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Abstract: Reducing the costs of repairing concrete structures damaged due to the appearance of cracks and
reducing the number of people involved in the process of their repair is the subject of a multitude of
experimental studies. Special emphasis should be placed on research involving industrial by-products, the
disposal of which has a negative environmental impact, as is the case in the research presented in this paper.
The basic idea was to prepare a mortar with added granulated blast furnace slag from Smederevo Steel Mill
and then treat artificialy produced cracks with a Sporosarcina pasteurii DSM 33 suspension under the conditions
of sterile demineralized and water from Danube river in order to simulate natural conditions. The results show
a bio-stimulated healing efficiency of 32.02% in sterile demineralized water and 42.74% in Danube water
already after 14 days. The SEM images clearly show calcium carbonate crystals as the main compound that has
started to fill the crack, and the crystals are much more developed under the Danube water conditions. As a
special type of research, microscopic images of cracks were classified into those with and without the presence
of bacterial culture. By applying convolutional neural networks (ResNet 50), the classification success rate was
91.55%.

Keywords: granulated blast furnace slag; Sporosarcina pasteurii DSM 33; bio-stimulated healing; Danube water;
CNN model

1. Introduction

Concrete is formed by a mixture of cement, coarse and fine aggregate with water. Cement in this
mixture, plays an essential role by connecting aggregates and filling the space between them [1]. No
building can be imagined without the use of concrete, and for this reason, concrete is the most widely
used building material. Good concrete properties are primarily reflected in extremely high
compressive strength, market availability, pourability into various forms, etc., and price. However,
despite its good properties, this material has high cracking sensitivity due to its limited tensile
strength. For this reason, it is often combined with steel reinforcement, which allows it to bear certain
tensile loads. However, steel reinforcement cannot prevent crack formation but can only limit crack
width. Cracks that appear over time result from various environmental influences to which building
structures are exposed. Various aggressive liquids and gases can penetrate the cement matrix through
these cracks. In the worst-case scenario, when the steel reinforcement is exposed to environmental
influences, it can corrode and get severely damaged at the crack site. Such severe damages of building
structures require repair, which makes maintenance even more expensive. According to available
data for Great Britain, the annual costs of maintenance and repair of building structures exceed 40
billion pounds, while the USA plans to invest about 4.59 billion dollars in the next three years for
their repair [2-5]. In addition to the economic impact, this also raises the issue of environmental
protection through the conservation of resources and waste problems. However, the occurrence of

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202306.0707.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 June 2023 doi:10.20944/preprints202306.0707.v1

damage does not necessarily cause major problems. Even a tad saving in repairing cracks and damage
to building structures makes a difference for the economy and ecology of every country, especially if
performed without human intervention [6-11].

For more than fifty years, there has been the idea of finding new, smart cement-based materials
that have the ability to increase self-healing properties of concrete. Self-healing materials should be
cheap and should not affect the properties of concrete structures, and the most important thing is that
they should be active for a long time, as cracks usually do not appear immediately after installation.
These materials could, at least partially, if not completely, reduce the appearance of damage while
maintaining the initial structure properties and prevent the formation of subsequent permanent
cracks that would further weaken the building [3-6].

The basic concept of self-healing materials in construction is to restore concrete strength,
porosity, workability and waterproofing [12]. Certainly, using building materials with self-healing
properties would require more significant financial investments at the very beginning, but they
would still bring savings over time [13].

The self-healing phenomenon is defined by the material's ability to heal small cracks on its own
without external human intervention [13,14].

Self-healing of concrete can be greatly contributed by the presence of certain mineral additives
such as fly ash, blast furnace slag, silica fume, limestone powder, geomaterials, etc. which are added
as additives, since they stimulate autogenous healing, especially in the later phase due to the slower
pozzolanic reaction of non-hydrated binders [13,15]. In the presence of water, pozzolanic materials
react with portlandite (Ca(OH)z), forming binding products, and calcium carbonate [15].

Granulated blast furnace slag and fly ash, as industrial by-products, are inexhaustible research
topic as cement additives, and the reason for this is primarily their pozzolanic activity. In their cement
matrix self-healing experiments, Li et al. (2020) only used granulated blast furnace slag in different
mass ratios, with added crystalline admixtures. Their results showed that mortar with 10%
granulated blast furnace slag and crystal additives demonstrated self-healing properties and that
calcium carbonate was the product that healed the crack [16,17].

Moreover, calcium carbonate precipitation is a common natural phenomenon. In addition to
being found in nature (earth crust, sea and fresh water), calcium carbonate is a raw material for
obtaining cement, which makes it one of the most useful building materials. In addition to having a
wide range of minerals, carbonates are known to be produced by certain microorganisms, especially
bacteria, and due to their crack-filling efficiency, they are used as one of the significant external self-
healing methods for cement materials. Metabolic activities in the bacterial self-healing process lead
to carbonate production, when carbonate ions react with calcium ions from the material, resulting in
calcium carbonate formation due to system oversaturation [18]. In this way, cracks and gaps created
as aresult of damage to concrete structure are filled. Introducing microorganisms into the self-healing
process requires great care, since many factors affect their metabolic activity. For example, lack of
sufficient moisture and high pH is destructive to the bacteria metabolic activity [1].

Since concrete structures are designed to last over 100 years, the bacteria should survive and
remain active during that period in a highly alkaline environment. In their paper, Renée and Henk
(2012) presented the conclusions of Jose-Luis and Aylin (1996) about bacterial viability over a long
period and under different conditions. Based on extensive research, it was found that bacteria are
produced from thick-walled spores. These spores are resistant to chemical and mechanical loads and
can remain dormant for a very long time. When conditions are created in the form of a concrete
structure crack with food and water present, the spores germinate and transform into active bacteria
and their metabolic products can fill the free crack space [6,19].

Although they have attracted a lot of attention of researchers in recent years, only a small
number of studies connect experimental research and conclusions with numerical simulations and
modeling, whether classical or artificial intelligence methods (such as the formation of mathematical
equations that describe the crack healing trend, crack healing effectiveness prediction based on crack
dimensions, data classification based on the appearance of samples, etc.). This type of analytical
support in the crack healing process can significantly help engineers in their work. Through the
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developed model, it is possible to obtain useful data that direct reduce costs of subsequent research,
saving materials and time, all with the aim of solving the problem as best as possible [8,10,20,21].

In accordance with the above facts, this paper is an expansion of existing ideas and current
considerations and analyzes the possibility of incorporating industrial waste materials into new types
of cement. In addition, the mortar self-healing process supported by bacteria as a external fealing
agent was monitored through precipitation under sterile demineralized and Danube water. To the
best of our knowledge, no study has been conducted to investigate bio-stimulated healing
phenomena under the natural river (Danube) water yet. In our work we use this water based on the
fact that Danube river is the second-longest river in Europe.

Considering a set of recorded post-healing images, in conditions with and without bacterial
culture, their classification was performed. For this purpose, a deep learning methodology was
chosen, i.e. a technique based on convolutional neural networks, which, according to the available
literature has not been applied so far for this type of research.

2. Materials and Methods

The materials used in this research include CEM I cement from Lafarge BFC d.o.o. Beocin Serbia,
a member of Holcim Group (alite cement), granulated blast furnace slag from HBIS GROUP Serbia
Iron & Steel d.o.o. Belgrade - Serbia (slag), standard three-fraction sand as aggregate, suspension of
Sporosarcina pasteurii DSM 33 as a means for external healing of cracks of new cement mixtures, sterile
demineralized water and Danube water.

2.1. Characterization of the initial slag sample

For preparation of new cement mixtures, slag sample was characterized in detail to select the
optimal quantities of material for alite cement replacement. The slag characterization involved
determining physical and chemical properties, using standard methods that included meaning
granulometric composition, pH value, chemical composition, specific weight, X-ray diffraction
analysis - XRD, and scanning electron microscopy - SEM. A more detailed description of these
methodologies is given below.

-Particle size distribution after micronization to 70% - 0.045 mm of the slag sample was
confirmed by the laser light scattering method using Mastersizer Scirocco 2000 analyzer (Malvern
Instruments, UK) [22].

-The chemical composition of the samples was presented through silicate analysis using the ICP-
OES technique on a Varian 710-ES axial ICP-OES spectrometer [23].

-XRD analysis of the pulverized slag sample was performed on a PHILIPS PW 1710
diffractometer under the following conditions: copper anticathode radiation with a wavelength of
CuKa =1.54178 A, graphite monochromator tube operating voltage: U = 40 kV, current strength: I =
30 mA, test range: 10 — 60° 2Q, step/time (qualitative tests): 0.02%/2 s [24].

SEM analysis confirmed the mineral composition of the slag sample. The equipment comprised:

- JEOL JSM 6460 LV scanning microscope with EDS device Oxford INCA - Digitized device, 3-
of 4-nanometer resolution, magnification range 8 - 300,000 x and the possibility of working in low
vacuum to environment levels,

- BAL-TEC, SCD 005 SPUTTER COATER - Vacuum device for preparing samples by
vaporization with gold and carbon [25].

2.2. Characterization of the cement sample

CEM I is a commercial product, no detailed characterization of the sample was performed, but
only chemical, setting time, compressive and flexural strength analyses.

-The chemical analysis methodology is described in the previous chapter.

-The cement mortars setting time was tested using Vicat apparatus according to the SRPS EN
196-3:2017. The test room temperature should be 20+2 °C, and the relative humidity should be at least
50% [26].
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-Determination of flexural and compressive strength is described in SRPS EN 196-1:2017 [27].

2.3. Characterization of Danube water

Water from Danube river was tested using ion chromatography method. Ion chromatography is
a method of chromatographic separation of ions in a solution using a solid ion exchange material-
filled column and is ideal for determining very low concentrations of present ions. It is possible to
simultaneously analyze a group of inorganic anions (fluorides, chlorides, nitrites, bromides, nitrates,
phosphates and sulfates), and cations of alkaline and alkaline earth metals in water, as well as
ammonium ions. This method is used for analyzing all types of water, and it is most widely applied
in drinking water analysis [28].

2.4. Preparation and bio-stimulated healing mortar

Initial sample characterization was followed by the preparation of a new type of mortar and its
characterization by examining the strengths, chemical composition and setting time.

The new mortar system was prepared with a 10% slag replacement fraction instead of alite
cement using the method described in SRPS EN 196-1:2017. The sample prisms were of standard
dimensions 40 x 40 x 160 mm and laboratory dimensions of 10x10x60 mm. Flexural and compressive
strengths were tested after 2, 28 and 240 days of water curing on hydraulic presses by Tinius Olsen,
working force up to 231 kN and VEB Thuringer Industriewerk Rauenstein (standard prisms),
working force 0-5 kN and 25-50 kN (laboratory prisms). For this type of mortar, the setting time was
also determined using Vicat apparatus, according to SRPS EN 196-3:2017. The mortar system
composition is given in Table 1.

Table 1. Mortar system composition.

Syste{n./ CEM I, g Three-fraction  Granulated blast Water, ml
composition sand, g furnace slag, g
Az 405 1350 45 225

* Legend: Az10-CEM I with the addition of 10% slag.

Determination of the strengths, setting time and chemical composition of the new mortar type
was followed by the preparation of laboratory sample prisms for the bacterial bio-stimulated healing
experiment. After preparation and water curing for 28 days, sample prisms of laboratory dimensions
were cut with a diamond knife (Figure 1(a)) to 10x10 mm for easier manipulation, and a groove was
artificially made on each sample as a real crack simulation (Figure 1(b)). In this way, enough samples
were prepared for the needs of further experiments.

(b)
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Figure 1. Sample preparation: (a) applied laboratory equipment (diamond knife); (b) appearance of
the prepared cracked sample.

Considering that the selected bacterial strain S. pasteurii DSM 33 is highly sensitive to
environmental conditions [29], the pH value had to be reduced to a value below 10, which was
achieved by alternating immersion in distilled water and drying in a dryer for 2 hours each. After 20
washing cycles, the pH value was lowered from 14 to 9.

According to the established experiment program, 45 samples were singled out. The system was
divided into five groups that were treated under different conditions, as shown in Table 2. Conditions
2 to 4 are control.

Table 2. Conditions for systems.

Groups Conditions Days
bacterial suspension, nutrient
1 medium, sterile demineralized 7,14,28
water

i . 1

’ nu r1er'1t mec.hum, sterile 714,28
demineralized water

3 sterile demineralized water 7,14,28

4 Danube water 7,14,28

5 bacterial suspension, nutrient 71428

medium, Danube water

The samples were placed in Petri dishes so that the crack was on the upper side of the sample,
for easier healing agent application, with three repetitions in each group. Petri dishes with samples
were sterilized for 1 h at 160 °C to eliminate any possibility of contamination. After sterilization,
bacteria were applied in a laboratory at constant temperature of 25 °C, which favors bacterial growth.

The bacterial suspension was freshly prepared with sterile demineralized water. The nutrient
medium was also freshly prepared from urea, NaHCOs, NH4Cl and sterile demineralized water.

The nutrient medium and bacterial suspension were applied using a sterile pipette in the crack
mid-line. Each sample of the first, second and fifth group was first given 50 ul of nutrient medium.
After absorbing of nutrient medium, 50 pl of bacterial suspension was applied to each sample of the
first and fifth group (Figure 2). Finally, the sterile demineralized water was added with a sterile
pipette up to 1/3 of the sample height in the first, second and third group, while the fresh Danube
water was added also up to 1/3 of the sample height in the fourth and fifth group (10 ml for smaller
6 cm diameter Petri dishes and 15 ml for larger 10 cm diameter Petri dishes). This amount of water
was optimal for maintaining system humidity. After setting up the system, the Petri dishes with the
samples were transferred to the Binder Climate Chamber KBWF 240. In the climate chamber, the
systems were kept under controlled conditions of a temperature of 30 °C and humidity of 70% until
testing.

The tests duration was 7, 14 and 28 days after the experiments setup. Non-destructive methods
were selected to monitor changes in the bio-stimulated healing process, portable microscope imaging
(described below — chapter 2.5) and SEM analysis, already described in chapter 2.1.
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Figure 2. Setup of bio-stimulated healing process.

2.5. Indentification of cracks

Cracks were indentified and non-destructively recorded using a portable Vitiny PRO10-3
microscope, which can operate at 10 to 30 x magnifications. The crack width was measured with the
existing integrated microscope software.

2.6. Image classification

Image classification was performed in the MATLAB 2023A programming language using the
convolutional neural networks methodology - ResNet 50, which has already been pretrained to
extract features from digital images based on the rgb model.

Basic characteristics of the Convolutional neural networks (CNN) model

Convolutional neural networks are an extended model of multi-layer artificial neural networks,
which were developed by adding a new type of layer used for image analysis (recognition and
classification) [30].

Convolutional neural networks mimic the human visual system and may recognize complicated
image features gradually. In the first layers of this network, simple attributes such as edges are
detected. Based on what was detected in the previous, contours are recognized in the next layer.
Contour detection is followed by the recognition of specific parts of the object so that the object can
be classified in the final layer [31].

The principle behind convolutional neural networks is reflected in the direct input of image data
in raw pixels since the image consists of pixels as the smallest element in a digital image (shown as
the image having, for example, a width of 32, a height of 32 and a depth of 3). The first task of a
convolutional neural network model is to transform the image it receives into a computer-
understandable format. More precisely, the input data is represented as a two-dimensional pixel
intensity matrix in the case of a single-channel image or as a multi-dimensional matrix in the case of
a multi-channel image. So, in the input layer, the image data is entered into the network, and each
entered pixel represents an input characteristic. Each pixel is described by its color as a color imaging
system. There are many color spaces in which images exist and one of the most often used is RGD
with three color channels: red, green and blue. Thus, for example, white is presented as (0,0,0), while
black is (255,255,255) [32,33].

Data entry is followed by several alternating convolutional layers and pooling layers, which
alternation reduces their dimensions. The end result is images very small in size, each representing
one matrix. The matrix values are arranged into a vector that represents the input to the fully
connected network [30,31,34,35]. A schematic representation of the basic convolutional neural
network on the example of a cement prism crack image is shown in Figure 3.
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Full Connection Layer

Input Layer Convolution Layer Pooling Layer

Figure 3. Simplified schematic representation of a convolutional neural network on the example of a
crack image [adapted from 36].

Convolutional layer

The convolutional layer serves to extract the features of the input data using the filters located
inside the convolutional layer. The input image size is larger than the filter size, but their depth is the
same. Convolutional neural networks understand images in parts, so it is necessary to move the filter
several times to complete the entire processing and obtain the value for the whole image [34].

The filter window moving starts from the upper left corner and goes to the right by the same
value. When we reach the edge, we move it downward, repeating the process. The filter is moved to
multiply and add up each position of the starting pixel. That is, the filter scans subsamples of the
initial images to detect localized features. The size of the subsample depends on the size of the filter.
Each convolutional layer has a filter displayed as a two-dimensional matrix 3 x 3 (an example of m x
n is shown in Figure 4) with an increment of 1. The output volume is obtained based on several filters
that make up this layer and are grouped along the axis [34-38].

input input input

[.- b < d a |b < d a b «

| & f ¢ |h e |f £ h e f :
Al I\ i 1 Ik |1 i |j Ak 2
[m'in |o \p m|n lo |p min/lo Ip

aW+bX+eY+Z | bWecX+fY+5Z [ cWedXegYehZ |

SWHXHIY4Z | WX HY+KZ | gWHRXKY*IZ |

IWHX+mY+nZ | JW+kX+nY+oZ | KW+IX+oY+pZ |
output

Figure 4. Simplified schematic representation of the convolutional layer operation [adapted from
35].

ReLu layer
The ReLu layer is introduced after the convolutional layer as an additional layer to increase
image non-linearity and reduce calculation time. This layer serves to break the linearity imposed by

passing the image through the convolutional layer [34,35].

Pooling layer
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The convolutional layer is followed by the pooling layer, in which the data dimension is reduced.
This layer also has filters, but they have no weight here, unlike in the convolutional layer. Here, the
role of the filter is to select the pixel that is within the dimensions covered by this layer in a given
way. The maximum is often used as it works better in practice, although medium values are also
acceptable (Figure 5). The pooling layer reduces the dimension of the feature maps while retaining
the most important sample information. In this way, excessive overlaps are prevented. For maximum
pooling, a 2 x 2 matrix is adopted. After pooling, the image feature map is aligned in one column,
resulting in a vector. The long vector obtained in this way serves as the input to the artificial neural
network, which is also the final step. An artificial neural network consists of an input, output and
fully connected layer (network) [36,37,39].

Average pooling
s‘) 79
103 116

99 88 85 81
72 69 72 78
101 [ 97 | 119 | 109
110 | 104 | 122 | 114
" Max pooling
99 85
110 122

Figure 5. Simplified representation of the pooling layer operation [35].

The purpose of the convolutional neural network is to combine features from the input data to
form a wide range of attributes in image classification [31].
Validation success can also be shown computationally through a precision expression adapted

from[40]:
.. TP
recision = 1
p TP+FP 1)
TP
recall = 2)
TP+FN
2xrecall*precision
F1 — score = —p_. 3)
recall+precision
TP+TN
accuracy = ——— 4)
TP+TN+FN+FP
wherein:

TP - True Positive

FP — False Negative

TN - True Negative

FN - False Negative

F1-score and accuracy are used to precisely assess model performance, where F1-score takes into
account precision and recall, and is calculated for both classes while accuracy represents the
proportion of correct recognition of the entire sample.

3. Results and Discussion

3.1. Physical - chemical characteristics of slag

By control particle distribution check in the microsizer, 72.15% of the -0.045 mm size class was
found for the slag sample after crushing, which corresponds to the standard requirements and can
be used for mortar preparation. The results are shown in Figure 6.
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Figure 6. Particle size distribution in the slag sample graph.

The chemical composition is given in Figure 7.

Volume (%)

10 ‘I

Si02 Fe203 AI203 CaO MgO SO3 P205 TiO2 Na20O K20

Chemical Compositions

Figure 7. Chemical composition of the slag sample.

The slag sample is dominated by the contents of SiO2 and CaO, which affects their chemical
activity and volume constancy. The alkali content is low, which is advantageous as their presence is
undesirable in cement production. The share of MgO in the slag is increased compared to the allowed
5%. A higher quantity of MgO can affect, in addition to volume instability, the appearance of cracks
[41] in mixtures with cement, which should be paid special attention to in experimental work. The
measured slag pH value is 8.

In addition to the high quantities of non-crystallized material, a smaller amount of akermanite
(Ak) mineral was identified. The powder diffractogram is shown in Figure 8.
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Figure 8. Diffractogram of the slag sample.

SEM microphotographs of the initial slag sample are shown in Figure 9. A typical slag
appearance can be explained by a porous structure with open pores, on the surfaces of which certain

crystals can be observed, which, according to the available literature, can be classified as akermanites
[42,43].

Figure 9. SEM image of the slag sample (a) magnification 50x, (b) magnification 200x, (c)
magnification 500x and (d) magnification 1000x.

Based on the detailed sample characterization and the obtained results, it was concluded that
the tested slag sample can be used as an additive for cement mortars after micronization.
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3.2. Physical - chemical characteristics of mortar

A new type of cement was prepared with added 10 mas% slag. After the preparation and curing,
with and without slag, in a period of 2, 28 and 240 days, the mortar samples were tested for flexural
and compression strength. In addition, the setting time of both cement mixtures was determined and
their chemical composition was analyzed. The results of geomechanical tests of standard and
laboratory sample prisms of the new mortar system are given in Table 3 and Figure 10.

Table 3. Mechanical characteristics of standard and laboratory prisms.

Svstem/ Flexural 2 Compressive Flexural 28 Compressive 28 Flexural 240 Compressive
y days, P days, MPa days, MPa days, MPa 240 days, MPa
strength 2 days, MPa
MPa
A* standard 5 30.63 6.47 59.33 8.01 61.42
Az standard 3.44 24.22 6.39 58.61 8.23 59.71
A laboratory 11.44 68.90 9.58 66.29
Az laboratory 7.94 41.08 9.10 53.07
* Legend: A - CEM I, Az10 -CEM I with the addition of 10 mas% slag, standard 40x40x160 mm and laboratory
10x10x60 mm.
70
60 — .!-.I
50
E 40
> -
s = -
c
2 2
7 -
10 PR &
i u i
Flexural 2 days Compressive 2 Flexural 28 days Compressive 28  Flexural240 days Compressive 240
days days days
A - standard Az10 - standard m A- laboratory Az10 - laboratory

Samples
Figure 10. Mechanical characteristics of standard and laboratory prisms.

The standard does not prescribe flexural strength values, but they are always given in reports,
while compressive strength values are an important parameter that is tested and defined by the
standard or based on the Rulebook on Cement Quality [44]. The compressive strength decreases with
the addition of slag, but in both systems, the strength increases with the hydration time. By
comparing the values obtained for standard and laboratory prisms, it can be concluded that the
compressive strength results for standard prisms fully follow the compressive strength values for the
laboratory prisms. Thus, the results are comparable. This conclusion is a good indicator that the
following experiments can fully rely on laboratory samples and raw materials saving.

The setting time is shown in Table 4.

Table 4. Alite systems setting time.

Setting to start time,  Setting to finish =~ Total setting time, min
min time, min
A 86 212 126
Az 115 223 108

System/ Setting time
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The new slag mortar system has a total setting time of 108 minutes which is shorter than the
setting time of CEM I (alite) mortar which is 126 minutes, but takes longer for the setting to start.

The chemical composition of the alite and the new mortar system is shown through silicate
analysis given in Table 5.

Table 5. Chemical composition of the alite and the new mortar system.

Content, %
System SiO: Fe20s AlOs CaO MgO SOs P:0s TiO: Na:O K:0 Annealingloss
A 2210 157 445 3616 211 315 010 028 055 0.65 3.85
Az 2280 136 4.66 5037 273 362 009 026 046 0.82 3.63

The chemical composition of the alite and the new mortar system (Azio) is shown based on
silicate analysis given in Table 5. The results of the silicate analysis show that the annealing loss in
both systems is below the value prescribed by the Rulebook [44]. The sulfate content (as SOs) is below
the limit value for both types of cement, so there is no possibility of subsequent sulfate corrosion. The
content of CaO is much higher in the slag system, which originates from the slag itself in which it is
present with 40.82% and can negatively affect the volume stability of this cement system. The total
alkali content expressed as Na:O+K20 is rather high, but these values do not exceed the limit (<1.5).
The presence of alkali in the cement can lead to a later reaction with the aggregate in the concrete,
causing a decrease in the structure strength [45].

3.3. Chemical characteristics of Danube river water

Danube water used in the experiments was tested for pH, total nitrogen, total phosphorus, total
organic carbon, ammonia, nitrates, nitrites, chlorides, COD (Chemical Oxigen Demand), BODs
(Biochemical Oxigen Demand), sulfates, phosphates, dissolved oxygen, fluorides, hexavalent
chromium, calcium, magnesium, manganese, lead, zinc, total chromium, cadmium, copper, mercury,
arsenic, iron (Table 6) [46].

Table 6. Analysis of Danube river water.

pH total  total phosphorus total organic ammonia nitrates
parameter .
nitrogen carbon
measured 8.47 1.35 0.047 1.89 <0.078 1.317
value
reference 6.5-8.5 2.0 0.2 5.0 0.3 3.0
value
nitrites COD BOD5 sulfates phosphates  dissolved
parameter
oxygen
measured 0.019 8.0 1.2 37.38 0.044 8.86
value
reference 0.03 15 5.0 100 0.1 7.0
value
fluorides  hexavalent calcium manganese manganese lead
parameter ]
chromium
measured <0.5 <0.1 53.0 12.86 0.01 <0.01
value
reference - 0.1 - - 0.1 0.05
value
parameter zinc total chromium cadmium copper mercury arsenic iron
measured <0.03 <0.006 0.0009 <0.02 <0.0003 <0.01 0.122

value
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reference 0.7 0.05 0.005 0.022 0.001 0.01 0.5
value

The analysis determined the presence of all tested parameters in values below the maximum
allowed, i.e. reference values, so that no negative influence of water was expected in further
experiments of the bacterial healing process.

3.4. Bio-stimulated healing of cracks

After setting up the bacterial experiments, the changes in the cracks were monitored with a
portable microscope after 7, 14 and 28 days (Table 7 shows the changes after 7 days under three
characteristic conditions). In Table 7, all mean values of the change in cracks are shown tabularly
(Table 8) and graphicaly (Figure 11).

Table 7. Changes in the new mortar sample after 7 days under controlled conditions, optical
microscopy.

Conditions/days 0 days i 7 7 days
First group/condition ) -

Third group/condition :

Fifth group/condition

Table 8. Mean crack width of the new mortar system with healing efficiency by conditions.

Group/condition
Healing First Second Third Fourth Fifth
Initial width, mm 0.504 0.466 0.567 0.567 0.569

Width after 7 days, mm 0.361 0.336 0.466 0.508 0.445
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Efficiency, % 28.12 27.37 16.75 9.96 22.88
Initial width, mm 0.542 0.659 0.638 0.487 0.588
Width after 14 days, mm 0.347 0.468 0.529 0.357 0.330
Efficiency, % 32.02 29.04 16.90 26.73 42.74
initial width, mm 0.447 0.722 0.517 0.571 0.506
Width after 28 days, mm 0.346 0.483 0.407 0.399 0.357
Efficiency, % 22.39 33.68 20.99 29.99 27.80
50 —
$ 40 - - “1 “1
é - 1 I 28 days
i L
fir st second third fourth fifth

M 7 days 14 days 28 days

Conditions by groups and days

Figure 11. Efficiency of the new mortar system by days and conditions.

Although, according to literature data, bacteria reach their precipitation maximum after 7 days
[29], when they can create a sufficient amount of calcium carbonate to close a 0.5-0.8 mm wide crack
[47], the most favorable healing values were recorded with the new slag mortar system after 14 days
in both waters, with efficiency being 32.02% and 42.74% for sterile demineralized and Danube water,
respectively.

Bio-stimulated healing rates after 7 and 28 days range between 22.39% and 28.12%, respectively.
Healing was also recorded under bacteria-free conditions, namely, in sterile demineralized water
20.99% and Danube water 29.99% with initial cracks of about 0.5 mm, which can be explained by the
process of autogenous healing due to unreacted mortar and slag grains [13,15].

Figure 12 (a) and (b) shows SEM images of the sample with bacteria in sterile demineralized
water at 1000 x magnifications and the characteristic morphology of calcite crystals that started the
process of bio-stimulated healing in the cracks as the result of bacterial precipitation. The appearance
of the crystals is confirmed by the previous studies [48]. The EDS spectrum in Figure 12 (c) and (d)
confirms the presence of calcium, oxygen and carbon, which once again indicates that it is calcium
carbonate. Previously published studies show that the main healing product is also calcium carbonate
[17], which was confirmed in this research.
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Figure 12. SEM, EDS results of the sample with bacteria in sterile demineralized water (a) and (b)
1000x magnification, (c) and (d) EDS spectrum at 1000x magnification.

SEM images of the sample (Figure 13 (a)) in the sterile demineralized water without nutritient
and bacterial culture show that the crack has not self-healed and the crystals at 500x and 2000x
magnifications (Figure 13 (b) and (c)) are characteristic of slag mortars and are in line with previously
published studies [49].
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Figure 13. SEM, EDS images of the sample without bacteria in sterile demineralized water (a) 50x
magnification, (b) 500x magnification, (c) 2000x magnification, (d) and (e) EDS spectrum at 2000x
magnification.

The SEM images and EDS of the sample treated with bacteria in Danube water (Figure 14) also
confirmed the precipitation of calcium carbonate as the main compound that fills the cracks and leads
to healing process. Calcium carbonate crystals are larger with clear rosettes, unlike crystals formed
in sterile demineralized water where the crystals are smaller and more uniform.

Spectrum 1

C

Ca Ca

A o sogn ) \Ca
[ BAAA2E05] HOAI AR EAABEAAAN PR A3 PRASLESHI RS ARADR [APALIAI M [ FARYE AT POATA LA
n 1 2 3 4 5 6 7 8 9 10
Full Scale 1229 cts Cursor: -0.061 keV (101 cts) keV|

. 20pm ' Electron Image 1
(c) (d)

Spectrum C O Ca Total
Spectrum1 3558 4618 1824  100.00

Figure 14. SEM, EDS results of the sample with bacteria in Danube water a) 500x magnification, b)
and c) EDS spectrum at 3000x magnification.

3.5. The success of crack image classification using CNN
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ResNet50 program package within Matlab2023A was used to classify images of cracks in the
new slag mortar system after a period of bacterial treatment in sterile demineralized and Danube
water.

The microscopic images showing bacterial healing in sterile demineralized water and in Danube
water are visually very similar and can be classified into the same data set (Class 1). For the second
data set (Class 2), images from mortar samples with demineralized water without nutritient and
bacterial culture, were selected.

Each group had 102 input images. After entering the input data into the network, the program
extracts one image from each group as shown in Figure 15.

Figure 15. Typical image of a sample from the group left) with bacteria and right) without bacteria.

The CNN had 177 nodes with 192 connections classified into input, convolutional, pooling, fully
connected, ReLu and output layers. Figure 16 shows the simplified architecture of convolutional
neural network 50-layer ResNet while the network architecture is broken down by layers as given in
Table 9.

ax3x128 3x3x256 3x3x512 1x1000

B B
N .

Input
224x224%3

ez
v

' ;
- B

tl‘_..

Figure 16. Simplified architecture of convolutional neural network 50-layer ResNet, showing
convolutional layers (C1,1, C2,1, ... C5,9), pooling layers (P1 and P2) and a fully connected layer (FC1).
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Table 9. Architecture of the resulting network.
Name Type Activation

1 input_1 Image Input 224x224x3

2 convl Convolution 7x7,64

3 bn_convl Batch Normalization

4 activation_1_relu ReLu

5 max_pooling2d_1 Max Pooling

6 res2a_branch2a Convolution

7 bn2a_branch2a Batch Normalization

8 activation_2_relu ReLu

12 res2a_branch2c Convolution 1x1, 64
13 bn2a_branch2c Batch Normalization 3x 3x3, 64
14 res2a_branchl Convolution 1x1, 256
15 bn2a_branchl Batch Normalization

16 add_1 Addition

17 activation_4_relu ReLu

44 res3a_branch2c Convolution 1x1, 128
45 bn3a_branch2c Batch Normalization 4x 3x3, 128
46 res3a_branchl Convolution 1x1, 512
47 bn3a_branchl Batch Normalization

48 add_4 Addition

49 activation_13_relu ReLu

86 resda_branch2c Convolution

87 bn4a_branch2c Batch Normalization { 1x1, 256
88 res4a_branchl Convolution 6 3x3, 256
89 bn4a_branchl Batch Normalization 1x1, 1024
90 add_8 Addition

91 activation_25_relu ReLu
148 resba_branch2c Convolution 1x1, 512
149 bn5a_branch2c Batch Normalization 3x 3x3, 512
150 resba_branchl Convolution 1x1, 2048
151 bnba_branchl Batch Normalization

152 add_14 Addition

153 activation_43_relu ReLu

172 add_16 Addition

173 activation_49_relu ReLu

174 avg_pool Global Average Pooling

175 £c1000 Fuuly Connected 1x1000

176 fc1000_softmax Softmax

177 classificationLayer_fc1000 Classification Output 1x1

For network training and for the test, the program selected 62 (30 %) and 142 (70 %) input images,
respectively. The first covolutional matrix with the number of images obtained by the test is:
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59 12
11 60
After reprocessing the data through the network, a generated matrix was obtained, shown with
accuracy in relation to the number of images from the test (Figure 17):

Confusion matrix
71
_ Clasz 1
&
=
0
Clasz 1 Class 2
Predicted label

Figure 17. Generated matrix.

The final classification accuracy using this deep learning model is 91.55%.

To validate the classification results, a new data set with 18 images for each group was selected.
After validation, a deviation was obtained in the group with bacteria for one input image (5.5 %),
while in the group without bacteria the deviation for two input images was (11 %).

Validation success is also obtained from Equations (1) to (4) and the results are given in table 10.

Table 10. Indicators for each class.

Indicators Precision Recall F1 - score Accuracy
Class 1 0.94029 0.88732 0.91303 0.91549
Class 2 0.89333 0.94366 0.91781

The characteristics obtained in this way confirmed the obtained validation values and amount
to 91.55%.

Based on the obtained CNN network data, it can be concluded that the model is suitable for the
classification of images of changes in mortar sample cracks.

4. Conclusion

This complex research concludes that up to 10 mas% of blast furnace slag can be successfully
added to cement mortars without compromising the geomechanical and chemical properties of the
mortar. Further research on the bio-stimulated healing process confirmed that this quantity of slag is
optimal as, in combination with bacteria, it promotes autogenous healing. For the bio-stimulated
healing process, the S. pasteurii DSM 33 strain was selected, which is characterized by a high capacity
of continuous production of carbonate and bicarbonate ions through ureolysis [11, 29]. Although the
bacteria reach their precipitation maximum after 7 days, current research has proven that in
controlled conditions of humidity and temperature, greater healing efficiency can be achieved with
a longer aging time (14 and 28 days). According to the knowledge of the authors of this work, such
research for the first time included Danube river water which, based on SEM images, has a favorable
effect on the formation of calcium carbonate crystals, making healing efficiency about 10% higher
compared to the conditions of bacteria in sterile demineralized water. The beginning of autogenous
healing was recorded in control conditions, mortar samples in demineralized water without bacteria
and nutritient. Here, the efficiency ranged from 16.75% to 20.99%. Considering the success of the
experiments and the multitude of recorded microscopic changes, images were also classified by
convolutional neural networks. Convolutional neural networks are widely used in practice for the
classification of various types of images, but according to the available literature, such an approach
is not recorded for images of crack bio-stimulated healing in new types of mortar. As a result of the
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classification, a high percentage of accuracy of 91.55% was obtained, while during validation, the
deviation was as low as 5.5% in the group with bacteria and 11% in the group without bacteria
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