3) Moreover, although deep neural networks have shown impressive performance in image
enhancement and restoration, their massive parameter leads to large memory requirements
and long inference time, making them unsuitable for resource-limited and real-time devices. To
address these issues, designing deep neural networks with optimized network structures and
reduced parameters is crucial for practical engineering and real-time device applications, where
a low computational cost and fast inference speed of deep models are highly desired.

Considering the issues above and inspired by previous works [5-7], this paper explores the
integration of physical-based reasoning into the data-driven method of low-light enhancement.
Therefore, aiming at the above situation, we propose a novel end-to-end neural network named the
Unsupervised Low-Light Image Enhancement via Virtual Diffraction in Frequency Domain (ULEFD).
The main contributions are summarized below.

(1) Inspired by the previous work [7], we proposed a novel low-light image enhancement method
that mapped the physics occurring from the frequency domain into a deep neural network
architecture to build a more efficient image enhancement algorithm. The proposed method
can balance broad applications and performance of the model-based and data-driven based
method,as well as data efficiency and a large requirement of training data;

(2) Considering strong feature consistency in images under varying lighting conditions, this paper
designed an unsupervised learning network based on the recursive-based gated convolution
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block to obtain the global illumination information from the low-light image. Furthermore,
the unsupervised network is independent of paired and unpaired training data. Through this
process, the network is able to extract higher-order, consistent illumination features in images,
thus providing support for the global adaptive image enhancement task without the large
amounts of high-quality data;

(3) In this paper, the superiority of the proposed unsupervised algorithm is verified by comparative
experiments with the state-of-the-art unsupervised algorithms based on the different low-light
public datasets. Furthermore, The expansion experiment demonstrated that the ULEFD can be
accelerated in both physical modeling and network structure levels while still keeping impressive
image enhancement performance, which has great potential for deployment on resource-limited
devices for real-time image enhancement.

The rest of this work is structured as follows: Section 2 concerns related work, describing
current related approaches to low-light image enhancement and the existing problems; In section
3, the proposed image enhancement method ULEFD is described in detail; Section 4 provides the
experimental results and discussion. Meanwhile, the expansion experiments for our method and the
comparison methods are also provided in Section 4. Finally, conclusions and future work are drawn in
Section 5.

2. Related Work

For decades, low-light image enhancement has received significant attention in computer version
tasks. As mentioned above, the mainstream methods for low-light image enhancement can be roughly
categorized as model-based and data-driven methods. This section briefly reviews these related works
and discusses the inspiration from these methods.

2.1. Model-based methods

Low-light image enhancement is a critical area for image processing, with a range of classical and
more recent algorithms developed to improve image quality in low-light conditions[8]. Model-based
methods include Gamma Correction[9,10], Histogram Equalization[11-15], and Retinex Theory[1,16—
18], each with its strengths and weaknesses. Gamma Correction edits the gamma curve of the image
to improve contrast by detecting dark and light segments of the image but struggles with complex
global parameter selection and local over-exposure[19]. Histogram Equalization stretches the dynamic
range of the image by equally distributing pixel values but can lead to artifacts and unexpected
local over-exposure as well[5]. However, Histogram Equalization methods are still widely relied on,
despite their tendency to suffer from color distortion and other image artifacts. The Retinex Theory
decomposes images into reflectance and illumination maps to estimate and enhance illumination
in non-uniform lighting conditions. However, these methods can lead to unrealistic or partially
over-enhanced images without carefully accounting for noise and other factors[20]. More recent
methods abandon these approaches to employ image-specific curve mapping for light enhancement,
which enables broader dynamic range adjustment and avoids creating unrealistic artifacts. In addition,
several other model-based approaches, including frequency-based[7] and image fusion[21], are also
commonly used to enhance images in low-light conditions. These methods expand the research
avenues of low-light image enhancement methods from different perspectives. However, these types
of methods also suffer from the inability to achieve adaptive adjustment for low-light images.

2.2. Data-Driven methods

Data-driven methods typically rely on either Convolutional Neural Network (CNN)-based or
Generative Adversarial Network (GAN)-based approaches. Most CNN-based methods require
paired data for supervised training[20,22-25], which can be resource-intensive to obtain. It often
involves collecting data through automated light degradation and altering camera settings during


https://doi.org/10.20944/preprints202306.0787.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 June 2023 doi:10.20944/preprints202306.0787.v1

40f 21

image acquisition or retouching. To improve the weakness, some CNN-based methods, such as
LL-Net[26] and MBLLEN][27], generate synthetic data through gamma correction or photosensitivity
changes, while datasets like LOL[22] and MIT-Adobe FiveK[28] collect paired low/normal light
images. Retinex-based deep models[23,29-31] are also trained on paired data. Frequency-based
decomposition-and-enhancement models, such as [32], use real low-light datasets for training.
Nonetheless, these methods are constrained by the amount of paired data required and often
yield poor generalization capabilities. In contrast, unsupervised GAN-based[33,34] methods like
EnlightenGAN[34] and semi-supervised models like [35] learn to enhance images without paired data,
although a careful selection of unpaired data is needed. While such methods eliminate paired data’s
drawbacks, generalization and overfitting are still challenges. Ultimately, data-driven methods are
a promising and constantly evolving field, with ongoing research into overcoming these challenges
and improving low-light image enhancement. Furthermore, for most of the data-driven methods, a
complex and large-scale network is introduced for image enhancement, and the massive number of
parameters makes these methods time-consuming. When applied in real-time applications, significant
delays may occur. Table 1 summarizes the main properties of the different types of methods.

Table 1. The main properties of model-based methods and data-driven based methods.

Method Model-Based Data-Driven
Data efficient Require limited priors
Advantage Physics are universal Highly performance
Resource-friendly Dynamic adjustment
Require precise Careful selection data
Disadvantage modeling

Sub-optimal Efficiency depend on

performance structure
Unable to adaptive Highly computational

adjustment cost

In summary, model-based methods, which aim to build an explicit model to enhance low-light
images, possess resource-friendly properties and impressive data efficiency due to their universal
underlying physical rules. However, when applied in different scenarios, these methods must
converge to a good enough local optimum through carefully designed hand-crafted priors or specific
statistical models. In contrast, data-driven methods can improve the ability of model-based methods
to understand and analyze data by incorporating a larger number of parameters. This allows for an
implicit representation of enhancement modeling, resulting in a high-quality local optimum when
the model is adequately trained. However, it is important to note that these methods require large
amounts of carefully selected paired or unpaired data, which are often difficult to obtain. Additionally,
these implicit models restrict the scope of their application due to the lack of general model-based
reasoning and may suffer from overfitting. On the other hand, some data-driven methods, thanks to
their larger number of parameters, are able to dynamically adjust to low-light image enhancement
tasks. Nevertheless, this also brings higher computational costs.

3. Materials and Methods

Figure 2 illustrates the detailed structure of ULEFD, which comprises two primary modules:
the Brightness Adjustment in Frequency Domain(BAFD) component and the Global Enhancement
Net(GEN) component. The BAFD component takes the L channel as an input and transforms the L
channel from the spatial domain to the frequency domain. Inspired by the [7], the digital image can be
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reimaged as a spatially varying metaphoric "field of light."After transferring this "field of light" to the
frequency domain, it can provide image brightness adjustment information from physical processes
such as diffraction and coherence detection. In addition, to overcome the problem, the original physical
brightness adjustment model requires complex manual tuning of parameters in various scenes, and the
adjustment effect can only converge to suboptimal results. We used a lightweight network architecture
to extract the L channel feature to achieve dynamic adjustment of the turning of paraments.

e e 1

(5PW Conv Layers )
Dynamic Adjustment
Tuning of Parameters

1*1 PW-3*3 DW Conv

d

e

Recursive-based gated
Conv

~ 3 L
L Channel [ Spamllo Diffraction and Frequency To 3 Pixel level brightness <
o | Frequency Coherent Spatial(IFFT) |- &
(From HLS space) (FFT) Detection patial( adjustment L channel 1*1 PW Conv
i Physical Brightness Adjustment Model §
| Brightness Adjustment in Frequency Domain 1 A C> Concat

Input Image Ouput Image

(Low-light) (Enhanced)
Global Enhancement

1

Figure 1. The detailed structure of the proposed method.

The GEN component takes the low-light image and the dynamic brightness adjustment proposal
as inputs and enhances the image with some carefully designed loss functions. It consists of different
types of convolutional layers, especially the recursive-based gated with a variable receptive field to
capture local and global image information and generate high-order spatial information interaction for
better performance of the low-light enhancement.

3.1. Brightness Adjustment in Frequency Domain Component

3.1.1. Physical Brightness Adjustment

In [7], the authors demonstrate that introducing the concepts of virtual light field to use the
frequency domain information of images as low-light image enhancement has significant effects.
Specifically, let the I(x,y) be the original spatial domain digital image.The virtual “field of light” of
I(x,y) can be represent as:

—+o0 “+oco _ X
I(x,y) = /_OO /;oo Il(kx,ky)e+](kx,ky)dkxdky (1)

where the T; (ky, ky) represents the spatial spectrum of the virtual "field of light". Then, the brightness
gain can be obtained by transforming the spatial signal to the frequency domain, and this gain can be
represented as a spectral phase:¢(ky, ky), the brightness adjustment can be defined as:

I (x,y) = Ti(ky, ky)e 0 Ecks) dk dk, )

In the end, the brightness gain in the frequency domain needs to be mapped back to the image in the
normal spatial domain as:

Io(x,y) = IFFT{I;(ky, ky)e "9 ekv)} 3)
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where IFFT refers to the inverse fourier transform, and the I, (x, y) now contains frequency-dependent
brightness gain entirely described by the phase function ¢(ky, ky).

As known, digital images are has three bands corresponding to the three fundamental color
channels (RGB). However, when performing low-light image enhancement, it is necessary to adjust
the image brightness range while preserving the original color saturation information of the image.
This requires separating the color information from the luminance information to the greatest extent
possible. Therefore, we tried different color space conversion methods to keep the image color
saturation information as much as possible and adjust only the image brightness information. As
shown in the figure 2,through experiments, we found that brightness adjustment of the image in HLS
space[36] has the best effect on preserving the original color saturation information of the image.

"Brightnesé Adjtistmeht n Bnghmess Ad]ustment in
HSV color space YUV color space

Input Image

o Brightness Xd’ustmht in Bri ht-ness Ad ustment in
Ground Truth & ) & )
round HLS color space YCrCb color space

Figure 2. Ablation study of the advantage of HLS color space.

3.1.2. Mathematical Modeling

Given our focus on digital images, we transition from a continuous-valued I(x, y) in the spatial
domain to a pixelated waveform I[n, m]. In the frequency domain, the discrete waveform I[n, m] is
expressed as a sum of complex exponential waves with different frequencies:

N-—1 —
I[n,m]z% y Z [k, 1) (K +5) @)
k=0 1=0

where N is the number of pixels in each dimension,j is the imaginary unit, and I [k, l] is the discrete
Fourier transform (DFT) of I[n, m] defined as:

—1N-1

ZZInmeﬂ” %) (5)

n=0 m=

Similarly, we shift from continuous (kx, ky) to discrete momentum [kn, km].
Therefore,the Gaussian function with zero mean and variance T can be used for the phase function
¢(kx, ky) transformation as :
¢lkn,km) =S - ¢ (6)

Resulting in a spectral brightness adjustment operator,

Hlkn, km] = e iplknkm] _ ,—iS-¢ (7)
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where S is a parameter that maps the loss or gain of spectral brightness adjustment.

Following the spectral intensity adjustment and inverse Fourier transform operation, coherent
detection generates the real and imaginary parts of the optical field. The combined processes of
diffraction with the low pass spectral phase and coherent detection produce the output of the physical
brightness adjustment model:

I,[n,m] = angle(IFFT{e "¢ . FT{I[n,m]}}) )

where FT denotes the Fourier transform operation, and the angle processes the computation of the
phase from a complex-valued function of its argument.

In summary, in order to use the interference information obtained in the frequency domain space
at different phases as the brightness adjustment gain of the digital input image, we first add a small
constant bias term b to the light field corresponding to the input image I;[n, m] to make the numerical
calculation more stable and to achieve the effect of noise reduction. Then, the input image in the
spatial domain is transformed to the frequency domain by the FFT and subsequently multiplied with
the complex exponential elements, the parameters of which define the frequency-dependent phase.
The inverse Fourier transform (IFFT) is then used to return a complex signal in the spatial domain.
Mathematically, the inverse tangent operation in phase detection behaves like an activation function.
Before calculating the phase, the signal is multiplied by a parameter called the phase activation gain G.
The output phase is normalized to match the image formatting convention [0-255]. This output is then
injected into the original image as a new L channel in HSL color space (for low light enhancement).
Thus, the output of the physical brightness adjustment model can be represented as:

Iml,[n, m]

g1
Enhance; = tan™" (G % Relo[n, ]

) ©)

where Iml,[n, m] and Rel,[n, m] is the imaginary and real component of I, [n, m].

3.1.3. Dynamic Adjustment Tuning

The established brightness adjustment model contains three adjustable parameters: the mapping
parameter S, bias term b, and phase gain parameter G. The parameters mentioned earlier need manual
adjustment to enhance low-light images under varied conditions. Inspired by previous work[5], we
propose to extract global information from the L channel of the low-light image and use a five-layer
multi-layer perception to learn the parameters as mentioned earlier from the sufficient dataset. This
processing can be represented as:

{S,b,G} = MLP(I") (10)

where I' represents the L channel of the low-light image I in the HLS color space,and MLP(-) represents
the processing of learning these parameter via the five-layer multi-layer perception.

After obtaining the pixel brightness adjustment proposal in the L channel, it will be concatenated
with the middle layer of GEN and fed into the GEN for further enhancement. The entire ULEFD is
trained end-to-end, which means that all the components are trained jointly to optimize the overall
performance of the network.

3.2. Global Enhancement Net

When utilizing traditional convolutional kernels for image feature extraction, the limited
perceptual fields make it challenging for the network to comprehensively understand the image.
Moreover, the enhanced image is exceptionally vulnerable to noise as there is a lack of information in
the low-illumination image.To address these issues, this paper proposes a Global Light Enhancement
Net containing three different convolution structures.
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As figure 1 shows, firstly, the Point-wise(1 x 1 kernel size) and Depth-wise(3 x 3 kernel size)
convolution block is used to extract the input low-light image feature. More specifically, the 1 x 1
point-wise convolution is applied to aggregate pixel-level cross-channel context, then 3 x 3 depth-wise
convolution to encode channel-level spatial context. This convolution structure has been applied in the
state-of-the-art image restoration methods[37,38], proving its effectiveness in image noise reduction.

The essential operation in CNN is "convolution," which provides local connectivity and translation
equivariance, these features that bring efficiency and versatility to CNNs. However, while enhancing
low-light images, the consistency of the original images in terms of color, contrast, and other image
information should be ensured. The small size of conventional convolutional kernels limits their
field of perception and thus cannot model long-range pixel correlations, making it difficult to retain
consistent information about the global image.To address this challenge, this paper introduces a
recursive gated depth convolutional neural network[39], which focuses on using the recursive gated
convolution to higher-order interaction of image information and long-distance image information
modeling. Benefitting from these abilities,the network is able to avoid severe noise distortion and color
degradation when enhancing the dark regions on the input low-light images.

3.3. Loss Function

Due to the lack of absolute supervision information to guide the training process, it is tough to
recover these two components from low-light images. The only way is to use relative information
in loss function designing, which reduces the assumption of the existence of absolute ground-truth
data. Previous unsupervised methods have proposed some useful loss functions, such as normalized
gradient loss [40], spatial consistency loss[5,6] and perception loss[34]. However, only some achieve
impressive results, mainly due to the ineffective use of more specific constraint information in designing
these loss functions. Therefore, in this paper, we design each loss function of the algorithm for the
image feature information in different components.

3.3.1. Loss for Brightness Adjustment in Frequency Domain component

First, for the component of brightness adjustment in the frequency domain, Low-light degradation
causes changes in pixel intensity and color distribution of images. Therefore, we adopt the image color
histogram prior to constraining the dynamic brightness adjustment. Specifically, we define an MSE
loss inspired by[19,41]. The main idea of this loss function design is that the color histogram prior
information contains not only the input low-light image’s color distribution information but also the
image’s structural and semantic information at the higher level, which can be extracted from this color
distribution information. The kernel density estimation has been used to keep the loss differentiable:

Ty .
Lhist = N 2 H HISt(Iel‘n) - HlSt(Ilzow) ”% (11)
i=1

where the N means the batch size of the input, the I/ represent the input low-light image and the I},
represent the enhanced image.

In addition, the image maintains its natural and explicit detail content to make the brightness
adjustment, and the smooth illumination loss function L;; is designed. The main idea is to make
the model more focused on image edges and textures by processing the gradient information of
the low-light and enhanced images. More specifically, the loss function consists of two different
components. The first component is the gradient loss calculation along the x and y directions.
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Ly = 777 L L ReLU(G(R™); ) exp(=10G(R);5) exp(=10G(1); )
i=1j=1
1 H ]W (12)
Ly = 7 2 2 ReLU(G(R); ;) exp(~10G(R""); ) exp(~10G(I);)
i=1j=1

where G(R/°") represents the normalization of the gradient of the low-illumination image,G(I)
represents the normalization of the gradient of the image after enhancement.Moreover,ReLU means
the rectified linear unit function.

ReLU(x) = max(x,0) (13)

The other component of the Lg; is:
Lomoorn = (|G(R™) = G(I))||, +¢)/ (CWH) (14)

where ||G(R!*?) — G(I))|| represents the absolute value of the difference between the gradient of
the enhanced image and the low-light image.The p means the parametric number (e.g. L1-norm or
L2-norm), € is a very small constant (e.g. 1le — 4) and C is the number of the image channel, H and W is
the height and weight of the image.In summary, the total L; loss function is:

'Csi =Ly + *Cy + 'Csmooth (15)

3.3.2. Loss for Global Enhancement component

From two aspects of maintaining image color and contrast consistency, two loss functions are
applied in this paper for global light enhancement. The first loss function is color constancy loss. The
main idea is calculating the mean channel value for both the enhanced image and the input low-light
image to obtain the average pixel values of the enhanced image enhances; ;. and the input low-light
image originals; ;.. The processing can be defined as follow:

H W
Y. Y enhances
enh_cols, = s
e HxW
(16)
H W
Y. Y originals; .
ori_cols, = i
- HxW
Then the ratio difference between the three different color channels is calculated as follow.
. enh_cols,  ori_cols,
rg_ratio = - —
enh_colsg  ori_colsg
enh_cols ori_cols
gb_ratio = — & __— 4 17)
enh_cols,  ori_colsy
. enh_cols ori_cols
br_ratio = b T
enh_cols, ori_cols,

The final color consistency loss is obtained by summing the above three ratio differences and taking
the mean value of the results:

1
col—N‘

1

L (rg_ratio; + gb_ratio; + br_ratio;) (18)

L=

doi:10.20944/preprints202306.0787.v1
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where ¢ means the picture channel (red, green, blue), the H and W are the height and width of the
image, the N is the number of images.

To preserve the contrast consistency, we add a gradient consistency loss. The main idea is to extract
the gradients of each channel and calculate the gradient consistency loss by comparing the similarity
of the corresponding gradients in the original and enhanced images. The gradient consistency loss can
be represented as:

L1 % 1 enh; - ori; N 1 %cos_l enhs - ori; 19)
gred =N = llenhs|| - ||orif | +0.00001 ] N = \lenh; || - ||orii || +0.00001

where i means the number of images and ¢ means the color channel of the images.

In the end, we use an exposure control loss (Lexp) to control the exposure level and avoid
under-/over-exposed regions. This loss function quantifies the difference between the average intensity
value of a local region and the desired level of well-exposedness (E). The calculation of this loss function
consists of the following main steps. First, The enhanced image is fed into the function, which performs
an averaging pooling operation and calculates its grayscale value, obtained by averaging the pixel

values of the red, green, and blue channels.
(20)

. . 1 2 R; + Gi + B;
avg_intensity = 2 Z — 3
i=1

where r means the window size of pooling operation,R;, G;, B; are represent the color channel of the
image. Then calculating the difference between the average grayscale value and the given threshold,
and take the absolute value and then average to obtain the exposure control loss as follow.

1 n
Loy = — intensity. — E 21
exp = g |avg_intensity; — E| (21)
where 7 means the number of window for pooling operation.avg_intensity; represents the average
value of the ith pooling window,and the E is the given threshold.
In summery,the total loss function for the proposed method can be expressed as follow:

L = WhistLnist + WsiLsi + WeorLeor + ngdLgrad + WexpLexp (22)
where the weights Wyst, Wi, Weor, Werad, Wexp are used for balancing the scales of different losses.

4. Experiment and Results

In this section, we present the implementation details of our proposed low-light image
enhancement method. Afterward, we perform both qualitative and quantitative comparisons with
state-of-the-art supervised and unsupervised methods, utilizing traditional metrics such as Peak
Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM)[42], and Natural Image Quality
Evaluator (NIQE)[43]. In addition, we conduct ablation studies to demonstrate the effectiveness of
each component or loss in the proposed method. Finally, we investigate the performance of our method
to improve the efficiency of downstream tasks, such as face detection in the dark.

4.1. Implementation Details

The framework is implemented with PyTorch on an NVIDIA 3090 Ti GPU with 24GB memory.
The batch size used for training is 64. We use the Adam optimizer to train the network with an initial
learning rate of 1e~* and decate rate of 0.5 every 50 epochs. We mainly use two datasets for training
and comparisons: the LOL dataset[22] and VE-LOL dataset[44].
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4.2. Quantitative Evaluation

In this section, we compared our method with several state-of-the-art low-light image
enhancement methods. These methods include: one conventional method (LIME[17]), two
supervised methods(KinD++[24], Restormer[37]) and three unsupervised methods(Zero-DCE++[5],
EnlightGAN][34], LE-GAN[45]).To demonstrate the robustness of our proposed method, we give more
experiments on cross-dataset. We have fine-tuned all the above methods on the train sets of LOL
and VE-LOL datasets and then evaluated them on their test sets. From Table 2, our method achieves
significantly better results among all unsupervised methods, and its performance approximates the
level of the state-of-the-art supervised methods. It is obvious that the proposed ULEFD can achieve
better PSNR than other unsupervised methods and some supervised methods, whether trained on
the LOL or VE-LOL dataset. Regarding SSIM, the proposed method achieved results close to the
supervised methods KinD++[24] and Restormer[37], which does not require any reference images for
training. However, the proposed method has fewer parameters (only 70K parameters) and costs less
running time during testing.

Table 2. Quantitative comparison results on (LOL[22] & VE-LOL[44]) datasets.Red and blue indicate
the best and the second-best results, respectively.

Leamning Method LOL VE-LOL Efficiency
PSNRT SSIMT NIQE| | PSNRT SSIMt NIQE| | Params(M)|  test time(s))
Conventional LIME[17] 16.76 0.56 10.61 14.77 0.53 10.85 - 0.491(on CPU)
Supervised KinD++[24] 21.30 0.82 11.02 20.87 0.80 11.60 8.28 0.829
Restormer[37] 23.17 0.84 10.14 22.49 0.82 10.53 8.19 0.821
Zero-DCE++[5] 14.86 0.57 10.95 16.93 0.68 10.81 0.01 0.0012
EnlightGAN[34] 16.21 0.59 14.74 17.48 0.65 14.42 8.63 0.871
Unsupervised LE-GAN[45] 21.38 0.82 11.32 21.50 0.82 10.71 8.92 0.907
our(Training on LOL) 21.97 0.83 10.23 21.63 0.83 10.21 0.07 0.008
our(Training on VE-LOL) | 21.44 0.82 10.19 22.12 0.84 10.13 0.07 0.008

To further demonstrate the generalization ability of the proposed method, we have tested
the proposed method on some real-world low-light image sets, including DICM[14](64 images),
LIME[17](10 images), VVvi(24 images), LCDP[46], SCIE[47](select 100 low-light images from the
datasets).In the expanding experiments, we use unpaired public datasets and the NIQE metric to
compare the proposed method quantitatively with state-of-the-art methods that assess natural image
restoration without requiring ground truth. Table 3 contains the NIQE scores for five different public
datasets that were previously used in relevant studies. In summary, these experimental results show
the effectiveness of our proposed method.

Lhttps:/ /sites.google.com/site/vonikakis/datasets

Table 3. NIQE scores on low-light image sets(DICM[14], LIME[17], VV1, LCDP[46], SCIE[47]). The best
result is in red whereas the second best results are in blue, respectively. Smaller NIQE scores indicate a
better quality of perceptual tendency.

Learning Method DICM[14] | LIME[17] vVI LCDP[46] | SCIE[47] Avg
Conventional LIME[17] 11.823 10.612 11.672 9.456 10.818 10.876
Supervised KinD++[24] 15.043 10.911 11.449 9.461 11.451 11.663
Restormer[37] 14.012 10.290 11.128 9.352 10.787 11.114

Zero-DCE++[5] 10.995 10.932 10.645 10.217 10.56 10.70
Unsupervised EnlightenGAN][34] 15.201 11.335 11.298 9.251 10.546 11.526
LE-GANTJ45] 11.928 10.69 10.41 10.364 10.588 10.796
Our 10.037 10.084 10.504 9.336 10.245 10.041

4.3. Qualitative Evaluation

Figure 3 shows some representative results for visual comparison from LOL dataset. We have
zoomed in the details inside the red and green bounding boxes to further investigate the differences
between these comparison methods.The enhanced results show that the conventional method LIME[17]
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enhances the images by directly estimating the illumination map but has some external noises. For
unsupervised methods, Zero-DCE++[5] produces under-enhanced and noisy results, respectively.
Meanwhile, the KIND++[24] has apparent noise and weak illumination.EnlightenGAN[34] suffers
from under-enhanced and over-smoothing. The LE-GAN][45] performs better than the EnlightenGAN
but is still under-enhanced in some local details. Benefiting from the introduction of the normal
illumination reference image, the image enhancement effect of the Restormer[37] is closest to the
ground truth. In contrast, Figure 3 shows that our method can well preserve the structural and textural
image details without reference images to guide the network. It demonstrates that our proposed
method achieves more satisfactory visualization results than the unsupervised learning methods for
comparison, especially in the exposure level, structure description, and color saturation.

Low light image (Input) ] < Zero-DCE+

=
T Em

EnlightenGAN LE-GAN Our (Training on LOL)

-'| ﬁm

Low light image (Input) ] Zero-DCE+

Iy
U

EnlightenGAN LE-GAN Our (Training on LOL) Our (Training on VE-LOL) Ground Truth

Figure 3. Qualitative results on LOL test dataset.

Figure 4 shows some representative results for visual comparison from the VE-LOL dataset.
This dataset further expands the scenario based on the LOL dataset. The enhanced results show
that the LIME[17] has severe contrast and noise issues. For unsupervised methods, the results
of Zero-DCE++[5] also suffer from extreme contrast and noise issue. KIND++[24] has weak
illumination.EnlightenGAN[34] still suffers from under-enhanced and over-smoothing. Regarding
the LE-GAN][45], the global enhancement effect is better than the above methods, but there are some
issues of color distortion in a few details. In terms of global and local effects of image enhancement,
the proposed method in this paper, especially the model trained on the VE-LOL training set, is able to
obtain almost the same enhancement results as the Restormer[37], which is the supervised learning
method, achieving visual quality close to the ground truth.
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Low light image !Input!

En.lwhtenL AN E-G r ing on LOL) Our (Training on VE-LOL) Ground Truth

Low llght image (Input) Restormer [elo DCE+

N [/ /[ .

EnlightenGAN LE-GAN Our (Training on LOL) Our (Training on VE-LOL) Ground Truth

Figure 4. Qualitative results on VE-LOL test dataset.

Figure 5 shows the image enhancement effect of the algorithm in this paper and other comparison
algorithms in real low-light scenarios, respectively.Zero-DCE++[5] fail to suppress noise when the
background of the scenarios is extremely dark in the DICM[14] and LIME[17] datasets. Meanwhile,
EnlightenGAN][34] provided limited image enhancement in the above scenarios. KIND++[24] suffer
from blurring artifacts in LIME[17] dataset. As for LCDP[46] datasets, Zero-DCE++[5] and LE-GAN[45]
easily lead to over-exposure artifacts and blurriness, which make the results distorted and glaring with
information loss. LIME[17] retains the contrast information of images in all of the datasets relatively
well, but the overall enhancement effect is weak. In contrast, our proposed method in all datasets
tends to generate the same performance as the state-of-the-art supervised method Restormer[37], with
proper color contrast, sufficient detailed information, and acceptable and controllable noise.
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LIME[17]

Figure 5. Qualitative results on DICM[14], LIMEJ[17], VV!, LCDP[46] and SCIE[47] datasets,

respectively.

4.4. Ablation Study

4.4.1. Contribution of BAFD component:

In this ablation study, the network only has the GEN component, and the three associated loss
function Loy, Lgaq, and Lexp are considered as the baseline model. The effects of adding the BAFD
component and losses proposed in this paper were compared and studied. The results are presented
in Table 4.

Table 4. The influence of BAFD component and loss functions based on relative information. During

training. Relative losses represents Leo + Lgrag + Lexp

Loss functions BAFD LOL VE-LOL
Lpiss Lsi Relative losses | component | PSNR  SSIM | PSNR  SSIM

v 1752 0.80 18.87  0.73

v v v 19.05  0.81 1942 0.82
v v v 2039 082 | 2155 0.83

v v v v 2144  0.82 2212 0.84

From Table 4, it can be observed that when we add the other losses proposed in this paper or the
BAFD component to the baseline model, both PSNR and SSIM show improvement.This proves the
effectiveness of the BAFD component and the loss functions designed with relative information. The
BAFD component can adjust the global brightness information and integrate it into the enhancement
process with few parameters, which can effectively improve the PSNR by 2.87 dB and the SSIM value
by 0.02 (PSNR: 17.52 — 20.39, SSIM: 0.74 — 0.82).
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4.4.2. Contribution of Each Loss:

In this ablation study, We present the results of ULEFD trained by various combinations of losses.
As shown in Table 5, the performance of the proposed ULEFD steadily increases with the addition of
five loss functions, and the effectiveness of our hybrid loss function is proved. As shown in Figure 6,
The result without the BAFD component has limited brightness adjustment than the full result. The
result of smooth illumination loss L; has a relatively lower color contrast than the full result. Severe
color casts emerge when the histogram prior loss Ly, is discarded.

Table 5. The influence of different training losses.

Loss functions LOL VE-LOL
Lpiss  Lsi Lot Lgraa Lexp | PSNR - SSIM | PSNR  SSIM
1262 054 14.26 0.57
17.88 0.68 18.49 0.70
18.24 0.70 18.86 0.71
v 20.72  0.77 21.60 0.79
v Ve 21.44 0.82 22.12 0.84

LaRR
SENENN
ENENEN

Meanwhile, it hampers the correlations between neighboring regions leading to apparent artifacts.
Removing the color constancy loss L, fails to recover the color contrast of the image. Removing
the gradient consistency loss L,y hampers the correlations between neighboring regions leading
to apparent artifacts. Finally, Removing the exposure control loss Ley fails to brighten the image
compared with the full result. Such results demonstrate that the BAFD component and each loss used
in the proposed method play a significant role in achieving the final visually pleasing results.

4

w/o L_hist

w/o L';col w/o L_grad ] Full component and

loss

w/o L_exp

Figure 6. Ablation study of the contribution of BAFD component and each loss (histogram prior loss
Ljst, smooth illumination loss Ls;, color constancy loss L,,gradient consistency loss Lg,qq exposure
control loss Lexp).Red boxes indicate the obvious differences and amplified details.

4.5. Pedestrian Detection in the dark

In this section, we aim to evaluate the effectiveness of low-light image enhancement methods
for the pedestrian detection task in low-light conditions. We utilized the DARK FACE dataset[48],
which consists of 10,000 images captured in low-light conditions. Since the label of the test set is not
accessible to the public, we opt to evaluate the proposed method on the training and validation sets
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comprising 6,000 images. We adopted the public deep face detector, Dual Shot Face Detector(DSFD)[49],
which pre-trained on the WIDER FACE dataset[50], to serve as our baseline model. The results of
various low-light image enhancement methods were fed to the DSFD[49] for analysis. We utilized the
evaluation tool5 from the DARK FACE dataset[48] to compare the average precision (AP) at various
IoU thresholds, including 0.5, 0.7, and 0.9. Table 6 shows the detailed AP results of our evaluation.

Table 6. The average precision (AP) for face detection in the dark under different IoU thresholds (0.5,
0.7, 0,9). The best result is in red whereas the second best one is in blue under each case.

IoU thresholds
Method 0.5 0.7 0.9
low-light image 0.231278 | 0.007296 | 0.000002
LIME[17] 0.293970 | 0.013417 | 0.000007
KinD++[24] 0.243714 | 0.008616 | 0.000003

Restormer[37] 0.304128 | 0.017581 | 0.000007
Zero-DCE++[5] 0.289232 | 0.014772 | 0.000006
EnlightenGAN][34] | 0.276574 | 0.015545 | 0.000003
LE-GAN[45] 0.294977 | 0.017107 | 0.000005
Ours 0.303135 | 0.017204 | 0.000009

Based on the results presented in Table 6, it is evident that all the methods” AP scores decrease
as the IoU thresholds increase. At an IoU threshold of 0.9, all the approaches perform exceptionally
poorly. However, under IoU thresholds of 0.5 and 0.7, the proposed method achieves similar AP scores
that are only slightly lower than Restormer[37] superior performance. Moreover, our method achieves
balanced subject enhancement performance, application performance, and computational cost without
using paired training data. The proposed method effectively lights up facial features in dark areas
while preserving features in well-light areas, ultimately improving pedestrian detection in low-light
conditions. Figure 7 shows examples of object detection using the Dual Shot Face Detector(DSFD) on
low-light images and enhanced images with the proposed method.

nnnn

Low light image (Input) Enhanced image(proposed method) Low lightimage (Input Enhanced image(proposed method)

Figure 7. Impact of VEViD preprocessing on pedestrian detection in the dark.
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5. Discussion

1. Deep-learning-based methods have recently attracted significant attention in the image
processing field. Due to the powerful feature representation ability of the data, data-driven methods
can learn more general visual features. This property means these methods can be used to relieve some
challenges for image enhancement, such as poor illumination conditions. Our research aims to combine
the physical brightness adjustment model based on frequency information with a data-driven-based
low-light image enhancement method to improve the performance of the dynamic enhancement for
low-light images. Moreover, the proposed method is based on a lightweight network design, offering
it the advantages of a flexible generalization capability and real-time inference speed. The quantitative
results in Table 2 and Table 3 show that the data-driven methods have better image enhancement
results on all the test sets than the conventional method when the training data is sufficient. It is due to
the fact that the data-driven approach relies on the powerful feature extraction capability of the deep
learning network to adjust the brightness of each pixel in the image dynamically. As for data-driven
methods, supervised learning usually has better image enhancement results because it can rely on
normally exposed images to guide network learning. However, collecting pairs of images in natural
environments is very time-consuming. The data dependence of supervised learning also causes a lack
of generalization ability of the model. Specifically, the model degrades in scenarios with significant
differences from the training data. In contrast, unsupervised learning reduces the reliance on paired
data and performs better generalization. In particular, the proposed method in this paper maintains
better robustness on different test data. It is able to achieve image enhancement results approximating
the state-of-the-art supervised learning.

2. Through ablation experiments, this paper analyzes the reasons for the performance
improvement of the algorithm from two aspects. First, the ablation experiments demonstrate that
this paper uses the two-branch network structure, and the one-way network introduces the channel
characterizing the image luminance with the frequency domain feature model under the assumption of
the virtual light field, which can effectively achieve the luminance adjustment. Moreover, a lightweight
parameter estimation network can achieve dynamic brightness adjustment. Meanwhile, the other
network relies on acquiring global image information to preserve the original image structure, color
contrast, and other critical information while enhancing the image so that the enhanced image noise
can be better suppressed. On the other hand, the contribution of the loss function of constrained
unsupervised learning is analyzed in this paper through ablation experiments. Through the structure of
the ablation experiment, it is easy to find that for the brightness adjustment branch, the histogram prior
information loss function used in this paper can effectively preserve the original distribution of image
information while brightness adjustment, thus making it possible to adjust the brightness without
losing the original image semantic structure features. On the other hand, the illumination smoothing
loss function allows the network to reduce the impact of noise on the overall image enhancement
results during the luminance adjustment learning. For the global enhancement branch, this paper
constrains the network to retain the high-level image feature information from two aspects: color
gradient consistency and image gradient change consistency, so that the enhanced images achieve
significant improvement in both the quantitative and qualitative evaluation(in Table 2,3 and Figure
3,4). Meanwhile, the exposure consistency loss further enhances the intuitive image enhancement
effect.

3. To analyze the potential of the algorithms in this paper for real-time applications, the paper first
compares the parametric quantities and inference implementations of the various algorithms in Table
2. It can be seen that the number of parameters of the proposed method in this paper is better than
most of the comparison methods, and the inference speed is only slightly slower than Zero-DCE++[5],
which is significantly light-weight and fast for practical applications.
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6. Conclusions

In this work, we propose an unsupervised dual-branch network for low-light image enhancement.
One network branch uses the frequency domain information of low-light images to achieve dynamic
brightness adjustment of images. At the same time, the other focuses on the global image information
to dynamically adjust the overall brightness of images while preserving the high-level structural
features of low-light images themselves, guiding the network to suppress noise effectively, color
contrast differences, and other problems that exist when enhancing low-light images while enhancing
images. Moreover, the loss functions designed in this paper can effectively guide the network to make
dynamic adjustments while preserving the structural information of low-illumination images. It further
enhances the low-light image enhancement effect and can support the performance improvement of
downstream tasks. Finally, the lightweight network structure design reduces the number of network
parameters and computational complexity. It improves the inference speed of this paper, which gives
the proposed method the potential to be used in computing platforms with limited computing power.

In the future, we plan to integrate semantic information into image sequence enhancement and
design a more lightweight network architecture. By combining more prior constraints and reducing
the computational cost, further accuracy gains in downstream tasks and more practical applications
are achievable.
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Abbreviations

The following abbreviations are used in this manuscript:

CNN Convolutional Neural Networks

ULEFD  Unsupervised Low-light Image Enhancement via Virtual Diffraction in Frequency Domain
BAFD  Bright Adjustment in Frequency Domain

GEN Global Enhancemnet Net

FT Fourier Transform
FFT Fast Fourier Transform
IFFT Inverse Fourier Transform

MLP Multi-layer Perception
MSE Mean-Square Error
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