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Abstract: The rising global population amidst the growing concerns of climate change will have a 

dire consequence on global food security and socio-economic activities. Wheat is one of the most 

important staple foods consumed by more than four billion people in the world, but climate change 

impacts account for a decline of 5.5% in wheat yield and predictions indicate that the production 

could further dwindle by nearly 30% in 2050, due to trends in temperature, precipitation, and carbon 

dioxide. An effective annual crop estimate is necessary not only to inform government the status of 

national food security, but also is used to determine the benchmark on which agricultural 

commodities are priced in the market. Thus, annual crop monitoring and yield estimate is 

paramount to determine the amount of wheat imports required to make up for the shortfalls in the 

national wheat production in South Africa, which has been a net importer of wheat since 1998. A 

joint project between South Africa and Poland investigated satellite based-crop growth monitoring 

using Sentinel 2 and determined the most distinguishable crop phenology for an accurate winter 

wheat classification during the growing season from August – December with Random Forest (RF) 

algorithm. The winter wheat crop was more accurately identified during the crop ‘heading’ stage in 

October yielding the highest user’s (75.56%) and producer’s (92.52%) accuracies, despite the 

relatively lower overall accuracy (78.14%) compared to that of December with OA of 83.58% 

obtained during the maturity stage. This study, therefore, confirms the suitability of sentinel 2 for 

an effective phenology-based winter wheat crop classification during the heading stage, reducing 

the ambiguity of spectral confusion created with surrounding grass and maize crops. 

Keywords: Phenology; Tillering; Random Forest; Crop type; Clustering; Unsupervised 

classification 

 

1. Introduction 

Since its first adoption as a cultivable crop in the Middle East over 10 000 years ago, wheat has 

been regarded not only as the foundation of a sedentary lifestyle for the early humans but also as a 

corner stone upon which many civilizations, particularly those in the west thrived on [1]. It is 

predominantly a crop of the northern hemisphere, where 90% of the global production comes from, 

with China, Russia, and United States of America accounting for 50% of the world’s wheat production 

[2]. It is one of the three most important staple crops consumed by a third of the world population 

[3]. For most part of the 20th century, wheat production showed a progressive increase, more 
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importantly following the food shortage crisis after World War II driven by agricultural incentive 

policies adopted by many countries. The subsidies from the European Union’s Common Agricultural 

Policy encouraged farmers in the United Kingdom (UK) to double average wheat yield from 3.5 t ha-

1 in 1961 to 7.6 t ha-1 in 1984 which also attracted many barely farmers to switch to wheat farming [1]. 

Germany was importing over 2 million tons of wheat annually after the war but became self-sufficient 

in the 1970s by producing enough for the domestic market [4] currently standing at 130% self-

sufficiency produced from a total acreage of 3.1 million ha [5,6]. Wheat is also the dominant cereal 

crop in Poland with cultivation land areas expanding from 20% in the 1960 to 25% in the 1980s to the 

current 39% [7] accounting for 22% of the total areas cropped in the country [8].  

The most dominant cereal crop in Southern Africa is maize, but wheat is also grown to 

supplement the staple maize crop [9]. The first wheat production in South Africa dates back to 1652 

in the Cape of Good Hope and as early as 1684 there was enough wheat production to export to India. 

The two main commercial wheat species produced in South Africa are the bread wheat (Triticum 

aestivum) and the durum wheat (Triticum turgidum), the former accounting for bulk of the wheat 

production in the country [10]. The country is the second largest wheat producer ranking after 

Ethiopia and wheat is predominantly produced as a dryland crop with irrigation only covering 21% 

of the total wheat grown area, which accounts for 41% of the total wheat production [11]. Wheat 

acreage increased from 0.5 t ha-1 in 1936 to over 3.5 t ha-1 in 2015 leading to 87% increase in wheat 

production and 20% improvement in the baking quality in the period between 1930 and 1990 [12]. It 

is mainly produced in the Western Cape, Free State, Northern Cape, North West and Mpumalanga 

provinces [13] with over 42% of the total 1.5 million ton wheat produced in 2019 coming from the 

Western Cape Province (https://www.statista.com/statistics/1135888/wheat-production-in-south-

africa-by-province/). Unfortunately, though, South Africa remains a net importer of wheat since 1998 

after the wheat growing area declined by 46% following the changes in policy leading to the 

deregulation of the wheat market and dissolution of the existing fixed pricing system by the wheat 

marketing board [9]. The low profitability of wheat production and other extreme climatic conditions 

(e.g., drought and frost) made farmers lose interest in growing wheat and shift to more profitable 

crops such as maize and soybean [14]. For instance, the drought incidence of 2015/2016, which 

particularly hit the Western Cape Province (where more than 90% of wheat grows in dryland 

condition), led to South African wheat exports to the Southern African Development Community 

(SADC) countries drop by 76% [15]. Although a net importer, South Africa does import wheat of 

lower quality to mix with high quality produced locally and export mainly to other member countries 

of the Southern African Development Community (SADC) [9]. 

The global population is projected to grow by 35% and reach 9.3 billion by 2050 [16], which will 

require an estimated 70% increase in food production mainly in wheat, maize, and rice (that occupy 

58% of the annual crop area and account for 50% of the calories required) to cater for the future food 

demands [17,18]. Wheat production has to increase by 60% to ensure the global food security during 

projected period of surge in the world population [19]. Many of such production increases are 

expected to come from developing countries, where agricultural lands have to double, and the low 

production level improve through intensive farming. Most of the production in these countries, is 

however dependent on dryland conditions and due to climate change effects, which is driving the 

variable and unpredictable weather conditions and increasing drought frequencies, crop production 

might suffer a setback to meet the growing global food demand. Irrigation farming could be the focus 

of future crop production for a substantial contribution in the global food security, but water 

resources are limited and requires effective management, which will depend on accurate and timely 

crop-type knowledge for robust water budget and irrigation plans. This is particularly important in 

arid and semi-arid regions of the world, where most of the land expansion required to increase future 

food will come from.  

Crop yield forecast during the growing season before harvest is paramount not only to facilitate 

the decision making of whether or not to import seasonal shortfalls of staple crop production to 

ensure food security, but also seasonal crop estimates produced nationally are used as a benchmark 

on which agricultural commodities are priced in the market and it has a direct bearing on decisions 
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taken by government, farmers, and the business community by large. The two components required 

for crop production forecast are the crop acreage and the expected acres to harvest [20], where crop-

type mapping is the most important aspect of crop management and yield forecast to characterize 

the dynamic and unpredictable changes of the agricultural land cover patterns [21]. For many years 

crop estimate depended on complete censuses, sample survey systems from farmers’ reports, 

observed data from large point samples, conventional area frame systems, and data obtained from 

administrative offices [22]. Either as a separate estimation or a partial survey for ground-truthing of 

the recent remote sensing–based crop estimate methodology, crop area survey remains widely in 

practice across the world [22]. Although such traditional area survey methods could be accurate, they 

are expensive, labour and time demanding, and do not produce accurate crop spatial distribution 

[23]. The advent of high spatial and spectral resolution remote sensing technology has, however, 

allowed the crop estimation data survey to evolve where satellite imageries are now used for 

agricultural land classification and estimation of acreages to be planted or harvested and has become 

a popular tool of choice for crop production forecast. Thus, although complete census is still in 

practice in many countries, remote sensing and sample ground survey for training has synergistically 

revolutionized the crop-type mapping methodology. 

The different crop biological events from planting to harvest over the growing season, referred 

as crop phenology, depends on climatic, edaphic, and agronomic practices, and varies with time and 

location [24]. Timely mapping of such changes in crop developmental stages are significant for crop 

growth management, such as determining the irrigation and fertilizer requirement regimes, which 

could be scheduled on the phenological stage, and crop yield forecast [24]. Different vegetative 

indices (VI) are used to determine crop phenology using the changes in the vegetation status 

following the different developmental stages such as green-up, heading and senescence. The 

progressive advancement in the temporal and spatial resolutions of satellite observation on the earth 

surface has enabled the use of a near-real time approach for to monitor crop growth on pixel basis. 

While the utility of remote sensing to classify and characterize different crop-types has been 

previously studied, this study will particularly focus on crop-phenology based classification using 

temporal and spatial remote sensing satellite data.  

2. Materials and Methods 

2.1. Study area 

The study was conducted around the town of Reitz in the Thabo Mafutsanyane District, the Free 

State Province of South Africa, the second biggest wheat producer in the country after the Western 

Cape Province (Figure 1). Reitze is located in th north-eastern part of the provicne and experiences a 

humid-subtropical climate with average annaul precipitation in region ranging from 300  - 900 [25]. 

It is predominatly planted with winter weat from late July to early August and with yellow maize 

from Ootober depending on the onset of rainfall.  
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Figure 1. Sentinel 2 NDVI composite map of the study areas in Reitz, Free State Province, South 

Africa. 

2.2. Data acquisition 

A handheld Global Positioning System (GPS) receiver (Garmin eTrex 20 X) was used to collect 

2 017 coordinates from the months of August (521), October (686) and December (803) during the 

growing season of winter wheat crop in 2020 (Figure 2). Among some of the land use land cover 

(LULC) classes were water, natural vegetation, furrow, maize, grass, beans, built up and winter 

wheat including their phenological stages.  

 

Figure 2. Ground-truthing Global Positioning System (GPS) points collected during the growing 

season of winter wheat in August, October, and December. 
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2.3. Image classification using Random Forest  

The multispectral Sentinel 2 satellite imageries with cloud cover of less < 5% were selected for 

the phenology-based classification using the Random Forest (RF) classification algorithm and the 

classification accuracy was computed in a confusion matrix table. The entire winter wheat dataset 

obtained from 130 farms were also clustered into groups from the NDVI time series values averaged 

from 14 days stretching from August to December of the growing season to determine the optimum 

number of k-mean cluster using Iso cluster unsupervised classification algorithm on R software.  

2.4. Plant Phenology 

The most common phrenological stages of winter wheat includes Tillering (from germination 

stage with a single shoot to 2-5 shoots), Jointing (when first nodes appears above the soil surface), 

Booting (when the flag sheath swollen enclosing the awns), Heading (when the first anther appears) 

and Flowering (when anthers covers the entire head), Maturity (when developed kernel contains 40% 

of moisture and can be split by fingernail) and Ripening (when kernel moisture content is about 13%, 

and turns golden in colour and becomes harder to split with fingernail) [26].   

 

Figure 3. The different phenological stages of winter wheat during the growing season from August 

to December 2020 in Reitz, Free State Province, South Africa. 

3. Results 

The K-means, a common algorithm for unsupervised classification of large dataset was used to 

determine the optimum number of clusters required to group the entire winter wheat dataset 

according to their similarities. The point in the cluster curve at which the decline the distortion was 
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the lowest also referred as the ‘elbow’ indicates the optimum k value (number of clusters) into which 

the data set will be grouped. The results showed the optimum or the smallest number of clusters with 

low sum of squared errors (SSE) was at k 3, after which the SSE diminished for every increasing k 

cluster (Figure 4). 

 
Figure 4. Elbow method used to determine the optimum number of clusters required to group the 

datasets into based on their similarity. . 

A total of 130 GPS points were collected from each winter wheat farm in the study area in early 

October 2020. The boundary of each farm containing a GPS point was then drawn into a polygon and 

as many as 1018, 1595, 2011, 2583 and 1595 points were generated for each of the crop growth stages 

tillering, Jointing, Booting, Heading and Maturity, respectively. Sentinel 2 NDVI times series values 

over the period of 14 days stretching from 1 August to 31 December 2020 were extracted using Google 

Earth Engine software and classified using K-mean clustering technique across the study area. There 

were five distinct groups with varying NDVI values over the growth period (Figure 5).  

 

Figure 5. NDVI of winter wheat during the growing season from Aug- December 2020 in Reitz, Free 

State Province. 
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Although the optimum number of clusters into which the winter wheat dataset will be grouped 

is calculated at k 3, unsupervised clustering was also calculated for K 5 and K 4. The results showed 

crop phenological stage of ‘Maturity’ was consistently separable for all clustering groups of K-3, K-4 

and K-5 (Figure 6). When the dataset was clustered into five groups, there was an overlap between 

the winter wheat crop stages ‘Booting and Heading, as well as between Tillering and Jointing. The 

same was true in the latter when the clustering was reduced to four groups. However, at clustering 

group of 3 no overlap was observed between Tillering, Heading and Maturity. 

 
Figure 6. Unsupervised classification of winter wheat dataset using K-mean clustering algorithm. 
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The overall accuracy (OA) of the unsupervised classification using the k-mean clustering 

algorithm was the highest at the optimum cluster number of K-3 with 89.33% compared to 63.23% 

and 75.21% when the dataset was grouped into clusters of K-5 and K-4 respectively (Table 1). The 

confusion was more prominent between the Tillering and Jointing and between Booting and Heading 

crop stages. The user’s accuracies (UA) were the lowest in the first two paired stages with 57.17% and 

52.96%, respectively.  

Table 1. Accuracy assessment of unsupervised classification of winter wheat dataset using k-mean 

clustering algorithm into which crop phenological stages were grouped. 

a. The classification accuracy of dataset grouped into five clusters using the K-means clustering 

Growth stages Tillering Jointing Booting Heading Maturity Total UA 

Tillering 582 291 73 72 0 1018 57.17% 

Jointing 710 1065 118 118 0 2011 52.96% 

Booting 31 64 958 542 0 1595 60.06% 

Heading 0 225 561 1685 112 2583 65.23% 

Maturity 0 0 41 81 937 1059 88.48% 

Total 1323 1645 1751 2498 1049 8266  

PA 43.99% 64.74% 54.71% 67.45% 89.32%  OA = 63.23% 

b. The classification accuracy of dataset grouped into four clusters using the K-means clustering  

Growth stages Tillering Jointing Heading Maturity Total UA  

Tillering 582 363 73 0 1018 57.11%  

Jointing 710 946 355 0 2011 47.04%  

Heading 57 114 3835 172 4178 91.79%  

Maturity 0 41 163 855 1059 80.74%  

Total 1349 1465 4426 1027 8267   

PA 43.14% 64.57% 86.65% 83.25%  OA = 75.21%  

c. The classification accuracy of dataset grouped into three clusters using the K-means clustering  

Growth stages Tillering Heading Maturity Total UA   

Tillering 2834 195 0 3029 93.56%   

Heading 114 3778 286 4178 90.43%   

Maturity 41 203 815 1059 76.96%   

Total 2989 4176 1101 8266    

PA 94.81% 90.47% 74.02%  OA = 89.33%   

The crop phenology-based classification of the winter wheat using sentinel 2 satellite imageries 

and the Random Forest (RF) algorithm during the months of August, October and December 2020 

growing season produced overall accuracies of 75.16%, 78.14% and 83.58%, respectively (Table 2) 

increasing with the age of the crop from emergence in August to maturity and ripening in December. 

In August, the two dominant land use types were extensive furrowed farmlands and early stages of 

wheat crop tillering, and no other crop stages were identified. The furrow class showed a spectral 

confusion with grass and wheat emergence. The same was true with the wheat that overlapped 

largely with furrow followed by grass (Table 2) as a result the two classes received the lowest user’s 

accuracies of 61.17% and 62.86%, respectively. The overall accuracy (78.14%) of the classification in 

October showed a slight improvement compared to the first stages of wheat in August. The spectral 

mix-up however, remained between the same classes of wheat and furrow, although relatively lower 

than in the previous month. The wheat tillering (WT) and wheat heading (WH) crop stages were the 

only two phenological stages identified in the study areas recording the highest users’ (73.60% and 

75.56%) and producers’ (89.51% and 92.52%) accuracies. In December, the last month of the active 

growing season of the winter wheat crop in the study area (in Reitz) the wheat maturity (WM) stage 

was the only phenological stage identified yielding the lowest user’s accuracy (67.24%) and 

producer’s accuracy (70.91%), despite the highest overall accuracy (83.58%) recorded.    
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Figure 7. Classification map of winter wheat using Sentinel 2 satellite data with Random Forest 

algorithm for August, October, and December months of the crop-growing period in Reitz, Free State 

Province, South Africa. 
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Table 2. Accuracy assessment of winter wheat classification using Sentinel 2 satellite data with 

Random Forest for the growing season from Aug – Dec 2020.  NB: UA denotes user’s accuracy, PA-

producer’s accuracy, OA-overall accuracy NV-natural vegetation, WT-wheat tillering, and WM-

wheat maturity. 

a. Accuracy assessment for winter wheat classification map in August 2020   

Class Built up Furrow Grass N. veg Water Wheat Total UA   

Built up 25 6 0 0 4 0 35 71.43%   

Furrow 1 63 28 0 1 10 103 61.17%   

Grass 1 23 187 4 3 4 222 84.23%   

N.V 2 5 3 42 1 3 56 75.00%   

Water 1 0 0 0 58 1 60 96.67%   

Wheat 2 26 13 7 4 88 140 62.86%   

Total 32 123 231 53 72 106 616     

PA 78.13% 51.22% 80.95% 79.25% 80.56% 83.02%   OA = 75.16%   

b. Accuracy assessment for winter wheat classification map in October 2020   

Class Built up Furrow Grass Maize NV Water WT WH Total UA 

Built up 30 2 3 0 1 6 0 0 42 71.43% 

Furrow 1 79 3 38 0 3 4 0 128 61.72% 

Grass 1 3 184 20 6 2 3 4 223 82.51% 

Maize 0 37 7 189 0 2 5 0 240 78.75% 

NV 6 1 12 4 189 9 1 1 223 84.75% 

Water 1 0 0 0 0 60 0 1 62 96.77% 

WT 0 11 15 12 2 7 145 5 197 73.60% 

WH 0 0 15 4 14 7 4 136 180 75.56% 

Total 39 133 239 267 212 96 162 147 1295   

PA 76.92% 59.40% 76.99% 70.79% 89.15% 62.50% 89.51% 92.52%  OA = 78.14%

c. Accuracy assessment for winter wheat classification map in December 2020 

Class Beans Built up Furrow Grass Maize N. veg Water WM Total UA 

Beans 27 0 3 3 0 0 1 0 34 79.41% 

Built up 0 20 3 5 0 0 0 0 28 71.43% 

Furrow 5 1 67 3 2 0 0 16 94 71.28% 

Grass 1 0 11 210 13 0 0 9 244 86.07% 

Maize 0 0 1 41 210 2 0 3 257 81.71% 

NV 1 0 0 0 16 109 0 3 129 84.50% 

Water 0 5 0 0 0 0 58 1 64 90.63% 

WM 0 2 7 3 23 1 2 78 116 67.24% 

Total 34 28 92 265 264 112 61 110 932   

PA 79.41% 71.43% 72.83% 79.25% 79.55% 97.32% 95.08% 70.91%   OA = 83.58%

4. Discussion 

Cultivation of winter wheat in Free State Province (Reitz) starts from mid of July to the first week 

of August and harvested in late December. The crops will germinate and grow in winter during the 

dry season on the existing soil moisture from the previous rainfall season in summer and reach the 

heading and flowering stages from October with the onset of the summer rainfall and maturity in 

December.  Planting dates of the winter wheat varies from 1 – 3 weeks amongst farmers and 

therefore, the crop phonological stages of the study areas vary accordingly. The winter wheat crop 

was mapped using the multispectral sentinel 2 NDVI time series over a 14-day period stretching from 

August – December and the wheat dataset was clustered into 3 – 5 groups using the K-mean 

unsupervised clustering technique. The different crop phenological stages were matched to each 

cluster from field observation record of the crop growth stages. A spectral confusion was observed 
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between the tillering and jointing stages as well as the booting and heading stages when the wheat 

data set was clustered to five groups (Figure 6). This either could be due to the different planting 

dates of the wheat crop across the study areas resulting in an onset of a crop phenological stage in 

one farm or developing into the next stage in another. The NDVI time series clustering results showed 

the different grouping of the study area based on the wheat crop phenological stages with varying 

dates of reaching each crop stages (Figure 5). The study areas, was however, distinctly clustered when 

the dataset was classified into three groups as tillering, heading and maturity producing the highest 

overall accuracy of 89.33%. The winter wheat classification based on phenological stages over the 

period of August, October and December resulted in overall accuracy of 75.16%, 78.14% and 83.58%, 

respectively. The highest accuracy result reported during the crop maturity stage in December was 

higher compared to the overall accuracy of 72.22% reported in similar phenology-based classification 

of winter wheat using sentinel 2 [27]. It was also comparable to the overall accuracy of 84% reported 

for winter wheat phenology-based mapping using sentinel 1 [28].  

Maize cultivation in the predominantly wheat grown area of Reitz is gradually increasing as 

wheat production and profitability dwindles due to climatic change effects such as drought and frost 

during winter season. It is planted with the onset of the rainy season in fallowed lands or after the 

harvest of the wheat crop in December. Depending on the planting date, maize spectral signature 

was found to overlap with the winter wheat crop at tillering stages (Table 2). Thus, although the 

general classification accuracy in December was the highest during the wheat maturity stage, the 

users’ (67.24%) and producer’s (70.91%) accuracies were the lowest. 23 maize crops (8.7%) were 

misclassified as wheat in December. This is because maize crops planted earlier were past the 

emergence and seedling stages leading to spectral confusion with the winter wheat. Such 

interferences from maize were minimal particularly during the heading stage of winter wheat in 

October with only 1.5% of maize crops misclassified as wheat. Thus, the winter wheat crop was more 

clearly identified during the growth stage of ‘heading’ in October yielding user’s and producer’s 

accuracies of 75.56% and 92.52%, respectively, despite the relatively lower overall accuracy reported 

in this month than in December.  

With the increasing drought frequencies and unpredictable rainfall patterns it is increasingly 

becoming inevitable that future food security would gradually depend on partially or fully irrigated 

lands to produce wheat and other staple crops. Mapping crop-types classification based on crop 

phenology not only is an important component for crop yield forecast to ensure food security, but 

also a tool to support farm management and monitoring with scheduled irrigation and fertilizer 

application during critical stages of the crop growth stages. Sentinel 2 satellite imagery and the NDVI 

time series data can be used to effectively classify crops based on crop phenology.    

5. Conclusions 

Winter wheat crop was mapped using sentinel 2 and the random forest algorithm based on crop 

phenological stages over a period of three months (August, October, and December) and the highest 

classification overall accuracy of 83.58% was reported during the last growing season of winter wheat 

in December followed by October with overall accuracy of 78.14%. Nevertheless, the highest user’s 

and producer’s accuracy for the winter wheat was reported in October during the crop ‘heading’ 

stage, suggesting the best time to map winter wheat crop accurately during the growing season is the 

heading stage of the crop. 
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