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Abstract: In this paper, we report orthogonal fuzzy versions of some celebrated iterative mappings.
We provide various concrete conditions on the real valued functions 7, S : (0,1] — (—oo, 00) for the
existence of fixed-points of (7, S)-fuzzy iterative mappings. We obtain many fixed point theorems
in orthogonal fuzzy metric spaces. We apply (J, S)-fuzzy version of Banach fixed point theorem to
show the existence and uniqueness of the solution. We support these results with several non-trivial
examples and applications to Volterra-type integral equations and fractional differential equations.

Keywords: fixed point; fuzzy metric spaces; (J,S)-fuzzy iterative mappings; fractional
differential equations

1. Introduction

A self-mapping L : B — B is contained a fixed point if L (¢) = o for ¢ € B. It has a great
achievement to attain a unique solution in nonlinear equations. It has increased the domain of
mathematics. In 1960, Schweizer and Sklar [1] initiated the concept of continuous t-norm (in short ctn)
which is a binary relation. In 1965, Zadeh [2] initiated the concept of a fuzzy set (FS) and its properties.
Then in 1975, Kramosil and Michalek [3] initiated the notion of fuzzy metric space (in short, FMS) by
using the concepts of ctn and FSs. In 1994, George and Veeramani [4] presented the further modified
version of FMSs. After that, Grabeic [5] initiated and improved the well known Banach’s fixed point
theorem (FPT) in the framework of FMSs in the context of Kramosil and Michalek [3]. By following the
concepts of Grabeic [5], Gregori and Sapena [6] provided an addition to Banach’s contraction theorem
by using FMSs.

In 1968, Kannan [7] provided a new type of contraction and proved some fixed point (in short,
FP) results for discontinuous mappings. Karapinar [8] established a new type of contraction via
interpolative contraction and proved some FP results on it. So, he provided a new way of research,
and many authors worked on it and proved different FP results on it, see [9-14]. Hierro et al. [16]
proved the FP result in FMSs. Then, Zhou et al. [15] generalized the result of Hierro et al. [16] in
the framework of FMSs. Nazam et al. [17] proved some FP results in orthogonal (¥, ®) complete
metric spaces. Hezarjaribi [18] established several FP results in a newly introduced concept named
orthogonal fuzzy metric space (in short, OFMS). For several important results and applications, see
the following literature [19-24]. Uddin et al. [25] proved several fixed point results for contraction
mappings in the context of orthogonal controlled FMSs. Ishtiaq et al. [26] extend the results proved in
[25] in a more generalized framework named orthogonal neutrosophic metric spaces. Recently, Uddin
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et al. [27] and Saleem et al. [28] derived several fixed point results and applications in the context of
intuitionistic FMSs.

Inspired by the results in [8,15-18], we aim to establish FP results in the framework of an OFMS.
We divide this paper into four main parts. The first part is based on the introduction. In the second
part, we will revise some basic concepts for understanding our main results. In the third part, we give
some FP results in OFMS and some examples to illustrate our results. In the 4th part, we provide an
application to Voltera-type integral equations and fractional differential equations.

2. Preliminaries

In this section, we provided several basic definitions and results.

Definition 1. [15] A binary operation x : H x H — H (where H = [0,1]) is called a ctn if it varifying the
below axioms:

(1) c%x0=0x0 andox (0 xw) = (0% 0) xw forall 0,0, w € H;
(2) * is continuous;

(3) ocx1=cforalloc € H;

(4) ox0 <wx*xwwheno < wandb < @, witho,w,w,® € H.

Definition 2. [15] A triplet (B, 9, %) is termed as FMS if * is ctn, B is arbitrary set, and ¢ is FS on
B x Bx (0,0) fulfilling the accompanying conditions for all 0,0,w € Band ¢, @ > 0.

(i) 9 (c,0,¢) > 0;
(ii) 9 (0,0,6) = 0ifand only if o = 6;
(iii) 9(c,0,5) =0(0,0,¢);
(iv) ¥ (0, w,c+ @) >0 (0,0,6) x0(0,w,@);
(v) ¥(c,6,.):(0,00) — [0,1].

Example 1. Let B = Rt and ¢ (0,0,¢) = , consider a ctn as m x n = mn. Then, B is FMS.

Definition 3. [5] A mapping L : B — B satisfying the following inequality,
o (Lo,L6,kg) > 0 (c,0,6) Vo,0 € B,
is called a fuzzy contraction with k € [0,1).

Definition 4. [18] Let (B, 9, ) bea FMS and L€ B x B be a binary relation. Suppose 3 0y € B such that
oo L ooro L oy forall o € B. Then we say that BB is an OFMS. We denote OFMS by (B, 9, %, L) .

Definition 5. [18] A mapping L : B — B verifying the below inequality,
O (Lo, L6,kg) > 0 (0,0,6) Yo,0 € B, witho L9,
is called an orthogonal fuzzy contraction(in short, OFC) where (B, 9,*, L) is an OFMS, and k € [0, 1).

Theorem 1. [18] Assume that (B,9,%, L) is an OFMS. Let a mapping L : B — B be a continuous
L -preserving. Thus L has a unique FP u € BB. Furthermore,

lim ¢ (L"0,L0,g) =1,

n—o00

forallu € B.

Remark 1. The fuzzy contraction is an orthogonal fuzzy contraction but the converse may not be held
in general.

doi:10.20944/preprints202306.0749.v1
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Example 2. Suppose B =|0,10) with FMS © as defined as in Example 1, then the (B,9, x, L) represents a
FMS. Define 1. C B2 by
clOifod <oVvo.

Then (B, 8,*, L) is an OFMS with ctn o % 0 = 6. Let the mapping L : B — B is given by

) §forc <3
L(‘T)_{ 8fora>3 }

We note that
0(L(4),L(3),(04)1) > ©8(453,1)
4(0,1,(04)1) > ©¢(43,1)
0.2857 > 0.5.

This is a contradiction, so, L is not a fuzzy contraction. However, L is an orthogonal fuzzy contraction.

Lemma 1. Let (B, 9, %) be a FMS and {a, } C B be a sequence satisfying limy,_sco © (an, ay+1,6) = 1. If the
sequence {ay } is not Cauchy, then there are {a,; },{a,} and e > 0 such that

lim (anK+1/amK+1/ g) = (1 + 8) . (21)
k—o0
klglolo 19 (anK/amK’ g) = kli)nc}o 19 (aﬂK+1/amK/ g) = k11~1>l;10 19 (aﬂ[(/ amKJrl/ g) = 1 + €. (22)

Proof. Let (B, 9, ) be a FMS. Given {a,} is not Cauchy and limy, ;e ¢ (a4, a,4+1,6) = 1. Thus, for
every € > 0. There exists a natural number k¢ such that for smallest m > n we have

O (ay41,am,¢) > 1+eand O (a,41,am,¢) <1+eVn,m > k.

As a result, we construct two subsequences of {a,}; {a,;} and {a,,} verifying the following
inequalities

O (Angs1, Amg, ) > 1+ eand O (a1, myg1,6) < 14 € Vi, my > ko.
By axiom (iv) of the FMS, we have the following information:

1+e¢ 1 (anK+1/ amK+1/ g)
4 (anK"‘l’ Ay g) 0 (amK’ Amg+1, g)

(14 €).0 (amg, Amg+1,6) -

v v Vv

This implies that,

kh—];l;lo (anK+1/ am[(+1l g) = (1 + E)'

Again by utilizing axiom (iv) of the FMS, we have

4 (anKJrlr A +-1s Q)
O (Amy, Amg11,6)

> O (@ng+1,Am, 6) = 1+ e

We get

Since,
Cf (a”K+1/amK’ g) >0 (anKJFl’ Angs (;) B (ang, my, 6)
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we have the following inequality:

1% (anK+1/ Amy s g)
% (an[(+lr anK/ g)

v

O (Any, Amy, C)

> O (amgs Ang+1,6) O (A1, ang, G) -

That is
kh—l;];lo 1 (an[(+l/ amK+1r G) =1+e
Since,
1+e> 1 (aTlK+l/amK+1/ g) 2 1% (anK+1/ ui’l[(/ g) N (al’lK/ amK+1/ G)
1+e¢
—— > Ha ,a ,
19 (at’lK-‘rll aﬂ[(l g) o ( K mK+l g)
> v (anK/anK+1/ g) 0 (anK+1/amK+1r Q)

That is

O (ang, amy, ) = (1+¢).
This completes the proof. [

Definition 6. [18] The OFMS (B, 8, x, L) verifying the property (R) is called L - regular.

(R) For any O- sequence {0, } C B converging to ¢, we have either o_Loy, or 0, Lo forall n € N.

3. Main Results

3.1. Banach Type (J, S)-Orthogonal Fuzzy Interpolative Contraction

In this section, we present the new results for orthogonal fuzzy interpolative contractions (OFIPC)
involving the functions 7, S : (0,1] — R.

Definition 7. Let J,S : (0,1] — R be two functions. A mapping L : B — B defined on OFMS (B, 9, %, L)
will be called a Banach type (J, S)-OFIPC, if there exists v € (0, 1] verifying

T (8(Lo,L6,)) > S (8(0,6,6))", (33)

forall (c,0) € B,® (Lo, L6,g) > 0.

lo—6]
Example 3. Let B =[1,7) and define the FMS 0 (v,0,¢) =e ¢ ,Let 1. C 32 defined by
ocgloifod <{o,0}.
Then (B, 8, *, L) is OFMS with m * n = mn. Define L : B — B by
5ifl <o <2,
L(o)={ 31if2<c<3,
18if3<o <7.

Define 7,S : (0,1] — Rby

1 - 1
_ m1f0<t<1 _ m1f0<t<1
J ) { lif t=1 and & 2if t=1 '

doi:10.20944/preprints202306.0749.v1
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Case 1: Here, L is a Banach type (J, S)-OFIPC. But,

N|—=

(9 (L1,L2,k1)) (9(1,2,1))

19(5,3.1,(9 1) > (8(1,2,1))
87‘55@” > (e112>%

0.0224 > 0.6065.

v

N|=

This is a contradiction. Hence, L is not Banach-type FIPC.
Case 2: Here, L is a Banach type (J, S)-OFIPC. But,

NI—=

8 (L1,L3,1)

v

(19(1,3,1))
19(5,1.8,&1) > (8(1,3,1))

1
|5—1.8 1-3] \ 2
e 05 > e 1

0.0017 > 0.3678.

\Y
Nf—=

This is a contradiction. Hence, L is not Banach type OFIPC.
Case 3: Here, L is a Banach type (J,S)-OFIPC. But,

Nf—=

& (L1,L4,k1)

1
19(5,1.8,21>
1
|5-1.8| 14| \ 2

e 05 > (e_ T )

0.0017 0.2231.

Vv

(0(1,41))

IV
Nf—

(9(1,41))

V

This is a contradiction. Hence, L is not Banach type OFIPC.

Hence in general, let 0,0 € B such thato L foro L 6

j(ﬂ(L(T,LQ/Q)) |10'—L9| L|C € |
1

> — —
| S | 8(19(0/6/G))2

Therefore, the Banach contraction is fulfilled.
For L (orthogonal relation), two functions (7, S) : (0,1] — R, and self-mapping L, we write the
below properties:

(i) forevery oy € B, there is 07 = L (0p) such thatoy L oporop L oy;
(i) J is non-decreasing and for every 1 >r >t > 0,onehas S (r) > J (t);
(iii) lim,_,;- infS (s) > limy_,; - sup (J (s));
(iv) if t € (0,1] such that J (t) > S (1);
() sup, .. J (0a) > —o0;
(vi) limg, sinfS (0,) > J (8) V6 € (0,1);
(vii) if {J (yx)} and {S (yx)} are converging to same limit and {7 (y»)} is strictly increasing, then
limy o yn = 1;

(vii) J (agag) > J (02) and S (04) > T (04) Voo € (0,1).
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The next two theorem deals with Banach type (7, S)-OFIPC.

Theorem 2. Suppose L be a transitive orthogonal relation (in short, TOR), then, each 1- preserving
self-mapping (in short, PSM) on a L- reqular OCEMS (B, 9, , L) satisfying (3.3) and (i)-(iv), have a FP in .

Proof. Choose an initial guess oy € B s.t. 09 L 07 or 07 L 0y for every 07 € B, then by utilizing
the L-preservation of L, we build an OS {c},} s.t 0, = L (0;,-1) = L" (0p) and 0,,_1 L 0, for every
n € N. Note that, if 0, = L (0;) then 0, is FP of L ¥ n > 0. We let that 0, # 0,11 ¥V n € NU {0}. Let
Yn = 0 (0n, 0y+1,6) V1 > 0. By the first part of (ii) and (3.3), we have

J (yn) >J (l9 (Lan—llLUnr Q)) > S ((19 (Un—llan/ g))v) .
By utilizing (ii), we have
‘-7(]/") >S ((yn—l)v) >J ((yn—l)v)- (3.4)

Since, J is non decreasing, one gets y,, > y,_1foreveryn > 1, wehave L < 1, thatis lim, o ¥ =
L+.If L < 1, by (3.4), we get the following information:

J (L+) = lim J (yn) > lim infS ((yu—1)") > lim infS (cn).

oa—L+

So this contradicts (iii), so L = 1.
The sequence {0}, }is Cauchy: Let {0} } is not OCS, so that the following lemma 1, there exist two
subsequences {0y, }, {0, } of {0} and € > 0 such that (2.1) and (2.2) satisfied. From (2.1), we deduce

8 (Tug 41, Omg+1,6) > (14¢).
Since, 0, L 0,41 V n > 0, so by transitive of L, we have oy, L o7y, Vk > 1,
T (8 (041, Om+1,6)) = T (8 (LOug, Lomy,6)) = S (8 (0ug, O 6))°)
If 04, = 8 (Cug41, Omg41,6) s O, = O (Tng, Omy, G), we have
T (04) = 8 ((ow,)")  forall k > 1. (3.5)
By (2.1), we have limy_,, 05, = (1 +¢) x and (3.5) implies

auii(r?ﬂ) sup J (0g,) > I}g?o sup J (0q,) > l}Ln;o infS (((Thk)v) > (fljr_)noinfS (0a) - (3.6)

The information obtained in (3.6), contradicts the assumption (iii) and thus stamping the sequence
{on} as OC in the OCFMS (B, 8, *, L) hence there is 0, € B so that 0, — 0, as n — oo. Since,
(B,9,%,1)is a L-regular space, so, we write 0, L 0y, or 0, L 0,. We claim that 9 (0,, Loy, ¢) = 1. If
8 (041, Log, ¢) > 1, then we have (3.3)

J (8 (0ns1,Loa,6)) = T (8 (Low, Low,6)) = S ((8(0n,0a,6))°)
> T ((89(on,00,6))") -

By the first part of (ii), we get

9 (UnH,Laa,gk) > (8 (0n,04,6))° .

doi:10.20944/preprints202306.0749.v1
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Applying limit n — oo, we obtain ¢ (0,, Loy, ¢) > 1. This implies that ¢ (04, Loy, ¢) = 1. Hence,
0y, = Loy. O

Theorem 3. Let | bea TOR, then, every |- PSM defined on a L- reqular OCFMS (B, 9, x, L) verifying (3.3)
and (i), (iii), (v)-(viii), admits a fixed point in B.

Proof. Choose an initial guess 0y € B s.t. 09 L 01 or o7 L 0y for each 07 € B, then by utilizing
the L-preservation of L, we build an OS {c}} s.t 0, = L (0,,—1) = L" (0p) and 0,1 L 0y, for every
n € N. Note that, if 0, = L(0,) then o, isFPof LY n > 0. Let 0y, # 0,41 Vn € NU{0}. Let
Yn = 0 (0n,0y4+1,6) ¥ 1 > 0. By the first part of (ii) and (3.3), we have

J (9 (0n,0041,6)) J (8 (Loy_1,Loy,6)) > S ((19 (‘Tn—lfanfg))v)

>
> ‘7(19 (Un—llanlg))v
> J (O (04-1,0u,6))- (3.7)

The inequality shows that (3.7) shows that {J (9 (¢;,—1,0%,¢))} is strictly increasing. If it is not
bounded above, then from (v), we obtain supy, . v~ J (8 (0u—1,0u,¢)) > —oo. This implies that

lim sup J (9 (0y—1,0u,6)) > —o0.

19(0},71,0'”,(;)—)8-&-

Thus, limy—e 9 (0,,_1,04,¢) = 1, otherwise, we have

lim Supj (19 (O'n_l,O'n/ G)) = -

9(0y—1,00,6) e+

(i.e., a contradiction (v)). If it is bounded above, then {J (¢ (¢,,—1,0%,¢))} is a convergent sequence
and by (3.7), {S (9 (0,,—1,04,¢))} also converges to the same limit point. By using (iii), we have
lim, 00 @ (03,-1,0u,6) = 1. Hence, L is asymptotically regular (in short, AR).

Now, we assert that {0, } is CS, So by Lemma 1 3 {0y, }, {0, } and € > 0 such that (2.1) and (2.2),
we deduce 8 (011, O 11,6) > (1+¢). Since 05, Loy 1 V 1 > 0 so by transitivity of L, we obtain
On, L o, Letting ¢ = 0, and e = 03, in (3.3), one writes for allk > 1,

T (9 (1,0 41,6)) = T (9 (Lo, Loy, 6)) = S (9 (00 6))° ) -
If 0 = O (g1, Omg+1,6), Opk = O Ty, Oy, ), we have
T (o) = S ((ow)?) , forall k > 1. (3.8)
By (2.1), we have limy_,o, 03 = (1 +¢) and (3.8) implies

lim supJ (0;) > lim sup J (o) > lim infS ((0)°) > lim infS (). (3.9)
oa— (1+¢) k—o0 k—o0 0,—0

The information obtained in (3.9), contradicts the assumption (viii) and thus stamping the
sequence {0, } as OC in the OCEMS (B,9,%, ). The completeness of the space ensures the
convergence of {0y, }, let it converges to i € B.

Case 1. if 9 (0;,41,Li,¢) = 1 for some n > 0, Then
19 (ll LZ/ Q) 2 19 (lr Un+l/ g) 19 (0-11+1/ LZ/ Q)

taking limit n — oo on both sides, we have ¢ (i,Li,¢g) > 1. This implies that ¢ (i, Li,g) = 1.
Hence, i = Li.

doi:10.20944/preprints202306.0749.v1
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Case 2. foralln >0, ¢ (0,41, Li,¢) < 1, then by _L- regularity of B, we find 0, L iori L 0,. By (3.3), one
writes
J (8 (0441,Li,6)) = T (8 (Low, Li,¢)) > S ((8 (0w, i,6))°) foralln > 0.

By taking 0, = ¢ (0,41, Li,¢) and b, = 9 (0,1, ¢), one writes

J (o) > S ((by)") foralln > 0. (3.10)

Note that 0, = d and b, — 1 as n — oo. Applying limits on (3.10), we have

limsup J (i) > lim sup J (0x) > lim inf S ((bn)”) > limsup S (7).

i—0 n—»oo i—0

This contradicts (v) if § > 1. Thus, we have 9 (i, Li,¢) = 1, thatis i is a FP of L.
O

Example 4. Let B ={1,2,3,4,5,6,7,8} and define the FMS 9 (v,0,¢) = ﬁ. Let L C B2 defined by

clLOifod <oVoforo #6.

Then (B, 9,*, L) is OFMS with o x 8 = ¢f. Define L : B — B by

5ifc=5
L = .
() { o — 1 otherwise }

Define 7,S : (0,1] — Rby

1 - 1
_ m1f0<t<1 _ m1f0<t<1
J () { lif t=1 and & 2if t=1 '

Case 1: Here, L is a Banach type (J,S)-OFIPC. But,

8 (L2,L1,1) )
9(1,51) > (8(2,1,1))

1
S S TR (R S
1+]1-5]) = \1+[2-1]

02 > 0.7071.

\%
—~
S
—~
\l\)
-
—_
~

Which is a contradiction. Hence, L is not Banach-type FIPC.
Case 2: Here, L is a Banach type (J, S)-OFIPC. But,

9 (L3,11,1)
8(2,5,1)

1 1 2
- > -
1r2-5]) = x[3-1]

025 > 0.57771.

(AVARRV]
— —
>
—~ o~
W w
N N

—_ =
s g

—_ =
SN— SN—
= NI—=

Which is a contradiction. Hence, L is not Banach-type FIPC.

Since, condition of Theorem 2 (ii) is hold because for every t € (0,1) S (t) > J (t) also all the
remaining conditions of Theorem 2 are hold.

doi:10.20944/preprints202306.0749.v1
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3.2. Kannan Type (J, S)-Orthogonal Fuzzy Interpolative Contraction

Definition 8. Let 7, S : (0,1] — R be two functions. A mapping L : B — B defined on OFMS (B, 9, %, L)
will be called a Kannan type (J, S)-OFIPC, if there exists v € (0, 1) verifying

T (8 (L, L9,6)) = S ((8(,La,g))” (9(6,L6,6))' 7). (3.11)
forall (¢,0) € B, 9 (Lo, L6,g) > 0.

Theorem 4. Let | be a TOR, then, every L- PSM defined on a - regular OCFMMS (B, 9, *, L) satisfying
(3.11) and (i)-(iv), have a fixed point in B.

Proof. Choose an initial guess oy € B s.t. 0p L 07 or 07 L 0y for every 07 € B, then by utilizing the
L -preservation of L, we build an OS {0, } such that o, = L (¢;,_1) = L" (0p) and 0;,_1 L 0y, for every
n € N. Observe that, if 0, = L (0y,) then 0, isFPof LV n > 0. Let oy, # 0,11 V n € NU {0}. Let
Yn = 0 (00, 0y+1,6) V 1 > 0. By the first part of (ii) and (3.11), we have

j (yn> > j (19 (Lan—lrLUn/ Q)) > S ((ﬁ (Un—lrLUn—ll g))v (19 (O'nl LUnr g))liv) .

By utilizing (ii), we have

T ) 28 (a0 ) ™) > T (1) ) ). (3.12)

Since, J is non decreasing, one gets y,, > y,,_1for every n > 1, we have L < 1, thatis lim, e ¥ =
L+.If L <1, by (3.12), we obtain the following information:

T (Lt) = lim T (ya) > Jim inf S ((yu-1)” (v)' ™) > lim infS (c0).

So this contradicts (iii), hence L = 1.

The sequence {0, }is Cauchy: Assume that {0, } is not CS, so that the following lemma 1, there
exist two subsequences {0y, }, {0, } of {o4} and € > 0 such that (2.1) and (2.2) satisfied. From (2.1),
we deduce

Y (UnK+1/ Omy+1s Q) > (1 + €) :

Since, 0, L0y, 1 ¥ n > 0, so by transitive of 1, we get 0y, Loy, Vk > 1,

v

T (O (One1,0ms1,6)) = T (0 (Loug, Loy, €)) = S (8 (e L, 6))° (8 (e Lo, 6))' )

S ((19 (‘T"K' Tng+1s g) )v (19 (OmK’ Omg 17 g) ) 1_0) :

v

If 0 = O (Cug+1, Omg+1,6), O, = O (Tngs Ong41,6), 0, = O (Omge, Oye+1,6), we have
T (@) = 8 ((o0,)" (06)" ") ¥ = 1. (3.13)
By (2.1), we have limy_,, 03 = (1 + ¢) and (3.13) implies

lim sup J (0y) > klim sup J (ox) > klim infS ((g'bk)v (g'ck)l—v) > lim inf S (o). (3.14)
—00 —00

o—(1+¢) 0x—0

The information obtained in (3.14), contradicts the assumption (iii) and thus stamping the sequence
{on} as OC in the OCFMS (B, 9, %, L) hence, there is 0,, € B so that 0, — 0, as n — co. Since,

doi:10.20944/preprints202306.0749.v1
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(B,9,%,1)is a L-regular space, so, we write 0; L 0y, or 0, L 0,. We claim that & (0,4, Loy, ¢) = 1. If
8 (041, Loa, ¢) > 1, then (3.11)

T (@ (0w, Low,6)) = T (8 (LowLow,6)) 2 S ((8 (0w, Lou, )" (8 (0, Low,)) )
> 7 ((8 (0n Lo )" (8 (0 Low6)' ™)

Z j ((19 ((Tn/(Tn-i-l/ g))v (l9 (Jal LUal g))‘liv) .
By the first part of (ii), we get
8 (041, Low, ke) > (8 (0, 0u41,6))° (9 (0, Lau, ¢))' .

Applying limit n — oo, we obtain @ (0y, Loy, kg) > 1. This implies that ¢ (05, Los, ) = 1. Hence,
O = LO',;. D

Theorem 5. Let | be a TOR, then, every L-PSM defined on a - reqular OCEMS (B, 9, *, L) satisfying
(3.11) and (i), (iii), (v)-(viii), have a fixed point in B.

Proof. Choose an initial guess 0y € B such that oy L 07 or 07 L 0 for every o7 € B, then by using
the _L-preservation of L, we build an OS {cy} s.t 0, = L (0,,—1) = L" (0p) and 0,1 L 0y, for every
n € N. Note that, if 0, = L(0y,) then 0, is FP of LV n > 0. Let 0, # 0,41 ¥V n € NU{0}. Let
Yn = 0 (00, 0y+1,6) V1 > 0. By the first part of (ii) and (3.11), we have

T @(0n0ni1,6)) = T (8(Lowr,L0n,6)) = S (9 (01, L0u-1,6))° (& (o Lon, )"
> 8 ((90n1,0,0)° (8 (00, 0041,6)' )
> ((19 On-1,01,6))° (ﬁ(Un,UnH,G))liv)
> T (8(04-1,0n,6))- (3.15)

The inequality shows that (3.15) shows that {J (8 (0,—1,0%,¢6))} is strictly increasing. If it is not
bounded above, by (v), we obtain SUPY(g, 1 00c)>e J (9 (0y-1,04,6)) > —oo. This implies that

li e
oo, m sup T (8 (0u-1,0,€)) > —o9

Thus, limy 0 0 (07,1, 0%, ) = 1, otherwise, we have

lim sup J (0 (0y—1,0u,6)) = —0
0(0y-1,00,6) e+
(i.e., a contradiction (v)). If it is bounded above, then {J (¢ (0,—1,04,¢6))} is a CS and by
(3.15), {S (9 (0y,-1,0u,6))} also converges to the same limit point. Thus, by (iii), we obtain
limy, 00 ¥ (07y—1,04,6) = 1. Hence, L is AR.
Now, we assert that {¢;, } is CS, So by Lemma 1 there exist { oy, }, {0, } and ¢ > 0 such that (2.1)
and (2.2), we examine that & (0, +1, O 11,6) > (1 +¢€). Since 03, Loy, 41 for all n > 0 so by transitivity
of 1, we have 0y, Loy,. Letting ¢ = 0, and e = 0y, in (3.11), one writes for all k > 1,

T (8 @1, 0m1,6) 2 T (8 (Low, Lo, €)) > S ((8 (0 Lo, €))" (8 (0m, Lome, €)'

§ (8 (0 1,))” (8 (@, 0 11,6))' )

A%
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If 0 = O (Cug1, Omg+1,6), O, = O (Tngs Ong+1,6), 0, = O (Omges Oy+1,G), we have
T (@) = 8 ((o0,)" (06)" ") ¥ = 1. (3.16)
By (2.1), we have limy_,, 0 = (1 +¢€) x and (3.16) implies

lim sup J (0z) > klim sup J (ox) > klim infS ((Ubk)v (g'ck)l—v) > lim inf S (o). (3.17)
—00 —00

oa—(1+¢) 02—0

The information got in (3.17), contradicts the assumption (viii) and thus stamping the sequence
{on} as OC in the OCEMS (B, 9, *, L). The completeness of the space ensures the convergence of
{on}, letit converges toi € B.

Case 1. if 9 (0,41, Li,¢) = 1 for some n > 0, Then
8 (i, Li,g) > 0 (i,0u11,6) -0 (0ns1, Li,6)

taking limit n — oo on both sides, we have ¢ (i,Li,¢g) > 1. This implies that ¢ (i, Li,g) = 1.
Hence, i = Li.

Case 2. foralln > 0, ¢ (0,41, Li, k) < 1, then by L- regularity of A, we find 0, L iori L oy. By (3.11),
one writes

T (8 (0ys1,Lix)) > T (8 (Low, Li,x)) > S ((ﬁ(an,Lan,K))v (9, Li,x))l_v) for all n > 0.

By taking 0y, = ¢ (03,41, Li, x) and b, = ¢ (03, 041, k), One writes

T (@) = 8 ((ba)* (9(i, Li,x))' ™) foralln > 0, (3.18)

Take 6 = ¢ (i, Li, k). Note that 0, — d and b, — 1 as n — oo. Applying limits on (3.18), we have

limsup J (i) > lim sup J (o) > lim inf S ((bn)v (5)1_2’) > limsup S (i).

i—0 n—oo i—0

This contradicts (v) if § > 1. Thus, we have ¢ (i, Li, k) = 1, that is i is a fixed point of L.
O
3.3. Chatarjea Type (J, S)-Orthogonal Fuzzy Interpolative Contraction

Definition 9. Let 7, S : (0,1] — R be two functions. A mapping L : B — B defined on OFMS (B, 9, %, L)
will be called a Chatarjea type (J, S)-OFIPC, verifying

7(0(10,16,6)) = S (/10 (0, L0,0)) (00, Le,c) ), 319)

forall (o,0) € B,® (Lo, L6,g) > 0.

Theorem 6. Let L be a TOR, then, every L- PSM defined on a - reqular OCFMS (B, 9, %, L) verifying
(3.19) and (i)-(iv), have a fixed point in B.
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Proof. Chasing the starting steps taken in proof of Theorem 4, we have

Y

T = T Le1Len0) =S (0o Lene) (0o La,0)

> 5 (/00 1,10,0) @ )

> 5 (V@@ La,))

> s(\/m> (3:20)
> 5 (10 00n1,0,0) (0 (en,i1,))). 621

Suppose that ¢ (0;,_1,0%,6) > 0 (0y, 0y41,¢) for some n > 1, then by (3.21) and (ii), we have
T (yn) = 8 (yn) > T (yn)- (3.22)
The information obtained in (3.22) contradicts the definition of .7, therefore, we go with
T (Yn) = S (Yn) > T (yn),¥n > 1.

Now crawling through the proof of Theorem 4, we reach to the statement 0, — 0 as n — oo, and
then taking the support of _L-regularity of the space (B, 9, x, L), we achieve that o, L ooro L ;. We
need to have ¢ (0, Lo, g) = 1. Letting ¢ (0,41, Lo, ¢) < 1 and using (3.19),

T @ log) = 9o Lo) =S (/0 L0.0) (000 Lonc)) )
5 (/1@ L0,6) 0 0.:1,) )
> 7 (Y00, @ 0a1,9)).

v

Given that the function J satisfies assumption (ii), thus

8 (0us1,L0,6) > /(8 0, Lo,€)) (8 (0,0u1,6)):

The last inequality implies that @ (o, Lo,g) > 1/? (0, Lo, ) (for large n). Hence, ¢ (0, Lo,g) =1, or
o=~Lo. O

Theorem 7. Let L be a TOR, then, every L- PSM defined on a - reqular OCFMS (B, 9, %, L) verifying
(3.19), (i), (iii), and (v)-(viii), have a fixed point in B.

Proof. Chasing the steps taken in the proof of Theorem 5 and Theorem 6, we achieve the objective. [

3.4. Ciric-Reich-Rus Type (J, S)-Orthogonal Fuzzy Interpolative Contraction

Definition 10. Let 7, S : (0,1] — R be two functions. A mapping L : B — B defined on OFMS (B, 9, %, L)
will be called a Ciric-Reich-Rus type (J,S)- OFIPC, if there exists v, 11 € [0,1) verifying

J (8 (Le,L0,6)) = S ((19 (¢,0,6))" (8 (0, Le, )" (8 (6, L9r€))1_v_’7), (3.23)

forall (o,0) € B,®(c,Lo,g) > 0wherev+n < 1.
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The requirements for the presence of a fixed-point of Ciric-Reich-Rus type (7, S)-OFIPC are
stated in the following two theorems.

Theorem 8. Let L be a TOR, then, every L-PSM defined on a L- reqular OCFMS (B, 9, *, L) verifying
(3.23) and (i)-(iv), admits a fixed point in B.

Proof. Chasing the starting steps taken in the proof of Theorem 4, we have

V

J (yn) = T (O(Loy_1,Low,¢))

v

v

S
S
S

v

(
(¢
(8 @1, 6))" (8 1,00, €))" (8 0 r1,6) )
((19 (0'”71’0'”’ g))v_'? (19 (Un/ On+1, g))l_v_”>

J ((19 (G100, €))7 (9 (an,anﬂ,g))l*”*’f) . (3.24)

V

By (3.24) and monotonicity of J implies
(:‘/n)vﬂl > (]/n_l)wrﬂ ,Vn > 1.

Now taking steps as in Theorem 4, we get 0, — t as n — oo, and with the support of - regularity
of (B,9,%,L), wehaveo, L tort L 0,. We need to prove ¢ (t,Lt,g) = 1. Letting 9 (0,41, Lt,¢) <1
and using (3.23), we have

T (O lte) 2 T (4o Lte)
> S ( (0u,t,6))° (8 (04, Loy, ¢))" (0 (t,Lt,g))l—v—ﬂ)
> S ( (01, t,6))° (O (0u,0011,¢))" (8 (t,Lt,g))“U*’?)
> J ( (0, t,6))° (O (0n, 0011,6))" (O (¢, Lt,g))lfvfﬂ) ‘
Using (ii), we get

0 @i, Lt €) > (8 (0rt,))° (8 (@, i1,€))" (8 (4L1,6)' 7.

Now for large n, the last inequality implies that & (f,Lt,¢) > 1. Hence, ¢ (t,Lt,¢) = 1, or
t=Lt. O

Theorem 9. Suppose L be a TOR, then, every - PSM defined on a |- reqular OCEMS (B, 8, *, L) verifying
(3.23), (i), (iii), and (v)-(viii), have a fixed point in B.

Proof. Chasing the steps taken in the proof of Theorem 5 and Theorem 8, we complete the proof of
Theorem 9. O
3.5. Hardy-Rogers Type (J, S)-Orthogonal Fuzzy Interpolative Contraction

Definition 11. Let 7, S : (0,1] — R be two functions. A mapping L : B — B defined on OFMS (B, 9, *, L)
will be called a Hardy-Rogers type (J, S)-OFIPC, if there exists v, 11,7, € [0,1) verifying

(9(0,0,¢))" (9 (0, Lo, 6))" (8 (6,L8,¢))" ) , (3.25)

T ot e) =S ( (8(0,L0,6))" (8(60,La, )" * 170

forall (o,0) € B,®(Lo,L0,g) > 0wherev+n+vy+6 <1
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lo—6]

Example 5. Let B =[1,7) and define the FMS ¢ (¢,0,5) =e ¢ ,where Let L C B? defined by
cloifod <oVeforo#6.

Then (B, 9, *, L) is OFMS with m * n = mn. Define L : B — B by

5ifc=1
L = .
(o) { o — 1 otherwise }

Define 7,S : (0,1] — R by

1 1
_ nrif0<t<l1 _ sz0<t<1
T (1) { Vi t=1 and S 2if i1

Case 1: Here, L is a Hardy-Rogers type (7, S)-OFIPC. But,

(9(2,1,1))%% (9 (2,2,1))%% (8 (1,L1,1))*®
(2, Ll, 1))0.04 (19 (1, LZ, 1))170.0170.0270.0370.04

8 (L2,L1,k1) > (
1 (2,1,1))%% (8 (2,1,1))%% (8 (1,5,1)) >
0 (1,5,12) (©(2,5,1))"% (8 (1,1,1))"

12| 0.01 e 0.02 _j1-5 0.03
) - TR
e 05 >

(67'2%5‘)0' 4 (1)0.9

0
L%

%

0.0003 > 0.7632

This is a contradiction. Hence, L is not Hardy-Rogers type OFIPC.
Case 2: Here, L is a Hardy-Rogers type (7, S)-OFIPC. But,

8(L3,11,K1) ( (8(3,1,1))°" (8(3,L3,1))"" (8 (1,L1,1))* )

(8 (3,L1,1))% (9 (1, L3, 1))}~ 001-0.02-0.03-004

001, g\ 002 , o5\ 0.03
O G o I Gy
~ 05

e = 5.5\ 0.04 /o109

() )

0.0025 > 0.3104.

This is a contradiction. Hence, L is not Hardy Rogers type OFIPC.

The requirements for the presence of a fixed-point of the Hardy-Rogers type (7, S)-OFIPC is stated in
the following two theorems.

Theorem 10. Let L be a TOR, then, every L- PSM defined on a L- reqular OCFMS (B, 9, x, L) verifying
(3.25) and (i)-(iv), have a fixed point in B.

Proof. Assume o0y € B such that oy L o7 or 03 L 0y for every 073 € B, then by utilizing the
L -preservation of L, we build an OS {c,} s.t 0, = L(0,—1) = L"(0p) and 0,,_1 L 0, for every
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n € N. Note that, if 0, = L (0y,) then 0, is FP of L for all n > 0. Let 0}, # 0,41 for all n € NU {0}. Let
Yn = 0 (0n, 0y41,6) V n > 0. By the first part of (ii) and (3.25), we have

j(yn) Z LUn lrLUn/ ))
Un 1/0'71/ ))Zi (19 0;

9 (0y—1,Low, g)

Un 1, 0n, ))v (19 0'151—110'nlg))17 (19 (0'11/0-71—',-1/(59))/y
‘Tn 1/‘7n+1/€) (19(0'n/0'n/€)>170777777

J (8
( (0 wm 6))° (9 (0u-1,0u,6))" wwn,o—nﬂ,g))”)
s(w
T ()

n—1, Loy 1, G))W (l9 (Un’ Loy, g))’Y
2(9 (0, Loy _1,¢)) 071770

v
0}

v
)

9 (01, 0n41,6))° (1) 70717770

OI’l 1/Un/ ))U (19 (On_(lg’ Unr g))n (19 (Un/ gn+1/ g))ry
Un 1,0n, )) (l9 (Jn/Jn+l/ Q))
1) v+17+5 )7+5)

v
)

>

n—

> - v+r]+5 )7+§> ' (3.26)

Suppose that v, > y,_1 for some n > 1. By monotonicity of 7 and (3.26), we have ()" >
(yn)7+‘5. This is not possible. Consequently, we obtain y, > y,_1 V n > 1. Now taking steps as taken
in Theorem 4, we deduce 0;, — u as n — oo, and with the support of | -regularity of (5, 9, *, L), we
have 0, L uworu L 0,. weneed to prove that ¢ (u, Lu,¢) = 1. Letting ¢ (0,41, Lu,¢) < 1 and using
(3.25), we have

J (8 (0nt1,Lu,¢)) = (19 Lo, Lu, g))

Un,u )’ (19(Un,L0n,§))” (8 (u,Lu,g))"
& (o, Lu, g)) (8 (u, Loy, )t 70717770

( (0n,1,6)) (ﬂ(an,am,g))”w(u,Lu,w)

S 1 — —

= ¢ (0w, L, 6))° (8 (1, 041, 6)) 717 77°
> j 0'1/111/[ g (19 (Unran+1/ g))’] (l9 (1/[, Lu’ g))’y

8 (0, Lit,6))° (8 (1,01, 6)) 71770

Using (ii), we get

(8 (o 1,6))" (8 (0, 03:1,6))" (8 (1, L, )7
”"”*1’L”’9)>< (8 on Lt ) 8 (1, 1,€)) 1 77 )

Now for large 1, the last inequality implies that ¢ (1, Lu,g) > 1. Hence, ¢ (u,Lu,¢) = 1, or
u=_Lu. O

Theorem 11. Let L be a TOR, then, every L-PSM defined on a - reqular OCFMS (B, 9, %, L) verifying
(3.25) and (i), (iii), (v)-(viii), have a fixed point in 3.

Proof. Following the steps as taken in Theorem 5 and Theorem 10, the proof is obvious. [

4. Applications

In this section, we discuss the applications of fractional differential equations and Volterra-type
Fredholm integral equations.
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4.1. An Application to Fractional Differential Equation

A variety of useful fractional differential features were postulated and searched by Lacroix (1819).
Caputo and Fabrizio announced [23] a new fractional technique, in 2015. The need to characterize a
class of non-local systems that cannot be properly represented by traditional local theories or fractional
models with singular kernel [23] sparked interest in this description. The different kernels that can be
selected to satisfy the requirements of different applications are the fundamental difference among
fractional derivatives. The Caputo fractional derivative [24], the Cauto -Fabrizio derivative derivative
[23], and the Atangana-Baleanu fractional derivative [20], for example, are determined by power laws,
the Caputo-Fabrizio derivative by an exponential decay law, and the Atangana_Baleanu derivative
by Mittag- Leffler law. A variety of new Caputo-Fabrizio (CFD) models were lately investigated in
[19,21,22].

In OFMSs, we will look at one of these models. (represent C(; g by k)

Let ¢ : k? — [1,0) be defined by

_u—o] —sup [u()—o()|
d(u,v,¢)=e < =e lel 7% ,forallu,vGC(LR).

Then (k, 9, ¢) is a complete fuzzy metric space, where I = [0, 1] and
k = {u|u : I — R and u is continuous} .

The relation L on k given as follows:
uloiffu(l)o(l) >u(l)Vo(l), forallu,v € Cr),

is an orthogonal relation and (k, 9, *, L) is an OCEMS. Let the function K; : I x R — R be taken as
Ky (s,r) > 0foralls € I and T > 0. we shall apply Theorem 2 to resolve the following CFDE:

D (s) =Ky (s,w(s));w € Cur) : (4.27)

W (0) =0, Iw (1) = w (0).
We denote CFD of order v by “D? and for v € (m —1,m); m = [v] + 1, we have

D% (s) = 1"(;711—0) /Os (s—2)" " Tw(z) osz.

The notation [°w is interpreted as follows :

w0 = rg [ 6D K G gt s [ G K G () e

For the mapping K; : I x R — R and uy € k we state the following conditions:
(A) Fort >0, let

K1 (5,0 (5)) — Ka (50 9) | £ ot [0(0) = (6) ],

for all w, u € k following the order w L u.
(B) there exists uy € k such that

rzv) [ =27 K e () oz

. (lv) /01 /OZ (z— p)vfl Ky (p,ug (p)) oqpogz.

ug (s)

+
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We noticed that K; : I x R — R is not necessarily Lipschitz continuous.
For instant, K; given by
. 1 . 1
Ki(s,w(s)) =sw(s) ifw(s) < E’O ifw(s) > 5
Following (A), K; is not continuous and monotone. Moreover, fors = e~ T (v +1),
,\Kl(l'%)le(l%)\ N = |
8Ky (5,0(s), K (L (1) ,6) =e % e > et =T =9 (wu0)

Theorem 12. Let the mappings Ky : I x R — Rand ug € C(yg) satisfies the conditions (A)-(B), the the
equation (23) admits a solution in k.

Proof. Let X = {] € Cpr):J(s) > 0foralls € I} and define ¥ : X — X by

(¥D6) = gy [0 6= KT @t i [ [ =07 K () eapeie
We define an orthogonal relation L on X by
uloviffu(s)v(s) >u(s)v(s),Vu,veX.

According to above conditions ,¥ is preserving and there is 1y € k verifying (B) such that
uy = R" (ug) with u, L w41 or uyq L uy, for all n > 0. we work on the validation of (3.3) in the

next lines.
sup | rlv) fos (s — Z)Wl Ki(z,] (z)) 0z
o-1
_ F(v) Jo (s Ki(z,U(2)) 04z
O ((¥T) (s), ¥ (U)(s),6) =exp —i—ﬁ fo fo (0= 2" Ky (p,] (p)) 0upoaz

ﬁfo fo —-z)" 'Ky (p,U(p)) oapoaz

LT (v+1) [5(s—2)"" 1 Madz
>exp | su F(U) o ( 5
N P (s,zepl { U + 1 fO fO v ! M(szadp
> exp ﬁ (U +1)sup, . M
B SUPg¢ {fos (s—2)"" | 04z — 8 fo fo adzadp}

(o)l (v+1) J(z)-U(z)| )

T(o) T (o) SUPzel
> exp T(0)T(v+1) c B
( —sB(v+1,1) 75 grEZiB SUP; L1 Ue)-u@)| gu(z)|

>exp(l—sB(v+1,1))sup |](z)€u(z)|
s,zel

> exp ((1 —sB(v+1))sup ”(Z)_QU(ZH)

s,zeIl

1—sB(v+1,1)
_ (exp (Sup [J(z) ~U(2) |>>
s,zel 9

= (0 (J(z, U (z),c)) *B@T1D ; where B is a beta function.
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By defining J (w) = In (w) and S (w) = DJ (w); w > 0,7 > 0, and putting1 —sB (v+1,1) =
D < 1, the last inequality gets the form:
J@F () (), ¥ (U)(s)), 1) =S @(UT)).
O

4.2. Application to Volterra Type Integral Equation

There are several types of integral equations but they are only used the "model scientific process"
in which the value, or the rate of change of the change of value, of some quantity (or quantities)
depends on past history. This opposes in which the present value can obtain the rate at which a
quantity evolving. Just as for differential equations, integral equation need to be "solved" to describe
and predict how a physical quantity is going to behave as time passes. For solving integral equations,
there are things like Fredholm theorems, fixed point methods, boundary element methods, and
Nystrom methods. In this paper, we apply Theorem 2 to show the existence of multiplicative Volterra
type integral equation given below;

k
)= [ Ll f,0)aun (4.28)

forallk € Hand L : H x H x k — R. We show the existence of the solution to (4.27).
Let ®: k x k x (0,00) — R be defined as

_ lu)—o(0]
& (u,v,¢c)=e c Jforallu,v e C(I,R)'

Then (k, ¢, *) is a CFMS where I = [0,1] and
k = {u|u : I - R and u is a continuous} .
The relation L on k given as follows
uloiffu(l)o(l) >u(l)Vo(l), forallu,v € Ci g,

is an orthogonal relation and (k, 9, *, L) is an OCEMS.
The following is the existence theorem for integral equation (4.28).

Theorem 13. Assume that the following conditions are satisfied.

(a) Assume that L : H x H x k — R is continuous.
(b) Suppose there exists T > 0, such that

L)~ L) ot (< ( \/19(frq))+1)2\
e s 2 e S (429)

forallk,h € [0,1] and f,q € C(;r+). Then, integral equation (4.28) admits a solution in C(jg+).

Proof. Let R = k and endow it with the relation | and fuzzy metric space ¢. Define the mapping
Y:R — Rby

k
ADICENRACRLY (4:30)
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so that the fixed point of ¥ is a solution of integral equation (4.28). According to above definitions, ¢ is
L -preserving and there is 1 € k verifying u, = R" (up) with u, L 1,49 or u, 41 L uy, foralln > 0.
We work on the validation of (3.3) in the next lines. By assumption (b), we have

_ A ) - (¥ (k)]
(Y (f),¥Y(q),6) = ¢
k [(¥f) (k)= (¥q) (k)|

e s O'd]’l

vV
C\m

ko 10Ga-(x(vVor)+1)

e ¢ ozh

IV
S—

ot~ (+(voT) 1)k
- / O'dh
0

= e S

o) (=) 1))
= kei 9
= 9(f.9,¢)

Hence, by defining J (w) = In(w) and S (w) = DJ (w);

T () Y@),6)=8@(fq06).

So all the conditions of Theorem 2 are satisfied and v = k. Hence, the integral equation (4.28)
admits at most one solution. [

5. Conclusions

The study of (J,S)-OFIPC proved to be a source of generalization of many well-known
contractions. The methodology applied for investigation of fixed point of (7, S)-OFIPC encapsulated
existing corresponding methodologies. The results will extend earlier results of [8,15-18].
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