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Article 
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Abstract: There has been a great deal of research in the area of using graph engines and graph databases to 

model network traffic and network attacks, but the novelty of this research lies in visually or graphically 

representing the Reconnaissance Tactic (TA0043) of the MITRE ATT&CK framework. Using the newly created 

dataset, UWF-Zeekdata22, based on the MITRE ATT&CK framework, patterns involving network connectivity, 

connection duration, and data volume were found and loaded into a graph environment. Patterns were also 

found in the graphed data that match the Reconnaissance as well as other tactics captured by UWF-Zeekdata22. 

The Star motif was particularly useful in mapping the Reconnaissance tactic. The results of this paper show 

that graph databases/graph engines can be essential tools for understanding network traffic and trying to detect 

network intrusions before they happen. Finally, an analysis of the run-time performance of the reduced dataset 

used to create the graph databases showed that the reduced datasets performed better than the full dataset. 

Keywords: Graph databases; Data Visualization; MITRE ATT&CK Tactics; Star Motif; Clique Motif; 

Reconnaissance Tactic 

 

1. Introduction 

In the past decade, the number of IoT (Internet of Things) devices connected to the internet has 

significantly increased. It is expected that 43 billion IoT devices will be connected by the end of 2023 

[1]. As the number of connected devices grows, so will network traffic and the amount of data 

transmitted. Because IoT devices are used in industries that use sensitive data, for example, health 

care and the financial sector, not only it is imperative that the data maintains its integrity and is 

uncompromised during transit and at rest, but it is also important that we try to prevent network 

attacks before they happen. To do this properly, not only do we need to possess the ability to 

distinguish between regular network traffic and attack traffic, but we also need to possess the ability 

to detect attacks before they happen.  

Many studies have been performed on identifying attack network traffic after the attacks have 

happened [2–5], but in this work we are trying to study the step before that, that is, who is trying to 

gather information about our system so that they can perform an attack. Hence, our aim in this work 

is to analyze the Reconnaissance Tactic (TA0043) of the MITRE ATT&CK framework. The 

Reconnaissance tactic of the MITRE ATT&CK framework is used to gather information about 

vulnerabilities in a system [6], mostly by active scanning. Understanding the nature of reconnaissance 

being performed in a system is very important to be able to prevent future attacks before they happen. 

In this work we use a graph engine or graph database to present visual representations of the 

Reconnaissance tactic. Though the focus is on the Reconnaissance tactic, we also present visual 

representations of regular network traffic and other attack traffic labeled as per the MITRE ATT&CK 

framework.  

Graph databases by definition are no-SQL databases based on a network structure and are based 

on mathematical graph theory. Graphs are composed of 3 different types of objects: vertices, edges, 
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and properties. Vertices, or points, are used to represent entities of data that correspond to some 

object. Edges, or lines, represent relationships between various vertices; these connections may be 

unidirectional or bidirectional [7]. Properties are attributes of the objects. In this work, vertices 

correspond to different machine IPs that are communicating, edges represent the connections 

between different machines, and properties are different attributes that correspond to the edges such 

as connection duration. 

Graphs and graph databases can be utilized to generate graph models to represent relationships. 

In addition to visualizations representing attack/non-attack data, graph data models can be extremely 

useful, especially in cybersecurity, because these models can be utilized for pattern recognition, 

machine learning, and other analysis. Graph databases can be used to generate predictions to 

distinguish between regular network traffic patterns and attack patterns [8]. 

Though there has been a great deal of research in the area of using graph engines and graph 

databases to model network traffic and network attacks, the novelty of this research lies in visually 

or graphically representing the Reconnaissance Tactic (TA0043) of the MITRE ATT&CK framework. 

Using the newly created dataset, UWF-ZeekData22 [9,10], labeled based on the MITRE ATT&CK 

framework, patterns involving network connectivity, connection duration, and data volume were 

found from the Conn Log files of UWF-ZeekData22 [9,10], and loaded into a graph environment. 

Hence, to elaborate on the novelty of this research, it can be stated that: 

• To date, tactics from the MITRE ATT&CK framework have not been visualized graphically. This 

work focuses on presenting graphic visualizations of the MITRE ATT&CK Reconnaissance Tactic 

(TA0043) using graph representation.  

• Essential feature selection is performed so that this work generates a graph data model using 

only a very limited set of network connection features. Feature generation was also performed 

using the limited set of network connection features. 

Though this is beyond the scope of this work, the benefits of this graphical representation can 

be realized as follows in the future: 

• The graph models could be effectively used to train machine learning models, especially in the 

Big Data environment, in order to accurately predict when network traffic is nefarious.  

• The reduction of the network data to only a few features (feature selection) that could be used to 

identify a Reconnaissance tactic would be computationally beneficial in machine learning 

analysis, especially in the Big Data environment.  

• And above all, these graph models can be used to develop a more robust Threat Intelligence 

Platform (TIP) that would be able to visually detect the attacks before they happen, by 

recognizing the attack patterns in the data. A TIP is a technology solution that collects, aggregates 

and organizes threat intelligence. 

Finally, in this work, an analysis is done of the runtime performance of creating the graph 

representations with the reduced set of data. 

The rest of this paper is organized as follows. Section 2 presents previous works related to graph 

databases; section 3 presents the dataset and the software used to process the data; section 4 presents 

the pre-processing that was used on this dataset; section 5 presents the algorithmic approach to 

creating the graphs; section 6 presents data visualizations using graph databases; section 7 presents 

the runtime performance for creating the graph databases; section 8 presents the conclusions and 

section 9 presents the future works. 

2. Related Works 

Utilizing graphs to represent network connectivity, for the purpose of identifying anomalies has 

been the topic of many research articles [7,11,12,13,14]. Interpretation of the graph data to detect 

anomalies has been a challenging task in relation to summarizing normal data while retaining enough 

information to detect anomalies [12]. Identifying motifs and comparing multiple graphs for similarity 

using various motifs becomes challenging as graph sizes increase [11]. A named entity recognizer 

(NER) was proposed by one group of authors, allowing for the training of an extractor to obtain 

useful information from the MITRE ATT&CK framework. A multi-step approach to building a 
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knowledge base included collection and analysis, construction of an ontology from the information 

gathered, and finally, generation of a cybersecurity knowledge deduction engine [7]. Another group 

of researchers approached the problem by an abstracted graph approach, where flexible attack 

profiles were created and used to detect simulated attacks. Utilizing a graph database, the team 

proposed the possibility of not only identifying the attacker but also the possibility of detecting other 

impacted system components [13]. Finally, an approach was proposed to compare similarities 

between graphs using a novel neural network approach. Important vertices would be identified by a 

specific similar metric and a pairwise vertex comparison would be utilized to identify similarity. The 

group concluded that the first steps were made at bridging the gap between graph deep learning and 

the graph search problem [14]. 

In this paper, the idea is to get away from solely using edges. This paper presents the network 

hops between source and destination which resulted in an attack in the MITRE ATT&CK framework. 

The paper also demonstrates the successful utilization of motifs to visually identify behavior patterns 

representing an attack tactic. And finally, an analysis is performed of the runtime performance of 

creating the graph representations and databases with the reduced set of data. 

3. The Dataset: UWF-ZeekData22 

Since graph data models depend on the connections between data points, the Conn log files of 

the UWF-ZeekData22 [9,10] dataset were used for generating the graphs. UWF-ZeekData22 [9,10] 

was generated by the Cyberrange group associated with the University of West Florida and the full 

data set is available at [10]. This dataset has 9,280,869 attack records and 9,281,599 benign records 

with a total of 18,562,468 records.  

The data schema of the Conn log files is presented in Table 1. To generate the graphs, only four 

fields from the Conn Log files were used in addition to count: id.orig_h (the source IP, referred to as 

srcIP in this paper), id.resp_h (the destination IP, referred to as dstIP in this paper), duration, and 

orig_bytes (referred to as bytes). 

Table 1. UWF-ZeekData22: Schema of the Conn Log files [9, 10]. 

Attribute 

Name 
Description of Attribute 

Used to Create Graph 

DB 

ts Time of first packet   

uid Unique identifier of connection   

id.orig_h IP address of packet sender  Yes 

id.orig_p Outgoing port number   

id.resp_h IP address of packet receiver  Yes 

id.resp_p Incoming port number   

proto Transport layer protocol of connection   

service Application protocol sent over connection   

duration How long connection lasted  Yes 

orig_bytes Payload bytes originator sent  Yes 

resp_bytes Payload bytes responder sent   

conn_state Possible connection states   

local_orig If connection is originated locally   

local_resp If connection is responded to locally   

missed_bytes Representative of packet loss   

history History of connections   

orig_pkts Number of packets originator sent   

orig_ip_bytes Number of IP level bytes originator sent   

resp_pkts Number of packets responder sent   

resp_ip_bytes Number of IP level bytes responder sent   

community_id     
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id Connection's 4-tuple of endpoint addresses/ports   

tunnel_parents 
 *uid* values for encapsulating parent(s) 

connections used   

3.1. Distribution of UWF-ZeekData22 by Tactics 

Table 2 presents tactics available in UWF-ZeekData22. For this analysis, initially, the data was 

divided into four categories by attack tactic: Reconnaissance, Discovery, No Attack, and all attack 

tactics. Reconnaissance and Discovery were selected since they had more data. No Attack was 

selected to visualize how a normal network traffic would appear without abnormal traffic included. 

The All Attack Tactics dataset was selected to visualize how normal and abnormal network traffic 

would appear. Since the volume of data for Discovery was eventually not considered enough for a 

robust analysis, this category was also not further analyzed in this work. Hence finally a full analysis 

is presented of only the Reconnaissance tactic, non-attack data and all data (which also includes the 

Reconnaissance and Discovery). The other categories were also not analyzed individually due to the 

minimal amounts of occurrences of the other tactics. 

Table 2. UWF-ZeekData22 Tactics [10] 

Attack Tactic Count 

None (Not an attack) 9,281,599 

Reconnaissance 9,278,722 

Discovery 2,086 

Credential Access 31 

Privilege Escalation 13 

Exfiltration 7 

Lateral Movement 4 

Resource Development 3 

Defense Evasion 1 

Initial Access 1 

Persistence 1 

3.2. Software Utilized to Process Data 

Python and pySpark were utilized as GraphFrames is readily available in this environment. In 

order to visualize the graph data, GraphStreams [15] was used since it has a feature-rich library. 

GraphStreams [15] was implemented in the Java environment. 

4. Preprocessing  

Using the Conn dataset from UWF-Zeekdata22[9,10], a unique list of source and destination IP 

addresses were generated using a simple hashmap. A graph was created using the unique list as the 

graph vertices, naming the vertices based on whether they were a source IP or destination IP. Once 

the graph vertices were created, edges were established and weighted based on the following 

dominant attributes:  

• Destination ip (id.resp_h) and originating bytes (orig_bytes), used as per [16]. 

• Total number of connections between the unique source and destination 

• Total duration of the connection(s) between the vertices 

• Total number of bytes of the connections between vertices 

• The attack tactic 

First, this information was used to generate a pySpark vertex and edge list. Then, this 

information was used to create a graphFrame in order to determine vertex and edge relationships 

and graph shapes. The objective was to look for two primary structures in the graphs, star motifs and 

clique motifs. Star motifs are where a single vertex connects to multiple vertices and clique motifs are 
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where the largest set of interconnected vertices is identified. Stars in a graph are defined as having n-

1 vertices with a degree of 1 and a single vertex having a degree of n-1 [17]. The Bron-Kerbosch 

algorithm [18] was utilized to find maximal cliques. This algorithm finds the largest connected 

vertices that produce the unique clique. 

Additional effort was taken to scan the vertices and edges to find and eliminate intermediate 

vertices, revealing true endpoints in the graph. In order to do this, cycles had to be identified and 

eliminated. The approach taken initially was to use Depth-First-Search (DFS), but due to the number 

of vertices in the graph, a dynamic algorithmic approach was taken to minimize recursive code. The 

dataset was reduced to tables of unique source and destination addresses and accumulated 

connections, durations, and bytes transmitted. These vertices were then used to construct a graph, 

eliminating any edges that result in a cycle. Eliminating cycles provided for a minimally connected 

graph which was easier and faster to traverse when connecting the source of an attack to its 

destination. Elimination of the cycles did not impact the underlying graph as all vertices were still 

reachable by other adjacent vertices [19]. Elimination of the cycles reduced the edges needed to create 

the graph and thus produced a more concise graph. This allowed for identifying motifs of interest as 

they stood out from the background of random interconnections that were not of interest [20]. 

4.1 Binning Methodology 

Binning allowed for continuous data to be represented in various discrete categories or bins. In 

order to best characterize the data, the following attributes of the edge connections were binned: 

number of connections, average duration, and average bytes. In order to bin the data, the 

methodology outlined by the authors of [16] was utilized, however, a stationary mean was 

implemented instead of a moving mean. The standard deviation was first calculated by using the 

formula: 

 

(1) 

where x is the attribute that is being binned, 𝑥̅ is the average of the attribute, and n is the number of 

data points. Six bins were then constructed using the calculated standard deviation as follows: 

 (2) 

 (3) 

 (4) 

 (5) 

 (6) 

 (7) 

Each of the three edge attributes was assigned a bin determined by which bin the attribute’s value 

landed in. Because the data had a large variance and thus a large deviation, the first two bins were 

negative for some of the attributes. 

After using equation (1) to calculate the standard deviation for the count attribute for the full 

Reconnaissance dataset, equations (2) – (7) were used to calculate the bins for the count attribute as 

follows: 

 ,   
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To find which bin a value is in, the bin that overlaps the value is found. As an example, the value 

1280 is between the values -248084.578 and 16963.973; therefore, the value resides in 𝑏𝑖𝑛ଷ. 

5. Algorithmic Approach to Creating the Graphs 

5.1 Overview of Approach 

UWF-ZeekData22 [9,10] was reduced to the source and destination IPs only, by removing 

intermediary vertices and cycles in an effort to remove network noise. To remove the intermediary 

vertices, a Depth First Search (DFS) algorithm approach was taken, adding only edges that did not 

result in a cyclic graph. Due to the number of vertices in the graph, a dynamic algorithmic approach 

was taken to minimize recursive code. The dataset was reduced to tables of unique source and 

destination addresses and accumulated connections, durations, and bytes transmitted. These vertices 

were then used to construct graphs, eliminating any edges resulting in cycles. Graphical 

representations are presented of the Reconnaissance Tactic, as well as all attack and non-attack traffic. 

5.2 Workflow 

 

Figure 1. Workflow 

5.2.1 Reduce the Data 

Since UWF-ZeekData22 [9,10] is a large dataset, one of the first objectives was to see if any kind 

of feature reduction could be applied. Hence, only the connection counts, bytes transferred, and 

connection data were aggregated to reduce the number of data points that would feed into the next 

graphing phase. Specifically, the duration and orig_bytes features from the Conn Log files of UWF-

ZeekData22 [9,10] were aggregated by the unique source to destination key. These features were 

totaled and, additionally, new features were generated using duration and orig_bytes. The additional 

new features were average duration and average bytes.  

5.2.2 Produce a non-cyclic graph 

Graphs were created using the IP addresses obtained in the previous phase, populating the 

edges with the aggregated counts, bytes, and duration values. As each edge was added to the graph, 

a check was performed to determine if the new edge produced a cycle. If a cycle was created, the 

edge was removed from the graph. The final graph data was then written out as a CSV file for the 

next phase. 
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5.2.3 Binning 

The CSV file from the previous phase was analyzed and binned as explained in the pre-

processing section. The resulting bins replaced the original graph data and a new CSV file was 

produced for the next phase. 

5.2.4 Generate Visual Graph 

The resulting graph data, now binned on count, bytes, and duration, was loaded into the 

GraphStream application and visualization of the graphs was produced and used in this work. 

5.3 Algorithmic Approach to Creating the Graphs 

Each unique source to destination edge was identified and mapped. With each unique edge 

between the source and destination, a summation of attributes that were to be tracked was stored. A 

graph G, of unique vertices, was created. Iterating through all source vertices, an edge was added to 

the graph, from source to destination, and tested for the creation of a cycle in the graph. If a cycle was 

detected, then the last edge was removed. The final resulting graph produced the longest path 

between a given source vertex and its furthest destination vertex, which did not result in a cycle. This 

allowed for the elimination of intermediate vertices and the detection of the final destination of an 

attack from a source. 

If calling isCyclic method (Algorithm 1) for the Graph results in true, then a cycle has been 

encountered and the last vertex must be removed to remove the cycle. Analysis was done to 

determine if any meaningful correlation could be attributed to the attack tactics port numbers used 

by the source or destination. It was found that this information did not add any value to the graph 

and therefore port was eliminated as a possible attribute of interest. 

Algorithm 1: isCyclic 

Input:  Graph G, vertex V to add 

Output: Boolean true if after adding V, the graph is cyclic, 

updated G, with vertex V added 

 

Add V to G 

Create and initialize visited array, recursionStack array 

Mark all vertices as unvisited in both visited and recursionStack 

 

forall vertex v in G 

Return isCyclicUtil(v, visited, recursionStack) 

 

isCyclicUtil(vertex, visited array, recurssionStack) 

if vertex visited before return false 

if vertex is in recursionStack return true 

 

Mark vertex as visited for vertex 

Mark recursionStack as visited for vertex 

 

forall children of vertex 

if isCyclic(childVertex, visited array, recursionStack) 

Return true 

Set recursionStack for vertex to false 

Return false 

6. Resulting Graph Visualizations 
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GraphStream [15] was utilized to generate graphical visuals for each of the subsets of the edges. 

GraphStream is a Java library used for modeling, visualizing, and analyzing dynamic networks of 

various sizes [15].  

The data was fitted to different motif models to determine if various attacks could be 

characterized by specific shapes. In the motifs (Figures 2-8) that follow, the color of each edge 

represents the intensity/bin of the corresponding attribute that the graph represents. The colors, 

orange for bin 1, yellow for bin 2, green for bin 3, blue for bin 4, purple for bin 5, and red for bin 6, 

were used in order of least to highest intensity to represent the bin value ranges. 

6.1 Star Motif 

The Reconnaissance tactic resembles the star motif, in which there is a central vertex which the 

connections originate from. As seen in Figure 2, all connections originate from the central vertex of 

143.88.2.10. This indicates active scanning [21], typical of a Reconnaissance tactic. In active scanning, 

an adversary probes a victim infrastructure’s network traffic by mechanisms such as port scanning. 

Port scanning classifies each port into the state of open, closed, filtered, unfiltered, open/ filtered, or 

closed/ filtered [22]. This helps an attacker determine which ports on a network are open and can be 

utilized to receive and send data. Figures 2, 3 and 4 represent the Reconnaissance motif by connection 

count, average duration, and average bytes respectively. 

6.1.1 Visualizing the Reconnaissance Tactic by Connection Count  

Figure 2 depicts the Reconnaissance tactic radiating from a single vertex, 143.88.2.10, to multiple 

other vertices in the graph. The number of connections from point to point is generally in the average 

range of connections with the exception of a few which were in the extreme range of binning. Looking 

deeper into the data, it can be seen that each connection generally involves a different port, therefore 

this graph is representative of a port scan, typical of a Reconnaissance tactic. This graph had some 

areas of interest, represented by the red connections (bin = 6), where considerably more connections 

occurred than the normal connection count (bin =3) which was 1,024 connections. Each of these bin6 

connections was in excess of 1 million. One outlier in the data was a connection between 143.88.5.12 

and 143.88.5.1 (bin =5) with ½ million connections. Example data points can be seen in Table 3. For 

the Reconnaissance tactic, the maximum connection count was 3,112,192, while the minimum 

connection count was zero, and the average connection count was 33,927.946.  
It can also be noted from Figure 2 that 143.88.2.10 is mostly pointing to 143.88.7.* addresses. The 

graph is actually pointing to the entire range of the subnet which is from 143.88.7.0-255. The red lines 

indicate where most of the bytes are being transmitted back and forth. This is highly likely because 

the 4 IP addresses belonged to running virtual machines on the victim’s network, and a reply from 

the victim’s network is indicative of an open port of a victim’s host. 
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Figure 2. Reconnaissance Tactic by Connection Count 

Table 3. Reconnaissance Points of Interest (Count) 

Id From To Total_Dur Avg_Du

r 

Total_Bytes Avg_Bytes Count CountBi

n 

edge_0 143.88.2.1

0 

143.88.7.1

5 

353248.5154 0.2126 265458232832

0 

1597759.972

2 

166144

0 

6 

edge_1 143.88.2.1

0 

143.88.7.1

1 

972063.5371 0.3123 5579520 1.7928 311219

2 

6 

edge_2 143.88.2.1

0 

143.88.7.1 279987.9888 0.1338 8567808 4.0934 209305

6 

6 

edge_3 143.88.2.1

0 

143.88.7.1

2 

778386.2988 0.6914 925758636800 822247.5387 112588

8 

6 

edge_25

7 

143.88.5.1

2 

143.88.5.1 943576.7243 1.8777 36458752 72.5507 502528 5 

6.1.2 Visualizing the Reconnaissance Tactic By Average Duration 

Figure 3 presents the Reconnaissance Tactic by average duration. The average duration of the 

connections in the star motif did not identify areas of interest as green (bin=3) and blue (bin=4) are 
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average behaviors in this graph. The blue connections in Figure 3 correspond to the high connections 

found in Figure 2, although the duration per connection is considerably higher, ranging from 300 to 

1700 times longer than the other connections in green. The connections in green transferred 0 bytes 

whereas the connections in blue transferred data from between 2 bytes to 1.5 MB of data per 

connection. Sample data points for Reconnaissance points of interest based on average duration are 

presented in Table 4. The maximum duration was 972,063.54, minimum duration was 0.04, and 

average duration was 12,947.3263. 

 

Figure 3. Reconnaissance Tactic by Average Duration 

Table 3. Reconnaissance Points of Interest (Count) 

Id From To Total_Du

r 

Avg_D

ur 

Total_Bytes Avg_Bytes Count CountBi

n 

edge_0 143.88.2.

10 

143.88.7.

15 

353248.51

54 

0.2126 26545823283

20 

1597759.97

22 

166144

0 

6 

edge_1 143.88.2.

10 

143.88.7.

11 

972063.53

71 

0.3123 5579520 1.7928 311219

2 

6 

edge_2 143.88.2.

10 

143.88.7.

1 

279987.98

88 

0.1338 8567808 4.0934 209305

6 

6 

edge_3 143.88.2.

10 

143.88.7.

12 

778386.29

88 

0.6914 92575863680

0 

822247.538

7 

112588

8 

6 
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edge_2

57 

143.88.5.

12 

143.88.5.

1 

943576.72

43 

1.8777 36458752 72.5507 502528 5 

 

Figure 3. Reconnaissance Tactic by Average Duration 

Table 4. Reconnaissance Points of Interest (Average Duration) 

Id From To Total_Du

r 

Avg_D

ur 

Total_Bytes Avg_Byte

s 

Count CountBi

n 

edge_3 143.88.2.10 143.88.7.1

2 

778386.29

88 

0.6913 92575863680

0 

822247.538

7 

112588

8 

4 

edge_4 143.88.2.10 143.88.7.1

0 

1792.9392

7 

1.4007 798720 624 1280 4 

edge_4

2 143.88.2.10 

143.88.7.1

4 3080.24 3.0080 0 0 1024 4 

edge_4

3 143.88.2.10 

143.88.7.1

3 3080.264 3.0080 0 0 1024 4 

edge_2

57 143.88.5.12 143.88.5.1 943576.7 1.8776 36458752 

72.5506877

2 502528 4 

6.1.3 Visualizing the Reconnaissance Tactic by Average Bytes 
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Figure 4 presents the Reconnaissance tactic by average bytes. As depicted in Figure 4, only two 

areas of interest were identified. In both cases, the number of bytes transferred, per connection was 

0.8 MB to 1.5 MB. It is possible that the attacker found that these IP addresses had exposed ports and 

thus was available to use them to send and/or receive data to/from the network. Example data points 

for the Reconnaissance points of interest based on average bytes are presented in Table 5. The 

maximum bytes transferred were 2,654,582,328,320, minimum bytes transferred were zero and the 

average bytes transferred were 13,877,478,833. 

 

Figure 4. Reconnaissance Tactic by Average Bytes 

Table 5. Reconnaissance Points of Interest (Average Bytes) 

Id From To Total_D

ur 

Avg_Du

r 

Total_Bytes Avg_Byt

es 

Count CountB

in 

edge_0 

143.88.2.

10 

143.88.7.

15 353248.5 0.212616 

26545823283

20 1597760 

166144

0 3 

edge_3 

143.88.2.

10 

143.88.7.

12 778386.3 0.691353 

92575863680

0 822247.5 

112588

8 4 

edge_25

7 

143.88.5.

12 

143.88.5.

1 943576.7 1.87766 36458752 72.55069 502528 4 
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6.2 Clique Motif 

Figure 5 depicts the cliques found in UWF-ZeekData22. The bottom left set of IP addresses are 

reverse shells coming back to the 143.88.2.10 address, which are attackers on the kali linux machine 

used to scan and attack the victim’s network. The connections in the red box are interesting because 

they are able to gain a connection to the University of West Florida’s (UWF’s) IP address which is the 

143.88.0.* subnet. The group of connections in the top right are IPv6 addresses. The IPv6 address is 

the successor of the regular IPv4 address [23]. With the limited number of IPv4 addresses, in order to 

accommodate for the increasing number of devices on the internet, the Internet Engineering Task 

Force (IETF) developed Internet Protocol version 6 (IPv6) address. IPv6 uses a 128-bit compared to 

IPv4, which uses a 32-bit address.   

 

Figure 5. Maximal Cliques Found by Connection Count for UWF-ZeekData22 

6.3 Visualizations of Non-Attacks By Count 

Figure 6 depicts the count of connections that were categorized as non-attacks, and shows a large 

cluster of different connections of IPv6 addresses. There are several areas of interest identified by the 

colored boxes. The IP addresses within the red boxes are routers or switches that are redirecting traffic 

to different subnets, ff02::fb and ff02::1:3. And these subnets are possibly redirecting it to servers or 

load balancers.  

As cycles were removed from the data, they appeared unidirectional. The yellow boxed area 

(bottom right) represents servers that were behind a load balancer. The load balancer evenly 

distributes traffic to the various servers. 

Two data points for the non-attack by connection count are presented in Table 6. The maximum 

count was 6,724,017, minimum count was 1 and average count was 4,273,817. 
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Figure 6. Non-Attack by Connection Count 

6.4 Visualizing Attacks By Count 

Figure 7 depicts the full picture of the attack data binned with respect to the number of 

occurrences (Count). The star motif in the red box is the Reconnaissance port scan example shown in 

Figure 2. The top right of Figure 7 has more IPv6 addresses, compared to Figure 6.  

Example data points for all attack tactics by count are presensted in Table 7. The maximum count 

was 6,724,017, minimum count was 1, and average count was 3,864,567. 

Table 6. Non-Attack Points of Interest (Count) 
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Id From To Total_

Dur 

Avg_D

ur 

Total_By

tes 

Avg_Byt

es 

Count CountB

in 

edge_21 

143.88.11.

14 

143.88.1

1.1 

1267576

.92 2.60 40376997 82.73 488029 5 

edge_35 

143.88.255

.10 

10.0.10.

1 114.42 0.00 

60556971

6 90.06 

672401

7 6 

 

Figure 7. All Attack Tactics by Connection Count 

Table 7. All Attack Tactics Points of Interest (Count) 

Id From To Total_D

ur 

Avg_Du

r 

Total_Byte

s 

Avg_Byt

es 

Count CountBi

n 

edge_3 143.88.7.10 

143.88.2.

10 1216.984 0.002334 24576 0.047128 521472 5 

edge_6 143.88.2.10 

143.88.7.

15 353248.5 0.212616 

2654582328

320 1597760 

166144

0 6 

edge_7 143.88.2.10 

143.88.7.

11 972063.5 0.31234 5579520 1.792794 

311219

2 6 

edge_8 143.88.2.10 

143.88.7.

1 279988 0.13377 8567808 4.093444 

209305

6 6 

edge_9 143.88.2.10 

143.88.7.

12 778386.3 0.691353 

9257586368

00 822247.5 

112588

8 6 
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edge_2

62 143.88.5.12 

143.88.5.

1 943576.7 1.87766 36458752 72.55069 502528 5 

edge_2

67 

143.88.11.1

0 8.8.8.8 588871.3 1.293066 43664530 95.88023 455407 5 

edge_2

68 

143.88.11.1

0 8.8.4.4 590266.6 1.300276 43591546 96.02614 453955 5 

edge_2

84 

143.88.11.1

4 

143.88.11

.1 1267577 2.597 40376997 82.73483 488029 5 

edge_2

98 

143.88.255.

10 10.0.10.1 114.4165 0.000 605569716 90.06071 

672401

7 6 

6.5 Visualizations of the Noncyclic Counts 

Figure 8 represents the final count of connections for all identified attacks, with all cycles 

removed. All edges were added in this graph except for any edges that returned to a previously 

visited vertex. This allowed for the visualization of one-way traffic from the source to the destination. 

Adding the return cycles would have produced additional noise and could obscure the true target of 

the attack.  
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Figure 8. Noncyclic All Tactics by Connection Count 

6.6 Summarizing the Graphic Visualizations 

In this dataset, UWF-ZeekData22, the Star motif represents the Reconnaissance tactic well. The 

Reconnaissance tactic basically radiates from a single vertex, 143.88.2.10, to multiple other vertices in 

the graph. Figures 2, 3, and 4 are star motifs that depict the Reconnaissance tactic, but from different 

angles - connection count, duration, and byte count, respectively. The Clique motif was not useful in 

graphing the Reconnaissance tactic. 

7. Runtime Performance  

This section presents the runtime performance of the process of creating the graph databases, 

starting from file processing to the visualization of the graphs. In every case it can be noted that the 

truncated data, which is our reduced dataset used to create the graphs, performed better than the full 

data. 

Table 8 presents the execution time for processing, including writing resulting output files, 

running on a quad core i5 intel processor at 2.4 GHz with 16 GB of DDR4 3200 ram. For both Phase 1 
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(File Processing) and Phase 2 (Graph Processing), it can be noted that the reduced data (with fewer 

attributes, used to create the graphs) performed better than the full data, which had all the attributes.  

Table 8. Execution Time For Processing  

  
Phase 1 - File processing Phase 2 - Graph processing 

Duration (milliseconds) Duration (milliseconds) 

Full File/Tactic 

/ Filter By IP 

Reduced Data Full Data Reduced Data Full Data 

 (84.3k rows) 
 (18.56 M 

rows) 
 (84.3k rows) (18.56 M rows) 

All rows 
702 

milliseconds 
64,955 60 65 

Reconnaissance 546 64,535 55 54 

IP: 143.88.2.10 543 62,402 51 47 

After file processing and graph processing, the resulting datafile is reduced to vertices and 

summed by connection count, connection duration, and bytes transmitted. These summed amounts 

are then binned across the vertices and graphed. Table 9 presents the execution time for binning and 

generating the resulting csv files after data processing, executing on 10-Core Intel Core i9 at 3.6 GHz 

with 32 GB of 2667 MHz DDR4 ram. It can once again be noted that the reduced data performed 

better than the full data. 

Table 9. Execution Time for Binning and Generating Resulting csv Files 

  
Duration for Graph Stream part 

Row Count 
(milliseconds) 

Full File/Tactic Reduced Data Full Data Reduced Data Full Data 

All rows 39 41 374 480 

Reconnaissance 39 40 255 258 

IP: 143.88.2.10 38 38 254 256 

Table 10 presents the execution time for generating GraphStream visuals after data binning, 

running on Quad-Core Intel Core i7 at 2.8 GHz with 16 GB of 2133 MHz LPDDR3 ram. Here we can 

see that the reduced data performed better for the Reconnaissance and the IP address 143.88.2.10. 

Table 10. Execution Time for Generating Visuals  

  
Duration 

Row Count 
(milliseconds) 

Full File/Tactic Reduced Data Full Data Reduced Data Full Data 

All rows 7,904 6,967 374 480 

Reconnaissance 7,510 7,644 255 258 

IP: 143.88.2.10 6,834 7,241 254 256 

8. Conclusion  

The objective of this research was to determine if UWF-Zeekdata22 [9,10] could be mapped into 

a graph that could then be analyzed to yield consistent and identifiable patterns. Patterns involving 

network connectivity, connection duration, and data volume were found when the UWF-Zeekdata22 

dataset was extracted and loaded into a graph environment. Patterns were also found in the graphed 

data that matched the attack tactics captured by UWF-Zeekdata22. The Reconnaissance tactic was 

represented well by the Star Motif.  
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There were some interesting discoveries when reviewing the resulting graphs. In the non-attack 

data, it was possible to identify normally occurring interactions between vertices in the graph. This 

could potentially be used to teach a ML what behaviors to ignore. This could potentially help identify 

zero-day attacks as they would not “look” like a learned normal behavior of the network. These 

graphs also provide insight into what the structure/topology of the network resembles.  

Finally, an analysis of the run-time performance of the reduced dataset, using only four features 

from UWF-ZeekData22’s Conn Log files and two additionally generated features plus count, showed 

that the reduced dataset performed better than the full dataset. Hence, a set of four connection 

features and two additionally generated features plus the count was enough for the graph engine to 

generate the graphs. 

9. Future Works  

The results in this paper show that graph databases/graph engines can be essential tools for 

understanding network traffic and detecting various network intrusions. The amount of data 

available for use in the analysis of this paper was fairly limited, so one area for future research is to 

apply the principles of this paper to multiple datasets and compare the results. Another area for 

further research is to use the models generated from this analysis to train machine learners. The 

learners would then be run against various simulated attack/non-attack data to determine the 

accuracy of the models. 
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