
Citation: Alqurashi, F.; Al-Hashimi, M.

An Accurate Estimation of the Energy

Cost of Dynamic Branch Prediction in

an Intel High-Performance Processor.

Computers 2023, 1, 0. https://doi.org/

Received:

Revised:

Accepted:

Published:

Copyright: © 2023 by the authors.

Submitted to Computers for possible

open access publication under

the terms and conditions of

the Creative Commons Attri-

bution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

An Accurate Estimation of the Energy Cost of Dynamic Branch
Prediction in an Intel High-Performance Processor
Fahad Alqurashi 1,∗ and Muhammad Al-Hashimi 1

1 Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz
University, Jeddah 25732, Saudi Arabia; mhashimi@kau.edu.sa (M.A.-H.)
* Correspondence: falqurashi0041@stu.kau.edu.sa

Abstract: Power and energy efficiency are among the most crucial requirements in high-performance 1

and other computing platforms. This work examines through extensive experimentation methods 2

and procedures suitable for assessing the power and energy efficiency of fundamental hardware 3

building blocks inside a typical high-performance CPU, focusing on the dynamic branch predictor 4

(DBP). The investigation relies on the Running Average Power Limit (RAPL) interface from Intel, a 5

software tool for credibly reporting the power and energy based on instrumentation inside the CPU. 6

We use well-known microbenchmarks under various run conditions to explore potential pitfalls and 7

to develop precautions to raise the precision of the measurements obtained from RAPL for more 8

reliable power estimation. The authors discuss the factors that affect measurements and share the 9

difficulties encountered and the lessons learned. 10

Keywords: Dynamic Branch Predictor, Power Efficiency, Energy, HPC, RAPL, microbenchmarks 11

1. Introduction and Motivation 12

In the past, the primary interest of computer architects and software developers was 13

to increase performance. But in the last couple of decades, power and energy efficiency 14

emerged as major requirements in computing. One of the reasons that led to power and 15

energy efficiency interest in computing is the need to reduce the power consumption of 16

HPC to achieve exascale supercomputers [1]. This goal motivated researchers to investigate 17

the fundamental software building blocks such as sort algorithms, matrix multiplication 18

algorithms, and shortest path algorithms used commonly in HPC applications to find the 19

factors that notably affect power consumption. Similarly, several fundamental hardware 20

components, such as arithmetic units, decoders, caches, and Dynamic Branch Predictors 21

(DBP), may be of interest in terms of power efficiency. 22

This work focuses on investigating DBP for various reasons. Firstly, DBP became 23

an essential component in all modern CPUs used in HPC. Secondly, conditional jump 24

instructions represent a significant percentage of most typical application instructions. 25

Modern CPUs use DBP to guess the direction and the target address of jump instructions 26

which means a heavy utilization of DBP during any application run. Consequently, any 27

power savings related to this component may yield substantial benefits in the total energy 28

consumption. Thirdly, according to some statistics, DBPs account for 10 to 40 percent of 29

CPU dynamic power consumption [2]. Fourthly, the recent DBP security issues appeared, 30

and the solutions proposed to mitigate them need investigation from a power and energy 31

perspective [3–5]. Lastly, the lack of research papers studying DBP and its security issues 32

from a power and energy perspective gave us an extra boost for investigation. 33

As many research papers pointed out, software style impacted program performance 34

and power and energy consumption of computing devices in significant ways [6]. The 35

impact demanded that developers find easy ways to measure performance and power 36

consumption of their software. RAPL, introduced in modern processors, is one of the most 37

prominent software tools that can report the power in different CPU domains [7]. RAPL 38

Version June 8, 2023 submitted to Computers https://www.mdpi.com/journal/computers

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 June 2023 doi:10.20944/preprints202306.0725.v1

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202306.0725.v1
http://creativecommons.org/licenses/by/4.0/

Version June 8, 2023 submitted to Computers 2 of 22

obviates the need for external hardware power measurement devices that are complex to 39

manage, lack fine granularity, and are expensive [8]. However, using RAPL for measuring 40

CPU power consumption accurately, especially on the process level, needs some precautions 41

to avoid noise in measurement [8]. 42

This report presents the researchers’ experience and methodology in using the RAPL 43

tool for measuring the power consumption of a program and the precautions recommended 44

during measurement operations to raise the reliability of the RAPL tool for more accurate 45

power estimation. The paper is organized as follows. Section 2 is a literature review of 46

previous works that evaluated the power and energy consumption of fundamental software 47

building blocks. Section 3 is a background about DBP and RAPL. Section 4 explores various 48

factors that affect the accuracy of reading results of RAPL that act as source of noise. 49

Section 5 examines the different ways to acquire more reliable results from RAPL tools 50

available in Linux. Section 6 focuses on the methodology used to estimate the power and 51

energy consumed by the DBP. Section 7 introduces experimentation results that motivate 52

the precautions mentioned in Section 5. Section 8 presents some conclusions. 53

2. Literature Review 54

Researchers have recognized the impact of software on computing power and energy 55

consumption since the 1990s. Mehtal et al. [9] proposed software techniques to reduce the 56

energy consumption of a processor using compiler optimization, such as loop unrolling 57

and recursion elimination. They also studied how various algorithms and data structures 58

affect power and energy usage. 59

Capra and Francalanci [10] considered the design factors that influence the energy 60

consumption of applications that perform the same functionality but have different designs. 61

They experimentally assessed the energy efficiency of management information systems. 62

In their study, they found that application design has a significant impact on energy 63

consumption. 64

Sushko et al. [11] studied the effect of loop optimization on the power consumption of 65

portable computing devices. They applied their study to ARMv8 architectures. Their study 66

showed the power efficiency gained by fitting data on cache and parallelization for loop 67

optimization. 68

Al-Hashimi et al. [12] studied the effects on the system power consumption of three 69

iteration statements: For-loop, While-loop, and Do-While. They measured for each case 70

the average time, power, temperature, the value of the maximum temperature, and the 71

number and percentage of times reached. They found that the For-loop was the most power 72

efficient and that the While Loop had the worst power efficiency. 73

Abulnaja et al. [13] analyzed bitonic mergesort compared to an advanced quicksort on 74

the NVIDIA K40 GPU for power and energy efficiency. They introduced the factors that 75

affected power consumption and studied those that lead to higher energy and power con- 76

sumption, such as data movement and access rate. They concluded that bitonic mergesort 77

is inherently more suitable for the parallel architecture of the GPU. This study triggered 78

the investigation of more software building blocks, such as spanning tree algorithms and 79

binary search algorithms. 80

Aljabri et al. [14] conducted a comprehensive empirical investigation into the power 81

efficiency of mergesort compared to a high-performance quicksort on the Intel Xeon CPU 82

E5-2680 (Haswell), which is more commonly used in HPC and has more accurate sensor 83

readings than previous generation Intel Xeon E5-2640 CPU (Sandy Bridge) utilized in an 84

earlier work [15]. The research was motivated by the fact that divisions by powers of two, 85

the most frequent operation in mergesort, may be performed by a power-efficient barrel 86

shifter. Mergesort applies in its procedure a divide-and-conquer strategy in which the 87

original list (or array) is divided, recursively, into two equal lists. The study concluded that 88

mergesort had an advantage from the power efficiency side on quicksort, with comparable 89

time efficiency of the two algorithms. This study encouraged more investigation into 90

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 June 2023 doi:10.20944/preprints202306.0725.v1

https://doi.org/10.20944/preprints202306.0725.v1

Version June 8, 2023 submitted to Computers 3 of 22

other algorithms that perform similar tasks but have different time efficiency from a power 91

perspective. 92

NZ Oo et al. [16] studied Strassen’s matrix multiplication algorithm from a performance 93

vs. power perspective. In their study, they found a way to enhance performance and reduce 94

energy consumption by using loop unrolling on the recursive level of the algorithm to 95

minimize the cache misses and increase the data locality. They claim that their method 96

increased performance by 93 percent and reduced energy consumption by 95 percent. 97

Jammal et al. [17] studied the power efficiency of three matrix multiplication algo- 98

rithms: a definition-based, Strassen’s divide-and-conquer, and an improved divide-and- 99

conquer on the Intel Xeon CPU E5-2680. The main finding of this work is that the fastest 100

divide and conquer algorithm is power-efficient only for small matrix sizes. For larger sizes, 101

the definition-based algorithm turned out to be more power-efficient. They also studied 102

the effect of every cache level miss on power consumption. 103

Some of the previous works hypothesized that some algorithms have superiority 104

over others that are equivalent in tasks in terms of power efficiency, but others have an 105

advantage in terms of time efficiency. Those studies concerned the factors that played 106

significant roles in power saving to open the door for further investigation that can lead to 107

a balance between power and time efficiency. 108

In this work, the researchers were motivated by the previous work to investigate 109

fundamental hardware building blocks inside the CPU rather than software building 110

blocks from a power and energy perspective. A recent study by Lastovetsky et al. [18] 111

introduced methods usable as building blocks to scale HPC computing systems to achieve 112

energy and performance optimization on the application level. They required energy 113

profiling of computational components. They introduced some precautions to reduce the 114

noise in the measurements. While their study considered the whole system, this study was 115

concerned with individual CPU components, specifically the dynamic branch predictor. 116

3. Background 117

This section introduces a background of dynamic branch prediction and the RAPL 118

interface. 119

3.1. Dynamic Branch Predictor 120

One of the most efficient features used inside modern CPUs to attain a high perfor- 121

mance by increasing Instruction Level Parallelism (ILP) is speculative execution. This 122

feature overcomes stalling in some of the CPU’s processing stages caused by structure, 123

control, or data hazards. Branch instructions cause a main source for such dependencies. 124

For instance, in conditional branch instructions, the CPU needs to decode and execute a 125

branch instruction before it decides whether to take the branch by jumping to the branch 126

instruction target address or continuing to the next instruction in the program sequence 127

[19], which causes a control hazard. According to most program statistics, the branch 128

instructions represent 10 to 20 percent of all program instructions in most workloads. This 129

percentage warrants careful treatment by a CPU. If not, it would dramatically degrade the 130

performance. Modern CPUs use speculative execution to predict the outcome of the branch 131

instructions before decoding them. 132

In general, branch prediction techniques fall into static or dynamic. Static branch pre- 133

diction mechanisms append a bit during program compilation to every branch instruction 134

operation code (OPCODE), which indicates whether the branch is taken or not taken by 135

assigning a zero or one to indicate taken or not taken, respectively. The criteria that static 136

decision depends on is the nature of the branch instruction. For instance, unconditional 137

branch and backward conditional instructions are always guessed as (taken), while forward 138

conditional instructions are guessed as (not-taken) [1]. 139

In contrast, in dynamic branch prediction (DBP) techniques, the predictor collects 140

information about a branch instruction while running a program. This information is a sort 141

of history that describes the behavior of the branch instruction during its last number of 142

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 June 2023 doi:10.20944/preprints202306.0725.v1

https://doi.org/10.20944/preprints202306.0725.v1

Version June 8, 2023 submitted to Computers 4 of 22

executions (taken or not taken and its target address). This information is used the next 143

time the branch instruction is executed to guess its direction (taken or not taken.) Dynamic 144

prediction is much more accurate than static prediction [20]. 145

DBP is a principal component of speculative execution resources [21]. It is a digital 146

circuit called the Dynamic Branch Unit (DPU), used in pipelined CPUs to guess the direction 147

and the target address of the branch instructions to improve the flow in the pipeline. DBP 148

has a significant positive impact on CPU performance. DBP is accessed almost every cycle 149

on average, i.e., it consumes more power and dissipates more heat. So, any improvement 150

in its power consumption leads to significant CPU power and energy efficiency [20,21]. 151

Various DBP techniques emerged in the last three decades. Examples are two-level 152

predictions, interference-reducing predictors, neural predictors, and hybrid branch predic- 153

tors. In the earlier era of DBP design, the primary goal of these techniques is to improve 154

the CPU’s performance, which requires a balance between the accuracy of DBP prediction 155

and the access time to it. However, power and energy awareness became a crucial goal of 156

any modern CPU component, including DBP. So modern CPUs require trade-offs in design 157

between cost, performance, and power consumption [20]. 158

Even though the exact organization of a CPU’s DBP usually is not made public, the 159

industrial implementations of DBPs consist in general of five major parts that distinctly 160

influence power consumption [22]. 161

1. Branch Target Buffer (BTB): is a set-associative cache that stores the target addresses 162

of conditional and unconditional branch instructions. 163

2. Indirect Branch target buffer (IBTB): is a direct-mapped cache that stores the target 164

addresses of indirect branch instructions. 165

3. Loop predictor is a set-associative cache to predict the outcome of conditional branch 166

instructions with loop behavior. 167

4. Global predictor is a set-associative cache to predict the outcome of the general 168

conditional branch instructions. 169

5. Bimodal predictor: a two-bit saturating counter. 170

In this research, the authors hypothesize that just as there are factors that affect power 171

consumption in some algorithms, there are factors that affect power consumption in DBP. 172

The research interest of this work was to investigate these factors and try to stress the 173

different DBP components to find out the components that may contribute to power 174

consumption more than others. 175

3.2. Intel RAPL 176

RAPL (Running Average Power Limit), a feature of Intel CPUs since the advent of 177

Sandy Bridge architecture, performs two tasks. The first and foremost task is limiting the 178

energy consumption of different components in the CPUs to protect them from the thermal 179

effect. The second task is to provide a software tool to measure the power and energy 180

consumed by those different components, during the program run, in fine granularity 181

[23,24]. 182

RAPL is a valuable feature introduced, first, by Intel in the Sandy Bridge architecture 183

in 2011 to help researchers and system designers to gain estimation for power and energy 184

of different domains inside and outside CPU; namely, a whole package, core, un-core and 185

DRAM [25]. Several free tools can benefit from the RAPL interface. Some of these tools can 186

run under Windows and Mac operating systems, and others run under the Linux operating 187

system. 188

In modern Intel CPUs, RAPL can limit and measure the power and energy of different 189

levels (or domains) in the CPU. The biggest domain is called the package domain. It is 190

where RAPL can control and measure the power and energy consumed by the whole 191

CPU socket. The second domain, Power Plane 0 (PP0), deals with the total power/energy 192

consumed by all cores in the CPU. The third one, called the DRAM domain, can measure 193

the power and energy consumed by the dynamic RAM. The fourth domain, Power Plane 1 194

(PP1), can measure the power and energy consumed by GPU. Another one, called PSys, 195

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 June 2023 doi:10.20944/preprints202306.0725.v1

https://doi.org/10.20944/preprints202306.0725.v1

Version June 8, 2023 submitted to Computers 5 of 22

was introduced in some Intel CPUs to control and monitor the power and thermal impact 196

of the previous domains in addition to eDRAM (the embedded DRAM integrated into the 197

same CPU between cache level 3 and DRAM) and some other features in recent Intel CPUs, 198

such as CPU System Agent responsible for handling I/O between the components and the 199

CPU. However, not all Intel CPUs support all mentioned domains. One needs to review 200

documents to check the power domains a CPU supports [25]. 201

Several research papers investigated CPU power and energy consumption that con- 202

firmed the effectiveness of the RAPL tool. Giardino et al. used RAPL registers to calculate 203

the average power for SPEC CPU2006 benchmarks through perf_events command in 204

Linux [26]. Khan et al. demonstrated the accuracy of RAPL in power and energy estimation. 205

They also showed some weaknesses and limitations of RAPL [8]. Desrochers et al. found 206

that power and energy estimation for DRAM using RAPL matches the power and energy 207

estimated by WattsUpPro, a power measurement device, with a constant offset between 208

RAPL and WattsUpPro [23]. Zhang and Hoffmann evaluated RAPL as a power limit control. 209

They concluded that RAPL achieves good power stability in stable applications running 210

for a long time [27]. 211

Khan et al. compared the power consumed by the CPU package, as measured by 212

an external power measurement device connected to the wall socket, to the power con- 213

sumption measured by RAPL. Their results demonstrated a strong correlation between 214

the measurement obtained from the wall socket and that obtained from RAPL. Khan and 215

Nizam introduced a comprehensive study about the accuracy of RAPL measurement. They 216

concluded that the RAPL was effective and a suitable alternative to external hardware 217

devices [28]. 218

This work focuses on RAPL to measure the power and energy consumption of different 219

CPU domains in servers, workstations, desktops, and laptops, as well as how to obtain 220

more accurate and, hence, reliable readings. 221

Before RAPL, CPUs predicted and estimated power based on a group of performance 222

counters that can model predictive estimations of power and energy. RAPL, on the other 223

hand, is an onboard digital meter (a set of counters) that gives better estimates of the power 224

and energy compared to the old way that depended only on modeling since it also relies 225

on embedded voltage regulators. RAPL exposes readings to the software layer through a 226

group of registers classified as Machine Specific Registers (MSRs). Reading from or writing 227

to these registers can be done through the two privileged machine instructions: RDMSR 228

and WRMSR. The RAPL MSRs are updated approximately every millisecond in Intel CPUs. 229

So, if any MSR multiple reading operations happened during one millisecond, the read 230

values would be the same and considered as old values [27]. 231

4. Noise Sources in RAPL Power Estimations 232

The term noise, in the context of this work, is used in a specific way. It refers to any 233

one of the many factors that can affect the accuracy of the intended measurements. It stems 234

cheifly from the experimental environment but can also come from the methods and the 235

tools behind the readings. Understanding the sources of noise can help obtain accurate 236

readings for the intended measurement. This section elaborates on these factors. 237

4.1. CPU Temperature 238

The most important environmental factor is the CPU temperature. It is well known 239

that there is a strong correlation between CPU temperature and RAPL readings [8]. It 240

makes the surrounding temperature one of the most important causes of noise. The rise in 241

CPU temperature could happen because of the lab temperature, the heavy utilization of the 242

CPU, poor ventilation inside the computer case, or a faulty CPU heat dissipation system 243

[14]. 244

Therefore, the experiment must be conducted in a good air-conditioned environment 245

to maintain a reasonable and consistent ambient temperature. Otherwise, RAPL readings 246

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 June 2023 doi:10.20944/preprints202306.0725.v1

https://doi.org/10.20944/preprints202306.0725.v1

Version June 8, 2023 submitted to Computers 6 of 22

will be affected by the ambient CPU temperature [14]. Reducing the effect of CPU-heavy 247

utilization will be discussed in a later sub-section. 248

4.2. Cross Core Thermal Exchange Effect 249

The rise of temperature in a core can significantly influence its neighbor cores. This 250

effect arises from the thermal exchange between adjacent physical cores in the same die. 251

The heat seeps from a core to a neighboring one and may become a source of RAPL reading 252

noise [14]. 253

4.3. Using Multiple Cores for One Application 254

Some applications utilize multiple cores by design to leverage their performance 255

in parallel. However, power estimation of applications that run on many cores leads to 256

inaccurate results when using RAPL hardware counters. With such applications, we can 257

set the affinity to restrict them to running on one core [14]. 258

4.4. Context Switching between Applications and Operating System 259

Most applications need services from the operating system, such as file management 260

and input/output device control. These services are not a part of the program intended to 261

estimate its energy. So, we need to deal with these services carefully to ensure pure mea- 262

surements of the power consumption due to the application. However, some researchers 263

may consider these services a part of the application to include in a proper estimate of an 264

overall power consumption [14]. 265

4.5. Hyper-Threading Technology 266

Unlike multithreaded applications, where an application can run on different cores, 267

the hyper-threading feature on some modern CPUs allows threads from many programs to 268

run on the same processor core. Hence, one physical core can function as two logical cores. 269

Hyper-threading feature can be enabled or disabled (enabled by default) by the user from 270

the BIOS. For accurate power estimation, hyper-threading should be turned off to ensure 271

that no other application than the one we intend to measure shares the same physical core 272

[25]. 273

4.6. Operating System Issues 274

When we use the RAPL interface to measure the power consumed by software, the 275

operating system plays a significant role in the accuracy of results. The effect of the 276

operating system on the readings comes in several manifestations. 277

Many functions, managed by the operating system, run in the background and con- 278

tribute to the inaccuracy of power estimation. These functions should be isolated from the 279

application one way or another [14]. 280

When an application deals with a lot of data from the secondary storage, the loading 281

operation consumes a large amount of power which is not due to the actual application 282

logic. For accurate results, in this case, the data could be embedded in the application file 283

to be stored in the main memory when the application loads [14]. 284

Another feature controlled by the operating system is the power management feature 285

in all operating systems today. The technology tries to implement the most efficient power 286

mode as long as possible. For an accurate comparison of power and energy between two 287

codes, this feature needs to be disabled [29]. 288

4.7. Compiler Optimization Issues 289

Compilers come with many optimization options. These options may affect RAPL 290

readings. For instance, loop unwinding increases program speed by reducing the number 291

of loop windings. If we estimate the power for an application compiled with a loop 292

unwinding optimization, the measured power will be for a modified code that may not 293

match the original logic [30]. 294

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 June 2023 doi:10.20944/preprints202306.0725.v1

https://doi.org/10.20944/preprints202306.0725.v1

Version June 8, 2023 submitted to Computers 7 of 22

Compiler power consumption optimization is another feature supported by popular 295

compilers. When we try to estimate the power consumption of a code apart from the 296

architecture or platform, it is more accurate to avoid such optimization to measure the 297

native attributes of the code [31]. However, when the optimization exploits features specific 298

to the architecture or platform and the code targets that environment, then it would be 299

reasonable to apply that optimization. In general, for accurate power measurement, power 300

optimization options should be turned on or off depending on the purpose of measurement, 301

whether it targets the code itself or the platform, or both. 302

5. Accurate RAPL Power and Energy Estimation in Linux 303

In this section, the authors introduce RAPL interface tools available in Linux to read 304

the MSR registers. They also discuss policies and procedures to get more accurate results. 305

5.1. Linux RAPL Tools 306

Several tools are available for Linux that can deal with the RAPL interface. The 307

following only lists the most common ones. 308

TurboStat tool is a part of the Linux kernel (needs root privilege) that can read RAPL 309

information from MSRs registers and gives information about the power consumption. It 310

comes with many options that control the display of the information and the period time of 311

information collection [32]. 312

PowerTOP is another Linux tool that can estimate the power consumption in CPU, 313

GPU, or DRAM. It has several options that define the domain of measurement and the way 314

the information is displayed [33]. 315

The perf tool is one of the easiest Linux power profilers. Using it, one can collect 316

power from various CPU domains (package, core, GPU, Psys). Perf can be used as a 317

primary interface to the kernel to report a set of RAPL counters [34]. 318

5.2. Containerization Technology 319

Containers were originally Linux features. So, the majority of them are Linux-based. 320

Containerization is a way to isolate the application by creating a run environment around 321

it called a container. All application dependencies, such as libraries, configuration files, and 322

binaries, are encapsulated with the application in a standardized lightweight environment 323

called a container. This operation helps the applications behave consistently when run on 324

different hosts or multiple times on the same host. To assess an application on different 325

hosts, it is better to containerize it to compare the effect of different architectures or plat- 326

forms on power consumption. This measure is perhaps also useful when comparing the 327

power consumption or performance of algorithms or applications on the same machine. 328

In this research, we will test, experimentally, the effect of containerization on the RAPL 329

measurements. 330

Many engines, such as Docker, CoreOS RKT, and runC are available to containerize 331

any application [35]. The popular Docker container will be used for experimentation. 332

5.3. CPU Affinity Setting 333

In multicore CPUs, the applications running can use, by default, any set of available 334

cores. To restrict an application to specific cores, one should set the processor affinity to 335

the intended cores. For a more accurate power estimation of an application, it should be 336

set to run on one core. The measurement accuracy is due to the fact that restricting the 337

application to one core minimizes the context switching and CPU migration, eliminates 338

hyper-threading, and reduces cache misses. The rise in those factors represents major 339

sources of noise of RAPL readings. The taskset command is used to set the processor 340

affinity in Linux [36]. 341

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 June 2023 doi:10.20944/preprints202306.0725.v1

https://doi.org/10.20944/preprints202306.0725.v1

Version June 8, 2023 submitted to Computers 8 of 22

5.4. Dedicating One Core to An Application 342

Setting affinity for a CPU core ensures that the application runs on a single core, but it 343

is not enough to ensure that no other programs share the application on the core. To assign 344

a processor core exclusively to an application, the operating system must reserve the core 345

from the beginning (during boot operation) to prevent the system scheduler from using it for 346

any process. After that, the reserved core may be assigned to the application whose power 347

consumption is under measurement. To reserve a core in Linux, the isolcpus=⟨CPU_ID⟩ 348

kernel parameter is added to the GRUB boot loader configuration file [37]. For instance, to 349

reserve core number 5 in the CPU, one must add isolcpus=5 to the GRUB file and reboot 350

the system to activate the configuration. More than one core may be reserved by separating 351

their numbers by commas [38]. 352

5.5. Minimizing CPU Heavy Utilization Effect 353

For averaging a large amount of RAPL readings, researchers ran the application many 354

times to take the average of the results. Although this operation can give more reliable 355

results by minimizing the noise effect, it could become a source of thermal noise because 356

of the heavy utilization of the CPU. To make the most of averaging and avoid the heavy 357

utilization effect, the CPU can take a short rest time between runs. One can automate this 358

operation in Linux by using loop commands in a script file and inserting a Linux sleep 359

command at the end of every run loop to pause the next iteration for a while and give the 360

CPU a chance to cool down [14]. 361

5.6. CPU Power Management Feature 362

The power management feature in modern CPUs can affect the RAPL reading results. 363

So, the authors strongly recommend disabling this feature to get more accurate power 364

estimation for the aimed application. This feature can be disabled or enabled from the BIOS 365

[14]. 366

5.7. Minimizing Script Commands Effect 367

In the case of running the application repeatedly to take the average power, the 368

commands in the script file used to automate this operation are not a part of the application 369

code to be measured. One may ignore the effect of script commands if the application 370

execution time is too long compared to the script code. However, this effect may become 371

significant and a source of inaccurate results for applications with small code footprints. 372

Repeating the application to form a long enough code can mitigate the scripting effects 373

[24]. 374

5.8. DBP Power Estimation Methodology 375

In contrast to the goal of the previous research papers mentioned in the literature to 376

investigate the fundamental software building blocks, the interest of this research is to 377

examine the Dynamic Branch Predictor (DBP) as a fundamental hardware component. 378

Since RAPL can directly measure the power consumed by the whole CPU cores (PP0 379

domain), a way to estimate the power consumed by the DBP alone is needed. DBP is 380

accessed almost every cycle [20], so interest will focus on the dynamic power of DBP. As 381

a simplification, the authors assume that the DBP dynamic power is caused only by the 382

branch instructions, and any other DBP access contributes to the DBP static power. As 383

interest is not the estimation of the whole power consumed by the DBP (Static and Dynamic 384

power), we assume that the equation of PP0 domain power can be formulated as follow: 385

TotalCoresPower = DynamicDBPPower + RestCoresComponentPower, (1)

Where: Total Cores Power represents the total power measured by RAPL for PP0 domain, 386

Dynamic DBP Power is the dynamic power consumed by DBP and Rest Cores Component 387

Power is the static and dynamic power consumption of the rest component in the PP0 388

domain including DBP static power. 389

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 June 2023 doi:10.20944/preprints202306.0725.v1

https://doi.org/10.20944/preprints202306.0725.v1

Version June 8, 2023 submitted to Computers 9 of 22

Table 1. Benchmarks Specifications

Benchmark Workload Type Computational Characteristics
Blackscholes Financial computation tasks Computation intensity, data dependency,

irregular memory access patterns
Ferret Search application Search intensity, intensive communica-

tion between processes, distance calcula-
tions, data retrieval

Raytrace Interactions between rays and ob-
jects in a scene

Computational intensity, data locality,
memory footprint

FFT Fast Fourier transform application Complex mathematical computations,
single instruction multiple data (SIMD)

Table 2. Experimental Environment Specifications. Lubuntu is a lightweight version of Ubuntu.

Processor Intel Xeon E5-2680v3; physical/logical cores: 12/24
Cache L1 (data/instruction): 32/32 KB; L2 per core: 256 KB; L3 shared: 32 MB
Compiler GCC 7.5.0
OS Lubuntu 18.04.6 LTS; kernel: 4.15

To do so, a set of microbenchmarks that enable isolation of the DBP dynamic power 390

consumption from the rest of the PP0 domain needs to be applied. Furthermore, the 391

microbenchmarks must stress the main components of DBP to amplify the dynamic power 392

consumed by each one. Then, linear regression modeling may be applied to the collected 393

data to calculate the dynamic power consumed by the DBP and its major component. The 394

appropriate branch-related events should be selected with matching microbenchmarks to 395

build a suitable linear regression equation. 396

6. Experimentation 397

This section reports on the experimentation that examined the points discussed in 398

Sections 4 and 5 about the factors that influence the accuracy of RAPL. In the experiments 399

described in this section, four benchmarks of the PARSEC suite, described in Table 1, were 400

used to test different aspects of the CPU’s power. The PARSEC benchmark is an open-source 401

suite comprised of a collection of parallel and multithreaded benchmark programs designed 402

to simulate real-world computing scenarios. It includes applications such as fluid dynamics 403

solvers, image processing algorithms, and data mining applications [39]. The suite is 404

widely used to compare and evaluate different shared-memory architectures, programming 405

models, and optimization techniques, including power modeling [40]. Table 2 describes 406

the machine used for the experiments. The researchers opted for a lightweight version of 407

Ubuntu to help further reduce OS-related environmental noise. Lubuntu uses the LXQt 408

environment designed to be resource-efficient. It utilizes fewer system resources, such as 409

CPU and RAM, which leads to lower power consumption. It also reduces system energy 410

usage while applications run, making it a good choice for experimentation. The Linux perf 411

tool collected data and CPU events for the four benchmarks. The numbers are detailed in 412

Tables A1, A2, A3, and A4 in the appendix. 413

Each workload ran three hundred (300) times. Experimentation found that more runs 414

did not contribute to the convergence of the average. The workloads ran with one thread 415

(1T), two threads (2T), and four threads (4T). In each case, the benchmarks were executed 416

inside Docker containers (IC) and outside (OC). The collected data included Execution 417

Time (ET), Energy (E), Task Clock (TC), executed instructions (#inst) and Branches (#Br), 418

Branch Misses (BrM), Last Level Cache-Store (LLCS), and -Load (LLCL), Last Level Cache 419

Misses (LLCM), Context Switches (CS), CPU Migrations (CPUM), and Page Faults (PF). The 420

researchers chose these events because of their direct impact on energy [40]. The data also 421

were collected (outside containers) in two general cases: when the Power Management Unit 422

was enabled (PMUen) and when the Power Management Unit was disabled (PMUdis). 423

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 June 2023 doi:10.20944/preprints202306.0725.v1

https://doi.org/10.20944/preprints202306.0725.v1

Version June 8, 2023 submitted to Computers 10 of 22

Figure 1. External Thermal Effect on RAPL readings.

To measure the effect of compiler optimization on RAPL measurements, the two 424

benchmarks, Ferret and FFT, were compiled with the four main GCC compiler optimization 425

level options, namely: O0, O1, O2, and O3, which range from minimal optimization (O0) 426

to aggressive optimization (O3). The experiments also test the sensitivity of RAPL to the 427

CPU ambient temperature by covering the upper side of the computer case with a mask 428

with small holes. The rest of this section discusses, in detail, the results and the different 429

scenarios used to obtain them. 430

6.1. Duscussion of Experimentation Results 431

6.1.1. External Thermal Effect 432

The authors attempted to measure the effect of the CPU ambient temperature to 433

assess the sensitivity of the RAPL power measurement to external thermals. The test-bed 434

computer case had ventilation holes on the rear and top sides. The execution time and the 435

total energy of the four benchmarks were measured when the rear and top vents were open. 436

They were measured again when the vents were masked. The two case conditions are 437

labeled Mask-on (Mon) and Mask-off (Moff) in Table A2. Unexpectedly, the measurements 438

were not very sensitive to ambient temperature in either disabled or enabled states of the 439

PMU (see Figure 1). However, substantial changes in ambient temperature may affect the 440

RAPL readings terribly. 441

6.1.2. Multithread Effect 442

When multiple threads are running on a processor, the processor has to work harder 443

to execute the instructions of each thread, which can increase the instantaneous power 444

consumption because more power is required to run the additional processing cores and to 445

move data between them. However, running multiple threads may dramatically reduce 446

energy consumption by allowing the processor to complete the task more quickly and enter 447

a low-power state sooner. 448

To measure the effect of the number of threads on the total energy, average power, 449

and the RAPL measurement accuracy, we run the benchmarks with 1, 2, and 4 threads 450

outside containers (OC) and inside containers (IC). The results are summarized in Table 2 451

and shown in Figure 2. 452

There was a dramatic saving in total energy between 1 and 2 threads, ranging from 453

27.25% to 40.59% when running the benchmarks outside containers, while the savings in 454

total energy when they ran inside container ranged from 28.35% to 54.00% with a slight 455

increase in average power in two threads for both cases (OC & IC). The savings in total 456

energy ranged from 23.74% to 39.78% between 2 and 4 threads outside containers, while 457

the range of savings inside the containers was from 19.72% to 39.35%. See Figure 3. 458

6.1.3. Power Management Unit Effect 459

The Power Management Unit (PMU) is responsible for managing and controlling 460

the power consumption of a computer system. It regulates various power-related aspects, 461

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 June 2023 doi:10.20944/preprints202306.0725.v1

https://doi.org/10.20944/preprints202306.0725.v1

Version June 8, 2023 submitted to Computers 11 of 22

Figure 2. Multithreading Effect on Energy Consumption.

Figure 3. Effect of Number of Threads on Energy.

such as voltage levels, clock frequencies, and power states of different components. To 462

measure the effectiveness of the Power Management Unit (PMU) on RAPL reading, we 463

took the RAPL readings in two cases, Power Management Unit enabled (PMUen) and 464

Power Management Unit disabled (PMUdis) as indicated in Table A1 and A2. Figure 4 465

shows an increase in execution time and energy and a decrease in average power in the 466

case of PMUdis compared to the PMUen case in three of the benchmarks. However, in the 467

case of the FFT benchmark, the energy consumed by the CPU in the case of PMUdis is less 468

than the energy consumed in the case of PMUen. 469

6.1.4. Compiler Optimization Effect 470

Table A3 shows that compiler optimization dramatically affected the total energy and 471

other program events. Not always, as one might expect, the more optimization, the better 472

time and energy savings. In the Ferret benchmark, O1 optimization saved more power 473

and energy than O2, while in FFT, O2 gave the best savings among the other optimization 474

Figure 4. The Effect of PMU on Energy RAPL Reading.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 June 2023 doi:10.20944/preprints202306.0725.v1

https://doi.org/10.20944/preprints202306.0725.v1

Version June 8, 2023 submitted to Computers 12 of 22

Figure 5. Effects of Compiler Optimization.

levels. O0 optimization (minimal optimization) always yields the highest energy readings 475

(see Figure 5). However, it is safer to avoid compiler optimization when comparing two 476

software codes from a power and energy perspective. 477

6.1.5. Containerization Effect 478

The benchmarks ran directly on the host and also ran again inside docker containers. 479

These two cases are marked in Table A1 by OC (Outside Container) and IC (Inside Con- 480

tainer). In most cases, running workloads inside the container gave a saving in the total 481

energy compared to running them outside containers, even though the execution time was 482

longer inside containers in most of the cases as expected. However, the case of 1 thread in 483

Blackscoles and Ferret benchmarks gave more energy consumption inside the container. 484

See Figure 6. 485

Running the benchmarks inside containers showed a slight increase in events com- 486

pared to running them outside containers. 487

Figure 6. Containerization Effect on Energy and Time.

6.2. Measurements Accuracy 488

To estimate, to what extent, the accuracy of the measurements of the energy RAPL 489

readings (300 readings), we studied the time-energy scatter plots of all the readings taken 490

in the different conditions. The scatter plots, shown in Figures 7–14, were used to visualize 491

the relationship between the energy and time variables and the resulting patterns. They 492

display every RAPL reading pair (time, energy) as individual dot on the graph, with the 493

time variable plotted on the horizontal axis and the energy variable plotted on the vertical 494

axis. 495

Every plot caption represents a case where RAPL readings were collected. For instance, 496

the caption: Blackscoles-IC-PMUdis-2Threads, means the scatter plot of the 300 readings taken 497

for Blackscoles benchmark inside a docker container (IC) when the Power Management 498

Unit is disabled (PMUdis) and the number of threads is 2. 499

To facilitate the comparison of the different cases, Figures 7–10 represent the scatter 500

plots of the four benchmarks RAPL readings taken in the case of PMU is disabled. Every 501

figure, in turn, is subdivided into six scatter plots arranged horizontally according to the 502

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 June 2023 doi:10.20944/preprints202306.0725.v1

https://doi.org/10.20944/preprints202306.0725.v1

Version June 8, 2023 submitted to Computers 13 of 22

(a) OC-PMUdis-1threaded (b) OC-PMUdis-2threaded (c) OC-PMUdis-4threaded

(d) IC-PMUdis-1threaded (e) IC-PMUdis-2threaded (f) IC-PMUdis-4threaded

Figure 7. Blackscoles Time-Energy Scatter Plots with Power Management Unit Disabled. Mea-
surements are more condensed inside the container. Fewer threads seem to lead to more condensed
readings.

number of threads and vertically according to whether the benchmark was run outside or 503

inside the container. When we look at every figure horizontally, we can see the effect of 504

the number of threads on the accuracy of readings. In most cases, the four thread plots are 505

more scattered than one and two threads cases. 506

To study the effect of containerization on the scatter plots, one can look at every figure 507

vertically. In some cases, there were similarities between the scatter plots of the same 508

number of threads and run outside container (OC) or inside container (IC). However in 509

most cases, the scatter plots of the IC cases are more condensed than that of the OC cases 510

that represent more accurate RAPL readings inside containers. 511

Figures 11–14 represent the time-energy scatter plots of the four sets of RAPL readings 512

taken in the case of one thread when the PMU was enabled, where every figure has two 513

subfigures according to whether the readings were taken when the workload was run 514

outside or inside the container. 515

In general, when the PMU is enabled, the scatter plots are more chaotic because of 516

the dynamic control that the PMU applies to the CPU power, which may differ from one 517

run to another, affecting, in turn, the accuracy of measurements. As the figures show, the 518

scatter plots tend to be more than one cluster. This tendency makes taking the average of 519

the measurements inaccurate. So, it is a good practice to turn off the PMU when we want 520

to take the average of energy measurements to compare two or more codes from an energy 521

perspective. 522

The characteristic of the workload may have a significant impact on the RAPL readings’ 523

accuracy. It is essential to consider the specific software characteristics and their effect on 524

power consumption to obtain accurate and meaningful power consumption measurements 525

using RAPL. One of these characteristics is the type of instructions executed within a 526

workload, which impacts the repeated RAPL readings. For instance, complex instructions 527

involving intensive calculations or data manipulations tend to consume more power when 528

compared to simple instructions. Consequently, the repeated execution of workloads with 529

computationally-complex instructions may result in higher average power consumption, 530

which can reflect in the RAPL readings. Another example of the impact of workload 531

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 June 2023 doi:10.20944/preprints202306.0725.v1

https://doi.org/10.20944/preprints202306.0725.v1

Version June 8, 2023 submitted to Computers 14 of 22

(a) OC-PMUdis-1threaded (b) OC-PMUdis-2threaded (c) OC-PMUdis-4threaded

(d) IC-PMUdis-1threaded (e) IC-PMUdis-2threaded (f) IC-PMUdis-4threaded

Figure 8. Ferret Time-Energy Scatter Plots with Power Management Unit Disabled. Taking
readings with one thread inside and outside the container are more accurate than two and four
threads.

(a) OC-PMUdis-1threaded (b) OC-PMUdis-2threaded (c) OC-PMUdis-4threaded

(d) IC-PMUdis-1threaded (e) IC-PMUdis-2threaded (f) IC-PMUdis-4threaded

Figure 9. Raytrace Time-Energy Scatter Plots with Power Management Unit Disabled. In this
workload, readings for two and four threads are more accurate than those for one thread outside and
inside the container.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 June 2023 doi:10.20944/preprints202306.0725.v1

https://doi.org/10.20944/preprints202306.0725.v1

Version June 8, 2023 submitted to Computers 15 of 22

(a) OC-PMUdis-1threaded (b) OC-PMUdis-2threaded (c) OC-PMUdis-4threaded

(d) IC-PMUdis-1threaded (e) IC-PMUdis-2threaded (f) IC-PMUdis-4threaded

Figure 10. FFT Time-Energy Scatter Plots with Power Management Unit Disabled.

(a) OC-PMUdis-1threaded (b) IC-PMUdis-1threaded

Figure 11. Blackscholes Time-Energy Scatter Plot with Power Management Unit Enabled. The
readings outside the container consist of two main clusters and three small clusters, which adversely
affect the accuracy of the average value.

characteristics is the number of branch instructions in the workload. The outcome of a 532

branch instruction determines which code path is executed next, potentially leading to 533

different computational demands. Workloads with more branch instructions may exhibit 534

more diverse execution patterns, resulting in varying power consumption levels and 535

potentially impacting the accuracy of RAPL readings. Also, branch instructions can disrupt 536

the instruction pipeline, impacting the efficiency of instruction fetching and execution. 537

Mispredicted branches can lead to pipeline stalls and cache flushes, affecting the overall 538

power consumption. Branch-heavy workloads may experience more frequent pipeline 539

stalls and cache invalidations, potentially influencing the RAPL readings. 540

6.3. Experiences and Recommendations 541

Extensive experimentation provided valuable insights both into the environment and 542

the measurement process. This section outlines the most important observations and 543

recommendations based on lessons learned during the investigation. 544

1. Readings seemed sensitive to the benchmark programs used for measurement. Re- 545

searchers should be mindful of this point when devising ways to use RAPL to quantify 546

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 June 2023 doi:10.20944/preprints202306.0725.v1

https://doi.org/10.20944/preprints202306.0725.v1

Version June 8, 2023 submitted to Computers 16 of 22

(a) OC-PMUdis-1threaded (b) IC-PMUdis-1threaded

Figure 12. Ferret Time-Energy Scatter Plot with Power Management Unit Enabled. These readings
consist of two main cluster outside and inside container due to the control of the power management
unit.

(a) OC-PMUdis-1threaded (b) IC-PMUdis-1threaded

Figure 13. Raytrace Time-Energy Scatter Plot with Power Management Unit Enabled.

(a) OC-PMUdis-1threaded (b) IC-PMUdis-1threaded

Figure 14. FFT Time-Energy Scatter Plot with Power Management Unit Enabled.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 June 2023 doi:10.20944/preprints202306.0725.v1

https://doi.org/10.20944/preprints202306.0725.v1

Version June 8, 2023 submitted to Computers 17 of 22

branch prediction behaviors. In particular, previous work had established that branch 547

prediction schemes showed program sensitivity [41]. Therefore researchers should 548

choose their test workload carefully to be able to discern behaviors due to branching 549

from artifacts due to measurement. 550

2. Running software inside a container (e.g., the Docker container) may show a saving 551

in RAPL energy readings despite the slight increase in the other event counts. The 552

apparent savings may have resulted from including the libraries within the lighter- 553

weight environment. Containers are lighter versions of full virtualization. They are 554

also perhaps lighter than running directly under the OS. Containerization seemed to 555

reduce environmental noise levels, which is conducive to the purposes of experimental 556

studies. However, the effect of software containerization on energy consumption 557

needs further investigation with more containers to confirm it. 558

3. Taking the average of many measurements of RAPL tends to be more accurate. How- 559

ever, increasing the number of readings beyond some point does not contribute to the 560

accuracy. Instead, an enormous number may worsen matters due to the accumulative 561

thermal effect. 562

4. The RAPL measurements are not very sensitive to the computer’s ambient temper- 563

ature. However, a good practice is to keep it consistent at a moderate level during 564

RAPL readings collection. 565

5. Running software with multi-threading has a good impact on energy consumption 566

and performance. However, measuring the average of RAPL readings with one thread 567

seemed more accurate when comparing two or more pieces of code from an energy 568

perspective. 569

6. Compiler optimization had a measurable impact on the RAPL readings. The ex- 570

perimental results showed that compiling software with the O0 optimization (no 571

optimization beyond a conservative default set) always gives the highest energy con- 572

sumption. With the other levels, results showed that more optimization is not always 573

better for time and energy saving. However, to compare the energy consumption 574

of two or more pieces of code without the unpredictable effects of the modifications 575

typical of optimizing compilers, skipping them may be a good practice. It should help 576

better understand the root causes of efficiency. 577

7. Internal power management had a positive impact on power saving. However, our 578

experimental results showed that enabling the PMU harmed the accuracy of RAPL 579

readings. This impact was probably due to the effects of the dynamic control of PMU 580

on CPU power, which changed from one run to another. So, it is perhaps a good 581

practice to disable the PMU from the BIOS before taking RAPL readings. 582

7. Conclusion 583

In computing systems, power/energy efficiency has become a crucial concern in the 584

last few decades because of the various issues that require meeting a bunch of requirements, 585

such as lowering environmental footprint, relieving the constraints on computing devices’ 586

scalability, the need for prolonging the life of computing energy storage devices, reducing 587

the cost of the electricity bill and many other factors, including those related to security. 588

Enhancing the quality jointly of hardware and software together can help achieve efficiency 589

targets in those areas. 590

Some researchers were motivated by the need to reach exascale in reasonable power 591

budgets. They investigated fundamental software building blocks, such as sorting and 592

matrix multiplication, used commonly in HPC. In this study, the authors report on an 593

investigation of a similar approach to DBP as a major hardware component in modern 594

CPUs in an attempt to quantify its impact on power and energy efficiency. This paper 595

focused on the long and tedious work to understand the issues involved and to develop 596

the methodology to reliably estimate the power consumed by the DBP and its various 597

aspects. It could also help as a blueprint for similar investigations targeting other hardware 598

building-block components. 599

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 June 2023 doi:10.20944/preprints202306.0725.v1

https://doi.org/10.20944/preprints202306.0725.v1

Version June 8, 2023 submitted to Computers 18 of 22

RAPL is a helpful power measurement tool that can credibly replace external hardware 600

power measurement devices that are difficult to manage and lack granularity. This paper 601

introduced the methodology used in our investigation and the various factors that can 602

affect the accuracy of RAPL measurements which add, inherently, noise to RAPL readings. 603

To make RAPL more accurate and reliable, several measures that diminish or eliminate 604

measurement noise sources were discussed in detail and supported by extensive experi- 605

mentation. It included practical RAPL experimentation with four benchmarks that showed 606

the effects of various hardware and software controls, such as processor power manage- 607

ment, threading, containerization, and compiler optimization, on the RAPL readings. The 608

techniques and experiences may also extend to other processor platforms that offer similar 609

internal instrumentation and interface, such as those offered by AMD. 610

Funding: This research received no external funding. 611

Conflicts of Interest: The authors declare no conflict of interest. 612

Abbreviations 613

The following abbreviations are used in this manuscript: 614

HPC High Performance Computing
DBP Dynamic Branch Predictor
BTB Branch Target Buffer
IBTB Indirect Branch Target Buffer
RAPL Running Average Power Limit
BM Benchmark
1T One Thread
2T Two Threads
4T Four Threads
OC Outside Container
IC Inside Container
PMUdis Power Management Unit disabled
PMUen Power Management Unit enabled
Mon Mask-on
Moff Mask-off

615

Appendix A. 616

Tables A1–A4 detail the data collected using the Linux perf tool. The numbers are 617

the average of 300 run times for every workload. The data in Tables A1, A2, and A4 show 618

thirteen CPU events for the four benchmarks selected from the PARSEC suite. 619

The data in table A1 was collected for two execution scenarios: a) on the host directly 620

and b) inside a docker container. The cases are denoted in the table OC and IC, respectively. 621

In each case, workloads were executed with one thread (1T), two threads (2T), and four 622

threads (4T). In table A2, the date when the internal power management unit was enabled 623

and disabled (cases marked in the table PMUen and PMUdis, respectively). In each of 624

those cases, the workload was executed with one thread. Table A3 shows execution time 625

and energy consumption collected when the upper side of the computer case was covered 626

by a mask and with the mask off to measure the effect of ambient temperature on RAPL 627

readings. The readings were taken when the internal power management unit was enabled 628

(PMUen) and disabled (PMUdis). Table A4 details the events for two of the benchmarks 629

measured when workloads were compiled with four levels of GCC compiler optimization, 630

starting from O0 (minimal optimization) to O3 (aggressive optimization). 631

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 June 2023 doi:10.20944/preprints202306.0725.v1

https://doi.org/10.20944/preprints202306.0725.v1

Version June 8, 2023 submitted to Computers 19 of 22

Table A1. Events Measurement Data Inside and Outside Containers.

BM Blackscholes Ferret Raytrace FFT
Events OC IC OC IC OC IC OC IC

1T 2T 4T 1T 2T 4T 1T 2T 4T 1T 2T 4T 1T 2T 4T 1T 2T 4T 1T 2T 4T 1T 2T 4T
EXT

(S) 7.
18

4.
32

2.
89

7.
79

4.
66

3.
13

6.
58

3.
64

1.
88

6.
66

3.
48

1.
78 7

3.
92

2.
49

6.
29

4.
03

2.
66

7.
81

3.
95

1.
97

7.
81

3.
91

1.
96

E(J)

31
0.

99

18
9.

76

14
1.

93

32
5.

9

15
0.

50

11
0.

55

29
9.

65

19
2.

23

12
7.

38

30
5.

12

14
0.

35

94
.2

9

30
0.

59

17
8.

57

13
6.

17

19
2.

34

13
7.

82

11
0.

64

23
9.

41

17
4.

17

10
4.

89

23
4.

8

12
8.

35

77
.8

5

P (W)

43
.2

9

43
.8

7

49
.0

3

41
.8

3

32
.2

9

35
.3

3

45
.5

1

52
.8

7

67
.7

45
.8

1

40
.3

6

53
.0

7

42
.9

5

45
.5

1

54
.7

8

30
.5

6

34
.1

9

41
.6

2

30
.6

5

44
.1

5

53
.1

4

30
.0

6

32
.8

2

39
.7

3

TC

36
80

8

51
98

1

34
78

2

93
64

6

56
08

9

37
65

9

79
18

2

42
25

3

21
33

1

80
12

3

42
44

0

21
47

7

84
13

8

47
19

1

29
80

7

84
26

4

48
68

3

32
09

4

93
87

8

47
39

8

23
72

4

93
90

1

47
06

7

23
57

6

#inst

32
.7

4
B

32
.5

3B

32
.4

9B

34
.2

6B

33
.2

7B

33
.9

0B

37
.9

4B

37
.3

B

37
.1

6B

39
.3

3B

39
.4

2B

39
.5

8B

32
.6

8B

32
.9

5B

34
.0

9B

32
.7

7B

33
.7

7B

35
.9

4B

69
.1

7B

69
.4

2B

69
.8

1B

71
.5

5B

68
.0

8B

69
.2

0B

#Br

4.
12

B

4.
08

B

4.
06

B

4.
08

B

3.
96

B

3.
97

B

6.
05

B

5.
94

B

5.
93

B

6.
23

B

6.
24

B

6.
33

B

5.
41

B

5.
44

B

5.
60

B

5.
42

B

5.
66

B

6.
21

B

7.
37

B

7.
41

B

7.
43

B

7.
62

B

7.
34

B

7.
34

B

BrM

39
.7

M

31
.2

3M

26
.7

8M

43
.0

4M

21
.3

1M

20
.5

9M

31
6.

2M

32
6.

46
M

31
3.

48
M

31
7.

78
M

33
6.

11
M

32
5.

08
M

45
.4

1M

38
.7

6M

41
.7

0M

45
.6

2M

31
.4

1M

40
.3

4M

12
.8

5M

21
.5

6M

15
.0

6M

13
.5

3M

11
.3

3M

10
.3

2M

LLCL

11
.6

6M

7.
71

M

5.
92

M

12
.3

8M

4.
87

M

3.
82

M

12
2.

93
M

11
7.

74
M

11
8.

3M

12
8.

36
M

11
1.

59
M

13
0.

71
M

12
.3

3M

16
.0

8M

27
.1

1M

12
.3

3M

13
.4

9M

25
.9

9M

4.
08

M

5.
42

M

2.
30

M

4.
35

M

2.
20

M

1.
12

M

LLCLM

0.
25

5M

0.
59

3M

0.
59

1M

0.
71

M

0.
42

2M

0.
39

M

12
.0

9M

12
.7

8M

16
.7

4M

12
.9

1M

14
.3

7M

20
.7

9M

87
37

4

89
28

5

48
96

5

19
92

47

51
44

2

45
92

0

20
61

76

88
63

0

39
53

8

75
00

1

41
64

2

28
69

5

LLCS

3.
82

M

2.
36

M

1.
65

M

4.
06

M

0.
73

2M

3.
82

M

5.
07

M

1.
95

6M

1.
84

9M

10
.4

2M

7.
79

M

8.
24

M

3.
70

M

10
.1

3M

20
.0

6M

3.
67

M

8.
41

M

18
.6

5M

0.
71

M

1.
94

M

0.
93

M

0.
86

M

0.
37

7M

0.
18

M

LLCSM

80
03

7

64
20

3

61
43

2

77
38

8

64
92

4

39
03

76

16
08

34

21
12

56

29
54

44

17
45

86

38
27

19

54
19

07

10
31

2

63
30

31
38

10
39

0

50
55

53
80

23
02

5

61
95

20
46

12
78

3

76
63

32
48

CS

33
47

14
94

10
81

28
99

27
25

20
17

99
86

76
70

68
54

26
13

1

24
56

8

21
71

5

32
39

16
42

45
56

7

26
42

21
97

32
55

1

28
08

17
94

82
6

40
13

19
76

13
85

CPUM 16
1

64 49 13
3

13
3

10
6

20
2

19
8

70
9

38
6

10
60

21
32

15
1

70 43 11
6

10
9

95 13
8

73 36 19
0

10
2

71

PF

10
97

9

11
03

1

11
14

4

11
09

1

11
05

5

10
96

9

15
83

8

16
18

4

17
24

8

26
16

6

33
84

4

65
67

0

14
69

14
76

15
36

14
97

13
61

14
59

91
9

88
1

82
2

85
5

69
6

70
6

Table A2. Events Measurement Data with CPU Power Management ON/OFF.

BM Blackscholes Ferret Raytrace FFT
Events PMUen PMUdis PMUen PMudis PMUen PMudis PMUen PMudis
EXT(S) 5.61 7.18 5.24 6.58 5.38 7 6.06 7.81

E(J) 254 310.99 250.90 299.65 245.8 300.59 260.27 239.41
P (W) 45.4 43.29 47.91 45.51 45.69 42.95 42.96 30.65

TC 68607 36808 63720 79182 65761 84138 73923 93878
#inst 32.59B 32.74 B 37.00B 37.94B 32.84B 32.68B 69.87B 69.17B
#Br 4.10B 4.12B 5.98B 6.05B 5.49B 5.41B 7.49B 7.37B
BrM 31.89M 39.7M 304M 316.2M 38.18M 45.41M 24.62M 12.85M

LLCL 10.20M 11.66M 126.25M 122.93M 11.39M 12.33M 9.3M 4.08M
LLCLM 0.75M 0.255M 13.96M 12.09M 0.21M 0.09M 210125 206176

LLCS 3.12 3.82M 4.38M 5.07M 2.84M 3.70M 2.93M 0.71M
LLCSM 0.16M 0.08M 132619 160834 12063 10312 21428 23025

CS 2335 3347 12591 9986 2522 3239 2912 2808
CPUM 102 161 199 202 106 151 125 138

PF 11093 10979 15883 15838 1487 1469 938 919

Table A3. Execution Time and Energy Data.

Blackscholes Ferret Raytrace FFT
PMUen PMUdis PMUen PMUdis PMUen PMUdis PMUen PMUdis

Mon Moff Mon Moff Mon Moff Mon Moff Mon Moff Mon Moff Mon Moff Mon Moff
EXT(S) 5.61 5.61 7.18 7.18 5.24 5.24 6.58 6.58 5.40 5.38 7.00 7.00 5.97 6.06 7.81 7.81

E(J) 254.60 254.72 310.35 310.99 254 250.90 303.04 299.65 251.08 245.80 301.35 300.59 259.39 260.27 235.86 239.41
P (W) 45.36 45.40 43.2 43.29 48.51 47.90 46.04 45.51 46.53 45.69 43.05 42.95 43.45 42.96 30.2 30.65

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 June 2023 doi:10.20944/preprints202306.0725.v1

https://doi.org/10.20944/preprints202306.0725.v1

Version June 8, 2023 submitted to Computers 20 of 22

Table A4. Effect of GCC Compiler Optimization Levels Data.

BM Ferret FFT

Events Optimization Level Optimization Level
O0 O1 O2 O3 O0 O1 O2 O3

EXT(S) 17.45 7.74 6.58 7.49 29.08 7.13 7.81 7.47
E(J) 570.11 251.56 299.65 242.20 1172.2 286.10 239.41 299.20

P (W) 32.68 32.49 45.51 32.35 40.31 40.12 30.65 40.08
TC 193164.37 87428.93 79182 84514.79 349344.09 85629.40 93878 89699.84

#inst 109B 39.15B 37.94B 37.16B 153.29B 69.16B 69.17B 65.87B
#Br 7.98B 6.13B 6.05B 6.27B 8.14B 7.53B 7.37B 6.94B
BrM 383.04B 330.95M 316.2M 335.01M 95.14M 31.07M 12.85M 31.43M

LLCL 148.99M 118.14M 122.93M 118.27M 36.85M 8.77M 4.08M 9.41M
LLCLM 13.72M 10.51M 12.09M 10.81M 0.611M 0.17M 0.21M 0.17M

LLCS 5.30M 2.37M 5.07M 2.09M 13.82M 3.35M 0.71M 3.58M
LLCSM 140881 120906 160834 117213 59541 15610 23025 13184

CS 13895 7774 9986 7634 9442 2343 2808 2440
CPUM 443 219 202 216 458 111 138 120

PF 15984 15843 15838 15837 2036 892 919 902

References 632

1. Nain, S.; Chaudhary, P. Branch prediction techniques used in pipeline processors: a review. 633

International Journal of Pure and Applied Mathematics 2018, 119, 2843–2851. 634

2. Hicks, M.A. Energy Efficient Branch Prediction. PhD thesis, University of Hertfordshire, 2007. 635

3. Kiriansky, V.; Waldspurger, C. Speculative buffer overflows: attacks and defenses. 636

arXiv.1807.03757, 2018. https://doi.org/10.48550/arXiv.1807.03757. 637

4. Dong, X.; Shen, Z.; Criswell, J.; Cox, A.; Dwarkadas, S. Spectres, Virtual Ghosts, and Hardware 638

Support. In Proceedings of the 7th International Workshop on Hardware and Architectural 639

Support for Security and Privacy, Los Angeles California, 2 June 2018; HASP’18. https://doi. 640

org/10.1145/3214292.3214297. 641

5. Kocher, P.; Horn, J.; Fogh, A.; Genkin, D.; Gruss, D.; Haas, W.; Hamburg, M.; Lipp, M.; Mangard, 642

S.; Prescher, T.; et al. Spectre Attacks: Exploiting Speculative Execution. In Proceedings of the 643

2019 IEEE Symposium on Security and Privacy, San Francisco, CA, USA, 19–23 May 2019; SP, 644

pp. 1–19. 645

6. da Silva, W.G.; Brisolara, L.; Corrêa, U.B.; Carro, L. Evaluation of the impact of code refactoring 646

on embedded software efficiency. In Proceedings of the 1st Workshop de Sistemas Embarcados 647

(WSE), 24–28 May 2010, SBRC’10, pp. 145–150. 648

7. Khan, K.N.; Ou, Z.; Hirki, M.; Nurminen, J.K.; Niemi, T. How much power does your server 649

consume? estimating wall socket power using RAPL measurements. Computer Science - Research 650

and Development 2016, 31, 207––214. https://doi.org/10.1007/s00450-016-0325-4. 651

8. Khan, K.N.; Hirki, M.; Niemi, T.; Nurminen, J.K.; Ou, Z. RAPL in action: experiences in using 652

RAPL for power measurements. ACM Transactions on Modeling and Performance Evaluation of 653

Computing Systems (TOMPECS) 2018, 3, 1–26. 654

9. Mehta, H.; Owens, R.M.; Irwin, M.J.; Chen, R.; Ghosh, D. Techniques for low energy software. 655

In Proceedings of the 1997 international symposium on Low power electronics and design, 1997, 656

pp. 72–75. 657

10. Capra, E.; Francalanci, C.; Slaughter, S.A. Measuring application software energy efficiency. IT 658

Professional 2012, 14, 54–61. 659

11. Sushko, S.; Chemeris, A. The dependence of microprocessor system energy consumption 660

on software optimization. In Proceedings of the 2017 IEEE 37th International Conference 661

on Electronics and Nanotechnology, IEEE, Kyiv, UKraine, 18-20 April 2017; ELNANO’17, pp. 662

451–454. 663

12. Al-Hashimi, M.; Saleh, M.; Abulnaja, O.; Aljabri, N. Evaluation of control loop statements power 664

efficiency: An experimental study. In Proceedings of the 2014 9th International Conference on 665

Informatics and Systems, Cairo, Egypt, 15-17 December 2014; INFOS’14, pp. PDC–45–PDC–48. 666

https://doi.org/10.1109/INFOS.2014.7036676. 667

13. Abulnaja, O.A.; Ikram, M.J.; Al-Hashimi, M.A.; Saleh, M.E. Analyzing power and energy 668

efficiency of bitonic mergesort based on performance evaluation. IEEE Access 2018, 6, 42757– 669

42774. https://doi.org/10.1109/ACCESS.2018.2861571. 670

14. Aljabri, N.; Al-Hashimi, M.; Saleh, M.; Abulnaja, O. Investigating power efficiency of mergesort. 671

Journal of Supercomputing 2019, 75, 6277–6302. https://doi.org/10.1007/s11227-019-02850-5. 672

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 June 2023 doi:10.20944/preprints202306.0725.v1

https://doi.org/10.48550/arXiv.1807.03757
https://doi.org/10.1145/3214292.3214297
https://doi.org/10.1145/3214292.3214297
https://doi.org/10.1145/3214292.3214297
https://doi.org/10.1007/s00450-016-0325-4
https://doi.org/10.1109/INFOS.2014.7036676
https://doi.org/10.1109/ACCESS.2018.2861571
https://doi.org/10.1007/s11227-019-02850-5
https://doi.org/10.20944/preprints202306.0725.v1

Version June 8, 2023 submitted to Computers 21 of 22

15. Al-Hashimi, M.; Saleh, M.; Abulnaja, O.; Aljabri, N. On the power characteristics of mergesort: 673

An empirical study. In Proceedings of the 2017 Int’l Conf. on Advanced Control Circuits and 674

Systems & 2017 Int’l Conf. on New Paradigms in Electronics & Information Technology, IEEE, 675

Alexandria, Egypt, 5-8 November 2017; ACCS’17/PEIT’17, pp. 172–178. 676

16. Oo, N.Z.; Chaikan, P. The Effect of Loop Unrolling in Energy Efficient Strassen’s Algorithm 677

on Shared Memory Architecture. In Proceedings of the 2021 36th International Technical 678

Conference on Circuits/Systems, Computers and Communications, Jeju, South Korea, 27-30 679

June 2021; ITC-CSCC, pp. 1–4. 680

17. Jammal, F.; Aljabri, N.; Al-Hashimi, M.; Saleh, M.; Abulnaja, O. A preliminary empirical study 681

of the power efficiency of matrix multiplication. Electronics 2023, 12. 682

18. Lastovetsky, A.; Manumachu, R.R. Energy-efficient parallel computing: challenges to scaling. 683

Information 2023, 14. https://doi.org/10.3390/info14040248. 684

19. Emma, P.G.; Davidson, E.S. Characterization of branch and data dependencies in programs 685

for evaluating pipeline performance. IEEE Transactions on Computers 1987, C-36, 859–875. 686

https://doi.org/10.1109/TC.1987.1676981. 687

20. Mittal, S. A survey of techniques for dynamic branch prediction. Concurrency and Computation: 688

Practice and Experience 2019, 31, e4666. 689

21. Lin, C.K.; Tarsa, S.J. Branch Prediction Is Not A Solved Problem: Measurements, Opportunities, 690

and Future Directions. In Proceedings of the 2019 IEEE International Symposium on Workload 691

Characterization, Orlando, FL, USA, 3-5 Nov 2019; IISWC’19, pp. 228–238. https://doi.org/10 692

.1109/iiswc47752.2019.9042108. 693

22. Uzelac, V.; Milenkovic, A. Experiment flows and microbenchmarks for reverse engineering 694

of branch predictor structures. In Proceedings of the 2009 IEEE International Symposium 695

on Performance Analysis of Systems and Software, Boston, MA, USA, 26-28 April 2009; pp. 696

207–217. https://doi.org/10.1109/ISPASS.2009.4919652. 697

23. Desrochers, S.; Paradis, C.; Weaver, V.M. A validation of DRAM RAPL power measurements. 698

In Proceedings of the Second International Symposium on Memory Systems, Alexandria, VA, 699

USA, October 3 - 6 2016; MEMSYS ’16, pp. 455–470. 700

24. David, H.; Gorbatov, E.; Hanebutte, U.R.; Khanna, R.; Le, C. RAPL: Memory power estimation 701

and capping. In Proceedings of the 16th ACM/IEEE International Symposium on Low Power 702

Electronics and Design, Austin, Texas, USA, 18-20 Aug 2010; ISLPED ’10, pp. 189–194. 703

25. Hähnel, M.; Döbel, B.; Völp, M.; Härtig, H. Measuring energy consumption for short code paths 704

using RAPL. ACM SIGMETRICS Performance Evaluation Review 2012, 40, 13–17. 705

26. Giardino, M.; Ferri, B. Correlating hardware performance events to CPU and DRAM power 706

consumption. In Proceedings of the 2016 IEEE International Conference on Networking, 707

Architecture and Storage (NAS), Long Beach, CA, USA, 08-10 August 2016; pp. 1–2. 708

27. Zhang, H.; Hoffman, H. A quantitative evaluation of the RAPL power control system. In 709

Proceedings of the 10th International Workshop on Feedback Computing, Seattle, WA, USA, 710

April 13th 2015; Feedback Computing 15. 711

28. Khan, K.N.; Ou, Z.; Hirki, M.; Nurminen, J.K.; Niemi, T. How much power does your server 712

consume? Estimating wall socket power using RAPL measurements. Computer Science - Research 713

and Development 2016, 31, 207–214. 714

29. Hsu, R.C.; Liu, C.T.; Wang, H.L. A reinforcement learning-based ToD provisioning dynamic 715

power management for sustainable operation of energy harvesting wireless sensor node. IEEE 716

Transactions on Emerging Topics in Computing 2014, 2, 181–191. 717

30. Shivam, A. A Multiple Compiler Approach for Improved Performance and Efficiency; University of 718

California, Irvine, 2021. 719

31. Chen, B.; Nedelchev, I. Power compiler: a gate-level power optimization and synthesis system. 720

In Proceedings of the International Conference on Computer Design VLSI in Computers and 721

Processors, IEEE, Austin, TX, USA, 12-15 October 1997; pp. 74–79. 722

32. TURBOSTAT(8) - System Manager’s Manual. https://www.linux.org/docs/man8/turbostat. 723

html. 724

33. Ubuntu Manpage: powertop - a power consumption and power management diagnosis tool. 725

https://manpages.ubuntu.com/manpages/bionic/man8/powertop.8.html. 726

34. perf: Linux profiling with performance counters. https://perf.wiki.kernel.org. 727

35. Zakharenkov, R. DevOps in E-commerce software development: Demand for Containerization. 728

Technical report, Oulu University of Applied Sciences, 2019. 729

36. Xu, C.; Zhao, Z.; Wang, H.; Shea, R.; Liu, J. Energy efficiency of cloud virtual machines: from 730

traffic pattern and CPU affinity perspectives. IEEE Systems Journal 2015, 11, 835–845. 731

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 June 2023 doi:10.20944/preprints202306.0725.v1

https://doi.org/10.3390/info14040248
https://doi.org/10.1109/TC.1987.1676981
https://doi.org/10.1109/iiswc47752.2019.9042108
https://doi.org/10.1109/iiswc47752.2019.9042108
https://doi.org/10.1109/iiswc47752.2019.9042108
https://doi.org/10.1109/ISPASS.2009.4919652
https://www.linux.org/docs/man8/turbostat.html
https://www.linux.org/docs/man8/turbostat.html
https://www.linux.org/docs/man8/turbostat.html
https://manpages.ubuntu.com/manpages/bionic/man8/powertop.8.html
https://perf.wiki.kernel.org
https://doi.org/10.20944/preprints202306.0725.v1

Version June 8, 2023 submitted to Computers 22 of 22

37. Linux Kernel in a Nutshell. https://www.linuxtopia.org/online_books/linux_kernel/kernel_ 732

configuration/re46.html. Scheduler options - Chapter 10. 733

38. Boyd-Wickizer, S.; Chen, H.; Chen, R.; Mao, Y.; Kaashoek, F.; Morris, R.; Pesterev, A.; Stein, L.; 734

Wu, M.; Dai, Y.; et al. Corey: An Operating System for Many Cores. In Proceedings of the 8th 735

USENIX Conference on Operating Systems Design and Implementation, San Diego, California, 736

8 December 2008; OSDI’08, pp. 43—-57. 737

39. Bienia, C.; Kumar, S.; Singh, J.P.; Li, K. The PARSEC benchmark suite: Characterization and 738

architectural implications. In Proceedings of the 17th international conference on Parallel archi- 739

tectures and compilation techniques, Toronto Ontario Canada, 25–29 October 2008; PACT’08, 740

pp. 72–81. https://doi.org/10.1145/1454115.1454128. 741

40. Colmant, M.; Rouvoy, R.; Kurpicz, M.; Sobe, A.; Felber, P.; Seinturier, L. The next 700 CPU 742

power models. Journal of Systems and Software 2018, 144, 382–396. 743

41. Smith, J.E. A Study of Branch Prediction Strategies. In Proceedings of the 8th Annual Sympo- 744

sium on Computer Architecture, Minneapolis, Minnesota, USA, May 12–14 1981; ISCA’81, pp. 745

135—-148. https://doi.org/10.5555/800052.801871. 746

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are 747

solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). 748

MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from 749

any ideas, methods, instructions or products referred to in the content. 750

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 June 2023 doi:10.20944/preprints202306.0725.v1

https://www.linuxtopia.org/online_books/linux_kernel/kernel_configuration/re46.html
https://www.linuxtopia.org/online_books/linux_kernel/kernel_configuration/re46.html
https://www.linuxtopia.org/online_books/linux_kernel/kernel_configuration/re46.html
https://doi.org/10.1145/1454115.1454128
https://doi.org/10.5555/800052.801871
https://doi.org/10.20944/preprints202306.0725.v1

	Introduction and Motivation
	Literature Review
	Background
	Dynamic Branch Predictor
	Intel RAPL

	Noise Sources in RAPL Power Estimations
	CPU Temperature
	Cross Core Thermal Exchange Effect
	Using Multiple Cores for One Application
	Context Switching between Applications and Operating System
	Hyper-Threading Technology
	Operating System Issues
	Compiler Optimization Issues

	Accurate RAPL Power and Energy Estimation in Linux
	Linux RAPL Tools
	Containerization Technology
	CPU Affinity Setting
	Dedicating One Core to An Application
	Minimizing CPU Heavy Utilization Effect
	CPU Power Management Feature
	Minimizing Script Commands Effect
	DBP Power Estimation Methodology

	Experimentation
	Duscussion of Experimentation Results
	External Thermal Effect
	Multithread Effect
	Power Management Unit Effect
	Compiler Optimization Effect
	Containerization Effect

	Measurements Accuracy
	Experiences and Recommendations

	Conclusion
	 A
	References

