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Abstract: In this paper, we report orthogonal fuzzy versions of some celebrated iterative mappings.

We provide various concrete conditions on the real valued functions J ,S : (0, 1] → (−∞, ∞) for the

existence of fixed-points of (J ,S)-fuzzy iterative mappings. We obtain many fixed point theorems

in orthogonal fuzzy metric spaces. We apply (J ,S)-fuzzy version of Banach fixed point theorem to

show the existence and uniqueness of the solution. We support these results with several non-trivial

examples and applications to Volterra-type integral equations and fractional differential equations.

Keywords: fixed point; fuzzy metric spaces; (J ,S)-fuzzy iterative mappings; fractional

differential equations

1. Introduction

A self-mapping L : B → B is contained a fixed point if L (σ) = σ for σ ∈ B. It has a great

achievement to attain a unique solution in nonlinear equations. It has increased the domain of

mathematics. In 1960, Schweizer and Sklar [1] initiated the concept of continuous t-norm (in short ctn)

which is a binary relation. In 1965, Zadeh [2] initiated the concept of a fuzzy set (FS) and its properties.

Then in 1975, Kramosil and Michalek [3] initiated the notion of fuzzy metric space (in short, FMS) by

using the concepts of ctn and FSs. In 1994, George and Veeramani [4] presented the further modified

version of FMSs. After that, Grabeic [5] initiated and improved the well known Banach’s fixed point

theorem (FPT) in the framework of FMSs in the context of Kramosil and Michalek [3]. By following the

concepts of Grabeic [5], Gregori and Sapena [6] provided an addition to Banach’s contraction theorem

by using FMSs.

In 1968, Kannan [7] provided a new type of contraction and proved some fixed point (in short,

FP) results for discontinuous mappings. Karapinar [8] established a new type of contraction via

interpolative contraction and proved some FP results on it. So, he provided a new way of research,

and many authors worked on it and proved different FP results on it, see [9–14]. Hierro et al. [16]

proved the FP result in FMSs. Then, Zhou et al. [15] generalized the result of Hierro et al. [16] in

the framework of FMSs. Nazam et al. [17] proved some FP results in orthogonal (Ψ, Φ) complete

metric spaces. Hezarjaribi [18] established several FP results in a newly introduced concept named

orthogonal fuzzy metric space (in short, OFMS). For several important results and applications, see

the following literature [19–24]. Uddin et al. [25] proved several fixed point results for contraction

mappings in the context of orthogonal controlled FMSs. Ishtiaq et al. [26] extend the results proved in

[25] in a more generalized framework named orthogonal neutrosophic metric spaces. Recently, Uddin
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et al. [27] and Saleem et al. [28] derived several fixed point results and applications in the context of

intuitionistic FMSs.

Inspired by the results in [8,15–18], we aim to establish FP results in the framework of an OFMS.

We divide this paper into four main parts. The first part is based on the introduction. In the second

part, we will revise some basic concepts for understanding our main results. In the third part, we give

some FP results in OFMS and some examples to illustrate our results. In the 4th part, we provide an

application to Voltera-type integral equations and fractional differential equations.

2. Preliminaries

In this section, we provided several basic definitions and results.

Definition 1. [15] A binary operation ∗ : H × H → H (where H = [0, 1]) is called a ctn if it varifying the

below axioms:

(1) σ ∗ θ = θ ∗ σ and σ ∗ (θ ∗ ω) = (σ ∗ θ) ∗ ω for all σ, θ, ω ∈ H;
(2) ∗ is continuous;
(3) σ ∗ 1 = σ for all σ ∈ H;
(4) σ ∗ θ ≤ ω ∗ ϖ when σ ≤ ω and θ ≤ ϖ, with σ, ω, ω, ϖ ∈ H.

Definition 2. [15] A triplet (B, ϑ, ∗) is termed as FMS if ∗ is ctn, B is arbitrary set, and ϑ is FS on

B × B× (0, ∞) fulfilling the accompanying conditions for all σ, θ, ω ∈ B and ς, ϖ > 0.

(i) ϑ (σ, θ, ς) > 0;
(ii) ϑ (σ, θ, ς) = 0 if and only if σ = θ;

(iii) ϑ (σ, θ, ς) = ϑ (θ, σ, ς) ;
(iv) ϑ (σ, ω, ς + ϖ) ≥ ϑ (σ, θ, ς) ∗ ϑ (θ, ω, ϖ) ;
(v) ϑ (σ, θ, .) : (0, ∞) → [0, 1].

Example 1. Let B = R
+ and ϑ (σ, θ, ς) = ς

ς+L∗(σ,θ)
, consider a ctn as m ∗ n = mn. Then, B is FMS.

Definition 3. [5] A mapping L : B → B satisfying the following inequality,

ϑ (Lσ, Lθ, kς) ≥ ϑ (σ, θ, ς) ∀σ, θ ∈ B,

is called a fuzzy contraction with k ∈ [0, 1).

Definition 4. [18] Let (B, ϑ, ∗) be a FMS and ⊥∈ B × B be a binary relation. Suppose ∃ σ0 ∈ B such that

σ0 ⊥ σ or σ ⊥ σ0 for all σ ∈ B. Then we say that B is an OFMS. We denote OFMS by (B, ϑ, ∗,⊥) .

Definition 5. [18] A mapping L : B → B verifying the below inequality,

ϑ (Lσ, Lθ, kς) ≥ ϑ (σ, θ, ς) ∀σ, θ ∈ B, with σ⊥θ,

is called an orthogonal fuzzy contraction(in short, OFC) where (B, ϑ, ∗,⊥) is an OFMS, and k ∈ [0, 1).

Theorem 1. [18] Assume that (B, ϑ, ∗,⊥) is an OFMS. Let a mapping L : B → B be a continuous

⊥-preserving. Thus L has a unique FP u ∈ B. Furthermore,

lim
n→∞

ϑ (Lnσ, Lθ, ς) = 1,

for all u ∈ B.

Remark 1. The fuzzy contraction is an orthogonal fuzzy contraction but the converse may not be held

in general.
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Example 2. Suppose B =[0, 10) with FMS ϑ as defined as in Example 1, then the (B, ϑ, ∗,⊥) represents a

FMS. Define ⊥ ⊆ B2 by

σ ⊥ θ if σθ ≤ σ ∨ θ.

Then (B, ϑ, ∗,⊥) is an OFMS with ctn σ ∗ θ = σθ. Let the mapping L : B → B is given by

L (σ) =

{

σ
3 for σ ≤ 3

0 for σ > 3

}

.

We note that

ϑ (L (4) , L (3) , (0.4) 1) ≥ ϑ (4, 3, 1)

ϑ (0, 1, (0.4) 1) ≥ ϑ (4, 3, 1)

0.2857 ≥ 0.5.

This is a contradiction, so, L is not a fuzzy contraction. However, L is an orthogonal fuzzy contraction.

Lemma 1. Let (B, ϑ, ∗) be a FMS and {an} ⊂ B be a sequence satisfying limn→∞ ϑ (an, an+1, ς) = 1. If the

sequence {an} is not Cauchy, then there are {ank},{amk} and ε ≥ 0 such that

lim
k→∞

ϑ
(

anK+1, amK+1, ς
)

= (1 + ε) . (2.1)

lim
k→∞

ϑ (anK
, amK

, ς) = lim
k→∞

ϑ
(

anK+1, amK
, ς
)

= lim
k→∞

ϑ
(

anK
, amK+1, ς

)

= 1 + ε. (2.2)

Proof. Let (B, ϑ, ∗) be a FMS. Given {an} is not Cauchy and limn→∞ ϑ (an, an+1, ς) = 1. Thus, for

every ε > 0. There exists a natural number k0 such that for smallest m ≥ n we have

ϑ (an+1, am, ς) ≥ 1 + ε and ϑ (an+1, am, ς) < 1 + ε ∀n, m ≥ k0.

As a result, we construct two subsequences of {an}; {ank} and {amk} verifying the following

inequalities

ϑ
(

anK+1, amK
, ς
)

≥ 1 + ε and ϑ
(

anK+1, amK+1, ς
)

< 1 + ε ∀nk, mk > k0.

By axiom (iv) of the FMS, we have the following information:

1 + ε > ϑ
(

anK+1, amK+1, ς
)

≥ ϑ
(

anK+1, amK
, ς
)

.ϑ
(

amK
, amK+1, ς

)

≥ (1 + ε).ϑ
(

amK
, amK+1, ς

)

.

This implies that,

lim
k→∞

ϑ
(

anK+1, amK+1, ς
)

= (1 + ε).

Again by utilizing axiom (iv) of the FMS, we have

ϑ
(

anK+1, amK+1, ς
)

ϑ
(

amK
, amK+1, ς

) ≥ ϑ
(

anK+1, amK
, ς
)

≥ 1 + ε.

We get

lim
k→∞

ϑ
(

anK+1, amK
, ς
)

= 1 + ε.

Since,

ϑ
(

anK+1, amK
, ς
)

≥ ϑ
(

anK+1, anK
, ς
)

.ϑ (anK
, amK

, ς) ,

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 June 2023                   doi:10.20944/preprints202306.0749.v1

https://doi.org/10.20944/preprints202306.0749.v1


4 of 20

we have the following inequality:

ϑ
(

anK+1, amK
, ς
)

ϑ
(

anK+1, anK
, ς
) ≥ ϑ (anK

, amK
, ς)

≥ ϑ
(

amK
, anK+1, ς

)

.ϑ
(

anK+1, anK
, ς
)

.

That is

lim
k→∞

ϑ
(

anK+1, amK+1, ς
)

= 1 + ε.

Since,

1 + ε > ϑ
(

anK+1, amK+1, ς
)

≥ ϑ
(

anK+1, anK
, ς
)

.ϑ
(

anK
, amK+1, ς

)

1 + ε

ϑ
(

anK+1, anK
, ς
) ≥ ϑ

(

anK
, amK+1, ς

)

≥ ϑ
(

anK
, anK+1, ς

)

.ϑ
(

anK+1, amK+1, ς
)

That is

ϑ (anK
, amK

, ς) = (1 + ε) .

This completes the proof.

Definition 6. [18] The OFMS (B, ϑ, ∗,⊥) verifying the property (R) is called ⊥- regular.

(R) For any O- sequence {σn} ⊆ B converging to σ, we have either σ⊥σn, or σn⊥σ for all n ∈ N.

3. Main Results

3.1. Banach Type (J ,S)-Orthogonal Fuzzy Interpolative Contraction

In this section, we present the new results for orthogonal fuzzy interpolative contractions (OFIPC)

involving the functions J ,S : (0, 1] → R.

Definition 7. Let J ,S : (0, 1] → R be two functions. A mapping L : B → B defined on OFMS (B, ϑ, ∗,⊥)

will be called a Banach type (J ,S)-OFIPC, if there exists ν ∈ (0, 1] verifying

J (ϑ (Lσ, Lθ, ς)) ≥ S (ϑ (σ, θ, ς))v , (3.3)

for all (σ, θ) ∈ B, ϑ (Lσ, Lθ, ς) > 0.

Example 3. Let B =[1, 7) and define the FMS ϑ (σ, θ, ς) = e
− |σ−θ|

ς , Let ⊥ ⊂ B2 defined by

σ ⊥ θ if σθ ≤ {σ, θ} .

Then (B, ϑ, ∗,⊥) is OFMS with m ∗ n = mn. Define L : B → B by

L (σ) =











5 if 1 ≤ σ < 2,

3.1 if 2 ≤ σ < 3,

1.8 if 3 ≤ σ < 7.











Define J ,S : (0, 1] → R by

J (t) =

{

1
ln t if 0 < t < 1

1 if t = 1

}

and S =

{

1
ln t2 if 0 < t < 1

2 if t = 1

}

.
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Case 1: Here, L is a Banach type (J ,S)-OFIPC. But,

(ϑ (L1, L2, k1)) ≥ (ϑ (1, 2, 1))
1
2

ϑ

(

5, 3.1,

(

1

2

)

1

)

≥ (ϑ (1, 2, 1))
1
2

e−
|5−3.1|

0.5 ≥
(

e−
|1−2|

1

) 1
2

0.0224 ≥ 0.6065.

This is a contradiction. Hence, L is not Banach-type FIPC.
Case 2: Here, L is a Banach type (J ,S)-OFIPC. But,

ϑ (L1, L3, 1) ≥ (ϑ (1, 3, 1))
1
2

ϑ

(

5, 1.8,
1

2
1

)

≥ (ϑ (1, 3, 1))
1
2

e−
|5−1.8|

0.5 ≥
(

e−
|1−3|

1

) 1
2

0.0017 ≥ 0.3678.

This is a contradiction. Hence, L is not Banach type OFIPC.
Case 3: Here, L is a Banach type (J ,S)-OFIPC. But,

ϑ (L1, L4, k1) ≥ (ϑ (1, 4, 1))
1
2

ϑ

(

5, 1.8,
1

2
1

)

≥ (ϑ (1, 4, 1))
1
2

e−
|5−1.8|

0.5 ≥
(

e−
|1−4|

1

) 1
2

0.0017 ≥ 0.2231.

This is a contradiction. Hence, L is not Banach type OFIPC.

Hence in general, let σ, θ ∈ B such that σ ⊥ θ or σ ⊥ θ

J (ϑ (Lσ, Lθ, ς)) = − ς

| Lσ − Lθ | = − ς

L | σ − θ |
≥ − ς

| σ − θ | = S (ϑ (σ, θ, ς))
1
2

Therefore, the Banach contraction is fulfilled.

For ⊥ (orthogonal relation), two functions (J ,S) : (0, 1] → R, and self-mapping L, we write the

below properties:

(i) for every σ0 ∈ B, there is σ1 = L (σ0) such that σ1 ⊥ σ0 or σ0 ⊥ σ1;
(ii) J is non-decreasing and for every 1 > r ≥ t > 0, one has S (r) > J (t);

(iii) lims→L− infS (s) > lims→L− sup (J (s));
(iv) if t ∈ (0, 1] such that J (t) ≥ S (1);
(v) supσa>ε J (σa) > −∞;

(vi) limσa→δ infS (σa) > J (δ) ∀δ ∈ (0, 1);
(vii) if {J (yn)} and {S (yn)} are converging to same limit and {J (yn)} is strictly increasing, then

limn→∞ yn = 1;

(viii) J
(

σv
a σ

η
b

)

≥ J (σa) and S (σa) > J (σa) ∀σa ∈ (0, 1).
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The next two theorem deals with Banach type (J ,S)-OFIPC.

Theorem 2. Suppose ⊥ be a transitive orthogonal relation (in short, TOR), then, each ⊥- preserving

self-mapping (in short, PSM) on a ⊥- regular OCFMS (B, ϑ, ∗,⊥) satisfying (3.3) and (i)-(iv), have a FP in B.

Proof. Choose an initial guess σ0 ∈ B s.t. σ0 ⊥ σ1 or σ1 ⊥ σ0 for every σ1 ∈ B, then by utilizing

the ⊥-preservation of L, we build an OS {σn} s.t σn = L (σn−1) = Ln (σ0) and σn−1 ⊥ σn for every

n ∈ N. Note that, if σn = L (σn) then σn is FP of L ∀ n ≥ 0. We let that σn ̸= σn+1 ∀ n ∈ N ∪ {0}. Let

yn = ϑ (σn, σn+1, ς) ∀ n ≥ 0. By the first part of (ii) and (3.3), we have

J (yn) ≥ J (ϑ (Lσn−1, Lσn, ς)) ≥ S
(

(ϑ (σn−1, σn, ς))v) .

By utilizing (ii), we have

J (yn) ≥ S
(

(yn−1)
v)

> J
(

(yn−1)
v) . (3.4)

Since, J is non decreasing, one gets yn > yn−1for every n ≥ 1, we have L < 1, that is limn→∞ yn =

L+. If L < 1, by (3.4), we get the following information:

J (L+) = lim
n→∞

J (yn) ≥ lim
n→∞

infS
(

(yn−1)
v) ≥ lim

σa→L+
infS (σa) .

So this contradicts (iii), so L = 1.

The sequence {σn}is Cauchy: Let {σn} is not OCS, so that the following lemma 1, there exist two

subsequences
{

σnk

}

,
{

σmk

}

of {σn} and ε > 0 such that (2.1) and (2.2) satisfied. From (2.1), we deduce

ϑ
(

σnK+1, σmK+1, ς
)

> (1 + ε) .

Since, σn ⊥ σn+1 ∀ n ≥ 0, so by transitive of ⊥, we have σnk
⊥ σmk

∀ k ≥ 1,

J
(

ϑ
(

σnK+1, σmK+1, ς
))

≥ J (ϑ (LσnK
, LσmK

, ς)) ≥ S
(

(ϑ (σnK
, σmK

, ς))v)

If σak
= ϑ

(

σnK+1, σmK+1, ς
)

, σbk
= ϑ (σnK

, σmK
, ς), we have

J
(

σak

)

≥ S
(

(

σbk

)v
)

, for all k ≥ 1. (3.5)

By (2.1), we have limk→∞ σak
= (1 + ε)× and (3.5) implies

lim
σa→(1+ε)

supJ
(

σak

)

≥ lim
k→∞

supJ
(

σak

)

≥ lim
k→∞

infS
(

(

σbk

)v
)

≥ lim
σa→0

infS (σa) . (3.6)

The information obtained in (3.6), contradicts the assumption (iii) and thus stamping the sequence

{σn} as OC in the OCFMS (B, ϑ, ∗,⊥) hence there is σa ∈ B so that σn → σa as n → ∞. Since,

(B, ϑ, ∗,⊥) is a ⊥-regular space, so, we write σa ⊥ σn or σn ⊥ σa. We claim that ϑ (σa, Lσa, ς) = 1. If

ϑ (σn+1, Lσa, ς) > 1, then we have (3.3)

J (ϑ (σn+1, Lσa, ς)) ≥ J (ϑ (Lσn, Lσa, ς)) ≥ S
(

(ϑ (σn, σa, ς))v)

> J
(

(ϑ (σn, σa, ς))v) .

By the first part of (ii), we get

ϑ
(

σn+1, Lσa, ςk
)

> (ϑ (σn, σa, ς))v .
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Applying limit n → ∞, we obtain ϑ (σa, Lσa, ς) ≥ 1. This implies that ϑ (σa, Lσa, ς) = 1. Hence,

σσa = Lσa.

Theorem 3. Let ⊥ be a TOR, then, every ⊥- PSM defined on a ⊥- regular OCFMS (B, ϑ, ∗,⊥) verifying (3.3)

and (i), (iii), (v)-(viii), admits a fixed point in B.

Proof. Choose an initial guess σ0 ∈ B s.t. σ0 ⊥ σ1 or σ1 ⊥ σ0 for each σ1 ∈ B, then by utilizing

the ⊥-preservation of L, we build an OS {σn} s.t σn = L (σn−1) = Ln (σ0) and σn−1 ⊥ σn for every

n ∈ N. Note that, if σn = L (σn) then σn is FP of L ∀ n ≥ 0. Let σn ̸= σn+1 ∀ n ∈ N ∪ {0}. Let

yn = ϑ (σn, σn+1, ς) ∀ n ≥ 0. By the first part of (ii) and (3.3), we have

J (ϑ (σn, σn+1, ς)) ≥ J (ϑ (Lσn−1, Lσn, ς)) ≥ S
(

(ϑ (σn−1, σn, ς))v)

> J (ϑ (σn−1, σn, ς))v

≥ J (ϑ (σn−1, σn, ς)) . (3.7)

The inequality shows that (3.7) shows that {J (ϑ (σn−1, σn, ς))} is strictly increasing. If it is not

bounded above, then from (v), we obtain supϑ(σn−1,σn ,ς)>ε J (ϑ (σn−1, σn, ς)) > −∞. This implies that

lim
ϑ(σn−1,σn ,ς)→ε+

supJ (ϑ (σn−1, σn, ς)) > −∞.

Thus, limn→∞ ϑ (σn−1, σn, ς) = 1, otherwise, we have

lim
ϑ(σn−1,σn ,ς)→ε+

supJ (ϑ (σn−1, σn, ς)) = −∞

(i.e., a contradiction (v)). If it is bounded above, then {J (ϑ (σn−1, σn, ς))} is a convergent sequence

and by (3.7), {S (ϑ (σn−1, σn, ς))} also converges to the same limit point. By using (iii), we have

limn→∞ ϑ (σn−1, σn, ς) = 1. Hence, L is asymptotically regular (in short, AR).

Now, we assert that {σn} is CS, So by Lemma 1 ∃
{

σnk

}

,
{

σmk

}

and ε > 0 such that (2.1) and (2.2),

we deduce ϑ
(

σnK+1, σmK+1, ς
)

> (1 + ε). Since σn⊥σn+1 ∀ n ≥ 0 so by transitivity of ⊥, we obtain

σnk
⊥ σmk

. Letting g = σnk
and e = σmk

in (3.3), one writes for all k ≥ 1,

J
(

ϑ
(

σnk+1, σmk+1, ς
))

≥ J
(

ϑ
(

Lσnk
, Lσmk

, ς
))

≥ S
(

(

ϑ
(

σnk
, σmk

, ς
))v
)

.

If σk = ϑ
(

σnK+1, σmK+1, ς
)

, σbk = ϑ (σnK
, σmK

, ς), we have

J (σk) ≥ S
(

(σbk)
v) , for all k ≥ 1. (3.8)

By (2.1), we have limk→∞ σk = (1 + ε) and (3.8) implies

lim
σa→(1+ε)

supJ (σa) ≥ lim
k→∞

supJ (σk) ≥ lim
k→∞

infS
(

(σbk)
v) ≥ lim

σa→0
infS (σa) . (3.9)

The information obtained in (3.9), contradicts the assumption (viii) and thus stamping the

sequence {σn} as OC in the OCFMS (B, ϑ, ∗,⊥). The completeness of the space ensures the

convergence of {σn}, let it converges to i ∈ B.

Case 1. if ϑ (σn+1, Li, ς) = 1 for some n ≥ 0, Then

ϑ (i, Li, ς) ≥ ϑ (i, σn+1, ς) .ϑ (σn+1, Li, ς)

taking limit n → ∞ on both sides, we have ϑ (i, Li, ς) ≥ 1. This implies that ϑ (i, Li, ς) = 1.

Hence, i = Li.
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Case 2. for all n ≥ 0, ϑ (σn+1, Li, ς) < 1, then by ⊥- regularity of B, we find σn ⊥ i or i ⊥ σn. By (3.3), one

writes

J (ϑ (σn+1, Li, ς)) ≥ J (ϑ (Lσn, Li, ς)) ≥ S
(

(ϑ (σn, i, ς))v) for all n ≥ 0.

By taking σn = ϑ (σn+1, Li, ς) and bn = ϑ (σn, i, ς), one writes

J (σn) ≥ S
(

(bn)
v) for all n ≥ 0. (3.10)

Note that σn → δ and bn → 1 as n → ∞. Applying limits on (3.10), we have

lim sup
i→δ

J (i) ≥ lim sup
n→∞

J (σn) ≥ lim inf
n→∞

S
(

(bn)
v) ≥ lim sup

i→0

S (i) .

This contradicts (v) if δ > 1. Thus, we have ϑ (i, Li, ς) = 1, that is i is a FP of L.

Example 4. Let B = {1, 2, 3, 4, 5, 6, 7, 8} and define the FMS ϑ (σ, θ, ς) = ς
ς+|σ−θ| . Let ⊥ ⊂ B2 defined by

σ ⊥ θ if σθ ≤ σ ∨ θ for σ ̸= θ.

Then (B, ϑ, ∗,⊥) is OFMS with σ ∗ θ = σθ. Define L : B → B by

L (σ) =

{

5 if σ = 5

σ − 1 otherwise

}

.

Define J ,S : (0, 1] → R by

J (t) =

{

1
ln t if 0 < t < 1

1 if t = 1

}

and S =

{

1
ln t2 if 0 < t < 1

2 if t = 1

}

.

Case 1: Here, L is a Banach type (J ,S)-OFIPC. But,

ϑ (L2, L1, 1) ≥ (ϑ (2, 1, 1))
1
2

ϑ (1, 5, 1) ≥ (ϑ (2, 1, 1))
1
2

(

1

1+ | 1 − 5 |

)

≥
(

1

1+ | 2 − 1 |

) 1
2

0.2 ≥ 0.7071.

Which is a contradiction. Hence, L is not Banach-type FIPC.
Case 2: Here, L is a Banach type (J ,S)-OFIPC. But,

ϑ (L3, L1, 1) ≥ (ϑ (3, 1, 1))
1
2

ϑ (2, 5, 1) ≥ (ϑ (3, 1, 1))
1
2

(

1

1+ | 2 − 5 |

)

≥
(

1

1+ | 3 − 1 |

) 1
2

0.25 ≥ 0.57771.

Which is a contradiction. Hence, L is not Banach-type FIPC.

Since, condition of Theorem 2 (ii) is hold because for every t ∈ (0, 1) S (t) > J (t) also all the

remaining conditions of Theorem 2 are hold.
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3.2. Kannan Type (J ,S)-Orthogonal Fuzzy Interpolative Contraction

Definition 8. Let J ,S : (0, 1] → R be two functions. A mapping L : B → B defined on OFMS (B, ϑ, ∗,⊥)

will be called a Kannan type (J ,S)-OFIPC, if there exists ν ∈ (0, 1) verifying

J (ϑ (Lσ, Lθ, ς)) ≥ S
(

(ϑ (σ, Lσ, ς))v (ϑ (θ, Lθ, ς))1−v
)

. (3.11)

for all (σ, θ) ∈ B, ϑ (Lσ, Lθ, ς) > 0.

Theorem 4. Let ⊥ be a TOR, then, every ⊥- PSM defined on a ⊥- regular OCFMMS (B, ϑ, ∗,⊥) satisfying

(3.11) and (i)-(iv), have a fixed point in B.

Proof. Choose an initial guess σ0 ∈ B s.t. σ0 ⊥ σ1 or σ1 ⊥ σ0 for every σ1 ∈ B, then by utilizing the

⊥-preservation of L, we build an OS {σn} such that σn = L (σn−1) = Ln (σ0) and σn−1 ⊥ σn for every

n ∈ N. Observe that, if σn = L (σn) then σn is FP of L ∀ n ≥ 0. Let σn ̸= σn+1 ∀ n ∈ N ∪ {0}. Let

yn = ϑ (σn, σn+1, ς) ∀ n ≥ 0. By the first part of (ii) and (3.11), we have

J (yn) ≥ J (ϑ (Lσn−1, Lσn, ς)) ≥ S
(

(ϑ (σn−1, Lσn−1, ς))v (ϑ (σn, Lσn, ς))1−v
)

.

By utilizing (ii), we have

J (yn) ≥ S
(

(yn−1)
v (yn)

1−v
)

> J
(

(yn−1)
v (yn)

1−v
)

. (3.12)

Since, J is non decreasing, one gets yn > yn−1for every n ≥ 1, we have L < 1, that is limn→∞ yn =

L+. If L < 1, by (3.12), we obtain the following information:

J (L+) = lim
n→∞

J (yn) ≥ lim
n→∞

infS
(

(yn−1)
v (yn)

1−v
)

≥ lim
σa→L+

infS (σa) .

So this contradicts (iii), hence L = 1.

The sequence {σn}is Cauchy: Assume that {σn} is not CS, so that the following lemma 1, there

exist two subsequences
{

σnk

}

,
{

σmk

}

of {σn} and ε > 0 such that (2.1) and (2.2) satisfied. From (2.1),

we deduce

ϑ
(

σnK+1, σmK+1, ς
)

> (1 + ε) .

Since, σn⊥σn+1 ∀ n ≥ 0, so by transitive of ⊥, we get σnk
⊥σmk

∀ k ≥ 1,

J
(

ϑ
(

σnK+1, σmK+1, ς
))

≥ J (ϑ (LσnK
, LσmK

, ς)) ≥ S
(

(ϑ (σnK
, LσnK

, ς))v (ϑ (σmK
, LσmK

, ς))1−v
)

≥ S
(

(

ϑ
(

σnK
, σnK+1, ς

))v (
ϑ
(

σmK
, σmK+1

, ς
))1−v

)

.

If σk = ϑ
(

σnK+1, σmK+1, ς
)

, σbk
= ϑ

(

σnK
, σnK+1, ς

)

, σck
= ϑ

(

σmK
, σmK+1, ς

)

, we have

J (σk) ≥ S
(

(

σbk

)v (
σck

)1−v
)

, ∀ k ≥ 1. (3.13)

By (2.1), we have limk→∞ σk = (1 + ε) and (3.13) implies

lim
σk→(1+ε)

supJ (σk) ≥ lim
k→∞

supJ (σk) ≥ lim
k→∞

infS
(

(

σbk

)v (
σck

)1−v
)

≥ lim
σk→0

infS (σk) . (3.14)

The information obtained in (3.14), contradicts the assumption (iii) and thus stamping the sequence

{σn} as OC in the OCFMS (B, ϑ, ∗,⊥) hence, there is σσa ∈ B so that σn → σa as n → ∞. Since,
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(B, ϑ, ∗,⊥) is a ⊥-regular space, so, we write σa ⊥ σn or σn ⊥ σa. We claim that ϑ (σa, Lσa, ς) = 1. If

ϑ (σn+1, Lσa, ς) > 1, then (3.11)

J (ϑ (σn+1, Lσa, ς)) ≥ J (ϑ (Lσn, Lσa, ς)) ≥ S
(

(ϑ (σn, Lσn, ς))v (ϑ (σa, Lσa, ς))1−v
)

> J
(

(ϑ (σn, Lσn, ς))v (ϑ (σa, Lσa, ς))1−v
)

≥ J
(

(ϑ (σn, σn+1, ς))v (ϑ (σa, Lσa, ς))1−v
)

.

By the first part of (ii), we get

ϑ (σn+1, Lσa, kς) > (ϑ (σn, σn+1, ς))v (ϑ (σa, Lσa, ς))1−v .

Applying limit n → ∞, we obtain ϑ (σa, Lσa, kς) ≥ 1. This implies that ϑ (σa, Lσa, ς) = 1. Hence,

σa = Lσa.

Theorem 5. Let ⊥ be a TOR, then, every ⊥-PSM defined on a ⊥- regular OCFMS (B, ϑ, ∗,⊥) satisfying

(3.11) and (i), (iii), (v)-(viii), have a fixed point in B.

Proof. Choose an initial guess σ0 ∈ B such that σ0 ⊥ σ1 or σ1 ⊥ σ0 for every σ1 ∈ B, then by using

the ⊥-preservation of L, we build an OS {σn} s.t σn = L (σn−1) = Ln (σ0) and σn−1 ⊥ σn for every

n ∈ N. Note that, if σn = L (σn) then σn is FP of L ∀ n ≥ 0. Let σn ̸= σn+1 ∀ n ∈ N ∪ {0}. Let

yn = ϑ (σn, σn+1, ς) ∀ n ≥ 0. By the first part of (ii) and (3.11), we have

J (ϑ (σn, σn+1, ς)) ≥ J (ϑ (Lσn−1, Lσn, ς)) ≥ S
(

(ϑ (σn−1, Lσn−1, ς))v (ϑ (σn, Lσn, ς))1−v
)

≥ S
(

(ϑ (σn−1, σn, ς))v (ϑ (σn, σn+1, ς))1−v
)

> J
(

(ϑ (σn−1, σn, ς))v (ϑ (σn, σn+1, ς))1−v
)

≥ J (ϑ (σn−1, σn, ς)) . (3.15)

The inequality shows that (3.15) shows that {J (ϑ (σn−1, σn, ς))} is strictly increasing. If it is not

bounded above, by (v), we obtain supϑ(σn−1,σn ,ς)>ε J (ϑ (σn−1, σn, ς)) > −∞. This implies that

lim
ϑ(σn−1,σn ,ς)→ε+

supJ (ϑ (σn−1, σn, ς)) > −∞.

Thus, limn→∞ ϑ (σn−1, σn, ς) = 1, otherwise, we have

lim
ϑ(σn−1,σn ,ς)→ε+

supJ (ϑ (σn−1, σn, ς)) = −∞

(i.e., a contradiction (v)). If it is bounded above, then {J (ϑ (σn−1, σn, ς))} is a CS and by

(3.15), {S (ϑ (σn−1, σn, ς))} also converges to the same limit point. Thus, by (iii), we obtain

limn→∞ ϑ (σn−1, σn, ς) = 1. Hence, L is AR.

Now, we assert that {σn} is CS, So by Lemma 1 there exist
{

σnk

}

,
{

σmk

}

and ε > 0 such that (2.1)

and (2.2), we examine that ϑ
(

σnK+1, σmK+1, ς
)

> (1 + ε). Since σn⊥σn+1 for all n ≥ 0 so by transitivity

of ⊥, we have σnk
⊥σmk

. Letting g = σnk
and e = σmk

in (3.11), one writes for all k ≥ 1,

J
(

ϑ
(

σnk+1, σmk+1, ς
))

≥ J
(

ϑ
(

Lσnk
, Lσmk

, ς
))

≥ S
(

(

ϑ
(

σnk
, Lσnk

, ς
))v (

ϑ
(

σmk
, Lσmk

, ς
))1−v

)

≥ S
(

(

ϑ
(

σnk
, σnk+1, ς

))v (
ϑ
(

σmk
, σmk+1, ς

))1−v
)

.
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If σk = ϑ
(

σnK+1, σmK+1, ς
)

, σbk
= ϑ

(

σnK
, σnK+1, ς

)

, σck
= ϑ

(

σmK
, σmK+1, ς

)

, we have

J (σk) ≥ S
(

(

σbk

)v (
σck

)1−v
)

, ∀ k ≥ 1. (3.16)

By (2.1), we have limk→∞ σk = (1 + ε)× and (3.16) implies

lim
σa→(1+ε)

supJ (σa) ≥ lim
k→∞

supJ (σk) ≥ lim
k→∞

infS
(

(

σbk

)v (
σck

)1−v
)

≥ lim
σa→0

infS (σa) . (3.17)

The information got in (3.17), contradicts the assumption (viii) and thus stamping the sequence

{σn} as OC in the OCFMS (B, ϑ, ∗,⊥). The completeness of the space ensures the convergence of

{σn}, let it converges to i ∈ B.

Case 1. if ϑ (σn+1, Li, ς) = 1 for some n ≥ 0, Then

ϑ (i, Li, ς) ≥ ϑ (i, σn+1, ς) .ϑ (σn+1, Li, ς)

taking limit n → ∞ on both sides, we have ϑ (i, Li, ς) ≥ 1. This implies that ϑ (i, Li, ς) = 1.

Hence, i = Li.
Case 2. for all n ≥ 0, ϑ (σn+1, Li, κ) < 1, then by ⊥- regularity of A, we find σn ⊥ i or i ⊥ σn. By (3.11),

one writes

J (ϑ (σn+1, Li, κ)) ≥ J (ϑ (Lσn, Li, κ)) ≥ S
(

(ϑ (σn, Lσn, κ))v (ϑ (i, Li, κ))1−v
)

for all n ≥ 0.

By taking σn = ϑ (σn+1, Li, κ) and bn = ϑ (σn, σn+1, κ), one writes

J (σn) ≥ S
(

(bn)
v (ϑ (i, Li, κ))1−v

)

for all n ≥ 0. (3.18)

Take δ = ϑ (i, Li, κ). Note that σn → δ and bn → 1 as n → ∞. Applying limits on (3.18), we have

lim sup
i→δ

J (i) ≥ lim sup
n→∞

J (σn) ≥ lim inf
n→∞

S
(

(bn)
v (δ)1−v

)

≥ lim sup
i→0

S (i) .

This contradicts (v) if δ > 1. Thus, we have ϑ (i, Li, κ) = 1, that is i is a fixed point of L.

3.3. Chatarjea Type (J ,S)-Orthogonal Fuzzy Interpolative Contraction

Definition 9. Let J ,S : (0, 1] → R be two functions. A mapping L : B → B defined on OFMS (B, ϑ, ∗,⊥)

will be called a Chatarjea type (J ,S)-OFIPC, verifying

J (ϑ (Lσ, Lθ, ς)) ≥ S
(

√

(ϑ (σ, Lθ, ς)) (ϑ (θ, Lσ, ς))

)

, (3.19)

for all (σ, θ) ∈ B, ϑ (Lσ, Lθ, ς) > 0.

Theorem 6. Let ⊥ be a TOR, then, every ⊥- PSM defined on a ⊥- regular OCFMS (B, ϑ, ∗,⊥) verifying

(3.19) and (i)-(iv), have a fixed point in B.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 June 2023                   doi:10.20944/preprints202306.0749.v1

https://doi.org/10.20944/preprints202306.0749.v1


12 of 20

Proof. Chasing the starting steps taken in proof of Theorem 4, we have

J (yn) ≥ J (ϑ (Lσn−1, Lσn, ς)) ≥ S
(

√

(ϑ (σn−1, Lσn, ς)) (ϑ (σn, Lσn−1, ς))

)

≥ S
(

√

(ϑ (σn−1, Lσn, ς)) (ϑ (σn, σn, ς))

)

≥ S
(

√

(ϑ (σn−1, Lσn, ς))

)

≥ S
(

√

ϑ (σn−1, σn+1, ς)

)

(3.20)

≥ S
(

√

(ϑ (σn−1, σn, ς)) (ϑ (σn, σn+1, ς))

)

. (3.21)

Suppose that ϑ (σn−1, σn, ς) > ϑ (σn, σn+1, ς) for some n ≥ 1, then by (3.21) and (ii), we have

J (yn) ≥ S (yn) > J (yn) . (3.22)

The information obtained in (3.22) contradicts the definition of J , therefore, we go with

J (yn) ≥ S (yn) > J (yn) , ∀n ≥ 1.

Now crawling through the proof of Theorem 4, we reach to the statement σn → o as n → ∞, and

then taking the support of ⊥-regularity of the space (B, ϑ, ∗,⊥), we achieve that σn ⊥ o or o ⊥ σn. We

need to have ϑ (o, Lo, ς) = 1. Letting ϑ (σn+1, Lo, ς) < 1 and using (3.19),

J (ϑ (σn+1, Lo, ς)) ≥ ϑ (Lσn, Lo, ς) ≥ S
(

√

(ϑ (σn, Lo, ς)) (ϑ (o, Lσn, ς))

)

≥ S
(

√

(ϑ (σn, Lo, ς)) (ϑ (o, σn+1, ς))

)

> J
(

√

(ϑ (σn, Lo, ς)) (ϑ (o, σn+1, ς))

)

.

Given that the function J satisfies assumption (ii), thus

ϑ (σn+1, Lo, ς) >
√

(ϑ (σn, Lo, ς)) (ϑ (o, σn+1, ς)).

The last inequality implies that ϑ (o, Lo, ς) ≥
√

ϑ (o, Lo, ς) (for large n). Hence, ϑ (o, Lo, ς) = 1, or

o = Lo.

Theorem 7. Let ⊥ be a TOR, then, every ⊥- PSM defined on a ⊥- regular OCFMS (B, ϑ, ∗,⊥) verifying

(3.19), (i), (iii), and (v)-(viii), have a fixed point in B.

Proof. Chasing the steps taken in the proof of Theorem 5 and Theorem 6, we achieve the objective.

3.4. Ciric-Reich-Rus Type (J ,S)-Orthogonal Fuzzy Interpolative Contraction

Definition 10. Let J ,S : (0, 1] → R be two functions. A mapping L : B → B defined on OFMS (B, ϑ, ∗,⊥)

will be called a Ciric-Reich-Rus type (J ,S)- OFIPC, if there exists ν, η ∈ [0, 1) verifying

J (ϑ (Lσ, Lθ, ς)) ≥ S
(

(ϑ (σ, θ, ς))v (ϑ (σ, Lσ, ς))η (ϑ (θ, Lθ, ς))1−v−η
)

, (3.23)

for all (σ, θ) ∈ B, ϑ (σ, Lσ, ς) > 0 where v + η < 1.
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The requirements for the presence of a fixed-point of Ciric-Reich-Rus type (J ,S)-OFIPC are

stated in the following two theorems.

Theorem 8. Let ⊥ be a TOR, then, every ⊥-PSM defined on a ⊥- regular OCFMS (B, ϑ, ∗,⊥) verifying

(3.23) and (i)-(iv), admits a fixed point in B.

Proof. Chasing the starting steps taken in the proof of Theorem 4, we have

J (yn) ≥ J (ϑ (Lσn−1, Lσn, ς))

≥ S
(

(ϑ (σn−1, σn, ς))v (ϑ (σn−1, Lσn−1, ς))η (ϑ (σn, Lσn, ς))1−v−η
)

≥ S
(

(ϑ (σn−1, σn, ς))v (ϑ (σn−1, σn, ς))η (ϑ (σn, σn+1, ς))1−v−η
)

≥ S
(

(ϑ (σn−1, σn, ς))v−η (ϑ (σn, σn+1, ς))1−v−η
)

> J
(

(ϑ (σn−1, σn, ς))v−η (ϑ (σn, σn+1, ς))1−v−η
)

. (3.24)

By (3.24) and monotonicity of J implies

(yn)
v+η ≥ (yn−1)

v+η , ∀n ≥ 1.

Now taking steps as in Theorem 4, we get σn → t as n → ∞, and with the support of ⊥- regularity

of (B, ϑ, ∗,⊥), we have σn ⊥ t or t ⊥ σn. We need to prove ϑ (t, Lt, ς) = 1. Letting ϑ (σn+1, Lt, ς) < 1

and using (3.23), we have

J (ϑ (σn+1, Lt, ς)) ≥ J (ϑ (Lσn, Lt, ς))

≥ S
(

(ϑ (σn, t, ς))v (ϑ (σn, Lσn, ς))η (ϑ (t, Lt, ς))1−v−η
)

≥ S
(

(ϑ (σn, t, ς))v (ϑ (σn, σn+1, ς))η (ϑ (t, Lt, ς))1−v−η
)

> J
(

(ϑ (σn, t, ς))v (ϑ (σn, σn+1, ς))η (ϑ (t, Lt, ς))1−v−η
)

.

Using (ii), we get

ϑ (σn+1, Lt, ς) > (ϑ (σn, t, ς))v (ϑ (σn, σn+1, ς))η (ϑ (t, Lt, ς))1−v−η .

Now for large n, the last inequality implies that ϑ (t, Lt, ς) ≥ 1. Hence, ϑ (t, Lt, ς) = 1, or

t = Lt.

Theorem 9. Suppose ⊥ be a TOR, then, every ⊥- PSM defined on a ⊥- regular OCFMS (B, ϑ, ∗,⊥) verifying

(3.23), (i), (iii), and (v)-(viii), have a fixed point in B.

Proof. Chasing the steps taken in the proof of Theorem 5 and Theorem 8, we complete the proof of

Theorem 9.

3.5. Hardy-Rogers Type (J ,S)-Orthogonal Fuzzy Interpolative Contraction

Definition 11. Let J ,S : (0, 1] → R be two functions. A mapping L : B → B defined on OFMS (B, ϑ, ∗,⊥)

will be called a Hardy-Rogers type (J ,S)-OFIPC, if there exists ν, η, γ, δ ∈ [0, 1) verifying

J (ϑ (Lσa, Lσb, ς)) ≥ S
(

(ϑ (σ, θ, ς))v (ϑ (σ, Lσ, ς))η (ϑ (θ, Lθ, ς))γ

(ϑ (σ, Lθ, ς))δ (ϑ (θ, Lσ, ς))1−v−η−γ−δ

)

, (3.25)

for all (σ, θ) ∈ B, ϑ (Lσ, Lθ, ς) > 0 where v + η + γ + δ < 1.
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Example 5. Let B =[1, 7) and define the FMS ϑ (σ, θ, ς) = e
− |σ−θ|

ς ,where Let ⊥ ⊂ B2 defined by

σ ⊥ θ if σθ ≤ σ ∨ θ for σ ̸= θ.

Then (B, ϑ, ∗,⊥) is OFMS with m ∗ n = mn. Define L : B → B by

L (σa) =

{

5, if σ = 1

σ − 1 otherwise

}

.

Define J ,S : (0, 1] → R by

J (t) =

{

1
ln t if 0 < t < 1

1 if t = 1

}

and S =

{

1
ln t2 if 0 < t < 1

2 if t = 1

}

Case 1: Here, L is a Hardy-Rogers type (J ,S)-OFIPC. But,

ϑ (L2, L1, k1) ≥ (ϑ (2, 1, 1))0.01 (ϑ (2, L2, 1))0.02 (ϑ (1, L1, 1))0.03

(ϑ (2, L1, 1))0.04 (ϑ (1, L2, 1))1−0.01−0.02−0.03−0.04

ϑ

(

1, 5, 1
1

2

)

≥ (ϑ (2, 1, 1))0.01 (ϑ (2, 1, 1))0.02 (ϑ (1, 5, 1))0.03

(ϑ (2, 5, 1))0.04 (ϑ (1, 1, 1))0.9

(

e−
|1−5|

0.5

)

≥

(

e−
|1−2|

1

)0.01 (

e−
|1−2|

1

)0.02 (

e−
|1−5|

1

)0.03

(

e−
|2−5|

1

)0.04
(1)0.9

0.0003 ≥ 0.7632

This is a contradiction. Hence, L is not Hardy-Rogers type OFIPC.
Case 2: Here, L is a Hardy-Rogers type (J ,S)-OFIPC. But,

ϑ (L3, L1, k1) ≥
(

(ϑ (3, 1, 1))0.01 (ϑ (3, L3, 1))0.02 (ϑ (1, L1, 1))0.03

(ϑ (3, L1, 1))0.04 (ϑ (1, L3, 1))1−0.01−0.02−0.03−0.04

)

e−
|2−5|

0.5 ≥

(

e−
|1−3|

1

)0.01 (

e−
|1−5|

1

)0.02 (

e−
|2−5|

1

)0.03

(

e−
|3−5|

1

)0.04 (

e−
|1−2|

1

)0.9

0.0025 ≥ 0.3104.

This is a contradiction. Hence, L is not Hardy Rogers type OFIPC.

The requirements for the presence of a fixed-point of the Hardy-Rogers type (J ,S)-OFIPC is stated in

the following two theorems.

Theorem 10. Let ⊥ be a TOR, then, every ⊥- PSM defined on a ⊥- regular OCFMS (B, ϑ, ∗,⊥) verifying

(3.25) and (i)-(iv), have a fixed point in B.

Proof. Assume σ0 ∈ B such that σ0 ⊥ σ1 or σ1 ⊥ σ0 for every σ1 ∈ B, then by utilizing the

⊥-preservation of L, we build an OS {σn} s.t σn = L (σn−1) = Ln (σ0) and σn−1 ⊥ σn for every
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n ∈ N. Note that, if σn = L (σn) then σn is FP of L for all n ≥ 0. Let σn ̸= σn+1 for all n ∈ N∪ {0}. Let

yn = ϑ (σn, σn+1, ς) ∀ n ≥ 0. By the first part of (ii) and (3.25), we have

J (yn) ≥ J (ϑ (Lσn−1, Lσn, ς))

≥ S
(

(ϑ (σn−1, σn, ς))v (ϑ (σn−1, Lσn−1, ς))η (ϑ (σn, Lσn, ς))γ

(ϑ (σn−1, Lσn, ς))δ (ϑ (σn, Lσn−1, ς))1−v−η−γ−δ

)

≥ S
(

(ϑ (σn−1, σn, ς))v (ϑ (σn−1, σn, ς))η (ϑ (σn, σn+1, ς))γ

(ϑ (σn−1, σn+1, ς))δ (ϑ (σn, σn, ς))1−v−η−γ−δ

)

≥ S
(

(ϑ (σn−1, σn, ς))v (ϑ (σn−1, σn, ς))η (ϑ (σn, σn+1, ς))γ

(ϑ (σn−1, σn+1, ς))δ (1)1−v−η−γ−δ

)

≥ S
(

(ϑ (σn−1, σn, ς))v (ϑ (σn−1, σn, ς))η (ϑ (σn, σn+1, ς))γ

(ϑ (σn−1, σn, ς))δ (ϑ (σn, σn+1, ς))δ

)

≥ S
(

(yn−1)
v+η+δ (yn)

γ+δ
)

> J
(

(yn−1)
v+η+δ (yn)

γ+δ
)

. (3.26)

Suppose that yn > yn−1 for some n ≥ 1. By monotonicity of J and (3.26), we have (yn)
γ+δ

>

(yn)
γ+δ. This is not possible. Consequently, we obtain yn > yn−1 ∀ n ≥ 1. Now taking steps as taken

in Theorem 4, we deduce σn → u as n → ∞, and with the support of ⊥-regularity of (B, ϑ, ∗,⊥), we

have σn ⊥ u or u ⊥ σn. we need to prove that ϑ (u, Lu, ς) = 1. Letting ϑ (σn+1, Lu, ς) < 1 and using

(3.25), we have

J (ϑ (σn+1, Lu, ς)) ≥ J (ϑ (Lσn, Lu, ς))

≥ S
(

(ϑ (σn, u, ς))v (ϑ (σn, Lσn, ς))η (ϑ (u, Lu, ς))γ

(ϑ (σn, Lu, ς))δ (ϑ (u, Lσn, ς))1−v−η−γ−δ

)

≥ S
(

(ϑ (σn, u, ς))v (ϑ (σn, σn+1, ς))η (ϑ (u, Lu, ς))γ

(ϑ (σn, Lu, ς))δ (ϑ (u, σn+1, ς))1−v−η−γ−δ

)

> J
(

(ϑ (σn, u, ς))v (ϑ (σn, σn+1, ς))η (ϑ (u, Lu, ς))γ

(ϑ (σn, Lu, ς))δ (ϑ (u, σn+1, ς))1−v−η−γ−δ

)

.

Using (ii), we get

ϑ (σn+1, Lu, ς) >

(

(ϑ (σn, u, ς))v (ϑ (σn, σn+1, ς))η (ϑ (u, Lu, ς))γ

(ϑ (σn, Lu, ς))δ (ϑ (u, σn+1, ς))1−v−η−γ−δ

)

.

Now for large n, the last inequality implies that ϑ (u, Lu, ς) ≥ 1. Hence, ϑ (u, Lu, ς) = 1, or

u = Lu.

Theorem 11. Let ⊥ be a TOR, then, every ⊥-PSM defined on a ⊥- regular OCFMS (B, ϑ, ∗,⊥) verifying

(3.25) and (i), (iii), (v)-(viii), have a fixed point in B.

Proof. Following the steps as taken in Theorem 5 and Theorem 10, the proof is obvious.

4. Applications

In this section, we discuss the applications of fractional differential equations and Volterra-type

Fredholm integral equations.
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4.1. An Application to Fractional Differential Equation

A variety of useful fractional differential features were postulated and searched by Lacroix (1819).

Caputo and Fabrizio announced [23] a new fractional technique, in 2015. The need to characterize a

class of non-local systems that cannot be properly represented by traditional local theories or fractional

models with singular kernel [23] sparked interest in this description. The different kernels that can be

selected to satisfy the requirements of different applications are the fundamental difference among

fractional derivatives. The Caputo fractional derivative [24], the Cauto -Fabrizio derivative derivative

[23], and the Atangana-Baleanu fractional derivative [20], for example, are determined by power laws,

the Caputo-Fabrizio derivative by an exponential decay law, and the Atangana_Baleanu derivative

by Mittag- Leffler law. A variety of new Caputo-Fabrizio (CFD) models were lately investigated in

[19,21,22].

In OFMSs, we will look at one of these models. (represent C(I,R) by k)

Let ϑ : k2 → [1, ∞) be defined by

ϑ (u, v, ς) = e
− ∥u−v∥

ς = e
− supl∈I

|u(l)−v(l)|
ς , for all u, v ∈ C(I,R).

Then (k, ϑ, ς) is a complete fuzzy metric space, where I = [0, 1] and

k = {u|u : I → R and u is continuous} .

The relation ⊥ on k given as follows:

u ⊥ v iff u (l) v (l) ≥ u (l) ∨ v (l) , for all u, v ∈ C(I,R),

is an orthogonal relation and (k, ϑ, ∗,⊥) is an OCFMS. Let the function K1 : I ×R → R be taken as

K1 (s, r) ≥ 0 for all s ∈ I and τ ≥ 0. we shall apply Theorem 2 to resolve the following CFDE:

CDvw (s) = K1 (s, w (s)) ; w ∈ C(I,R) : (4.27)

W (0) = 0, Iw (1) = w
′
(0) .

We denote CFD of order v by CDv and for v ∈ (m − 1, m) ; m = [v] + 1, we have

CDvw (s) =
1

Γ (m − v)

∫ s

0
(s − z)m−v−1 w (z) σdz.

The notation Ivw is interpreted as follows :

w (s) =
1

Γ (m − v)

∫ s

0
(s − z)v−1 K1 (z, w (z)) σdz +

s

Γ (m − v)

∫ 1

0

∫ z

0
(z − p)v−1 K1 (p, w (p)) σd pσdz.

For the mapping K1 : I ×R → R and u0 ∈ k we state the following conditions:

(A) For τ ≥ 0, let

| K1 (s, w (s))− K1 (s, u (s)) |≤ Γ (v + 1)

Γ (v)
| w (s)− u (s) |,

for all w, u ∈ k following the order w ⊥ u.
(B) there exists u0 ∈ k such that

u0 (s) ≤ 1

Γ (v)

∫ s

0
(s − z)v−1 K1 (z, w0 (z)) σdz

+
l

Γ (v)

∫ 1

0

∫ z

0
(z − p)v−1 K1 (p, u0 (p)) σd pσdz.
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We noticed that K1 : I ×R → R is not necessarily Lipschitz continuous.

For instant, K1 given by

K1 (s, w (s)) = sw (s) if w (s) ≤ 1

2
,0 if w (s) >

1

2
.

Following (A), K1 is not continuous and monotone. Moreover, for s = e−τ
Γ (v + 1) ,

ϑ (K1 (s, w (s)) , K1 (t, u (t)) , ς) = e
−

|K1(l, 1
2 )−K1(l, 2

3 )|
ς = e

s
2ς ≥ e

s
6ς = e

−s
| 1

2 −
1
3 |

ς = ϑ (w, u, ς)

Theorem 12. Let the mappings K1 : I × R → R and u0 ∈ C(I,R) satisfies the conditions (A)-(B), the the

equation (23) admits a solution in k.

Proof. Let X =
{

J ∈ C(I,R) : J (s) ≥ 0 for all s ∈ I
}

and define Ψ : X → X by

(ΨJ) (s) =
1

Γ (v)

∫ s

0
(s − z)v−1 K1 (z, J (z)) σdz +

s

Γ (v)

∫ 1

0

∫ z

0
(z − p)v−1 K1 (p, J (p)) σd pσdz.

We define an orthogonal relation ⊥ on X by

u ⊥ v iff u (s) v (s) ≥ u (s) v (s) , ∀ u, v ∈ X.

According to above conditions ,Ψ is preserving and there is u0 ∈ k verifying (B) such that

un = Rn (u0) with un ⊥ un+1 or un+1 ⊥ un for all n ≥ 0. we work on the validation of (3.3) in the

next lines.

ϑ ((ΨJ) (s) , Ψ (U) (s) , ς) = exp















sup | 1
Γ(v)

∫ s
0 (s − z)v−1 K1 (z, J (z)) σdz

− 1
Γ(v)

∫ s
0 (s − z)v−1 K1 (z, U (z)) σdz

+ s
Γ(v)

∫ 1
0

∫ z
0 (p − z)v−1 K1 (p, J (p)) σd pσdz

− s
Γ(v)

∫ 1
0

∫ z
0 (p − z)v−1 K1 (p, U (p)) σd pσdz















≥ exp



sup
s,z∈I







1
Γ(v)

Γ (v + 1)
∫ s

0 (s − z)v−1 |J(z)−U(z)|
ς σdz

− s
Γ(v)

Γ (v + 1)
∫ 1

0

∫ z
0 (p − z)v−1 |J(z)−U(z)|

ς σdzσd p











≥ exp





1
Γ(v)

Γ (v + 1) supz∈I
|J(z)−U(z)|

ς

sups∈I

{

∫ s
0 (s − z)v−1 | σdz − s

∫ 1
0

∫ z
0 (p − z)v−1 σdzσd p

}





≥ exp





Γ(v)Γ(v+1)
Γ(v)Γ(v+1)

supz∈I
|J(z)−U(z)|

ς

−sB (v + 1, 1)
Γ(v)Γ(v+1)
Γ(v)Γ(v+1)

sups,z∈I
|J(z)−U(z)|

ς





≥ exp (1 − sB (v + 1, 1)) sup
s,z∈I

| J (z)− U (z) |
ς

≥ exp

(

(1 − sB (v + 1)) sup
s,z∈I

| J (z)− U (z) |
ς

)

=

(

exp

(

sup
s,z∈I

| J (z)− U (z) |
ς

))1−sB(v+1,1)

= (ϑ (J(z, U (z) , ς))1−sB(v+1,1) ; where B is a beta function.
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By defining J (w) = ln (w) and S (w) = DJ (w) ; w > 0, τ > 0, and putting 1 − sB (v + 1, 1) =

D < 1, the last inequality gets the form:

J (ϑ (Ψ (J) (s) , Ψ (U) (s)) , τ) ≥ S (ϑ (J, U, τ)) .

4.2. Application to Volterra Type Integral Equation

There are several types of integral equations but they are only used the "model scientific process"

in which the value, or the rate of change of the change of value, of some quantity (or quantities)

depends on past history. This opposes in which the present value can obtain the rate at which a

quantity evolving. Just as for differential equations, integral equation need to be "solved" to describe

and predict how a physical quantity is going to behave as time passes. For solving integral equations,

there are things like Fredholm theorems, fixed point methods, boundary element methods, and

Nystrom methods. In this paper, we apply Theorem 2 to show the existence of multiplicative Volterra

type integral equation given below;

f (k) =
∫ k

0
L (k, h, f , ς) σdh (4.28)

for all k ∈ H and L : H × H × k → R. We show the existence of the solution to (4.27).

Let ϑ : k× k× (0, ∞) → R be defined as

ϑ (u, v, ς) = e
− |u(l)−v(l)|

ς , for all u, v ∈ C(I,R).

Then (k, ϑ, ∗) is a CFMS where I = [0, 1] and

k = {u|u : I → R and u is a continuous} .

The relation ⊥ on k given as follows

u ⊥ v iff u (l) v (l) ≥ u (l) ∨ v (l) , for all u, v ∈ C(I,R),

is an orthogonal relation and (k, ϑ, ∗,⊥) is an OCFMS.

The following is the existence theorem for integral equation (4.28).

Theorem 13. Assume that the following conditions are satisfied.

(a) Assume that L : H × H × k → R is continuous.
(b) Suppose there exists τ > 0, such that

e
− |L(k,h, f )−L(k,h,q)|m

ς ≥ e
−

|ϑ( f ,q)−(τ(
√

ϑ( f ,q))+1)
2 |

ς (4.29)

for all k, h ∈ [0, 1] and f , q ∈ C(I,R+). Then, integral equation (4.28) admits a solution in C(I,R+).

Proof. Let R = k and endow it with the relation ⊥ and fuzzy metric space ϑ. Define the mapping

Ψ : R → R by

(Ψ f ) (k) =
∫ k

0
L (k, h, f , ς) σdh (4.30)
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so that the fixed point of Ψ is a solution of integral equation (4.28). According to above definitions, ψ is

⊥-preserving and there is u0 ∈ k verifying un = Rn (u0) with un ⊥ un+1 or un+1 ⊥ un for all n ≥ 0.

We work on the validation of (3.3) in the next lines. By assumption (b), we have

ϑ (Ψ ( f ) , Ψ (q) , ς) = e
− |(Ψ f )(k)−(Ψq)(k)|

ς

≥
∫ k

0
e
− |(Ψ f )(k)−(Ψq)(k)|

ς σdh

≥
∫ k

0
e
−

|ϑ( f ,q)−(τ(
√

ϑ( f ,q))+1)
2 |

ς σdh

= e
−

|ϑ( f ,q)−(τ(
√

ϑ( f ,q))+1)
2 |

ς

∫ k

0
σdh

= ke
−

|ϑ( f ,q)−(τ(
√

ϑ( f ,q))+1)
2 |

ς

= ϑ ( f , q, ς)

Hence, by defining J (w) = ln (w) and S (w) = DJ (w) ;

J (ϑ (Ψ ( f ) , Ψ (q) , ς)) ≥ S (ϑ ( f , q, ς)) .

So all the conditions of Theorem 2 are satisfied and v = k. Hence, the integral equation (4.28)

admits at most one solution.

5. Conclusions

The study of (J ,S)-OFIPC proved to be a source of generalization of many well-known

contractions. The methodology applied for investigation of fixed point of (J ,S)-OFIPC encapsulated

existing corresponding methodologies. The results will extend earlier results of [8,15–18].
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