
Article

Not peer-reviewed version

Unsupervised Low-Light Image

Enhancement via Virtual Diffraction

Information in Frequency Domain

Xupei Zhang 

*

 , Guanghao Wang , Hanlin Qin 

*

 , Yue Yu 

*

 , Xiang Yan , Shanglin Yang

Posted Date: 12 June 2023

doi: 10.20944/preprints202306.0787.v1

Keywords: Low-light Image Enhancement; Unsupervised Learning; Physics-inspired Computer Vision

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/2994131
https://sciprofiles.com/profile/540219
https://sciprofiles.com/profile/1402242
https://sciprofiles.com/profile/1158247
https://sciprofiles.com/profile/2827118


Article

Unsupervised Low-Light Image Enhancement via
Virtual Diffraction Information in Frequency Domain

Xupei Zhang * , Guanghao Wang, Hanlin Qin *, Yue Yu *, Xiang Yan and Shanglin Yang

School of Optoelectronic Engineering, Xidian University, Xi’an 710071, Shaanxi, China;

* Correspondence: zhangxupei@xidian.edu.cn; Tel.:+86-1577-195-7212 (X.Z.),hlqin@mail.xidian.edu.cn;

Tel.:+86-1322-707-9356 (H.Q.),yyu@xidian.edu.cn; Tel.:+86-1819-282-7952 (Y.Y.)

Abstract: With the advent of deep learning, significant progress has been made in low-light image

enhancement methods. However, deep learning requires enormous paired training data, which

is challenging to capture in real-world scenarios.To address this limitation, this paper presents a

novel unsupervised low-light image enhancement method, which first introduces the frequency

domain features of images in low-light image enhancement tasks. Our work is inspired by imagining

a digital image as a spatially varying metaphoric “field of light”, then subjecting the influence of

physical processes such as diffraction and coherent detection back onto the original image space via

a frequency-domain to spatial-domain transformation (inverse Fourier transform). However, the

mathematical model created by this physical process still requires complex manual tuning of the

parameters for different scene conditions to achieve the best adjustment. Therefore, we proposed

a dual-branch convolution network to estimate pixel-wise and high-order spatial interactions for

dynamic range adjustment of the frequency feature of the given low-light image. Guided by the

frequency feature from the “field of light” and parameter estimation networks, our method enables

dynamic enhancement of low-light images. Extensive experiments have shown that our method

performs well compared to state-of-the-art unsupervised, and its performance approximates the level

of the state-of-the-art supervised methods qualitatively and quantitatively. At the same time, the light

network structure design allows the proposed method to have extremely fast inference speed(near

150 FPS on an NVIDIA 3090 Ti GPU for an image of size 600 × 400 × 3 ). Furthermore, the potential

benefits of our method to object detection in the dark are discussed.

Keywords: low-light image enhancement; unsupervised learning; physics-inspired computer vision

1. Introduction

Image capturing in suboptimal lighting conditions is a common occurrence, leading to images

with low brightness, poor contrast, and color distortion, which consequently hinder computer vision

tasks including object detection and image segmentation. To combat these issues, low-light image

enhancement has emerged as an essential research topic in computer vision, particularly for improving

the visual fidelity of sub-optimal photos. However, suboptimal lighting conditions necessitate a

comprehensive approach rather than simply amplifying brightness to enhance the contrast, as this

may inversely impact the overall quality of the image. Therefore, addressing the fundamental causes

of low light imaging is crucial to produce high-quality images that meet the needs of various tasks in

computer vision and image analysis.

Various traditional methods have been proposed to mitigate further the degradation caused by

low-light conditions. These methods are divided into two main categories. Some of the methods

depended on the Retinex theory[1,2] and the others based on the Histogram equalization[3,4].

The Retinex-based method involves the decomposition of images into reflection and illumination

components. The first component contains information about the scene’s inherent attributes like

texture, edge details, and color. Meanwhile, the second component contains distribution information

on contours and lighting. On the other hand, the main idea behind histogram equalization methods

is to increase the dynamic range of the gray values in an image by adjusting its gray distribution.
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It is achieved by rearranging the pixels of the image to improve its overall dynamic range. These

proposed methods use image-specific curve mapping instead of randomly changing the histogram

distribution or relying on inaccurate physical models, resulting in natural enhancement without

creating unrealistic artifacts. However, previous methods may still have limitations, particularly

concerning their processing of high-noise pictures and their potential to cause insufficient local

brightness enhancement and loss of details.

In recent years, deep convolutional neural networks (CNNs) have established the state-of-the-art

in low-light image enhancement due to their ability to learn superior feature representation. Advanced

techniques have emerged for image enhancement, such as end-to-end learning methods, methods

based on learning the components of illumination, and unsupervised and semi-supervised learning

methods. However, most CNN-based methods necessitate paired training data, which is challenging to

acquire for the same scene with both low-light and normal-light images. To address this, unsupervised

deep learning-based methods have been proposed, but they often rely on carefully selected training

data and may not generalize well. Furthermore, deep neural networks may pose challenges for

practical applications, mainly due to their high memory footprint and long inference time. Thus, the

need arises for deep models with low computational cost and fast inference speed for deployment on

resource-limited and real-time devices, such as mobile platforms.

Through the brief survey of the model-based and data-driven methods, it is not difficult to find

that three significant challenges in low-light image enhancement still exist, which are listed below.

(1) The model-based methods, which aim to build an explicit model to enhance the low-light images,

but the suboptimal lighting conditions dramatically increase model complexity model complexity.

Therefore, these methods require complex manual tuning of parameters and even idealization of

some mathematical processes, making it challenging to achieve dynamic adjustment and even

more difficult to achieve optimal enhancement results;
(2) The data-driven methods typically employ a limited size of convolutional kernels to extract the

image feature, which have a limited receptive field to obtain the global illumination information

for adaptive image enhancement. Consequently, bright areas in the original image may become

overexposed after enhancement processing, leading to poor overall visibility. Furthermore, a

natural concern for data-driven methods is the necessity to acquire large amounts of high-quality

data, which is very costly and difficult, especially when these data have to be acquired under the

real-world illumination condition for the same scenarios;
(3) Moreover, although deep neural networks have shown impressive performance in image

enhancement and restoration, their massive parameter leads to large memory requirements

and long inference time, making them unsuitable for resource-limited and real-time devices. To

address these issues, designing deep neural networks with optimized network structures and

reduced parameters is crucial for practical engineering and real-time device applications, where

a low computational cost and fast inference speed of deep models are highly desired.

Considering the issues above and inspired by previous works [5–7], this paper explores the

integration of physical-based reasoning into the data-driven method of low-light enhancement.

Therefore, aiming at the above situation, we propose a novel end-to-end neural network named the

Unsupervised Low-Light Image Enhancement via Virtual Diffraction in Frequency Domain (ULEFD).

The main contributions are summarized below.

(1) Inspired by the previous work [7], we proposed a novel low-light image enhancement method

that mapped the physics occurring from the frequency domain into a deep neural network

architecture to build a more efficient image enhancement algorithm. The proposed method

can balance broad applications and performance of the model-based and data-driven based

method,as well as data efficiency and a large requirement of training data;
(2) Considering strong feature consistency in images under varying lighting conditions, this paper

designed an unsupervised learning network based on the recursive-based gated convolution
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block to obtain the global illumination information from the low-light image. Furthermore,

the unsupervised network is independent of paired and unpaired training data. Through this

process, the network is able to extract higher-order, consistent illumination features in images,

thus providing support for the global adaptive image enhancement task without the large

amounts of high-quality data;
(3) In this paper, the superiority of the proposed unsupervised algorithm is verified by comparative

experiments with the state-of-the-art unsupervised algorithms based on the different low-light

public datasets. Furthermore, The expansion experiment demonstrated that the ULEFD can be

accelerated in both physical modeling and network structure levels while still keeping impressive

image enhancement performance, which has great potential for deployment on resource-limited

devices for real-time image enhancement.

The rest of this work is structured as follows: Section 2 concerns related work, describing

current related approaches to low-light image enhancement and the existing problems; In section

3, the proposed image enhancement method ULEFD is described in detail; Section 4 provides the

experimental results and discussion. Meanwhile, the expansion experiments for our method and the

comparison methods are also provided in Section 4. Finally, conclusions and future work are drawn in

Section 5.

2. Related Work

For decades, low-light image enhancement has received significant attention in computer version

tasks. As mentioned above, the mainstream methods for low-light image enhancement can be roughly

categorized as model-based and data-driven methods. This section briefly reviews these related works

and discusses the inspiration from these methods.

2.1. Model-based methods

Low-light image enhancement is a critical area for image processing, with a range of classical and

more recent algorithms developed to improve image quality in low-light conditions[8]. Model-based

methods include Gamma Correction[9,10], Histogram Equalization[11–15], and Retinex Theory[1,16–

18], each with its strengths and weaknesses. Gamma Correction edits the gamma curve of the image

to improve contrast by detecting dark and light segments of the image but struggles with complex

global parameter selection and local over-exposure[19]. Histogram Equalization stretches the dynamic

range of the image by equally distributing pixel values but can lead to artifacts and unexpected

local over-exposure as well[5]. However, Histogram Equalization methods are still widely relied on,

despite their tendency to suffer from color distortion and other image artifacts. The Retinex Theory

decomposes images into reflectance and illumination maps to estimate and enhance illumination

in non-uniform lighting conditions. However, these methods can lead to unrealistic or partially

over-enhanced images without carefully accounting for noise and other factors[20]. More recent

methods abandon these approaches to employ image-specific curve mapping for light enhancement,

which enables broader dynamic range adjustment and avoids creating unrealistic artifacts. In addition,

several other model-based approaches, including frequency-based[7] and image fusion[21], are also

commonly used to enhance images in low-light conditions. These methods expand the research

avenues of low-light image enhancement methods from different perspectives. However, these types

of methods also suffer from the inability to achieve adaptive adjustment for low-light images.

2.2. Data-Driven methods

Data-driven methods typically rely on either Convolutional Neural Network (CNN)-based or

Generative Adversarial Network (GAN)-based approaches. Most CNN-based methods require

paired data for supervised training[20,22–25], which can be resource-intensive to obtain. It often

involves collecting data through automated light degradation and altering camera settings during
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image acquisition or retouching. To improve the weakness, some CNN-based methods, such as

LL-Net[26] and MBLLEN[27], generate synthetic data through gamma correction or photosensitivity

changes, while datasets like LOL[22] and MIT-Adobe FiveK[28] collect paired low/normal light

images. Retinex-based deep models[23,29–31] are also trained on paired data. Frequency-based

decomposition-and-enhancement models, such as [32], use real low-light datasets for training.

Nonetheless, these methods are constrained by the amount of paired data required and often

yield poor generalization capabilities. In contrast, unsupervised GAN-based[33,34] methods like

EnlightenGAN[34] and semi-supervised models like [35] learn to enhance images without paired data,

although a careful selection of unpaired data is needed. While such methods eliminate paired data’s

drawbacks, generalization and overfitting are still challenges. Ultimately, data-driven methods are

a promising and constantly evolving field, with ongoing research into overcoming these challenges

and improving low-light image enhancement. Furthermore, for most of the data-driven methods, a

complex and large-scale network is introduced for image enhancement, and the massive number of

parameters makes these methods time-consuming. When applied in real-time applications, significant

delays may occur. Table 1 summarizes the main properties of the different types of methods.

Table 1. The main properties of model-based methods and data-driven based methods.

Method Model-Based Data-Driven

Advantage

Data efficient Require limited priors

Physics are universal Highly performance

Resource-friendly Dynamic adjustment

Disadvantage

Require precise
modeling

Careful selection data

Sub-optimal
performance

Efficiency depend on
structure

Unable to adaptive
adjustment

Highly computational
cost

In summary, model-based methods, which aim to build an explicit model to enhance low-light

images, possess resource-friendly properties and impressive data efficiency due to their universal

underlying physical rules. However, when applied in different scenarios, these methods must

converge to a good enough local optimum through carefully designed hand-crafted priors or specific

statistical models. In contrast, data-driven methods can improve the ability of model-based methods

to understand and analyze data by incorporating a larger number of parameters. This allows for an

implicit representation of enhancement modeling, resulting in a high-quality local optimum when

the model is adequately trained. However, it is important to note that these methods require large

amounts of carefully selected paired or unpaired data, which are often difficult to obtain. Additionally,

these implicit models restrict the scope of their application due to the lack of general model-based

reasoning and may suffer from overfitting. On the other hand, some data-driven methods, thanks to

their larger number of parameters, are able to dynamically adjust to low-light image enhancement

tasks. Nevertheless, this also brings higher computational costs.

3. Materials and Methods

Figure 2 illustrates the detailed structure of ULEFD, which comprises two primary modules:

the Brightness Adjustment in Frequency Domain(BAFD) component and the Global Enhancement

Net(GEN) component. The BAFD component takes the L channel as an input and transforms the L

channel from the spatial domain to the frequency domain. Inspired by the [7], the digital image can be
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reimaged as a spatially varying metaphoric "field of light."After transferring this "field of light" to the

frequency domain, it can provide image brightness adjustment information from physical processes

such as diffraction and coherence detection. In addition, to overcome the problem, the original physical

brightness adjustment model requires complex manual tuning of parameters in various scenes, and the

adjustment effect can only converge to suboptimal results. We used a lightweight network architecture

to extract the L channel feature to achieve dynamic adjustment of the turning of paraments.

Figure 1. The detailed structure of the proposed method.

The GEN component takes the low-light image and the dynamic brightness adjustment proposal

as inputs and enhances the image with some carefully designed loss functions. It consists of different

types of convolutional layers, especially the recursive-based gated with a variable receptive field to

capture local and global image information and generate high-order spatial information interaction for

better performance of the low-light enhancement.

3.1. Brightness Adjustment in Frequency Domain Component

3.1.1. Physical Brightness Adjustment

In [7], the authors demonstrate that introducing the concepts of virtual light field to use the

frequency domain information of images as low-light image enhancement has significant effects.

Specifically, let the I(x, y) be the original spatial domain digital image.The virtual “field of light” of

I(x, y) can be represent as:

I(x, y) =
∫ +∞

−∞

∫ +∞

−∞
Ĩi(kx, ky)e

+j(kx ,ky)dkxdky (1)

where the Ĩi(kx, ky) represents the spatial spectrum of the virtual "field of light". Then, the brightness

gain can be obtained by transforming the spatial signal to the frequency domain, and this gain can be

represented as a spectral phase:φ(kx, ky), the brightness adjustment can be defined as:

Ĩo(x, y) = Ĩi(kx, ky)e
−iφ(kx ,ky)dkxdky (2)

In the end, the brightness gain in the frequency domain needs to be mapped back to the image in the

normal spatial domain as:

Io(x, y) = IFFT{ Ĩi(kx, ky)e
−iφ(kx ,ky)} (3)
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where IFFT refers to the inverse fourier transform, and the Io(x, y) now contains frequency-dependent

brightness gain entirely described by the phase function φ(kx, ky).

As known, digital images are has three bands corresponding to the three fundamental color

channels (RGB). However, when performing low-light image enhancement, it is necessary to adjust

the image brightness range while preserving the original color saturation information of the image.

This requires separating the color information from the luminance information to the greatest extent

possible. Therefore, we tried different color space conversion methods to keep the image color

saturation information as much as possible and adjust only the image brightness information. As

shown in the figure 2,through experiments, we found that brightness adjustment of the image in HLS

space[36] has the best effect on preserving the original color saturation information of the image.

Figure 2. Ablation study of the advantage of HLS color space.

3.1.2. Mathematical Modeling

Given our focus on digital images, we transition from a continuous-valued I(x, y) in the spatial

domain to a pixelated waveform I[n, m]. In the frequency domain, the discrete waveform I[n, m] is

expressed as a sum of complex exponential waves with different frequencies:

I[n, m] =
1

N2

N−1

∑
k=0

N−1

∑
l=0

Î[k, l]ej2π( kn
N + lm

N ) (4)

where N is the number of pixels in each dimension,j is the imaginary unit, and Î[k, l] is the discrete

Fourier transform (DFT) of I[n, m] defined as:

Î[k, l] =
N−1

∑
n=0

N−1

∑
m=0

I[n, m]e−j2π( kn
N + lm

N ) (5)

Similarly, we shift from continuous (kx, ky) to discrete momentum [kn, km].

Therefore,the Gaussian function with zero mean and variance T can be used for the phase function

φ(kx, ky) transformation as :

φ[kn, km] = S · φ̂ (6)

Resulting in a spectral brightness adjustment operator,

H[kn, km] = e−iφ[kn,km] = e−iS·φ̂ (7)
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where S is a parameter that maps the loss or gain of spectral brightness adjustment.

Following the spectral intensity adjustment and inverse Fourier transform operation, coherent

detection generates the real and imaginary parts of the optical field. The combined processes of

diffraction with the low pass spectral phase and coherent detection produce the output of the physical

brightness adjustment model:

Io[n, m] = angle〈IFFT{e−iS·φ̂ · FT{I[n, m]}}〉 (8)

where FT denotes the Fourier transform operation, and the angle processes the computation of the

phase from a complex-valued function of its argument.

In summary, in order to use the interference information obtained in the frequency domain space

at different phases as the brightness adjustment gain of the digital input image, we first add a small

constant bias term b to the light field corresponding to the input image Ii[n, m] to make the numerical

calculation more stable and to achieve the effect of noise reduction. Then, the input image in the

spatial domain is transformed to the frequency domain by the FFT and subsequently multiplied with

the complex exponential elements, the parameters of which define the frequency-dependent phase.

The inverse Fourier transform (IFFT) is then used to return a complex signal in the spatial domain.

Mathematically, the inverse tangent operation in phase detection behaves like an activation function.

Before calculating the phase, the signal is multiplied by a parameter called the phase activation gain G.

The output phase is normalized to match the image formatting convention [0-255]. This output is then

injected into the original image as a new L channel in HSL color space (for low light enhancement).

Thus, the output of the physical brightness adjustment model can be represented as:

Enhancel = tan−1(G ∗
ImIo[n, m]

ReIo[n, m]
) (9)

where ImIo[n, m] and ReIo[n, m] is the imaginary and real component of Io[n, m].

3.1.3. Dynamic Adjustment Tuning

The established brightness adjustment model contains three adjustable parameters: the mapping

parameter S, bias term b, and phase gain parameter G. The parameters mentioned earlier need manual

adjustment to enhance low-light images under varied conditions. Inspired by previous work[5], we

propose to extract global information from the L channel of the low-light image and use a five-layer

multi-layer perception to learn the parameters as mentioned earlier from the sufficient dataset. This

processing can be represented as:

{S, b, G} = MLP(Il) (10)

where Il represents the L channel of the low-light image I in the HLS color space,and MLP(·) represents

the processing of learning these parameter via the five-layer multi-layer perception.

After obtaining the pixel brightness adjustment proposal in the L channel, it will be concatenated

with the middle layer of GEN and fed into the GEN for further enhancement. The entire ULEFD is

trained end-to-end, which means that all the components are trained jointly to optimize the overall

performance of the network.

3.2. Global Enhancement Net

When utilizing traditional convolutional kernels for image feature extraction, the limited

perceptual fields make it challenging for the network to comprehensively understand the image.

Moreover, the enhanced image is exceptionally vulnerable to noise as there is a lack of information in

the low-illumination image.To address these issues, this paper proposes a Global Light Enhancement

Net containing three different convolution structures.
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As figure 1 shows, firstly, the Point-wise(1 × 1 kernel size) and Depth-wise(3 × 3 kernel size)

convolution block is used to extract the input low-light image feature. More specifically, the 1 × 1

point-wise convolution is applied to aggregate pixel-level cross-channel context, then 3 × 3 depth-wise

convolution to encode channel-level spatial context. This convolution structure has been applied in the

state-of-the-art image restoration methods[37,38], proving its effectiveness in image noise reduction.

The essential operation in CNN is "convolution," which provides local connectivity and translation

equivariance, these features that bring efficiency and versatility to CNNs. However, while enhancing

low-light images, the consistency of the original images in terms of color, contrast, and other image

information should be ensured. The small size of conventional convolutional kernels limits their

field of perception and thus cannot model long-range pixel correlations, making it difficult to retain

consistent information about the global image.To address this challenge, this paper introduces a

recursive gated depth convolutional neural network[39], which focuses on using the recursive gated

convolution to higher-order interaction of image information and long-distance image information

modeling. Benefitting from these abilities,the network is able to avoid severe noise distortion and color

degradation when enhancing the dark regions on the input low-light images.

3.3. Loss Function

Due to the lack of absolute supervision information to guide the training process, it is tough to

recover these two components from low-light images. The only way is to use relative information

in loss function designing, which reduces the assumption of the existence of absolute ground-truth

data. Previous unsupervised methods have proposed some useful loss functions, such as normalized

gradient loss [40], spatial consistency loss[5,6] and perception loss[34]. However, only some achieve

impressive results, mainly due to the ineffective use of more specific constraint information in designing

these loss functions. Therefore, in this paper, we design each loss function of the algorithm for the

image feature information in different components.

3.3.1. Loss for Brightness Adjustment in Frequency Domain component

First, for the component of brightness adjustment in the frequency domain, Low-light degradation

causes changes in pixel intensity and color distribution of images. Therefore, we adopt the image color

histogram prior to constraining the dynamic brightness adjustment. Specifically, we define an MSE

loss inspired by[19,41]. The main idea of this loss function design is that the color histogram prior

information contains not only the input low-light image’s color distribution information but also the

image’s structural and semantic information at the higher level, which can be extracted from this color

distribution information. The kernel density estimation has been used to keep the loss differentiable:

Lhist =
1

N

N

∑
i=1

‖ Hist(Ii
en)− Hist(Ii

low) ‖
2
2 (11)

where the N means the batch size of the input, the Ii
low represent the input low-light image and the Ii

en

represent the enhanced image.

In addition, the image maintains its natural and explicit detail content to make the brightness

adjustment, and the smooth illumination loss function Lsi is designed. The main idea is to make

the model more focused on image edges and textures by processing the gradient information of

the low-light and enhanced images. More specifically, the loss function consists of two different

components. The first component is the gradient loss calculation along the x and y directions.
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Lx =
1

HW

H

∑
i=1

W

∑
j=1

ReLU(G(Rlow)i,j) exp(−10G(Rlow)i,j) exp(−10G(I)i,j)

Ly =
1

HW

H

∑
i=1

W

∑
j=1

ReLU(G(Rlow)i,j) exp(−10G(Rlow)i,j) exp(−10G(I)i,j)

(12)

where G(Rlow) represents the normalization of the gradient of the low-illumination image,G(I)

represents the normalization of the gradient of the image after enhancement.Moreover,ReLU means

the rectified linear unit function.

ReLU(x) = max(x, 0) (13)

The other component of the Lsi is:

Lsmooth = (‖G(Rlow)− G(I))‖p + ε)/(CWH) (14)

where ‖G(Rlow) − G(I))‖ represents the absolute value of the difference between the gradient of

the enhanced image and the low-light image.The p means the parametric number (e.g. L1-norm or

L2-norm), ε is a very small constant (e.g. 1e − 4) and C is the number of the image channel, H and W is

the height and weight of the image.In summary, the total Lsi loss function is:

Lsi = Lx + Ly + Lsmooth (15)

3.3.2. Loss for Global Enhancement component

From two aspects of maintaining image color and contrast consistency, two loss functions are

applied in this paper for global light enhancement. The first loss function is color constancy loss. The

main idea is calculating the mean channel value for both the enhanced image and the input low-light

image to obtain the average pixel values of the enhanced image enhancesi,j,c and the input low-light

image originalsi,j,c. The processing can be defined as follow:

enh_colsc =

H

∑
i=1

W

∑
j=1

enhancesi,j,c

H × W

ori_colsc =

H

∑
i=1

W

∑
j=1

originalsi,j,c

H × W

(16)

Then the ratio difference between the three different color channels is calculated as follow.

rg_ratio =

∣∣∣∣
enh_colsr

enh_colsg
−

ori_colsr

ori_colsg

∣∣∣∣

gb_ratio =

∣∣∣∣
enh_colsg

enh_colsb
−

ori_colsg

ori_colsb

∣∣∣∣

br_ratio =

∣∣∣∣
enh_colsb

enh_colsr
−

ori_colsb

ori_colsr

∣∣∣∣

(17)

The final color consistency loss is obtained by summing the above three ratio differences and taking

the mean value of the results:

Lcol =
1

N

N

∑
i=1

(rg_ratioi + gb_ratioi + br_ratioi) (18)
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where c means the picture channel (red, green, blue), the H and W are the height and width of the

image, the N is the number of images.

To preserve the contrast consistency, we add a gradient consistency loss. The main idea is to extract

the gradients of each channel and calculate the gradient consistency loss by comparing the similarity

of the corresponding gradients in the original and enhanced images. The gradient consistency loss can

be represented as:

Lgrad =
1

N

N

∑
i=1

(
1 −

¯enh
c
i · ¯ori

c
i

‖ ¯enh
c
i ‖ · ‖ ¯ori

c
i ‖+ 0.00001

)
+

1

N

N

∑
i=1

cos−1

(
¯enh

c
i · ¯ori

c
i

‖ ¯enh
c
i ‖ · ‖ ¯ori

c
i ‖+ 0.00001

)
(19)

where i means the number of images and c means the color channel of the images.

In the end, we use an exposure control loss (Lexp) to control the exposure level and avoid

under-/over-exposed regions. This loss function quantifies the difference between the average intensity

value of a local region and the desired level of well-exposedness (E). The calculation of this loss function

consists of the following main steps. First, The enhanced image is fed into the function, which performs

an averaging pooling operation and calculates its grayscale value, obtained by averaging the pixel

values of the red, green, and blue channels.

avg_intensity =
1

r2

r2

∑
i=1

(
Ri + Gi + Bi

3

)
(20)

where r means the window size of pooling operation,Ri, Gi, Bi are represent the color channel of the

image. Then calculating the difference between the average grayscale value and the given threshold,

and take the absolute value and then average to obtain the exposure control loss as follow.

Lexp =
1

n

n

∑
i=1

|avg_intensityi − E| (21)

where n means the number of window for pooling operation.avg_intensityi represents the average

value of the ith pooling window,and the E is the given threshold.

In summery,the total loss function for the proposed method can be expressed as follow:

L = WhistLhist + WsiLsi + Wcol Lcol + WgradLgrad + WexpLexp (22)

where the weights Whist, Wsi, Wcol , Wgrad, Wexp are used for balancing the scales of different losses.

4. Experiment and Results

In this section, we present the implementation details of our proposed low-light image

enhancement method. Afterward, we perform both qualitative and quantitative comparisons with

state-of-the-art supervised and unsupervised methods, utilizing traditional metrics such as Peak

Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM)[42], and Natural Image Quality

Evaluator (NIQE)[43]. In addition, we conduct ablation studies to demonstrate the effectiveness of

each component or loss in the proposed method. Finally, we investigate the performance of our method

to improve the efficiency of downstream tasks, such as face detection in the dark.

4.1. Implementation Details

The framework is implemented with PyTorch on an NVIDIA 3090 Ti GPU with 24GB memory.

The batch size used for training is 64. We use the Adam optimizer to train the network with an initial

learning rate of 1e−4 and decate rate of 0.5 every 50 epochs. We mainly use two datasets for training

and comparisons: the LOL dataset[22] and VE-LOL dataset[44].
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4.2. Quantitative Evaluation

In this section, we compared our method with several state-of-the-art low-light image

enhancement methods. These methods include: one conventional method (LIME[17]), two

supervised methods(KinD++[24], Restormer[37]) and three unsupervised methods(Zero-DCE++[5],

EnlightGAN[34], LE-GAN[45]).To demonstrate the robustness of our proposed method, we give more

experiments on cross-dataset. We have fine-tuned all the above methods on the train sets of LOL

and VE-LOL datasets and then evaluated them on their test sets. From Table 2, our method achieves

significantly better results among all unsupervised methods, and its performance approximates the

level of the state-of-the-art supervised methods. It is obvious that the proposed ULEFD can achieve

better PSNR than other unsupervised methods and some supervised methods, whether trained on

the LOL or VE-LOL dataset. Regarding SSIM, the proposed method achieved results close to the

supervised methods KinD++[24] and Restormer[37], which does not require any reference images for

training. However, the proposed method has fewer parameters (only 70K parameters) and costs less

running time during testing.

Table 2. Quantitative comparison results on (LOL[22] & VE-LOL[44]) datasets.Red and blue indicate

the best and the second-best results, respectively.

Learning Method
LOL VE-LOL Efficiency

PSNR↑ SSIM↑ NIQE↓ PSNR↑ SSIM↑ NIQE↓ Params(M)↓ test time(s)↓
Conventional LIME[17] 16.76 0.56 10.61 14.77 0.53 10.85 - 0.491(on CPU)

Supervised
KinD++[24] 21.30 0.82 11.02 20.87 0.80 11.60 8.28 0.829

Restormer[37] 23.17 0.84 10.14 22.49 0.82 10.53 8.19 0.821

Unsupervised

Zero-DCE++[5] 14.86 0.57 10.95 16.93 0.68 10.81 0.01 0.0012
EnlightGAN[34] 16.21 0.59 14.74 17.48 0.65 14.42 8.63 0.871

LE-GAN[45] 21.38 0.82 11.32 21.50 0.82 10.71 8.92 0.907
our(Training on LOL) 21.97 0.83 10.23 21.63 0.83 10.21 0.07 0.008

our(Training on VE-LOL) 21.44 0.82 10.19 22.12 0.84 10.13 0.07 0.008

To further demonstrate the generalization ability of the proposed method, we have tested

the proposed method on some real-world low-light image sets, including DICM[14](64 images),

LIME[17](10 images), VV1(24 images), LCDP[46], SCIE[47](select 100 low-light images from the

datasets).In the expanding experiments, we use unpaired public datasets and the NIQE metric to

compare the proposed method quantitatively with state-of-the-art methods that assess natural image

restoration without requiring ground truth. Table 3 contains the NIQE scores for five different public

datasets that were previously used in relevant studies. In summary, these experimental results show

the effectiveness of our proposed method.
1https://sites.google.com/site/vonikakis/datasets

Table 3. NIQE scores on low-light image sets(DICM[14], LIME[17], VV1, LCDP[46], SCIE[47]). The best

result is in red whereas the second best results are in blue, respectively. Smaller NIQE scores indicate a

better quality of perceptual tendency.

Learning Method DICM[14] LIME[17] VV1 LCDP[46] SCIE[47] Avg

Conventional LIME[17] 11.823 10.612 11.672 9.456 10.818 10.876

Supervised
KinD++[24] 15.043 10.911 11.449 9.461 11.451 11.663

Restormer[37] 14.012 10.290 11.128 9.352 10.787 11.114

Unsupervised

Zero-DCE++[5] 10.995 10.932 10.645 10.217 10.56 10.70
EnlightenGAN[34] 15.201 11.335 11.298 9.251 10.546 11.526

LE-GAN[45] 11.928 10.69 10.41 10.364 10.588 10.796
Our 10.037 10.084 10.504 9.336 10.245 10.041

4.3. Qualitative Evaluation

Figure 3 shows some representative results for visual comparison from LOL dataset. We have

zoomed in the details inside the red and green bounding boxes to further investigate the differences

between these comparison methods.The enhanced results show that the conventional method LIME[17]
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enhances the images by directly estimating the illumination map but has some external noises. For

unsupervised methods, Zero-DCE++[5] produces under-enhanced and noisy results, respectively.

Meanwhile, the KIND++[24] has apparent noise and weak illumination.EnlightenGAN[34] suffers

from under-enhanced and over-smoothing. The LE-GAN[45] performs better than the EnlightenGAN

but is still under-enhanced in some local details. Benefiting from the introduction of the normal

illumination reference image, the image enhancement effect of the Restormer[37] is closest to the

ground truth. In contrast, Figure 3 shows that our method can well preserve the structural and textural

image details without reference images to guide the network. It demonstrates that our proposed

method achieves more satisfactory visualization results than the unsupervised learning methods for

comparison, especially in the exposure level, structure description, and color saturation.

Figure 3. Qualitative results on LOL test dataset.

Figure 4 shows some representative results for visual comparison from the VE-LOL dataset.

This dataset further expands the scenario based on the LOL dataset. The enhanced results show

that the LIME[17] has severe contrast and noise issues. For unsupervised methods, the results

of Zero-DCE++[5] also suffer from extreme contrast and noise issue. KIND++[24] has weak

illumination.EnlightenGAN[34] still suffers from under-enhanced and over-smoothing. Regarding

the LE-GAN[45], the global enhancement effect is better than the above methods, but there are some

issues of color distortion in a few details. In terms of global and local effects of image enhancement,

the proposed method in this paper, especially the model trained on the VE-LOL training set, is able to

obtain almost the same enhancement results as the Restormer[37], which is the supervised learning

method, achieving visual quality close to the ground truth.
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Figure 4. Qualitative results on VE-LOL test dataset.

Figure 5 shows the image enhancement effect of the algorithm in this paper and other comparison

algorithms in real low-light scenarios, respectively.Zero-DCE++[5] fail to suppress noise when the

background of the scenarios is extremely dark in the DICM[14] and LIME[17] datasets. Meanwhile,

EnlightenGAN[34] provided limited image enhancement in the above scenarios.KIND++[24] suffer

from blurring artifacts in LIME[17] dataset. As for LCDP[46] datasets, Zero-DCE++[5] and LE-GAN[45]

easily lead to over-exposure artifacts and blurriness, which make the results distorted and glaring with

information loss. LIME[17] retains the contrast information of images in all of the datasets relatively

well, but the overall enhancement effect is weak. In contrast, our proposed method in all datasets

tends to generate the same performance as the state-of-the-art supervised method Restormer[37], with

proper color contrast, sufficient detailed information, and acceptable and controllable noise.
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Figure 5. Qualitative results on DICM[14], LIME[17], VV1, LCDP[46] and SCIE[47] datasets,

respectively.

4.4. Ablation Study

4.4.1. Contribution of BAFD component:

In this ablation study, the network only has the GEN component, and the three associated loss

function Lcol ,Lgrad, and Lexp are considered as the baseline model. The effects of adding the BAFD

component and losses proposed in this paper were compared and studied. The results are presented

in Table 4.

Table 4. The influence of BAFD component and loss functions based on relative information. During

training. Relative losses represents Lcol + Lgrad + Lexp

.

Loss functions BAFD LOL VE-LOL
Lhist Lsi Relative losses component PSNR SSIM PSNR SSIM

X 17.52 0.80 18.87 0.73
X X X 19.05 0.81 19.42 0.82

X X X 20.39 0.82 21.55 0.83
X X X X 21.44 0.82 22.12 0.84

From Table 4, it can be observed that when we add the other losses proposed in this paper or the

BAFD component to the baseline model, both PSNR and SSIM show improvement.This proves the

effectiveness of the BAFD component and the loss functions designed with relative information. The

BAFD component can adjust the global brightness information and integrate it into the enhancement

process with few parameters, which can effectively improve the PSNR by 2.87 dB and the SSIM value

by 0.02 (PSNR: 17.52 → 20.39, SSIM: 0.74 → 0.82).
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4.4.2. Contribution of Each Loss:

In this ablation study, We present the results of ULEFD trained by various combinations of losses.

As shown in Table 5, the performance of the proposed ULEFD steadily increases with the addition of

five loss functions, and the effectiveness of our hybrid loss function is proved. As shown in Figure 6,

The result without the BAFD component has limited brightness adjustment than the full result. The

result of smooth illumination loss Lsi has a relatively lower color contrast than the full result. Severe

color casts emerge when the histogram prior loss Lhist is discarded.

Table 5. The influence of different training losses.

Loss functions LOL VE-LOL

Lhist Lsi Lcol Lgrad Lexp PSNR SSIM PSNR SSIM

X 12.62 0.54 14.26 0.57
X X 17.88 0.68 18.49 0.70
X X X 18.24 0.70 18.86 0.71
X X X X 20.72 0.77 21.60 0.79
X X X X X 21.44 0.82 22.12 0.84

Meanwhile, it hampers the correlations between neighboring regions leading to apparent artifacts.

Removing the color constancy loss Lcol fails to recover the color contrast of the image. Removing

the gradient consistency loss Lgrad hampers the correlations between neighboring regions leading

to apparent artifacts. Finally, Removing the exposure control loss Lexp fails to brighten the image

compared with the full result. Such results demonstrate that the BAFD component and each loss used

in the proposed method play a significant role in achieving the final visually pleasing results.

Figure 6. Ablation study of the contribution of BAFD component and each loss (histogram prior loss

Lhist, smooth illumination loss Lsi, color constancy loss Lcol ,gradient consistency loss Lgrad exposure

control loss Lexp).Red boxes indicate the obvious differences and amplified details.

4.5. Pedestrian Detection in the dark

In this section, we aim to evaluate the effectiveness of low-light image enhancement methods

for the pedestrian detection task in low-light conditions. We utilized the DARK FACE dataset[48],

which consists of 10,000 images captured in low-light conditions. Since the label of the test set is not

accessible to the public, we opt to evaluate the proposed method on the training and validation sets
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comprising 6,000 images. We adopted the public deep face detector, Dual Shot Face Detector(DSFD)[49],

which pre-trained on the WIDER FACE dataset[50], to serve as our baseline model. The results of

various low-light image enhancement methods were fed to the DSFD[49] for analysis. We utilized the

evaluation tool5 from the DARK FACE dataset[48] to compare the average precision (AP) at various

IoU thresholds, including 0.5, 0.7, and 0.9. Table 6 shows the detailed AP results of our evaluation.

Table 6. The average precision (AP) for face detection in the dark under different IoU thresholds (0.5,

0.7, 0,9). The best result is in red whereas the second best one is in blue under each case.

Method
IoU thresholds

0.5 0.7 0.9

low-light image 0.231278 0.007296 0.000002
LIME[17] 0.293970 0.013417 0.000007

KinD++[24] 0.243714 0.008616 0.000003
Restormer[37] 0.304128 0.017581 0.000007

Zero-DCE++[5] 0.289232 0.014772 0.000006
EnlightenGAN[34] 0.276574 0.015545 0.000003

LE-GAN[45] 0.294977 0.017107 0.000005
Ours 0.303135 0.017204 0.000009

Based on the results presented in Table 6, it is evident that all the methods’ AP scores decrease

as the IoU thresholds increase. At an IoU threshold of 0.9, all the approaches perform exceptionally

poorly. However, under IoU thresholds of 0.5 and 0.7, the proposed method achieves similar AP scores

that are only slightly lower than Restormer[37] superior performance. Moreover, our method achieves

balanced subject enhancement performance, application performance, and computational cost without

using paired training data. The proposed method effectively lights up facial features in dark areas

while preserving features in well-light areas, ultimately improving pedestrian detection in low-light

conditions. Figure 7 shows examples of object detection using the Dual Shot Face Detector(DSFD) on

low-light images and enhanced images with the proposed method.

Figure 7. Impact of VEViD preprocessing on pedestrian detection in the dark.
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5. Discussion

1. Deep-learning-based methods have recently attracted significant attention in the image

processing field. Due to the powerful feature representation ability of the data, data-driven methods

can learn more general visual features. This property means these methods can be used to relieve some

challenges for image enhancement, such as poor illumination conditions. Our research aims to combine

the physical brightness adjustment model based on frequency information with a data-driven-based

low-light image enhancement method to improve the performance of the dynamic enhancement for

low-light images. Moreover, the proposed method is based on a lightweight network design, offering

it the advantages of a flexible generalization capability and real-time inference speed. The quantitative

results in Table 2 and Table 3 show that the data-driven methods have better image enhancement

results on all the test sets than the conventional method when the training data is sufficient. It is due to

the fact that the data-driven approach relies on the powerful feature extraction capability of the deep

learning network to adjust the brightness of each pixel in the image dynamically. As for data-driven

methods, supervised learning usually has better image enhancement results because it can rely on

normally exposed images to guide network learning. However, collecting pairs of images in natural

environments is very time-consuming. The data dependence of supervised learning also causes a lack

of generalization ability of the model. Specifically, the model degrades in scenarios with significant

differences from the training data. In contrast, unsupervised learning reduces the reliance on paired

data and performs better generalization. In particular, the proposed method in this paper maintains

better robustness on different test data. It is able to achieve image enhancement results approximating

the state-of-the-art supervised learning.

2. Through ablation experiments, this paper analyzes the reasons for the performance

improvement of the algorithm from two aspects. First, the ablation experiments demonstrate that

this paper uses the two-branch network structure, and the one-way network introduces the channel

characterizing the image luminance with the frequency domain feature model under the assumption of

the virtual light field, which can effectively achieve the luminance adjustment. Moreover, a lightweight

parameter estimation network can achieve dynamic brightness adjustment. Meanwhile, the other

network relies on acquiring global image information to preserve the original image structure, color

contrast, and other critical information while enhancing the image so that the enhanced image noise

can be better suppressed. On the other hand, the contribution of the loss function of constrained

unsupervised learning is analyzed in this paper through ablation experiments. Through the structure of

the ablation experiment, it is easy to find that for the brightness adjustment branch, the histogram prior

information loss function used in this paper can effectively preserve the original distribution of image

information while brightness adjustment, thus making it possible to adjust the brightness without

losing the original image semantic structure features. On the other hand, the illumination smoothing

loss function allows the network to reduce the impact of noise on the overall image enhancement

results during the luminance adjustment learning. For the global enhancement branch, this paper

constrains the network to retain the high-level image feature information from two aspects: color

gradient consistency and image gradient change consistency, so that the enhanced images achieve

significant improvement in both the quantitative and qualitative evaluation(in Table 2,3 and Figure

3,4). Meanwhile, the exposure consistency loss further enhances the intuitive image enhancement

effect.

3. To analyze the potential of the algorithms in this paper for real-time applications, the paper first

compares the parametric quantities and inference implementations of the various algorithms in Table

2. It can be seen that the number of parameters of the proposed method in this paper is better than

most of the comparison methods, and the inference speed is only slightly slower than Zero-DCE++[5],

which is significantly light-weight and fast for practical applications.
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6. Conclusions

In this work, we propose an unsupervised dual-branch network for low-light image enhancement.

One network branch uses the frequency domain information of low-light images to achieve dynamic

brightness adjustment of images. At the same time, the other focuses on the global image information

to dynamically adjust the overall brightness of images while preserving the high-level structural

features of low-light images themselves, guiding the network to suppress noise effectively, color

contrast differences, and other problems that exist when enhancing low-light images while enhancing

images. Moreover, the loss functions designed in this paper can effectively guide the network to make

dynamic adjustments while preserving the structural information of low-illumination images. It further

enhances the low-light image enhancement effect and can support the performance improvement of

downstream tasks. Finally, the lightweight network structure design reduces the number of network

parameters and computational complexity. It improves the inference speed of this paper, which gives

the proposed method the potential to be used in computing platforms with limited computing power.

In the future, we plan to integrate semantic information into image sequence enhancement and

design a more lightweight network architecture. By combining more prior constraints and reducing

the computational cost, further accuracy gains in downstream tasks and more practical applications

are achievable.
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Abbreviations

The following abbreviations are used in this manuscript:

CNN Convolutional Neural Networks

ULEFD Unsupervised Low-light Image Enhancement via Virtual Diffraction in Frequency Domain

BAFD Bright Adjustment in Frequency Domain

GEN Global Enhancemnet Net

FT Fourier Transform

FFT Fast Fourier Transform

IFFT Inverse Fourier Transform

MLP Multi-layer Perception

MSE Mean-Square Error
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