
Article

Not peer-reviewed version

Using a Graph Engine to Visualize the

Reconnaissance Tactic of the MITRE

ATT&CK Framework from UWF-

ZeekData22

Sikha S Bagui

*

 , Dustin Mink , Subhash C Bagui , Michael Plain , Jadarius Hill , Marshall Elam

Posted Date: 9 June 2023

doi: 10.20944/preprints202306.0696.v1

Keywords: Graph databases; Data Visualization; MITRE ATT&CK Tactics; Star Motif; Clique Motif;

Reconnaissance Tactic

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/107437
https://sciprofiles.com/profile/1659714
https://sciprofiles.com/profile/3002760
https://sciprofiles.com/profile/3036580

Article

Using a Graph Engine to Visualize the
Reconnaissance Tactic of the MITRE ATT&CK
Framework from UWF-ZeekData22

Sikha S. Bagui 1,*, Dustin Mink 1, Subhash C. Bagui 2, Michael Plain 1, Jadarius Hill 1 and

Marshall Elam 1

1 Department of Computer Science, University of West Florida, Pensacola, FL 32514, US
2 Department of Mathematics and Statistics, University of West Florida, Pensacola, FL 32514, US

* Correspondence: bagui@uwf.edu

Abstract: There has been a great deal of research in the area of using graph engines and graph databases to

model network traffic and network attacks, but the novelty of this research lies in visually or graphically

representing the Reconnaissance Tactic (TA0043) of the MITRE ATT&CK framework. Using the newly created

dataset, UWF-Zeekdata22, based on the MITRE ATT&CK framework, patterns involving network connectivity,

connection duration, and data volume were found and loaded into a graph environment. Patterns were also

found in the graphed data that match the Reconnaissance as well as other tactics captured by UWF-Zeekdata22.

The Star motif was particularly useful in mapping the Reconnaissance tactic. The results of this paper show

that graph databases/graph engines can be essential tools for understanding network traffic and trying to detect

network intrusions before they happen. Finally, an analysis of the run-time performance of the reduced dataset

used to create the graph databases showed that the reduced datasets performed better than the full dataset.

Keywords: Graph databases; Data Visualization; MITRE ATT&CK Tactics; Star Motif; Clique Motif;

Reconnaissance Tactic

1. Introduction

In the past decade, the number of IoT (Internet of Things) devices connected to the internet has

significantly increased. It is expected that 43 billion IoT devices will be connected by the end of 2023

[1]. As the number of connected devices grows, so will network traffic and the amount of data

transmitted. Because IoT devices are used in industries that use sensitive data, for example, health

care and the financial sector, not only it is imperative that the data maintains its integrity and is

uncompromised during transit and at rest, but it is also important that we try to prevent network

attacks before they happen. To do this properly, not only do we need to possess the ability to

distinguish between regular network traffic and attack traffic, but we also need to possess the ability

to detect attacks before they happen.

Many studies have been performed on identifying attack network traffic after the attacks have

happened [2–5], but in this work we are trying to study the step before that, that is, who is trying to

gather information about our system so that they can perform an attack. Hence, our aim in this work

is to analyze the Reconnaissance Tactic (TA0043) of the MITRE ATT&CK framework. The

Reconnaissance tactic of the MITRE ATT&CK framework is used to gather information about

vulnerabilities in a system [6], mostly by active scanning. Understanding the nature of reconnaissance

being performed in a system is very important to be able to prevent future attacks before they happen.

In this work we use a graph engine or graph database to present visual representations of the

Reconnaissance tactic. Though the focus is on the Reconnaissance tactic, we also present visual

representations of regular network traffic and other attack traffic labeled as per the MITRE ATT&CK

framework.

Graph databases by definition are no-SQL databases based on a network structure and are based

on mathematical graph theory. Graphs are composed of 3 different types of objects: vertices, edges,

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 June 2023 doi:10.20944/preprints202306.0696.v1

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202306.0696.v1
http://creativecommons.org/licenses/by/4.0/

 2

and properties. Vertices, or points, are used to represent entities of data that correspond to some

object. Edges, or lines, represent relationships between various vertices; these connections may be

unidirectional or bidirectional [7]. Properties are attributes of the objects. In this work, vertices

correspond to different machine IPs that are communicating, edges represent the connections

between different machines, and properties are different attributes that correspond to the edges such

as connection duration.

Graphs and graph databases can be utilized to generate graph models to represent relationships.

In addition to visualizations representing attack/non-attack data, graph data models can be extremely

useful, especially in cybersecurity, because these models can be utilized for pattern recognition,

machine learning, and other analysis. Graph databases can be used to generate predictions to

distinguish between regular network traffic patterns and attack patterns [8].

Though there has been a great deal of research in the area of using graph engines and graph

databases to model network traffic and network attacks, the novelty of this research lies in visually

or graphically representing the Reconnaissance Tactic (TA0043) of the MITRE ATT&CK framework.

Using the newly created dataset, UWF-ZeekData22 [9,10], labeled based on the MITRE ATT&CK

framework, patterns involving network connectivity, connection duration, and data volume were

found from the Conn Log files of UWF-ZeekData22 [9,10], and loaded into a graph environment.

Hence, to elaborate on the novelty of this research, it can be stated that:

• To date, tactics from the MITRE ATT&CK framework have not been visualized graphically. This

work focuses on presenting graphic visualizations of the MITRE ATT&CK Reconnaissance Tactic

(TA0043) using graph representation.

• Essential feature selection is performed so that this work generates a graph data model using

only a very limited set of network connection features. Feature generation was also performed

using the limited set of network connection features.

Though this is beyond the scope of this work, the benefits of this graphical representation can

be realized as follows in the future:

• The graph models could be effectively used to train machine learning models, especially in the

Big Data environment, in order to accurately predict when network traffic is nefarious.

• The reduction of the network data to only a few features (feature selection) that could be used to

identify a Reconnaissance tactic would be computationally beneficial in machine learning

analysis, especially in the Big Data environment.

• And above all, these graph models can be used to develop a more robust Threat Intelligence

Platform (TIP) that would be able to visually detect the attacks before they happen, by

recognizing the attack patterns in the data. A TIP is a technology solution that collects, aggregates

and organizes threat intelligence.

Finally, in this work, an analysis is done of the runtime performance of creating the graph

representations with the reduced set of data.

The rest of this paper is organized as follows. Section 2 presents previous works related to graph

databases; section 3 presents the dataset and the software used to process the data; section 4 presents

the pre-processing that was used on this dataset; section 5 presents the algorithmic approach to

creating the graphs; section 6 presents data visualizations using graph databases; section 7 presents

the runtime performance for creating the graph databases; section 8 presents the conclusions and

section 9 presents the future works.

2. Related Works

Utilizing graphs to represent network connectivity, for the purpose of identifying anomalies has

been the topic of many research articles [7,11,12,13,14]. Interpretation of the graph data to detect

anomalies has been a challenging task in relation to summarizing normal data while retaining enough

information to detect anomalies [12]. Identifying motifs and comparing multiple graphs for similarity

using various motifs becomes challenging as graph sizes increase [11]. A named entity recognizer

(NER) was proposed by one group of authors, allowing for the training of an extractor to obtain

useful information from the MITRE ATT&CK framework. A multi-step approach to building a

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 June 2023 doi:10.20944/preprints202306.0696.v1

https://doi.org/10.20944/preprints202306.0696.v1

 3

knowledge base included collection and analysis, construction of an ontology from the information

gathered, and finally, generation of a cybersecurity knowledge deduction engine [7]. Another group

of researchers approached the problem by an abstracted graph approach, where flexible attack

profiles were created and used to detect simulated attacks. Utilizing a graph database, the team

proposed the possibility of not only identifying the attacker but also the possibility of detecting other

impacted system components [13]. Finally, an approach was proposed to compare similarities

between graphs using a novel neural network approach. Important vertices would be identified by a

specific similar metric and a pairwise vertex comparison would be utilized to identify similarity. The

group concluded that the first steps were made at bridging the gap between graph deep learning and

the graph search problem [14].

In this paper, the idea is to get away from solely using edges. This paper presents the network

hops between source and destination which resulted in an attack in the MITRE ATT&CK framework.

The paper also demonstrates the successful utilization of motifs to visually identify behavior patterns

representing an attack tactic. And finally, an analysis is performed of the runtime performance of

creating the graph representations and databases with the reduced set of data.

3. The Dataset: UWF-ZeekData22

Since graph data models depend on the connections between data points, the Conn log files of

the UWF-ZeekData22 [9,10] dataset were used for generating the graphs. UWF-ZeekData22 [9,10]

was generated by the Cyberrange group associated with the University of West Florida and the full

data set is available at [10]. This dataset has 9,280,869 attack records and 9,281,599 benign records

with a total of 18,562,468 records.

The data schema of the Conn log files is presented in Table 1. To generate the graphs, only four

fields from the Conn Log files were used in addition to count: id.orig_h (the source IP, referred to as

srcIP in this paper), id.resp_h (the destination IP, referred to as dstIP in this paper), duration, and

orig_bytes (referred to as bytes).

Table 1. UWF-ZeekData22: Schema of the Conn Log files [9, 10].

Attribute

Name
Description of Attribute

Used to Create Graph

DB

ts Time of first packet

uid Unique identifier of connection

id.orig_h IP address of packet sender Yes

id.orig_p Outgoing port number

id.resp_h IP address of packet receiver Yes

id.resp_p Incoming port number

proto Transport layer protocol of connection

service Application protocol sent over connection

duration How long connection lasted Yes

orig_bytes Payload bytes originator sent Yes

resp_bytes Payload bytes responder sent

conn_state Possible connection states

local_orig If connection is originated locally

local_resp If connection is responded to locally

missed_bytes Representative of packet loss

history History of connections

orig_pkts Number of packets originator sent

orig_ip_bytes Number of IP level bytes originator sent

resp_pkts Number of packets responder sent

resp_ip_bytes Number of IP level bytes responder sent

community_id

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 June 2023 doi:10.20944/preprints202306.0696.v1

https://doi.org/10.20944/preprints202306.0696.v1

 4

id Connection's 4-tuple of endpoint addresses/ports

tunnel_parents
 uid values for encapsulating parent(s)

connections used

3.1. Distribution of UWF-ZeekData22 by Tactics

Table 2 presents tactics available in UWF-ZeekData22. For this analysis, initially, the data was

divided into four categories by attack tactic: Reconnaissance, Discovery, No Attack, and all attack

tactics. Reconnaissance and Discovery were selected since they had more data. No Attack was

selected to visualize how a normal network traffic would appear without abnormal traffic included.

The All Attack Tactics dataset was selected to visualize how normal and abnormal network traffic

would appear. Since the volume of data for Discovery was eventually not considered enough for a

robust analysis, this category was also not further analyzed in this work. Hence finally a full analysis

is presented of only the Reconnaissance tactic, non-attack data and all data (which also includes the

Reconnaissance and Discovery). The other categories were also not analyzed individually due to the

minimal amounts of occurrences of the other tactics.

Table 2. UWF-ZeekData22 Tactics [10]

Attack Tactic Count

None (Not an attack) 9,281,599

Reconnaissance 9,278,722

Discovery 2,086

Credential Access 31

Privilege Escalation 13

Exfiltration 7

Lateral Movement 4

Resource Development 3

Defense Evasion 1

Initial Access 1

Persistence 1

3.2. Software Utilized to Process Data

Python and pySpark were utilized as GraphFrames is readily available in this environment. In

order to visualize the graph data, GraphStreams [15] was used since it has a feature-rich library.

GraphStreams [15] was implemented in the Java environment.

4. Preprocessing

Using the Conn dataset from UWF-Zeekdata22[9,10], a unique list of source and destination IP

addresses were generated using a simple hashmap. A graph was created using the unique list as the

graph vertices, naming the vertices based on whether they were a source IP or destination IP. Once

the graph vertices were created, edges were established and weighted based on the following

dominant attributes:

• Destination ip (id.resp_h) and originating bytes (orig_bytes), used as per [16].

• Total number of connections between the unique source and destination

• Total duration of the connection(s) between the vertices

• Total number of bytes of the connections between vertices

• The attack tactic

First, this information was used to generate a pySpark vertex and edge list. Then, this

information was used to create a graphFrame in order to determine vertex and edge relationships

and graph shapes. The objective was to look for two primary structures in the graphs, star motifs and

clique motifs. Star motifs are where a single vertex connects to multiple vertices and clique motifs are

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 June 2023 doi:10.20944/preprints202306.0696.v1

https://doi.org/10.20944/preprints202306.0696.v1

 5

where the largest set of interconnected vertices is identified. Stars in a graph are defined as having n-

1 vertices with a degree of 1 and a single vertex having a degree of n-1 [17]. The Bron-Kerbosch

algorithm [18] was utilized to find maximal cliques. This algorithm finds the largest connected

vertices that produce the unique clique.

Additional effort was taken to scan the vertices and edges to find and eliminate intermediate

vertices, revealing true endpoints in the graph. In order to do this, cycles had to be identified and

eliminated. The approach taken initially was to use Depth-First-Search (DFS), but due to the number

of vertices in the graph, a dynamic algorithmic approach was taken to minimize recursive code. The

dataset was reduced to tables of unique source and destination addresses and accumulated

connections, durations, and bytes transmitted. These vertices were then used to construct a graph,

eliminating any edges that result in a cycle. Eliminating cycles provided for a minimally connected

graph which was easier and faster to traverse when connecting the source of an attack to its

destination. Elimination of the cycles did not impact the underlying graph as all vertices were still

reachable by other adjacent vertices [19]. Elimination of the cycles reduced the edges needed to create

the graph and thus produced a more concise graph. This allowed for identifying motifs of interest as

they stood out from the background of random interconnections that were not of interest [20].

4.1 Binning Methodology

Binning allowed for continuous data to be represented in various discrete categories or bins. In

order to best characterize the data, the following attributes of the edge connections were binned:

number of connections, average duration, and average bytes. In order to bin the data, the

methodology outlined by the authors of [16] was utilized, however, a stationary mean was

implemented instead of a moving mean. The standard deviation was first calculated by using the

formula:

(1)

where x is the attribute that is being binned, 𝑥̅ is the average of the attribute, and n is the number of

data points. Six bins were then constructed using the calculated standard deviation as follows:

 (2)

 (3)

 (4)

 (5)

 (6)

 (7)

Each of the three edge attributes was assigned a bin determined by which bin the attribute’s value

landed in. Because the data had a large variance and thus a large deviation, the first two bins were

negative for some of the attributes.

After using equation (1) to calculate the standard deviation for the count attribute for the full

Reconnaissance dataset, equations (2) – (7) were used to calculate the bins for the count attribute as

follows:

 ,

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 June 2023 doi:10.20944/preprints202306.0696.v1

https://doi.org/10.20944/preprints202306.0696.v1

 6

To find which bin a value is in, the bin that overlaps the value is found. As an example, the value

1280 is between the values -248084.578 and 16963.973; therefore, the value resides in 𝑏𝑖𝑛ଷ.

5. Algorithmic Approach to Creating the Graphs

5.1 Overview of Approach

UWF-ZeekData22 [9,10] was reduced to the source and destination IPs only, by removing

intermediary vertices and cycles in an effort to remove network noise. To remove the intermediary

vertices, a Depth First Search (DFS) algorithm approach was taken, adding only edges that did not

result in a cyclic graph. Due to the number of vertices in the graph, a dynamic algorithmic approach

was taken to minimize recursive code. The dataset was reduced to tables of unique source and

destination addresses and accumulated connections, durations, and bytes transmitted. These vertices

were then used to construct graphs, eliminating any edges resulting in cycles. Graphical

representations are presented of the Reconnaissance Tactic, as well as all attack and non-attack traffic.

5.2 Workflow

Figure 1. Workflow

5.2.1 Reduce the Data

Since UWF-ZeekData22 [9,10] is a large dataset, one of the first objectives was to see if any kind

of feature reduction could be applied. Hence, only the connection counts, bytes transferred, and

connection data were aggregated to reduce the number of data points that would feed into the next

graphing phase. Specifically, the duration and orig_bytes features from the Conn Log files of UWF-

ZeekData22 [9,10] were aggregated by the unique source to destination key. These features were

totaled and, additionally, new features were generated using duration and orig_bytes. The additional

new features were average duration and average bytes.

5.2.2 Produce a non-cyclic graph

Graphs were created using the IP addresses obtained in the previous phase, populating the

edges with the aggregated counts, bytes, and duration values. As each edge was added to the graph,

a check was performed to determine if the new edge produced a cycle. If a cycle was created, the

edge was removed from the graph. The final graph data was then written out as a CSV file for the

next phase.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 June 2023 doi:10.20944/preprints202306.0696.v1

https://doi.org/10.20944/preprints202306.0696.v1

 7

5.2.3 Binning

The CSV file from the previous phase was analyzed and binned as explained in the pre-

processing section. The resulting bins replaced the original graph data and a new CSV file was

produced for the next phase.

5.2.4 Generate Visual Graph

The resulting graph data, now binned on count, bytes, and duration, was loaded into the

GraphStream application and visualization of the graphs was produced and used in this work.

5.3 Algorithmic Approach to Creating the Graphs

Each unique source to destination edge was identified and mapped. With each unique edge

between the source and destination, a summation of attributes that were to be tracked was stored. A

graph G, of unique vertices, was created. Iterating through all source vertices, an edge was added to

the graph, from source to destination, and tested for the creation of a cycle in the graph. If a cycle was

detected, then the last edge was removed. The final resulting graph produced the longest path

between a given source vertex and its furthest destination vertex, which did not result in a cycle. This

allowed for the elimination of intermediate vertices and the detection of the final destination of an

attack from a source.

If calling isCyclic method (Algorithm 1) for the Graph results in true, then a cycle has been

encountered and the last vertex must be removed to remove the cycle. Analysis was done to

determine if any meaningful correlation could be attributed to the attack tactics port numbers used

by the source or destination. It was found that this information did not add any value to the graph

and therefore port was eliminated as a possible attribute of interest.

Algorithm 1: isCyclic

Input: Graph G, vertex V to add

Output: Boolean true if after adding V, the graph is cyclic,

updated G, with vertex V added

Add V to G

Create and initialize visited array, recursionStack array

Mark all vertices as unvisited in both visited and recursionStack

forall vertex v in G

Return isCyclicUtil(v, visited, recursionStack)

isCyclicUtil(vertex, visited array, recurssionStack)

if vertex visited before return false

if vertex is in recursionStack return true

Mark vertex as visited for vertex

Mark recursionStack as visited for vertex

forall children of vertex

if isCyclic(childVertex, visited array, recursionStack)

Return true

Set recursionStack for vertex to false

Return false

6. Resulting Graph Visualizations

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 June 2023 doi:10.20944/preprints202306.0696.v1

https://doi.org/10.20944/preprints202306.0696.v1

 8

GraphStream [15] was utilized to generate graphical visuals for each of the subsets of the edges.

GraphStream is a Java library used for modeling, visualizing, and analyzing dynamic networks of

various sizes [15].

The data was fitted to different motif models to determine if various attacks could be

characterized by specific shapes. In the motifs (Figures 2-8) that follow, the color of each edge

represents the intensity/bin of the corresponding attribute that the graph represents. The colors,

orange for bin 1, yellow for bin 2, green for bin 3, blue for bin 4, purple for bin 5, and red for bin 6,

were used in order of least to highest intensity to represent the bin value ranges.

6.1 Star Motif

The Reconnaissance tactic resembles the star motif, in which there is a central vertex which the

connections originate from. As seen in Figure 2, all connections originate from the central vertex of

143.88.2.10. This indicates active scanning [21], typical of a Reconnaissance tactic. In active scanning,

an adversary probes a victim infrastructure’s network traffic by mechanisms such as port scanning.

Port scanning classifies each port into the state of open, closed, filtered, unfiltered, open/ filtered, or

closed/ filtered [22]. This helps an attacker determine which ports on a network are open and can be

utilized to receive and send data. Figures 2, 3 and 4 represent the Reconnaissance motif by connection

count, average duration, and average bytes respectively.

6.1.1 Visualizing the Reconnaissance Tactic by Connection Count

Figure 2 depicts the Reconnaissance tactic radiating from a single vertex, 143.88.2.10, to multiple

other vertices in the graph. The number of connections from point to point is generally in the average

range of connections with the exception of a few which were in the extreme range of binning. Looking

deeper into the data, it can be seen that each connection generally involves a different port, therefore

this graph is representative of a port scan, typical of a Reconnaissance tactic. This graph had some

areas of interest, represented by the red connections (bin = 6), where considerably more connections

occurred than the normal connection count (bin =3) which was 1,024 connections. Each of these bin6

connections was in excess of 1 million. One outlier in the data was a connection between 143.88.5.12

and 143.88.5.1 (bin =5) with ½ million connections. Example data points can be seen in Table 3. For

the Reconnaissance tactic, the maximum connection count was 3,112,192, while the minimum

connection count was zero, and the average connection count was 33,927.946.
It can also be noted from Figure 2 that 143.88.2.10 is mostly pointing to 143.88.7.* addresses. The

graph is actually pointing to the entire range of the subnet which is from 143.88.7.0-255. The red lines

indicate where most of the bytes are being transmitted back and forth. This is highly likely because

the 4 IP addresses belonged to running virtual machines on the victim’s network, and a reply from

the victim’s network is indicative of an open port of a victim’s host.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 June 2023 doi:10.20944/preprints202306.0696.v1

https://doi.org/10.20944/preprints202306.0696.v1

 9

Figure 2. Reconnaissance Tactic by Connection Count

Table 3. Reconnaissance Points of Interest (Count)

Id From To Total_Dur Avg_Du

r

Total_Bytes Avg_Bytes Count CountBi

n

edge_0 143.88.2.1

0

143.88.7.1

5

353248.5154 0.2126 265458232832

0

1597759.972

2

166144

0

6

edge_1 143.88.2.1

0

143.88.7.1

1

972063.5371 0.3123 5579520 1.7928 311219

2

6

edge_2 143.88.2.1

0

143.88.7.1 279987.9888 0.1338 8567808 4.0934 209305

6

6

edge_3 143.88.2.1

0

143.88.7.1

2

778386.2988 0.6914 925758636800 822247.5387 112588

8

6

edge_25

7

143.88.5.1

2

143.88.5.1 943576.7243 1.8777 36458752 72.5507 502528 5

6.1.2 Visualizing the Reconnaissance Tactic By Average Duration

Figure 3 presents the Reconnaissance Tactic by average duration. The average duration of the

connections in the star motif did not identify areas of interest as green (bin=3) and blue (bin=4) are

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 June 2023 doi:10.20944/preprints202306.0696.v1

https://doi.org/10.20944/preprints202306.0696.v1

 10

average behaviors in this graph. The blue connections in Figure 3 correspond to the high connections

found in Figure 2, although the duration per connection is considerably higher, ranging from 300 to

1700 times longer than the other connections in green. The connections in green transferred 0 bytes

whereas the connections in blue transferred data from between 2 bytes to 1.5 MB of data per

connection. Sample data points for Reconnaissance points of interest based on average duration are

presented in Table 4. The maximum duration was 972,063.54, minimum duration was 0.04, and

average duration was 12,947.3263.

Figure 3. Reconnaissance Tactic by Average Duration

Table 3. Reconnaissance Points of Interest (Count)

Id From To Total_Du

r

Avg_D

ur

Total_Bytes Avg_Bytes Count CountBi

n

edge_0 143.88.2.

10

143.88.7.

15

353248.51

54

0.2126 26545823283

20

1597759.97

22

166144

0

6

edge_1 143.88.2.

10

143.88.7.

11

972063.53

71

0.3123 5579520 1.7928 311219

2

6

edge_2 143.88.2.

10

143.88.7.

1

279987.98

88

0.1338 8567808 4.0934 209305

6

6

edge_3 143.88.2.

10

143.88.7.

12

778386.29

88

0.6914 92575863680

0

822247.538

7

112588

8

6

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 June 2023 doi:10.20944/preprints202306.0696.v1

https://doi.org/10.20944/preprints202306.0696.v1

 11

edge_2

57

143.88.5.

12

143.88.5.

1

943576.72

43

1.8777 36458752 72.5507 502528 5

Figure 3. Reconnaissance Tactic by Average Duration

Table 4. Reconnaissance Points of Interest (Average Duration)

Id From To Total_Du

r

Avg_D

ur

Total_Bytes Avg_Byte

s

Count CountBi

n

edge_3 143.88.2.10 143.88.7.1

2

778386.29

88

0.6913 92575863680

0

822247.538

7

112588

8

4

edge_4 143.88.2.10 143.88.7.1

0

1792.9392

7

1.4007 798720 624 1280 4

edge_4

2 143.88.2.10

143.88.7.1

4 3080.24 3.0080 0 0 1024 4

edge_4

3 143.88.2.10

143.88.7.1

3 3080.264 3.0080 0 0 1024 4

edge_2

57 143.88.5.12 143.88.5.1 943576.7 1.8776 36458752

72.5506877

2 502528 4

6.1.3 Visualizing the Reconnaissance Tactic by Average Bytes

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 June 2023 doi:10.20944/preprints202306.0696.v1

https://doi.org/10.20944/preprints202306.0696.v1

 12

Figure 4 presents the Reconnaissance tactic by average bytes. As depicted in Figure 4, only two

areas of interest were identified. In both cases, the number of bytes transferred, per connection was

0.8 MB to 1.5 MB. It is possible that the attacker found that these IP addresses had exposed ports and

thus was available to use them to send and/or receive data to/from the network. Example data points

for the Reconnaissance points of interest based on average bytes are presented in Table 5. The

maximum bytes transferred were 2,654,582,328,320, minimum bytes transferred were zero and the

average bytes transferred were 13,877,478,833.

Figure 4. Reconnaissance Tactic by Average Bytes

Table 5. Reconnaissance Points of Interest (Average Bytes)

Id From To Total_D

ur

Avg_Du

r

Total_Bytes Avg_Byt

es

Count CountB

in

edge_0

143.88.2.

10

143.88.7.

15 353248.5 0.212616

26545823283

20 1597760

166144

0 3

edge_3

143.88.2.

10

143.88.7.

12 778386.3 0.691353

92575863680

0 822247.5

112588

8 4

edge_25

7

143.88.5.

12

143.88.5.

1 943576.7 1.87766 36458752 72.55069 502528 4

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 June 2023 doi:10.20944/preprints202306.0696.v1

https://doi.org/10.20944/preprints202306.0696.v1

 13

6.2 Clique Motif

Figure 5 depicts the cliques found in UWF-ZeekData22. The bottom left set of IP addresses are

reverse shells coming back to the 143.88.2.10 address, which are attackers on the kali linux machine

used to scan and attack the victim’s network. The connections in the red box are interesting because

they are able to gain a connection to the University of West Florida’s (UWF’s) IP address which is the

143.88.0.* subnet. The group of connections in the top right are IPv6 addresses. The IPv6 address is

the successor of the regular IPv4 address [23]. With the limited number of IPv4 addresses, in order to

accommodate for the increasing number of devices on the internet, the Internet Engineering Task

Force (IETF) developed Internet Protocol version 6 (IPv6) address. IPv6 uses a 128-bit compared to

IPv4, which uses a 32-bit address.

Figure 5. Maximal Cliques Found by Connection Count for UWF-ZeekData22

6.3 Visualizations of Non-Attacks By Count

Figure 6 depicts the count of connections that were categorized as non-attacks, and shows a large

cluster of different connections of IPv6 addresses. There are several areas of interest identified by the

colored boxes. The IP addresses within the red boxes are routers or switches that are redirecting traffic

to different subnets, ff02::fb and ff02::1:3. And these subnets are possibly redirecting it to servers or

load balancers.

As cycles were removed from the data, they appeared unidirectional. The yellow boxed area

(bottom right) represents servers that were behind a load balancer. The load balancer evenly

distributes traffic to the various servers.

Two data points for the non-attack by connection count are presented in Table 6. The maximum

count was 6,724,017, minimum count was 1 and average count was 4,273,817.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 June 2023 doi:10.20944/preprints202306.0696.v1

https://doi.org/10.20944/preprints202306.0696.v1

 14

Figure 6. Non-Attack by Connection Count

6.4 Visualizing Attacks By Count

Figure 7 depicts the full picture of the attack data binned with respect to the number of

occurrences (Count). The star motif in the red box is the Reconnaissance port scan example shown in

Figure 2. The top right of Figure 7 has more IPv6 addresses, compared to Figure 6.

Example data points for all attack tactics by count are presensted in Table 7. The maximum count

was 6,724,017, minimum count was 1, and average count was 3,864,567.

Table 6. Non-Attack Points of Interest (Count)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 June 2023 doi:10.20944/preprints202306.0696.v1

https://doi.org/10.20944/preprints202306.0696.v1

 15

Id From To Total_

Dur

Avg_D

ur

Total_By

tes

Avg_Byt

es

Count CountB

in

edge_21

143.88.11.

14

143.88.1

1.1

1267576

.92 2.60 40376997 82.73 488029 5

edge_35

143.88.255

.10

10.0.10.

1 114.42 0.00

60556971

6 90.06

672401

7 6

Figure 7. All Attack Tactics by Connection Count

Table 7. All Attack Tactics Points of Interest (Count)

Id From To Total_D

ur

Avg_Du

r

Total_Byte

s

Avg_Byt

es

Count CountBi

n

edge_3 143.88.7.10

143.88.2.

10 1216.984 0.002334 24576 0.047128 521472 5

edge_6 143.88.2.10

143.88.7.

15 353248.5 0.212616

2654582328

320 1597760

166144

0 6

edge_7 143.88.2.10

143.88.7.

11 972063.5 0.31234 5579520 1.792794

311219

2 6

edge_8 143.88.2.10

143.88.7.

1 279988 0.13377 8567808 4.093444

209305

6 6

edge_9 143.88.2.10

143.88.7.

12 778386.3 0.691353

9257586368

00 822247.5

112588

8 6

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 June 2023 doi:10.20944/preprints202306.0696.v1

https://doi.org/10.20944/preprints202306.0696.v1

 16

edge_2

62 143.88.5.12

143.88.5.

1 943576.7 1.87766 36458752 72.55069 502528 5

edge_2

67

143.88.11.1

0 8.8.8.8 588871.3 1.293066 43664530 95.88023 455407 5

edge_2

68

143.88.11.1

0 8.8.4.4 590266.6 1.300276 43591546 96.02614 453955 5

edge_2

84

143.88.11.1

4

143.88.11

.1 1267577 2.597 40376997 82.73483 488029 5

edge_2

98

143.88.255.

10 10.0.10.1 114.4165 0.000 605569716 90.06071

672401

7 6

6.5 Visualizations of the Noncyclic Counts

Figure 8 represents the final count of connections for all identified attacks, with all cycles

removed. All edges were added in this graph except for any edges that returned to a previously

visited vertex. This allowed for the visualization of one-way traffic from the source to the destination.

Adding the return cycles would have produced additional noise and could obscure the true target of

the attack.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 June 2023 doi:10.20944/preprints202306.0696.v1

https://doi.org/10.20944/preprints202306.0696.v1

 17

Figure 8. Noncyclic All Tactics by Connection Count

6.6 Summarizing the Graphic Visualizations

In this dataset, UWF-ZeekData22, the Star motif represents the Reconnaissance tactic well. The

Reconnaissance tactic basically radiates from a single vertex, 143.88.2.10, to multiple other vertices in

the graph. Figures 2, 3, and 4 are star motifs that depict the Reconnaissance tactic, but from different

angles - connection count, duration, and byte count, respectively. The Clique motif was not useful in

graphing the Reconnaissance tactic.

7. Runtime Performance

This section presents the runtime performance of the process of creating the graph databases,

starting from file processing to the visualization of the graphs. In every case it can be noted that the

truncated data, which is our reduced dataset used to create the graphs, performed better than the full

data.

Table 8 presents the execution time for processing, including writing resulting output files,

running on a quad core i5 intel processor at 2.4 GHz with 16 GB of DDR4 3200 ram. For both Phase 1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 June 2023 doi:10.20944/preprints202306.0696.v1

https://doi.org/10.20944/preprints202306.0696.v1

 18

(File Processing) and Phase 2 (Graph Processing), it can be noted that the reduced data (with fewer

attributes, used to create the graphs) performed better than the full data, which had all the attributes.

Table 8. Execution Time For Processing

Phase 1 - File processing Phase 2 - Graph processing

Duration (milliseconds) Duration (milliseconds)

Full File/Tactic

/ Filter By IP

Reduced Data Full Data Reduced Data Full Data

 (84.3k rows)
 (18.56 M

rows)
 (84.3k rows) (18.56 M rows)

All rows
702

milliseconds
64,955 60 65

Reconnaissance 546 64,535 55 54

IP: 143.88.2.10 543 62,402 51 47

After file processing and graph processing, the resulting datafile is reduced to vertices and

summed by connection count, connection duration, and bytes transmitted. These summed amounts

are then binned across the vertices and graphed. Table 9 presents the execution time for binning and

generating the resulting csv files after data processing, executing on 10-Core Intel Core i9 at 3.6 GHz

with 32 GB of 2667 MHz DDR4 ram. It can once again be noted that the reduced data performed

better than the full data.

Table 9. Execution Time for Binning and Generating Resulting csv Files

Duration for Graph Stream part

Row Count
(milliseconds)

Full File/Tactic Reduced Data Full Data Reduced Data Full Data

All rows 39 41 374 480

Reconnaissance 39 40 255 258

IP: 143.88.2.10 38 38 254 256

Table 10 presents the execution time for generating GraphStream visuals after data binning,

running on Quad-Core Intel Core i7 at 2.8 GHz with 16 GB of 2133 MHz LPDDR3 ram. Here we can

see that the reduced data performed better for the Reconnaissance and the IP address 143.88.2.10.

Table 10. Execution Time for Generating Visuals

Duration

Row Count
(milliseconds)

Full File/Tactic Reduced Data Full Data Reduced Data Full Data

All rows 7,904 6,967 374 480

Reconnaissance 7,510 7,644 255 258

IP: 143.88.2.10 6,834 7,241 254 256

8. Conclusion

The objective of this research was to determine if UWF-Zeekdata22 [9,10] could be mapped into

a graph that could then be analyzed to yield consistent and identifiable patterns. Patterns involving

network connectivity, connection duration, and data volume were found when the UWF-Zeekdata22

dataset was extracted and loaded into a graph environment. Patterns were also found in the graphed

data that matched the attack tactics captured by UWF-Zeekdata22. The Reconnaissance tactic was

represented well by the Star Motif.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 June 2023 doi:10.20944/preprints202306.0696.v1

https://doi.org/10.20944/preprints202306.0696.v1

 19

There were some interesting discoveries when reviewing the resulting graphs. In the non-attack

data, it was possible to identify normally occurring interactions between vertices in the graph. This

could potentially be used to teach a ML what behaviors to ignore. This could potentially help identify

zero-day attacks as they would not “look” like a learned normal behavior of the network. These

graphs also provide insight into what the structure/topology of the network resembles.

Finally, an analysis of the run-time performance of the reduced dataset, using only four features

from UWF-ZeekData22’s Conn Log files and two additionally generated features plus count, showed

that the reduced dataset performed better than the full dataset. Hence, a set of four connection

features and two additionally generated features plus the count was enough for the graph engine to

generate the graphs.

9. Future Works

The results in this paper show that graph databases/graph engines can be essential tools for

understanding network traffic and detecting various network intrusions. The amount of data

available for use in the analysis of this paper was fairly limited, so one area for future research is to

apply the principles of this paper to multiple datasets and compare the results. Another area for

further research is to use the models generated from this analysis to train machine learners. The

learners would then be run against various simulated attack/non-attack data to determine the

accuracy of the models.

Supplementary Materials: The dataset can be downloaded at datasets.uwf.edu

Author Contributions: This work was conceptualized by S.S.B., D.M., S.C.B., M.P. and J.H.; methodology was

mainly done by S.S.B., D.M., S.C.B., M.P. and J.H.; software was done by M. P. and J.H.; validation was done by

D.M. and M.E.; formal analysis was done by M.P., J.H. and D.M.; investigation was done by S.S.B. D.M., M.P.

and J.H; data curation was done by M.P.; writing—original draft preparation was done by M.P. and J.H.;

writing—review and editing was done by S.S.B., D.M.,S.S.B., M.P., J.H. and M.E ; visualization was done by M.P.

and J.H.; supervision was done by S.S.B., D.M. and S.S.B.; project administration was done by S.S.B. and D.M.;

funding acquisition was done by S.SB., D.M. and S.S.B. All authors have read and agreed to the published

version of the manuscript.

Funding: This research was funded by the National Centers of Academic Excellence in Cybersecurity, 2021

NCAE-C-002: Cyber Research Innovation Grant Program, Grant Number: H98230-21-1-0170

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data is available at datasets.uwf.edu

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Huong, T.T.; Bac, T.P.; Long, D.M.; Thang, B.D.; Binh, N.T.; Luong, T.D.; Phuc, T.K. LocKedge: Low-

Complexity Cyberattack Detection in IoT Edge Computing. IEEE Access 2021, 9, 29696–29710,

doi:10.1109/access.2021.3058528.

2. Leevy, J.L.; Hancock, J.; Zuech, R.; Khoshgoftaar, T.M. Detecting Cybersecurity Attacks across Different

Network Features and Learners. Journal of Big Data 2021, 8, doi:10.1186/s40537-021-00426-w.

3. Bagui, S.; Simonds, J.; Plenkers, R.; Bennett, T.A.; Bagui, S. Classifying UNSW-NB15 Network Traffic in the

Big Data Framework Using Random Forest in Spark. International Journal of Big Data Intelligence and

Applications 2022, 2, 39–61, doi:10.4018/ijbdia.287617.

4. Zhang, J.; Sun, J.; He, H. Clustering Detection Method of Network Intrusion Feature Based on Support

Vector Machine and LCA Block Algorithm. Wireless Personal Communications 2021, 127, 599–613,

doi:10.1007/s11277-021-08353-y.

5. Kevric, J.; Jukic, S.; Subasi, A. An Effective Combining Classifier Approach Using Tree Algorithms for

Network Intrusion Detection. Neural Computing and Applications 2016, 28, 1051–1058, doi:10.1007/s00521-

016-2418-1.

6. MITRE ATT&CK Reconnaissance, Tactic TA0043 - Enterprise Available online:

https://attack.mitre.org/tactics/TA0043.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 June 2023 doi:10.20944/preprints202306.0696.v1

https://doi.org/10.20944/preprints202306.0696.v1

 20

7. Jia, Y.; Qi, Y.; Shang, H.; Jiang, R.; Li, A. A Practical Approach to Constructing a Knowledge Graph for

Cybersecurity. Engineering 2018, 4, 53–60, doi:10.1016/j.eng.2018.01.004.

8. Oracle Corporation 17 Use Cases for Graph Databases and Graph Analytics. 2021. Available online:
https://www.oracle.com/a/ocom/docs/graph-database-use-cases-ebook.pdf (accessed on 19 August 2022).

9. Bagui, S.S.; Mink, D.; Bagui, S.C.; Ghosh, T.; Plenkers, R.; McElroy, T.; Dulaney, S.; Shabanali, S. Introducing

UWF-ZeekData22: A Comprehensive Network Traffic Dataset Based on the MITRE ATT&CK Framework.

Data 2023, 8, 18, doi:10.3390/data8010018.

10. University of West Florida UWF-ZeekData22 Available online: https://datasets.uwf.edu (accessed on 20

August 2020).

11. Coupette, C.; Vreeken, J. Graph Similarity Description. In Proceedings of the Proceedings of the 27th ACM

SIGKDD Conference on Knowledge Discovery & Data Mining; ACM: New York, NY, USA, August 14 2021.

12. Lee, M.-C.; Nguyen, H.T.; Berberidis, D.; Tseng, V.S.; Akoglu, L. GAWD. In Proceedings of the Proceedings

of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining;

ACM: New York, NY, USA, November 8 2021.

13. Schindler, T. Anomaly Detection in Log Data Using Graph Databases and Machine Learning to Defend

Advanced Persistent Threats Available online: https://dl.gi.de/handle/20.500.12116/4016.

14. Bai, Y.; Ding, H.; Bian, S.; Chen, T.; Sun, Y.; Wang, W. SimGNN. In Proceedings of the Proceedings of the

Twelfth ACM International Conference on Web Search and Data Mining; ACM: New York, NY, USA,

January 30 2019.

15. GraphStream - A Dynamic Graph Library Available online: https://graphstream-project.org/.

16. Bagui, S.; Mink, D.; Bagui, S.; Ghosh, T.; McElroy, T.; Paredes, E.; Khasnavis, N.; Plenkers, R. Detecting

Reconnaissance and Discovery Tactics from the MITRE ATT&CK Framework in Zeek Conn Logs Using

Spark’s Machine Learning in the Big Data Framework. Sensors 2022, 22, 7999, doi:10.3390/s22207999.

17. Sur, S.; Srimani, P.K. Topological Properties of Star Graphs. Computers & Mathematics with Applications 1993,

25, 87–98, doi:10.1016/0898-1221(93)90188-2.

18. Bron, C.; Kerbosch, J. Algorithm 457: Finding All Cliques of an Undirected Graph. Communications of the

ACM 1973, 16, 575–577, doi:10.1145/362342.362367.

19. Mackaness, W.A.; Beard, K.M. Use of Graph Theory to Support Map Generalization. Cartography and

Geographic Information Systems 1993, 20, 210–221, doi:10.1559/152304093782637479.

20. von Landesberger, T.; Görner, M.; Rehner, R.; Schreck, T. A System for Interactive Visual Analysis of Large

Graphs Using Motifs in Graph Editing and Aggregation. Proceedings of Vision Modeling Visualization

Workshop 2009, 9, 331–340.

21. MITRE ATT&CK Active Scanning, Technique T1595 - Enterprise Available online:

https://attack.mitre.org/techniques/T1595/.

22. Chapter 4. Port Scanning Overview Available online: https://nmap.org/book/port-scanning.html#port-

scanning-intro.

23. Frankel, S.; Green, D. Internet Protocol Version 6. IEEE Security & Privacy Magazine 2008, 6, 83–86,

doi:10.1109/msp.2008.65.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 June 2023 doi:10.20944/preprints202306.0696.v1

https://doi.org/10.20944/preprints202306.0696.v1

