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Abstract: The present work concerns with presenting an explicit formula for new shifted wavelet (NSW) 
functions. Wavelet functions have many applications and advantages in both applied and theoretical fields. 
They are formulated with different orthogonal polynomials to construct new techniques for treating some 
problems in sciences, and engineering. A new important differentiation property of NSW in terms of NSW 
themselves is obtained and proved in this paper. Then it is utilized together with the state parameterization 
technique to find solution of optimal control problem (OCP) approximately. The suggested method converts 
the OCP into a quadratic programming problem, which can be easily determined on computer. As a result, the 
approximate solution closes with the exact solution even with a small number of NSW utilized in estimation. 
The error bound estimation for the proposed method is also discussed. Some test numerical examples are 
solved to demonstrate the applicability of the suggested method. For comparison, the exact known solutions 
against the obtained approximate results are listed in Tables. 
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1. Introduction 

Wavelet functions play an interesting role in areas of mathematics. These functions have been 
applied in the solution of approximation theory, differential equations and integral equations [1-4]. 
The study of optimal control problems is important in our life and their applications are found in 
different disciplines based on mathematical modeling, chemistry and physics. The solution of 
optimal control problem can be found approximately because of the complexity inmost applications. 
Numerous studies have focused on the approximate solutions of optimal control problems, which 
can be found in many fields [5-9]. Different algorithms were used for solving optimal control 
problems, including the indirect modified pseudospectral method [10], A direct Chebyshev cardinal 
functions method [11], Cauchy discretization technique [12], the synthesized optimal control 
technique [13], Legendre functions method [14], Evolutionary Algorithm-Control Input Range 
Estimation [15]. See [16-20] for some other articles exploring various optimal control problems. 
Wavelet functions have important parts in the approximation theory, special functions and for 
numerical analysis for solving optimal control problems. In particular the Chebyshev wavelets 
families are widely applied in contributions to the field of approximation theory. For example, the 
authors in [21] employed the Boubaker wavelets together with the operation matrix of derivative to 
solve singular initial value problem. The collocation method is presented in [22] based on the second 
kind Chebyshev wavelets for solving calculus of variation problems. The use of the operational 
matrices of derivatives and integrals has been highlighted in the field of numerical analysis [23-25]. 
This utilization gives special algorithms to obtain accurate approximate solutions of many types of 
differential and integral equations with flexible computations. To extract an operational matrix of 
derivatives is based on choosing suitable basis functions in terms of celebrated special functions and 
expressing the first derivative of these basis functions in terms of their original types. Motivated by 
the above discussion, we are mainly interested in presenting new shifted wavelet functions with 
some important properties. A novel iterative method is suggested in this work to solve optimal 
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control problem. Such method is used together with NSW as a basis function to parameterize the 
states variables. The proposed technique is constructed to reach simultaneously the accuracy and 
efficiency. Hence the first goal of this work is to introduce NSW. Use the proposed new basis function 
to parameterize the system state variables to solve some problem in optimal control. The rest of the 
work is organized as follows: section two provides the definition of NSW. In Section three, the 
convergence of the NSW is studied. General exact formula of NSW differentiation operational matrix 
of is generated in section four, then the suggested algorithm to solve optimal control problem is 
illustrated in section five. Section six discusses the application of the NSW by considering various 
examples in optimal control. Simulation results are also given in section seven, followed by a 
conclusion remarks summarizes in section seven. 

2. The New Shifted Wavelet Functions 

Wavelet functions have been used successfully in scientific and engineering fields. The special 
new shifted wavelet functions can be defined as below 

𝑄௡௠(𝑥) = ቐ2௞ିଵଶ√𝜋 𝑀𝑠௠(2௞𝑥 − 2𝑛 + 1)      𝑛 − 12௞ିଵ ≤ 𝑥 ≤ 𝑛2௞ିଵ ,0                                           otherwise.  (1) 

where 𝑛 = 1, 2, … , 2௞; k can be assumed to be any positive integer, 𝑚 is the degree of the shifted 
polynomials and 𝑥 denotes the time for 𝑛 = 0, 1, … , 𝑀. 
Note that a recursive relation that yields the 𝑀𝑠௠(𝑥) polynomials is: 𝑀𝑠௠(𝑥) = (2𝑥 − 1)𝑀𝑠௠ିଵ(𝑥) − 𝑀𝑠௠ିଶ(𝑥), 𝑚 = 2,3,4, … (2) 

with initial conditions: 𝑀𝑠଴(𝑥) = 2, 𝑀𝑠ଵ(𝑥) = 2𝑥 − 1. (3) 

where 𝑀𝑠௠(𝑡) = 2cos 𝑚𝜃,  t = cos 𝜃, 𝑊௡௞(𝑡) = 𝑊(2௞ିଵ𝑡 − 2𝑛 + 1) 

3. Convergence Analysis of New Wavelet Functions 

A function approximation 𝑓 ∈ 𝐶ఠ∗ଶ [0,1), with ห𝑓ሷ(𝑥) ห ≤ 𝐿, 𝐿 > 0 may by expanded in terms of 
new shifted wavelets as below 𝑓(𝑥) = ∑ ∑ 𝑐௡௠𝜑௡௠(𝑥).ஶ௠ୀ଴ஶ௡ୀଵ   (4) 

where 𝑐௡௠ = (𝑓(𝑥), 𝜑(𝑥)) (5) 

In (5), the symbol (. , . )௪೙(௫) is denoted the inner product operator with respect to weighted 
function 𝜔௡(𝑥) on Hilbert space over the interval [0,1]. 

If the infinite series in (4) is truncated, then the solution 𝑓(𝑥) can be rewritten in matrix form as 
below 𝑓(𝑥) = ∑ ∑ 𝑐௡௠𝜑௡௠(𝑥) = 𝑐்𝜑(𝑥),ெ௠ୀ଴ଶೖషభ௡ୀଵ   (6) 

where  𝜑(𝑥) and C  are  matrices of 2୩ିଵ𝑀 × 1 dimensions, given by  c =ቂ𝑐ଵ,଴ 𝑐ଵ,ଵ …  𝑐ଵ,ெ 𝑐ଶ,଴ … 𝑐ଶ,ெ 𝑐൫ଶౡିଵ൯,଴ … 𝑐൫ଶౡିଵ൯,ெቃ , and 𝜑(𝑥) =ቂ𝜑ଵ,଴ 𝜑ଵ,ଵ …  𝜑ଵ,ெ  𝜑ଶ,଴ … 𝜑ଶ,ெ  𝜑൫ଶౡିଵ൯,଴ … 𝜑൫ଶౡିଵ൯,ெቃ୘
. 

Note that, both 𝑘 and n are integer numbers, 𝑚 is the degree of shifted polynomials. Now, we 
state and prove a theorem to ensure the convergence of the new shifted wavelet expansion of a 
function. 
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Theorem 1. Assume that a function 𝑓(𝑥) ∈ 𝐿௪ଶ ([0,1]) where (𝑡) =  ଵඥଵି ௧మ,  𝑡 ≠ ±1 with bounded second 

derivative  ห𝑓ሷ(𝑥)ห ≤ 𝐿, 𝐿 > 0,  𝑓 can be expanded as an infinite series of the new shifted wavelets (1), then  𝐶௡௠ in (4) converges uniformly to 𝑓,  i.e   𝐶௡௠  satisfy the inequality: |𝑐௡௠| ≤ 𝐿 ଵ௡యమ 2యమ ቀ √గ(௠మିଵ)ቁ  (7) 

Proof. Let 𝑓(𝑥) = ∑ ∑ 𝑐௡௠𝜑௡௠(𝑥)ஶ௠ୀ଴ஶ௡ୀଵ  
It follows that for 𝑘 = 1,2,3, … ;  𝑛 = 1,2, … , 2௞,  𝑚 = 0,1, … , 𝑀 𝑐௡௠ = (𝑓(𝑥), 𝜑(𝑥)) = ׬ 𝑓(𝑥)𝜑௡௠(𝑥)𝑊௞(𝑥)𝑑𝑥ଵ଴  

     = ׬ 𝑓(𝑥)𝜑௡௠(𝑥)𝑊௞(𝑥)𝑑𝑥೙షభమೖషభ଴  + ׬ 𝑓(𝑥)𝜑௡௠(𝑥)𝑊௞(𝑥)𝑑𝑥೙మೖషభ೙షభమೖషభ  

                                  + ׬ 𝑓(𝑥)𝜑௡௠(𝑥)𝑊௞(𝑥)𝑑𝑥ଵ೙మೖషభ  

Using Eq. 1, one can get 𝑐௡௠ = න 𝑓(𝑥) 2௞ିଵଶ√𝜋 𝑀𝑠௠(2௞𝑥 − 2𝑛 + 1)𝑊(2௞𝑥 − 2𝑛 + 1)𝑑𝑥௡ଶೖషభ௡ିଵଶೖషభ  

If 𝑚 > 1, by substituting 2௞𝑥 − 2𝑛 + 1 = 𝑐𝑜𝑠𝜃, 𝑥 = ௖௢௦ఏାଶ௡ିଵଶೖ , 𝑑𝑥 = ି௦௜௡ఏଶೖ 𝑑𝜃 

𝑐௡௠ = 2௞ିଵଶ√𝜋 න 𝑓 ൬𝑐𝑜𝑠𝜃 + 2𝑛 − 12௞ ൰ 2𝑐𝑜𝑠 𝑚𝜃 ඨ 11 − 𝑐𝑜𝑠ଶ𝜃 −𝑠𝑖𝑛𝜃2௞ 𝑑𝜃గ
଴  

𝑐௡௠ = −2(௞ାଵ)ଶ√𝜋 න 𝑓 ൬𝑐𝑜𝑠𝜃 + 2𝑛 − 12௞ ൰ 𝑐𝑜𝑠 𝑚𝜃 𝑑𝜃గ
଴  

By using method of integration by parts, let ׬ 𝑢𝑑𝑣 =గ଴ 𝑢𝑣 − ׬ 𝑣𝑑𝑢గ଴ , 𝑢 = 𝑓 ቀ௖௢௦ఏାଶ௡ିଵଶೖ ቁ , 𝑑𝑢 = 𝑓ሶ ቀ௖௢௦ఏାଶ௡ିଵଶೖ ቁ ቀି௦௜௡ఏଶೖ ቁ , 𝑑𝑣 = cos 𝑚𝜃 𝑑𝜃 , 𝑣 = ୱ୧୬ ௠ఏ௠ ,𝑚 ≠ 1 𝑐௡௠ = ିଶ(ೖశభ)మ√గ 𝑓 ቀ௖௢௦ఏାଶ௡ିଵଶೖ ቁ ቀୱ୧୬ ௠ఏ௠ ቁቃ଴గ − ଶ(ೖశభ)మ௠ଶೖ√గ ׬ 𝑓ሶ ቀ௖௢௦ఏାଶ௡ିଵଶೖ ቁ sin 𝑚𝜃 𝑠𝑖𝑛𝜃 𝑑𝜃గ଴  

Using again the method of integration by parts, let 𝑢 = 𝑓ሶ ቀ௖௢௦ఏାଶ௡ିଵଶೖ ቁ,𝑑𝑢 = 𝑓ሷ ቀ௖௢௦ఏାଶ௡ିଵଶೖ ቁ ቀି௦௜௡ఏଶೖ ቁ, 𝑑𝑣 = sin 𝑚𝜃 𝑠𝑖𝑛𝜃 𝑑𝜃,  𝑣 = ቆ𝑠𝑖𝑛(𝑚 − 1)𝜃𝑚 − 1 − 𝑠𝑖𝑛(𝑚 + 1)𝜃𝑚 + 1 ቇ 

𝑐௡௠ = − 2(௞ାଵ)ଶ𝑚2௞√𝜋 𝑓ሶ ൬𝑐𝑜𝑠𝜃 + 2𝑛 − 12௞ ൰ ቆ− 𝑠𝑖𝑛(𝑚 + 1)𝜃𝑚 + 1 + 𝑠𝑖𝑛(𝑚 − 1)𝜃𝑚 − 1 ቇ቉଴
గ

 

              − ଶ(ೖశభ)మ௠ଶమೖ√గ ׬ 𝑓ሷ ቀ௖௢௦ఏାଶ௡ିଵଶೖ ቁ 𝑠𝑖𝑛𝜃గ଴ ቀ௦௜௡(௠ିଵ)ఏ௠ିଵ − ௦௜௡(௠ାଵ)ఏ௠ାଵ ቁ 𝑑𝜃 
We have, 𝑐௡௠ = − 2(௞ାଵ)ଶ𝑚2ଶ௞√𝜋 න 𝑓ሷ ൬𝑐𝑜𝑠𝜃 + 2𝑛 − 12௞ ൰గ

଴ 𝑠𝑖𝑛𝜃 ቆ𝑠𝑖𝑛(𝑚 − 1)𝜃𝑚 − 1 − 𝑠𝑖𝑛(𝑚 + 1)𝜃𝑚 + 1 ቇ 𝑑𝜃 

Thus, we get |𝑐௡௠| = ቮ− 2(௞ାଵ)ଶ𝑚2ଶ௞√𝜋 න 𝑓ሷ ൬𝑐𝑜𝑠𝜃 + 2𝑛 − 12௞ ൰గ
଴ 𝑠𝑖𝑛𝜃 ቆ− 𝑠𝑖𝑛(𝑚 + 1)𝜃𝑚 + 1 + 𝑠𝑖𝑛(𝑚 − 1)𝜃𝑚 − 1 ቇ 𝑑𝜃ቮ 

           ≤ ଶ(ೖశభ)మ௠ଶమೖ√గ ׬ ቚ𝑓ሷ ቀ௖௢௦ఏାଶ௡ିଵଶೖ ቁ − ௦௜௡(௠ାଵ)ఏ௠ାଵ + ௦௜௡(௠ିଵ)ఏ௠ିଵ 𝑑𝜃ቚగ଴  

           ≤ 𝐿 ଶ(ೖశభ)మ௠ଶమೖ√గ ׬ ቚ𝑠𝑖𝑛𝜃 ቀ௦௜௡(௠ିଵ)ఏ௠ିଵ − ௦௜௡(௠ାଵ)ఏ௠ାଵ ቁቚ 𝑑𝜃గ଴  
However  න ቤ𝑠𝑖𝑛𝜃 ቆ− 𝑠𝑖𝑛(𝑚 + 1)𝜃𝑚 + 1 + 𝑠𝑖𝑛(𝑚 − 1)𝜃𝑚 − 1 ቇቤ 𝑑𝜃గ

଴  
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= න ቤ𝑠𝑖𝑛𝜃 ቆ− 𝑠𝑖𝑛(𝑚 + 1)𝜃𝑚 + 1 + 𝑠𝑖𝑛(𝑚 − 1)𝜃𝑚 − 1 ቇ 𝑑𝜃ቤగ
଴  ≤ න ቤ𝑠𝑖𝑛𝜃𝑠𝑖𝑛(𝑚 + 1)𝜃𝑚 + 1 ቤ + ቤ𝑠𝑖𝑛𝜃 ቆ𝑠𝑖𝑛(𝑚 − 1)𝜃𝑚 − 1 ቇቤ 𝑑𝜃గ
଴ ≤ 2𝑚𝜋(𝑚ଶ − 1) 

Hence  |𝑐௡௠| ≤ 𝐿 2(௞ାଵ)ଶ𝑚2ଶ௞√𝜋 ൬ 2𝑚𝜋(𝑚ଶ − 1)൰ 

|𝑐௡௠| ≤ 𝐿 2(௞ାଵ)ଶ2ଶ௞ ቆ 2√𝜋(𝑚ଶ − 1)ቇ 

Since 𝑛 ≤ 2௞ିଵ, we have inequality becoming  |𝑐௡௠| ≤ 𝐿 1𝑛ଷଶ 2ଷଶ ቆ √𝜋(𝑚ଶ − 1)ቇ 

Therefore; the wavelets expansion ∑ ∑ 𝐶௡௠𝜑௡௠(𝑥)ஶ௠ୀ଴ஶ௡ୀଵ  converges to 𝑓(𝑥) uniformly. 
Accuracy Analysis 

If the function  𝑓(𝑥)  is expanded in terms of New Shifted Wavelet Functions as in Eqns. 3-4. 
That is 𝑓(𝑥) = ∑ ∑ 𝑐௡௠𝜑௡௠(𝑥)ஶ௠ୀ଴ஶ௡ୀଵ   

Then it is not possible to perform the computation of an infinite number of   terms; therefore 
we must truncate the series as below  𝑓ெ(𝑥) = ∑ ∑ 𝑐௡௠𝜑௡௠(𝑥)ெିଵ௠ୀ଴ଶೖషభ௡ୀଵ   
so that   𝑓(𝑥) − 𝑓ெ(𝑥) = 𝑟(𝑥)  
where r(x) is the residual function defined by  𝑟(𝑥) = ෍ ෍ 𝑐୬୫𝜑௡௠(𝑥)ஶ

୫ୀ୑
ஶ

୬ୀଶౡషభାଵ  

We must select the coefficients such that ‖𝑟(𝑥)‖ is less than some convergence value 𝜖 , that is ቀ׬ |𝑓(𝑥) − 𝑓ெ(𝑥)|ଶ𝑤௡(𝑥)𝑑𝑥ଵ଴ ቁభమ < 𝜖  
for all  M  greater than some positive integer value 𝑀଴. 
The calculation of the accuracy of a numerical method is crucial to describe the applicability and 
performance to solve problems. Theorem 2 discusses the accuracy of the Chebyshev wavelets 
representation of a function. 
Theorem 2.  Let 𝑓  be a continuous function defined on the interval [0, 1) and ห𝑓ሷ(𝑥)ห < 𝐿 ,   then the 
accuracy estimation is given by: 

 𝐶௡,ெ = ൭√𝜋L2ିଷଶ ෍ ෍ 1𝑛ଷଶ ൬ 1(𝑚ଶ − 1)൰ ஶ
୫ୀ୑

ஶ
୬ୀଶౡషభାଵ ൱ଵଶ

 

where  𝐶௡,ெ = ቀ׬ |𝑟(𝑥)|ଶଵ଴ 𝑤௡(𝑥) 𝑑𝑥ቁభమ 

Proof. Since 𝐶௡,ெ = ቀ׬ |𝑟(𝑥)|ଶଵ଴ 𝑤௡(𝑥) 𝑑𝑥ቁభమ 

Then  𝐶௡ெଶ = ׬ |𝑟(𝑥)|ଶଵ଴ 𝑤௡(𝑥) 𝑑𝑥 
           = ׬ ∑ ∑ |𝑐௡௠𝜑௡௠(𝑥)|ଶ𝜔௡(𝑥)𝑑𝑥ஶ௠ୀெஶ௡ୀଶೖషభାଵ  ଵ଴  
           = ∑ ∑ |𝑐௡௠|ଶ ׬ |𝜑௡௠(𝑥)|ଶ𝑤௡(𝑥)ଵ଴ 𝑑𝑥ஶ௠ୀெஶ௡ୀଶೖషభାଵ   
From the orthonormality criterion from  𝜑௡௠, one can get  𝐶௡ெଶ = ෍ ෍ |𝑐௡௠|ଶஶ

௠ୀெ
ஶ

௡ୀଶೖషభାଵ  

Using the findings from Eq. 7 𝐶௡ெଶ = √𝜋L2ିଷଶ ෍ ෍ 1𝑛ଷଶ ൬ 1(𝑚ଶ − 1)൰ ஶ
୫ୀ୑

ஶ
୬ୀଶౡషభାଵ  
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or 𝐶௡,ெ = ቆ√గ୐ଶషయమ ∑ ∑ ଵ௡యమ ቀ ଵ(௠మିଵ)ቁ ஶ୫ୀ୑ஶ୬ୀଶౡషభାଵ ቇభమ
. 

4. Operational Matrix of the NSW 

The present section is built to derive an operational matrix of derivatives for the NSW. Based on 
the NSW vector 𝑄(𝑥)  mentioned in (1), it can be determined the operational matrix of integer 
derivative as below. 

The following theorem is needed hereafter. 
Theorem 3. Let 𝑄(𝑥) be the NSW vector defined in (1). Then, the first derivative of the vector 𝑄(𝑥) can be 
expressed as 𝑑𝑄(𝑥)𝑑𝑥 = 𝐷ொ𝑄(𝑥) (8) 

where 𝐷ொ is 2௞ିଵ(𝑀 + 1) square operation matrix of differentiation and is defined by 

𝐷ொ = ൮𝐷 𝑂 ⋯ 𝑂𝑂 𝐷 ⋯ 𝑂⋮ ⋮ ⋱ ⋮𝑂 𝑂 ⋯ 𝐷൲ (9) 

In which 𝐷 is a square matrix and their elements can be explicitly obtained as below  

𝐷௜,௝ = 2௞ ൝ 𝑖 𝑖 𝑜𝑑𝑑, 𝑗 = 0,2𝑖 𝑖 > 𝑗, 𝑖 − 𝑗 = 𝑜𝑑𝑑,0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.  (10) 

Proof. By using NSW, the 𝑖௧௛ element of vector 𝑄௡,௠(𝑥) can be rewritten in the following way 

𝑄௥(𝑥) = 𝑄௡,௠(𝑥) = 2௞ିଵଶ√𝜋 𝑀𝑠௠(2௞𝑥 − 2𝑛 + 1), (11) 

For  ௡ିଵଶೖషభ ≤ 𝑥 ≤ ௡ଶೖషభ   and 𝑄௥(𝑥) = 0  outside the interval 𝑥 ∈ ቂ ௡ିଵଶೖషభ , ୬ଶೖషభቃ,  where  𝑟 = 𝑛(𝑚 + 1) +(𝑚 + 1), 𝑚 = 0, 1, … , 𝑀, 𝑛 = 0, 1, 2, … , (2௞ − 1). 

or 𝑄௡,௠(𝑥) = ଶೖషభమ√గ ൫𝑀𝑠௠(2௞𝑥 − 2𝑛 + 1)൯𝜒ቂ ೙షభమೖషభ, ೙మೖషభቃ (12) 

where 𝜒ቂ ೙షభమೖషభ, ೙మೖషభቃ = ቊ1 𝑥 ∈ ቂ ௡ିଵଶೖషభ , ௡ଶೖషభቃ0 otherwise  

Differentiate Eq. 11 with respect to 𝑥, yields: 

ௗொ(௫)ௗ௫ = ଶೖషభమ√గ ൣ𝑀ሶ 𝑠௠(2௞𝑥 − 2𝑛 + 1)൧, for 𝑥 ∈ ቂ ௡ିଵଶೖషభ , ௡ଶೖషభቃ (13) 

Hence the SSW expansion only has those elements in 𝑄௡,௠(𝑥) that are non-zero in the interval ቂ ௡ିଵଶೖషభ , ௡ଶೖషభቃ, that is: 𝑄௥(𝑥),  𝑟 = 𝑛(𝑀 + 1), 𝑛(𝑀 + 1) + 2, … , 𝑛(𝑀 + 1) + (𝑀 + 1). 
This enables us to expand ቀௗொ೙೘(௫)ௗ௫ ቁ in terms of the NSW in the form: ௗொ(௫)ௗ௫ = ∑ 𝑎௥𝑄௥(𝑥)(௡ାଵ)(ெାଵ)௥ୀ௡(ெାଵ)ାଵ   (14) 

This implies that the operational matrix 𝐷ொ௡,௠(𝑥) is a block matrix as defined in Eq. 9 since  ௗொ(௫)ௗ௫ =0. 
Then we have ௗொ(௫)ௗ௫ = 0 for 𝑖 = 1(𝑀 + 1) + 1, 2(𝑀 + 1) + 1, … , (2௞ − 1)(𝑀 + 1) + 1,   
As a results, the elements of the first row of the matrix 𝐷 given in Eq. 10 are zeros. 
Now, substitute ௗெሶ ௦೘(௫)ௗ௫  back into Eq. 13, gives  
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ௗொ೙,೘(௫)ௗ௫ = ଵ√గ 2. 2௞ିଵ𝑛 ቊ∑ 𝑀𝑠௡ିଶ௜ାଵ(𝑥) + ଵଶ 𝑀𝑠଴   𝑖𝑓 𝑛 𝑜𝑑𝑑,௡ିଵ௜ୀଵ∑ 𝑀𝑠௡ିଶ௜ାଵ(𝑥)                𝑖𝑓 𝑛 𝑒𝑣𝑒𝑛௡ିଵ௜ୀଵ .  (15) 

Expanding Eq. 15 in terms of SSW basis, to get ௗொ೙,೘(௫)ௗ௫ = 2.2௞𝑛 ൝ ∑ 𝑄୬(୑ାଵ)ା௜(𝑥) + ଵଶ 𝑄଴   𝑖𝑓 𝑛 𝑜𝑑𝑑,௡ିଵ௜ୀଵ∑ 𝑄୬(୑ାଵ)ା௜(𝑥)                𝑖𝑓 𝑛 𝑒𝑣𝑒𝑛௡ିଵ௜ୀଵ .  

Choosing 𝐷(𝑖, 𝑗), such that  𝐷௜,௝ = 2௞ ൝ 𝑖 𝑖 𝑜𝑑𝑑, 𝑗 = 0,2𝑖 𝑖 > 𝑗, 𝑖 − 𝑗 = 𝑜𝑑𝑑,0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.   

The equation ௗொ೙,೘ௗ௫ = 𝐷𝑄௡,௠(𝑥) is hold. 

5. The NSW Algorithm for Solving Optimal Control Problem 

In this section, the task of optimizing systems governed by ordinary differential equations which 
leads to the optimal control problems is investigated. They are arising in many applications in 
astronautics and aeronautics. 
Consider the following process on fixed interval [0,1]: 𝐽 = ׬ 𝐹൫𝑡, 𝑢(𝑡), 𝑥(𝑡)൯𝑑𝑡,ଵ଴   (16) 

Subject to  𝑢(𝑡) = 𝑓൫𝑡, 𝑥(𝑡), 𝑥ሶ (𝑡)൯ (17) 

 
Together with the conditions 𝑥(0) =  𝑥଴, 𝑥(1) = 𝑥ଵ (18) 

where: 𝑥(∙): [0,1] → ℜ  is the state variable, 𝑢(∙): [0,1] → ℜ, is the control variable and the function 𝑓 
is assumed to be  real valued  continuously differentiable.  
First, we assume the solution of the state variables 𝑥(𝑡) and 𝑥ሶ(𝑡) in terms of NSW respectively as 
below 𝑥(𝑡) = ∑ 𝑎௜𝑄௜(𝑡)௠௜ୀ଴   (19) 𝑥ሶ(𝑡) = ∑ 𝑎௜𝐷𝑄௜(𝑡)௠௜ୀ଴   (20) 

where 𝑎 = [𝑎଴, 𝑎ଵ, … , 𝑎௠]், is unknown parameters vector.  
The second step is to obtain the approximation for the control variable by substituting Eq. 19 and Eq. 
20 into Eq. 17  𝑢(𝑡) = 𝑓(𝑡, ∑ 𝑎௜𝑄௜(𝑡)௠௜ୀ଴ , ∑ 𝑎௜𝐷𝑄௜(𝑡)௠௜ୀ଴ )  (21) 

Finally, the performance index value 𝐽 is obtained as a function of the unknown 𝑎଴, 𝑎ଵ, 𝑎ଶ, … , 𝑎௠ as 
below  𝐽 = ׬ 𝐹((∑ 𝑎௜𝑄௜(𝑡)௠௜ୀ଴ )ଶ, (∑ 𝑎௜𝐷𝑄௜(𝑡)௠௜ୀ଴ )ଶ)ଵ଴ 𝑑𝑡  

The resulting quadratic mathematical programming problem can be simplified as below: 𝐽 = 12 𝑎்ℋ𝑎 

where ℋ = 2 ׬ 𝐹 ቀ൫𝑄(𝑡)൯ଶ, ൫𝐷𝑄(𝑡)൯ଶቁଵ଴ 𝑑𝑡,  
subject to 𝐹𝑎 − 𝑏 = 0 

where ℱ = ൤𝑄்(0)𝑄்(1)൨ ,   𝑏 = ቂ𝑥଴𝑥ଵቃ 
Using Lagrange multiplier technique to obtain the optimal values of the unknown parameters 𝑎∗, 𝑎∗ = ℋିଵℱ்(ℱℋିଵℱ்)ିଵ𝑏. 
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6. Test Examples 

In this section, the results for the numerical simulation of optimal control problems formulated 
based on the proposed new shifted wavelet method are presented. Different test cases for 𝑚 defined 
in the interval [0, 1] are considered with a single state function and a single control function. Note 
that the proposed method can be solved problems with multiple controls. The test problems are 
considered continuous optimal controls, and the analytic solution is known in order to allow the 
validation of the proposed algorithm, by comparing its result with the exact solution. 

Example 1. In the following example, we have one state function 𝑥(𝑡), and one control function 𝑢(𝑡). This 
problem is concerned with minimization of min 𝐽 = න (𝑢ଶ(𝑡) + 𝑥ଶ(𝑡))𝑑𝑡ଵ

଴  

Subject to 𝑢(𝑡) = 𝑥ሶ(𝑡) 
with initial conditions 𝑥(0) = 0,  𝑥(1) = 0.5 The exact value of the performance index is 𝐽 = 0.328258821379. 
Table 1 shows the values of the coefficients, Tables 2 and 3 give the values of the state and the control 
respectively. 

Table 1. The unknown coefficients of Example 1. 𝒂𝒊         𝒎 = 𝟑           𝒎 = 𝟒          𝒎 = 𝟓 𝑎0 0.2305457113 0.23672730347 0.2561993228 𝑎1 0.1233668163 0.13001387707 0.1605089078 𝑎2 0.0062942253 0.01782237852 0.04711219512 
  𝑎3  0.00386099897 0.02681474048 𝑎4   0.00578906657 

Table 2. Approximate and exact values of 𝑥(𝑡) for Example 1. 

  𝒕          𝒎 = 𝟑    𝒎 = 𝟒  𝒎 = 𝟓   𝒙𝒆𝒙𝒂𝒄𝒕 
0.2 0.08181818 0.085725158 0.08566326 0.08566022 
0.4 0.17272727 0.174680761 0.17476776 0.17475830 
0.6 0.27272727 0.270773784 0.27086078 0.27087003 
0.8 0.38181818 0.377911205 0.37784931 0.37785270 
1 0.5000000 0.499999999 0.49999999 0.50000000 

Table 3. Approximate and exact values of 𝑢(𝑡) for Example 1. 

         𝒕        𝒎 = 𝟑    𝒎 = 𝟒    𝒎 = 𝟓     𝒖𝒆𝒙𝒂𝒄𝒕 
      0.2 0.431818181 0.4334460887 0.4341131879 0.4339966471 
      0.4 0.477272727 0.4593657505 0.4598878493 0.45995203956 
      0.6 0.522727272 0.5048202959 0.5042981972 0.50436692229 
      0.8 0.568181811 0.5698097251 0.5691426259 0.56902382057 
       1 0.613636363 0.6543340380 0.6562195299 0.65651764274 

Table 4 gives the absolute errors that NSW method might produce with the compression to the 
following methods:  

• Chebyshev method proposed in [24].  
• The method existing in [25]. 

Table 4. A comparison of the results of Example 1. 

  Absolute Errors  𝒕   Presented  Method   Method in [29] Method in [28] 
0.2 0.431818181 0.4334460887 0.4341131879 
0.4 0.477272727 0.4593657505 0.4598878493 
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0.6 0.522727272 0.5048202959 0.5042981972 
0.8 0.568181811 0.5698097251 0.5691426259 
1 0.613636363 0.6543340380 0.6562195299 

Example 2. Consider the second test problem  𝐦𝐢𝐧 𝑱 = ׬ (𝒖𝟐(𝒕) + 𝟑𝒙𝟐(𝒕))𝒅𝒕𝟏𝟎   𝒖(𝒕) = 𝒙ሶ (𝒕) − 𝒙(𝒕) 𝒙(𝟎) = 𝟏, 𝒙(𝟏) = 𝟎. 𝟓𝟏𝟑𝟏𝟒𝟓𝟑𝟖 
(21) 

The exact solution of (21) is 𝑢(𝑡) = ଷ௘షరଷ௘షరାଵ 𝑒ଶ௧ − ଷଷ௘షరାଵ 𝑒ିଶ௧, 𝑥(𝑡) = ଷ௘షరଷ௘షరାଵ 𝑒ଶ௧ + ଵଷ௘షరାଵ 𝑒ିଶ௧ and  𝐽 =2.791659975.  
Table 5 shows the values of the coefficients, Tables 6 and 7 give the values of the state and the 

control respectively, whereas Table 8 lists the absolute errors that our method NSW might produce 
compares our technique to the method presented in [28]. From these tables, it can be seen that the 
state and the control variables are accurately approximated by the proposed method. 

Table 5. The unknown coefficients of Example 2. 

    𝒂𝒊         𝒎 = 𝟑           𝒎 = 𝟒          𝒎 = 𝟓 𝑎0 0.3555075068713 0.346802467917 0.3533419782 𝑎1 0.0118653476259 0.003658158193 0.01146671901 𝑎2 0.0598656329410 0.047554848792 0.05385050095 𝑎3  −0.00410359471 6.7914878𝑒04 𝑎4   0.00119568588 

Table 6. Approximate and exact values of 𝒙(𝒕) for Example 2. 𝒕 𝒎 = 𝟑 𝒎 = 𝟒 𝒎 = 𝟓 𝒙𝒆𝒙𝒂𝒄𝒕 0.2 0.72969817542 0.71547355348 0.7130374834 0.7131081208 0.4 0.54586180114 0.53874949017 0.5417269091 0.5418429752 0.6 0.44849087714 0.45560318811 0.4585806070 0.4584348199 0.8 0.43758540342 0.45181002536 0.4493739552 0.4493594610 1 0.5131453800 0.5131453800 0.51314537999 0.51314537665 

Table 7. Approximate and exact values of 𝑢(𝑡) for Example 2. 𝒕       𝒎 = 𝟑        𝒎 = 𝟒        𝒎 = 𝟓         𝒖𝒆𝒙𝒂𝒄𝒕 
0.2 −1.8650436725 −1.8567459764 −1.8302875486 −1.82851756831 
0.4 −1.2488800468 −1.1765715519 −1.160488978237 −1.16185967374 
0.6 −0.7191818714 −0.66109799850 −0.68313541022 −0.68359121816 
0.8 −0.27594914628 −0.2961006940 −0.31768698166 −0.31616348542 
1  0.08081812857 −0.0673550166 0.00313312217     0.0031331221 

Table 8. Estimated values of 𝐽 for  𝑚 = 3,4,5 for Example 2. 𝒎 
 𝑱 in present     method 

Absolute  
Errors 𝑱 in [29] 

Absolute  
Errors 

  3  2.7971823353     5.5𝑒 − 03  2.7977436 6.0e-03 
  4 2.79237308337 7.1𝑒 − 04 2.79608386 4.4e-03 
  5 2.79166202469 2.0𝑒 − 06 2.79608386 4.4e-03 

Table 8 illustrates the fast convergence rate of the proposed method since the errors decay 
rapidly by increasing the number of the NSW.  

Example 3. Consider the third test problem 𝐽 = 12 න ൫𝑢ଶ(𝑡) + 𝑥ଶ(1)൯𝑑𝑡ଵ
଴  𝑢(𝑡) = 𝑥ሶ(𝑡) − 𝑥(𝑡) 
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𝑥(0) = 1, 𝑥(1) = 0.3678794412. 𝐽௘௫௔௖௧ = 1. 
Table 9. The unknown coefficients of Example 3. 𝒂𝒊         𝒎 = 𝟑           𝒎 = 𝟒          𝒎 = 𝟓 𝑎0 0.355507506871 0.3468024679179 0.353341978261 𝑎1 1865347625915 0.0036581581933 0.011466719011 𝑎2 0.059865632941 0.047554848792 0.053850500952 𝑎3  −0.0041035947162 6.79148785e − 04 𝑎4   6.79148785e − 04 

Tables 10 and 11 compare the exact solutions and the approximate solutions of 𝑥(𝑡) and 𝑢(𝑡)) 
respectively for 𝑚 = 3,4,5. The absolute errors of 𝐽 for various values of 𝑀 are listed in Table 12. 
From these results, it is worthwhile to note that the approximate solutions obtain by the proposed 
method completely coincide with the exact solutions. 

Table 10. Approximate and exact values of 𝒙(𝒕) for Example 3. 𝒕 𝒎 = 𝟑 𝒎 = 𝟒 𝒎 = 𝟓 𝒙𝒆𝒙𝒂𝒄𝒕 
0.2 0.8238348176 0.8188954570 0.8187261332 0.8187307530 
0.4 0.6725401705 0.6700704903 0.6703085019 0.6703200460 
0.6 0.5461160588 0.54858573916 0.5488237508 0.5488116360 
0.8 0.4445624824 0.4495018430 0.4493325192 0.4493289641 
1 0.3678794412 0.3678794412 0.3678794412 0.3678794412 

Table 11. Approximate and exact values of 𝒖(𝒕) for Example 3. 

  𝒕    𝒎 = 𝟑    𝒎 = 𝟒     𝒎 = 𝟓      𝒖𝒆𝒙𝒂𝒄𝒕 0.2 −1.6424843911 −1.6396030974 −1.6376087511 −1.63746150615 0.4 −1.36683706763 −1.34172865101 −1.34053832634 −1.340640092071 0.6 −1.11606027940 −1.09589122343 −1.09755757148 −1.097623272188 0.8 −0.89015402646 −0.8971514540 −0.89880715280 −0.898657928234 1 −0.68911830881 −0.74056998220 −0.73541173113 −0.735758882342 

Example 4. Consider the fourth test problem  min 𝐽 = ׬ (0.5𝑢ଶ(𝑡) + 𝑥ଶ(𝑡))𝑑𝑡ଵ଴                                                                (22) 𝑢(𝑡) = 𝑥ሶ(𝑡) − 0.5𝑥(𝑡) 𝑥(0) = 1, 𝑥(1) = 0.5018480732 
The exact solution of (22) is:  𝑢(𝑡) = ଶ௘య೟ି௘య௔ , 𝑥(𝑡) = ଶ௘య೟ା௘య௔  ,    where 𝑎 = 2𝑒య೟మ (1 + 𝑒ଷ) and   𝐽 =0.8641644978.  

Table 4 compares absolute errors of presented method wavelets and to existing method 
presented in the article [25] with different values of 𝑚, see that the absolute errors of the presented 
method good result compare to existing other method and indicating a decrease in absolute errors 
with increase in the value of 𝑚. 

It is clear that the approximate solution of the performance index when 𝑚 = 8 is in very good 
agreement with the corresponding exact solution. Table 13 reports the absolute errors of 𝐽 obtained 
by the proposed method at  𝑚 = 3, 4, 5 in comparison to the method in [25] at 𝑚 = 2, 3, 4. The 
obtained results show that the approximate solutions are more accurate for the proposed method 
than the method in [25]. In addition, the fast convergence rate of the proposed method is also 
illustrated from the absolute errors results since by increasing the number of the NSW, the errors 
decay rapidly.  
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Table 13. Estimated values of  𝐽 for  𝑚 = 3,4,5 of Example 4. 𝒎 
 𝑱 in present method Absolute  

Errors 
   𝑵 

 𝑱 in [25] 

3 0.8647288093 5.6𝑒 − 04 2 0.8645390446 
4 0.8642180723 5.3𝑒 − 05 3 0.8644550472 
5 0.8641645689 7.1𝑒 − 08 4 0.8643546452 

7. Conclusions 

The proposed new shifted wavelet functions method has been successfully applied in studying 
the approximate solution of OCP in combination with their differentiation operational matrix. The 
proposed algorithm converges well. A mathematical technique has been established for solving 
quadratic optimal control problem which is based on the NSW functions with the direct technique. 
Moreover, by applying both the convergence analysis and error analysis of the presented new shifted 
wavelets is worked out and it is illustrated to converge uniformly on it. The obtained NSW based 
approximate solutions have been compared with existing methods of solutions as well as the 
analytical solutions. The error analysis in the obtained solutions gives the consistency and 
competence of the suggested method. 
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