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Abstract: The present work concerns with presenting an explicit formula for new shifted wavelet (NSW)
functions. Wavelet functions have many applications and advantages in both applied and theoretical fields.
They are formulated with different orthogonal polynomials to construct new techniques for treating some
problems in sciences, and engineering. A new important differentiation property of NSW in terms of NSW
themselves is obtained and proved in this paper. Then it is utilized together with the state parameterization
technique to find solution of optimal control problem (OCP) approximately. The suggested method converts
the OCP into a quadratic programming problem, which can be easily determined on computer. As a result, the
approximate solution closes with the exact solution even with a small number of NSW utilized in estimation.
The error bound estimation for the proposed method is also discussed. Some test numerical examples are
solved to demonstrate the applicability of the suggested method. For comparison, the exact known solutions
against the obtained approximate results are listed in Tables.

Keywords: New shifted wavelet functions; optimal control problem; Convergence criteria; Error
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1. Introduction

Wavelet functions play an interesting role in areas of mathematics. These functions have been
applied in the solution of approximation theory, differential equations and integral equations [1-4].
The study of optimal control problems is important in our life and their applications are found in
different disciplines based on mathematical modeling, chemistry and physics. The solution of
optimal control problem can be found approximately because of the complexity inmost applications.
Numerous studies have focused on the approximate solutions of optimal control problems, which
can be found in many fields [5-9]. Different algorithms were used for solving optimal control
problems, including the indirect modified pseudospectral method [10], A direct Chebyshev cardinal
functions method [11], Cauchy discretization technique [12], the synthesized optimal control
technique [13], Legendre functions method [14], Evolutionary Algorithm-Control Input Range
Estimation [15]. See [16-20] for some other articles exploring various optimal control problems.
Wavelet functions have important parts in the approximation theory, special functions and for
numerical analysis for solving optimal control problems. In particular the Chebyshev wavelets
families are widely applied in contributions to the field of approximation theory. For example, the
authors in [21] employed the Boubaker wavelets together with the operation matrix of derivative to
solve singular initial value problem. The collocation method is presented in [22] based on the second
kind Chebyshev wavelets for solving calculus of variation problems. The use of the operational
matrices of derivatives and integrals has been highlighted in the field of numerical analysis [23-25].
This utilization gives special algorithms to obtain accurate approximate solutions of many types of
differential and integral equations with flexible computations. To extract an operational matrix of
derivatives is based on choosing suitable basis functions in terms of celebrated special functions and
expressing the first derivative of these basis functions in terms of their original types. Motivated by
the above discussion, we are mainly interested in presenting new shifted wavelet functions with
some important properties. A novel iterative method is suggested in this work to solve optimal
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control problem. Such method is used together with NSW as a basis function to parameterize the
states variables. The proposed technique is constructed to reach simultaneously the accuracy and
efficiency. Hence the first goal of this work is to introduce NSW. Use the proposed new basis function
to parameterize the system state variables to solve some problem in optimal control. The rest of the
work is organized as follows: section two provides the definition of NSW. In Section three, the
convergence of the NSW is studied. General exact formula of NSW differentiation operational matrix
of is generated in section four, then the suggested algorithm to solve optimal control problem is
illustrated in section five. Section six discusses the application of the NSW by considering various
examples in optimal control. Simulation results are also given in section seven, followed by a
conclusion remarks summarizes in section seven.

2. The New Shifted Wavelet Functions

Wavelet functions have been used successfully in scientific and engineering fields. The special
new shifted wavelet functions can be defined as below

k-1
22 X n—1 n
Qum(x) = ﬁMSm(Z x—2n+1) FSX SF, (1)
0 otherwise.

where n = 1,2,...,2%; k can be assumed to be any positive integer, m is the degree of the shifted
polynomials and x denotes the time for n =0,1, ..., M.
Note that a recursive relation that yields the Ms,,(x) polynomials is:

Ms,, (x) = 2x — DMs,_1(x) — Ms,_5(x), m= 2,34, ... (2)
with initial conditions:
Msy(x) =2, Ms;(x) =2x — 1. 3)
where Ms,,(t) = 2cosm8, t=cos, Wy, (t) = W2kt —2n+1)

3. Convergence Analysis of New Wavelet Functions
A function approximation f € C2.[0,1), with |f(x) | <L, L > 0 may by expanded in terms of
new shifted wavelets as below
f) = Xx=1 Xin=0 CnmPran (X)- 4)

where

Cam = (f (1), 9(x)) ©)

In (5), the symbol (.,.)y, x) is denoted the inner product operator with respect to weighted
function w,(x) on Hilbert space over the interval [0,1].
If the infinite series in (4) is truncated, then the solution f(x) can be rewritten in matrix form as

below
k—
G = B30 Titeo CamPrm (1) = ¢ (), ©)
where @(x) and C are matrices of 2"'M x 1 dimensions, given by c=
[cl_g €11 - CLy €20+ Com C(gko1)0 - C(Zk_l)’M] , and px) =

T
[4’1,0 P11 Pom P20 Pom P2k_1)0 ---§0(2k_1),M] .

Note that, both k and n are integer numbers, m is the degree of shifted polynomials. Now, we
state and prove a theorem to ensure the convergence of the new shifted wavelet expansion of a
function.
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Theorem 1. Assume that a function f(x) € L2,([0,1]) where (t) = \/%tz,

derivative |f(x)| <L, L >0, f can be expanded as an infinite series of the new shifted wavelets (1), then
Cpm i1 (4) converges uniformly to f, i.e  Cyny satisfy the inequality:

t # +1 with bounded second

1.3 N
|Cnm| < ngz ((mz—l))

@)

Proof. Let f(x) = Z‘;.lo=1 ET%?I.:O Cnm(pnm(x)
It follows that fork = 1,2,3,..; n=1,2,...,2¥, m=01,..,.M

= (f(x),9() = [, 1f(x)<pnm(x)wk(x)dx

n-—1

= [77 ) @rm OWie () + [25 Al 2 F () P (OW (x)dx

2k1

+ f%f(x)q’nm(x)wk(x)dx

Using Eq. 1, one can get
n k 1

Com = fzk 1f(x)TMsm(Z"x —2n+ W (2kx — 2n + 1)dx

2k-1

—sin6

If m > 1, by substituting
c059+2n—1’ dx = de

2kx —2n+4+1 = cosh, x = . -
2 2

k-1
272 (™ rcosO+2n—1 1 —sinf
Chm = \/E S f( Zk )ZCOS mo mz—kdg

(k+1)
_—22 T (cos@ + 2n— 1) 0 do
Com = N T cos m

By using method of integration by parts, let
b4 4 cosf+2n-1 . (cosO+2n—1 —sin6 sinmé@
foudv=uv—fovdu,u=f(2—k), du=f(—)( ), dv=cosm6df, v= —,

2k 2k
m#1

(k+1)
-2 2 cosf+2n—1\ (sinmf

0 . )
o = () (2 2 () s
Using again the method of integration by parts, let

u=f (M), =f (wsg+2n 1) (ﬂ), dv = sinm@ sin0 do,

2k 2k
_ (sin(m—1)8 sin(m+ 1)0
v= m-—1 m+1
(k+1) T
27 (cos@ +2n— 1) sin(m + 1)0 N sin(m — 1)60
Cnm = m2k\m 2k m+1 m—1 o
(k+1)
2 2 cosf+2n-1 . sin(m—-1)8  sin(m+1)60
T mazkym fo f ( 2k )Slne ( m-1 m+1 ) do
We have,
(k+1)
2 2 T ../cosf+2n—1\ sin(lm—-1)0 sin(m+ 1)0
Cam = — ( )sm@ - do
m22ky J, 2k m—1 m+1
Thus, we get
(k+1
_ cosG +2n—-1\ | sin(lm+1)8 sin(m—1)0 d
lcnml| = _mZZ’C\/_ o )sm@ i B —— 0
(k+1)
cosG+2n 1 sin(m+1)8  sin(m-1)6
m22k\/—f |f( ) m+1 + m-1 d9|
(k+1)
| . sin(m—-1)0  sin(m+1)60
S LmZZk\/E fo |Sln6 ( m—1  m+l )| do

However

T sinlm+1)0 sin(m—1)0
f sinf | — daeo
0 m+1 m-—1
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m+1 m-—1
sinfsin(m + 1)6| +Nsing sin(m —1)8 40 < 2mm
m+1 | st m—1 “(m?-1)

:)

Hence

[ +1)6 i —1)6
sing <_ sin(m + 1) N sin(m—1) ) d0|

(k+1)

| <L 22 ( 2mm )
ml = 2k \(mZ = 1)
(k+1)
2
enml < L2 \Gr =)
Since n < 2%, we have inequality becoming

n3 m?—1)

Therefore; the wavelets expansion Y.;-; Ym—o Chm®@num(x) converges to f(x) uniformly.

Accuracy Analysis

If the function f(x) is expanded in terms of New Shifted Wavelet Functions as in Eqns. 3-4.
That is
f(x) = Xn=1Zm=0 Cnm®Pnm (%)

Then it is not possible to perform the computation of an infinite number of terms; therefore
we must truncate the series as below

k- -

fM(x) = Z%.=11 %:}) CrmPrm (X)
sothat f(x) — fiu(x) =r(x)
where r(x) is the residual function defined by

re = i i Com@m ()

n=2k-1+1 m=M
We must select the coefficients such that [|[r(x)[| is less than some convergence value €, that is
1

([ 1£G) = fu GO Pwn G)dx ) < €

forall M greater than some positive integer value M,.

The calculation of the accuracy of a numerical method is crucial to describe the applicability and
performance to solve problems. Theorem 2 discusses the accuracy of the Chebyshev wavelets
representation of a function.

Theorem 2. Let f be a continuous function defined on the interval [0, 1) and | f (x)| <L, then the

accuracy estimation is given by:
1

Vi i i bl
o= (T Y Y o)

3
22 n=2k-141 m=M nz2
1

where Cpy = (follr(x)l2 wy, (%) dx)E

1
Proof. Since C,y = (follr(x)l2 wy,(x) dx)2
Then C3, = follr(x)l2 wy, (x) dx
= T et s1 D el Com @ ()20 () dx

[ee) [ee) 1
= anzk—1+1 Zm:Mlcnml2 fo |(pnm(x)|2Wn(x) dx
From the orthonormality criterion from ¢,,,, one can get

Cr%M = Z Z |Cnm|2
n=2k-141m=M

Using the findings from Eq. 7

Vil © w1 < 1 )

3

i = (m?-1)

3
2 2 n=2k-141 m=M n2
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1

_ [vmL w 1 1 2
or Cpy = (Z_EZ —2k-141 Zam=M ng ((mz_l))) :

4. Operational Matrix of the NSW

The present section is built to derive an operational matrix of derivatives for the NSW. Based on
the NSW vector Q(x) mentioned in (1), it can be determined the operational matrix of integer
derivative as below.

The following theorem is needed hereafter.

Theorem 3. Let Q(x) be the NSW vector defined in (1). Then, the first derivative of the vector Q(x) can be
expressed as

2 pyoe) ®)
where D, is 2¥7*(M + 1) square operation matrix of differentiation and is defined by
po={9 7 "9 ©)

In which D is a square matrix and their elements can be explicitly obtained as below
i iodd, j=0,
D;;=22i i>j, i—j=odd, (10)
0 otherwise.
Proof. By using NSW, the i*" element of vector Q,,,,(x) can be rewritten in the following way
k=1

Qr(x) = Qum(x) = 2TzMsm(Z"x —-2n+1), (11)

zk— <x <55 and Q.(x) =0 outside the interval x E[
(m+1),m 01 oM, n=0,1,2,..,(2¢ - 1).

1 e 1] where r =n(m + 1) +

k—1
or Qpm(x) = (Msm(ka —-2n+ 1)))([11 1 n (12)
2k—15k—1
where )([ ] = {1 x € [zk 17 k= 1]
T otherwise
Differentiate Eq. 11 with respect to x, yields:
k—1
d?iix) = " [Ms,(2kx — 2n + 1)), for x € [:k__ll,z:—_l] (13)

Hence the SSW expansion only has those elements in Q,,(x) that are non-zero in the interval
n—1 ]
[ that is:

2k-17 2k-1

Q,(x), r=n(M+1),nM+1)+2,...n(M+1)+ (M +1).
This enables us to expand (‘w’;—';m) in terms of the NSW in the form:

dQ( M
B ), 4,0, (%) (14)
This implies that the operational matrix D, (x) is a block matrix as defined in Eq. 9 since Qo) _
nm dx

0.
Then we have d‘fi(") =0fori=1M+1D)+1,2M+ 1D +1,...,Qx—1DM+1) +1,
As a results, the elements of the first row of the matrix D given in Eq. 10 are zeros.

Now, substitute aM5m(x) back into Eq. 13, gives
dx
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(15)

- 1 .
AQum) _ 15 ko1, Y Msy i1 (%) +5Mso if nodd,
dx “yr T

S M1 () if n even.

Expanding Eq. 15 in terms of SSW basis, to get
- 1 .
Am@ _ zkn{ P Qumany+i(0) +3 Qo if nodd,

@ T Qnmey+i () if neven.
Choosing D(i, j), such that
i iodd, j=0,
Dy =2"{2i i>j,i—j=odd,
0 otherwise.

dQnm :
e DQy 1 (x) is hold.

The equation

5. The NSW Algorithm for Solving Optimal Control Problem

In this section, the task of optimizing systems governed by ordinary differential equations which
leads to the optimal control problems is investigated. They are arising in many applications in
astronautics and aeronautics.

Consider the following process on fixed interval [0,1]:

J = J, F(tu®,x(®)dt, (16)
Subject to
u(t) = f(t, x(t), x(1)) (17)
Together with the conditions
x(0) = x, x(1)=x (18)

where: x(+): [0,1] - R is the state variable, u(:): [0,1] —» R, is the control variable and the function f
is assumed to be real valued continuously differentiable.

First, we assume the solution of the state variables x(t) and x(t) in terms of NSW respectively as
below

x(t) = Xitoa;Qi(t) (19)

x(t) = XiZo a;DQ;(t) (20)

where a = [ag, ay, ..., a,]7, is unknown parameters vector.
The second step is to obtain the approximation for the control variable by substituting Eq. 19 and Eq.
20 into Eq. 17

u(t) = f(t, X% a;Qi (1), X% ;D Q; (1)) (21)
Finally, the performance index value ] is obtained as a function of the unknown ay, a4, a,, ..., a,, as
below
/= fol F(ERea;:Qi(t)% Xy a;DQ;(t))?) dt

The resulting quadratic mathematical programming problem can be simplified as below:
1
J= > a’Ha
1 2 2
where 3¢ =2 [ F ((Q()",(DQ®)") dt,
subjectto Fa—b =0

_[QTO@] , _ %o
where F = QT(l)] , b= [x1]
Using Lagrange multiplier technique to obtain the optimal values of the unknown parameters a”,
a* =H1FT(FHIFT) b,
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6. Test Examples

In this section, the results for the numerical simulation of optimal control problems formulated
based on the proposed new shifted wavelet method are presented. Different test cases for m defined
in the interval [0, 1] are considered with a single state function and a single control function. Note
that the proposed method can be solved problems with multiple controls. The test problems are
considered continuous optimal controls, and the analytic solution is known in order to allow the
validation of the proposed algorithm, by comparing its result with the exact solution.

Example 1. In the following example, we have one state function x(t), and one control function u(t). This
problem is concerned with minimization of

min | = j (u?(t) + x2(t))dt
0

Subject to u(t) = x(t)

with initial conditions x(0) = 0, x(1) = 0.5

The exact value of the performance index is ] = 0.328258821379.

Table 1 shows the values of the coefficients, Tables 2 and 3 give the values of the state and the control

respectively.
Table 1. The unknown coefficients of Example 1.

a; m=3 m=4 m=>5

ap 02305457113 023672730347 0.2561993228

a; 0.1233668163 0.13001387707 0.1605089078

a, 0.0062942253 0.01782237852 0.04711219512

as 0.00386099897 0.02681474048

a, 0.00578906657

Table 2. Approximate and exact values of x(t) for Example 1.

t m=3 m=4 m=>5 Xexact
0.2 0.08181818 0.085725158 0.08566326 0.08566022
04 0.17272727 0.174680761 0.17476776 0.17475830
0.6 027272727 0.270773784 0.27086078 0.27087003
08 0.38181818 0377911205 037784931 037785270

1 0.5000000 0499999999 0.49999999 0.50000000
Table 3. Approximate and exact values of u(t) for Example 1.
t m=3 m=4 m=5 Upract
02 0431818181 04334460887 04341131879 04339966471
04 0477272727 04593657505  0.4598878493 0.45995203956
0.6 0.522727272 0.5048202959  0.5042981972 0.50436692229
0.8 0.568181811 0.5698097251  0.5691426259 0.56902382057
1 0.613636363 0.6543340380  0.6562195299 0.65651764274

Table 4 gives the absolute errors that NSW method might produce with the compression to the
following methods:

e  Chebyshev method proposed in [24].
e  The method existing in [25].

Table 4. A comparison of the results of Example 1.

Absolute Errors

t Presented Method Method in [29] Method in [28]
0.2 0431818181 0.4334460887 04341131879
04 0477272727 0.4593657505 0.4598878493
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0.6
0.8

0.522727272
0.568181811
0.613636363

0.5048202959
0.5698097251
0.6543340380

0.5042981972
0.5691426259
0.6562195299

Example 2. Consider the second test problem

min J = [} (u?(t) + 3x%(t))dt

u(t) = x(t) — x(t) (21)
x(0) = 1,x(1) = 0.51314538

The exact solution of (21) is u(t) =
2.791659975.

Table 5 shows the values of the coefficients, Tables 6 and 7 give the values of the state and the
control respectively, whereas Table 8 lists the absolute errors that our method NSW might produce
compares our technique to the method presented in [28]. From these tables, it can be seen that the
state and the control variables are accurately approximated by the proposed method.

3e™ o 3

-4
e x(f) = ey
3e 4+1 3e 4+1 4

3e"4+1 3e"4+1

e? and J=

Table 5. The unknown coefficients of Example 2.

a; m=3 m=4 m=>5
ag 0.3555075068713 0.346802467917 0.3533419782
a; 0.0118653476259 0.003658158193 0.01146671901
a, 0.0598656329410 0.047554848792 0.05385050095
as —0.00410359471 6.7914878e04
ay 0.00119568588

Table 6. Approximate and exact values of x(t) for Example 2.

t m=3 m=4 m=5 Xexact
0.2 0.72969817542 0.71547355348 0.7130374834 0.7131081208
0.4 0.54586180114 0.53874949017 0.5417269091 0.5418429752
0.6 0.44849087714 0.45560318811 0.4585806070 0.4584348199
0.8 0.43758540342 0.45181002536 0.4493739552 0.4493594610

1 0.5131453800 0.5131453800 0.51314537999 0.51314537665

Table 7. Approximate and exact values of u(t) for Example 2.

t m=3 m=4 m=>5 Uexact
0.2 —1.8650436725 —1.8567459764 —1.8302875486 —1.82851756831
0.4 —1.2488800468 —1.1765715519 —1.160488978237 —1.16185967374
0.6 —0.7191818714 —0.66109799850 —0.68313541022 —0.68359121816
0.8 —0.27594914628 —0.2961006940 —0.31768698166 —0.31616348542

1 0.08081812857 —0.0673550166 0.00313312217 0.0031331221

Table 8. Estimated values of J for m = 3,4,5 for Example 2.
. Absolute . Absolute
J in present method Errors J in[29] Errors
3 2.7971823353 5.5e —03 2.7977436 6.0e-03
4 2.79237308337 7.1e — 04 2.79608386 4.4e-03
5 2.79166202469 2.0e — 06 2.79608386 4.4e-03

Table 8 illustrates the fast convergence rate of the proposed method since the errors decay
rapidly by increasing the number of the NSW.

Example 3. Consider the third test problem
1 1
] = Ef (u2(t) + x2(1))de
0
u(t) = x(t) — x(t)
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x(0) =1, x(1) = 0.3678794412. Joyaer = 1.

Table 9. The unknown coefficients of Example 3.

a; m=3 m=4 m=>5
ay 0.355507506871 0.3468024679179 0.353341978261
a; 1865347625915 0.0036581581933 0.011466719011
a, 0.059865632941 0.047554848792 0.053850500952
az —0.0041035947162 6.79148785e — 04

a, 6.79148785e — 04

Tables 10 and 11 compare the exact solutions and the approximate solutions of x(t) and u(t))
respectively for m = 3,4,5. The absolute errors of J for various values of M are listed in Table 12.
From these results, it is worthwhile to note that the approximate solutions obtain by the proposed
method completely coincide with the exact solutions.

Table 10. Approximate and exact values of x(t) for Example 3.

t m=3 m=4 m=>5 Xexact
0.2 0.8238348176 0.8188954570 0.8187261332 0.8187307530
04 0.6725401705 0.6700704903 0.6703085019 0.6703200460
0.6 0.5461160588 0.54858573916 0.5488237508 0.5488116360
0.8 0.4445624824 0.4495018430 0.4493325192 0.4493289641

1 0.3678794412 0.3678794412 0.3678794412 0.3678794412

Table 11. Approximate and exact values of u(t) for Example 3.

t m=3 m=4 m=>5 Uprget
0.2 —1.6424843911 —1.6396030974 —1.6376087511 —1.63746150615
0.4 —1.36683706763 —1.34172865101 —1.34053832634 —1.340640092071
0.6 —1.11606027940 —1.09589122343 —1.09755757148 —1.097623272188
0.8 —0.89015402646 —0.8971514540 —0.89880715280 —0.898657928234

1 —0.68911830881 —0.74056998220 —0.73541173113 —0.735758882342

Example 4. Consider the fourth test problem

min J = [, (0.5u%(t) + x*(t))dt (22)
u(t) = x(t) — 0.5x(t)

x(0) = 1,x(1) = 0.5018480732

The exact solution of (22) is: u(t) =
0.8641644978.

Table 4 compares absolute errors of presented method wavelets and to existing method
presented in the article [25] with different values of m, see that the absolute errors of the presented
method good result compare to existing other method and indicating a decrease in absolute errors
with increase in the value of m.

3t_,3 3t 3 2
Zeae, () =2~  wherea=2ez(1+€3 and J=

It is clear that the approximate solution of the performance index when m = 8 is in very good
agreement with the corresponding exact solution. Table 13 reports the absolute errors of J obtained
by the proposed method at m = 3,4,5 in comparison to the method in [25] at m = 2,3,4. The
obtained results show that the approximate solutions are more accurate for the proposed method
than the method in [25]. In addition, the fast convergence rate of the proposed method is also
illustrated from the absolute errors results since by increasing the number of the NSW, the errors
decay rapidly.
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Table 13. Estimated values of ] for m = 3,4,5 of Example 4.

J in present method Absolute N J in [25]
Errors
3 0.8647288093 5.6e — 04 2 0.8645390446
4 0.8642180723 53e—05 3 0.8644550472
5 0.8641645689 7.1e — 08 4 0.8643546452

7. Conclusions

The proposed new shifted wavelet functions method has been successfully applied in studying
the approximate solution of OCP in combination with their differentiation operational matrix. The
proposed algorithm converges well. A mathematical technique has been established for solving
quadratic optimal control problem which is based on the NSW functions with the direct technique.
Moreover, by applying both the convergence analysis and error analysis of the presented new shifted
wavelets is worked out and it is illustrated to converge uniformly on it. The obtained NSW based
approximate solutions have been compared with existing methods of solutions as well as the
analytical solutions. The error analysis in the obtained solutions gives the consistency and
competence of the suggested method.

References

1.  SumanS., Kumar A., Singh GK, A new closed form method for design of variable bandwidth linear phase
FIR filter using Bernstein multiwavelets, International Journal of Electronics, 102, 4 (2015) 635-650.

2. Lutfy, O.F., A wavelet functional link neural network controller trained by a modified sine cosine algorithm
using the feedback error learning strategy, Journal of Engineering Science and Technology, 15(1),
(2020)709-727.

3.  Keshavarz E., Ordokhani Y., Razzaghi M., The Taylor wavelets method for solving the initial and boundary
value problems of Bratu-type equations, Appl. Numer. Math. 128 (2018) 205-216.

4. Akram K, Asadollah M. and Sohrab E., Solving Optimal Control Problem Using Hermite Wavelet,
Numerical Algebra , Control and Optimization, 9(1), (2019).

5. Diveev A, Sofronova E, Konstantinov S., Approaches to Numerical Solution of Optimal Control Problem
Using Evolutionary Computations, Applied Sciences, 11(15) (2021)7096.

6.  Zhaohua G., Chongyang L., Kok L., Song W., Yonghong W., Numerical solution of free final time fractional
optimal control problems, Applied Mathematics and Computation, 405(2021).

7. Hans G,, Christian K., Andreas M. and Andreas P., Numerical solution of optimal control problems with
explicit and implicit switches, Optimization Methods and Software, 33:3,(2018) 450-474.

8. Wang Z,, YanLi, An Indirect Method for Inequality Constrained Optimal Control Problems, IFAC Papers
On Line, 50, 1, (2017), 4070-4075.

9. Yang C., Fabien B., An adaptive mesh refinement method for indirectly solving optimal control
problems, Numer Algor (2022).

10. Mohammad A., A modified pseudospectral method for indirect solving a class of switching optimal control
problems, 234, 9, (2022)1531-1542.

11. Mohammad H., A new direct method based on the Chebyshev cardinal functions for variable-order
fractional optimal control problems, Journal of the Franklin Institute, , 355, 12, (2018)4970-4995.

12. Mohamed A., Mohand B., Nacima M. and Philippe M., Direct method to solve linear-quadratic optimal
control problems, (2021), AIMS, 645-663.

13. AskhatD., Elena S., and Sergey K., Approaches to Numerical Solution of Optimal Control Problem Using
Evolutionary Computations, Appl. Sci., (2021), 11(15), 7096.

14. Mirvakili, M., Allahviranloo, T., Soltanian, F., A numerical method for approximating the solution of fuzzy
fractional optimal control problems in Caputo sense using Legendre functions, Journal of Intelligent and
Fuzzy System, 2022, 43(4), 3827-3858.

15.  Viorel M. and Iulian A., Optimal Control Systems Using Evolutionary Algorithm-Control Input Range
Estimation, Automation,(2022), 3, 95-115.

16. Khamis, N. Selamat, H., Ismail, F.S., Lutfy, O.F., Optimal exit configuration of factory layout for a safer
emergency evacuation using crowd simulation model and multi-objective artificial bee colony
optimization, International Journal of Integrated Engineering, 11(4), (2019) 183-191.

17. Behzad K., Delavarkhalafi, A., Karbassi, M. and Boubaker K., A Numerical Approach for Solving Optimal
Control Problems Using the Boubaker Polynomials Expansion Scheme, Journal of Interpolation and
Approximation in Scientific Computing. (2014) 1-18.


https://doi.org/10.20944/preprints202306.0762.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 June 2023 d0i:10.20944/preprints202306.0762.v1

11

18.  Ayat O., Mirkamal M., Solving optimal control problems by using Hermite polynomials, Computational
Methods for Differential Equations, 8, 2, (2020), 314-329.

19. Abed, M.S,, Lutty, O.F., Al-Doori, Q.F., Online Path Planning of Mobile Robots Based on African Vultures
Optimization Algorithm in Unknown Environments, Journal Europeen des Systemes Automatises, 55(3),
(2022) 405-412

20. Sayevand, K., Zarvan, Z. & Nikan, O. On Approximate Solution of Optimal Control Problems by Parabolic
Equations. Int. . Appl. Comput. Math, 8,248, (2022).

21. Rabiei K, Ordokhani Y. A new operational matrix based on Boubaker wavelet for solving optimal control
problems of arbitrary order. Transactions of the Institute of Measurement and Control, 42,10, (20201)858-1870.

22. Afari H, Nemati S, Ganji R. M., Operational matrices based on the shifted fifth-kind Chebyshev
polynomials for solving nonlinear variable order integro-differential equations. Adv Differ Equ., 1, (2021).

23. Vellappandi M., Govindaraj V., Operator theoretic approach to optimal control problems characterized by
the Caputo fractional differential equations, Results in Control and Optimization, 10, (2023).

24. Kafash B., Delavarkhalafi A., Restarted State Parameterization Method for Optimal Control Problems, J.
Math. Computer Sci. 14, (2015) 151 -161.

25. Kafash B., Delavarkhalafi and MKarbass S., Application of Chebyshev polynomials to derive efficient
algorithms for the solution of optimal control problems, Scientia Iranica, 19, 3, (2012)795-805.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.


https://doi.org/10.20944/preprints202306.0762.v1

