
 

 

Article 

Developing Prediction Models for Solar Photovoltaic 
Energy Generation Using GBM 

Yoo-Jung Kim1, Na-Hyeong Kim1, So-Yeon Park1, Jin-Young Kim2, Chang-Ki Kim2, Myeong-

Chan Oh2, Hyun-Goo Kim2 and Yung-Seop Lee3,* 

1 Department of Statistics and Data Science, Dongguk University, Seoul 04620, Korea 
2 New and Renewable Energy Resource Map Laboratory, Korea Institute of Energy Research, 

Daejeon 34129, Korea 
3 Department of Statistics, Dongguk University, Seoul 04620, Korea 

* Correspondence: hyungoo@kier.re.kr (H.-G.K.); yung@dongguk.edu (Y.-S.L.) 

Abstract: As renewable energy generation prediction system has been introduced into the energy 

trading market, making a model to accurately predict the quantity of solar photovoltaic (PV) energy 

generation has become a significant problem. Moreover, to encourage an accurate prediction of the 

quantity of energy generation, an incentive system has been implemented for those who predict the 

quantity of solar PV energy under the error rate of 8%. Therefore, it has become more important to 

investigate and analyze current prediction technology numerically and develop more advanced 

prediction system. In this study, we tried to develop a better model to improve the accuracy of solar 

PV energy generation quantity by comparing three models made with gradient boosting machine 

(GBM), Model 1, Model 2, Model 3 respectively. Model 1 was built with the whole training data set 

without any additional preprocessing. After conducting some additional preprocessing procedure 

to predict solar energy generation more accurately, we made Model 2 with the whole training data 

set and Model 3 with only upper 10% of energy generation capacity. To compare the accuracy of 

three models, normalized mean absolute error (nMAE) was used as an evaluation index. The nMAE 

of Model 1 was 9.64% while the Model 2 showed 8.41%. Also, Model 3, which was constructed with 

the training set of upper 10% energy generation capacity, outperformed with the nMAE of 8.08%. 

For further study, to check the effectiveness of models constructed with GBM, a time series model, 

autoregressive integrated moving average (ARIMA), was also built and the nMAE was compared. 

Keywords: renewable energy; solar photovoltaic energy generation; prediction; gradient boosting 

machine (GBM); gradient boosting regressor (GBR), time series analysis; autoregressive integrated 

moving average (ARIMA); normalized mean absolute error (nMAE) 

 

1. Introduction 

In October 2021, a renewable energy generation prediction system was introduced into the 

energy market [1]. This was largely due to the increased needs of accurate prediction of the quantity 

of energy generation. The demand of an accurate prediction of energy generation quantity arose from 

two reasons, one is the change of energy demand patterns caused by COVID-19 and the other is the 

increase of self-generation facilities whose capacity is difficult to track. It is important to produce and 

trade the appropriate amount of electricity through accurate predictions of supply and demand. 

However, the amount of renewable energy such as solar and wind energy is not easy to accurately 

predict as energy generation with natural resources is greatly affected by climate factors. Therefore, 

for stable energy supply and demand, it is crucial to establish a model to develop and improve energy 

generation prediction technology. 

There have been several attempts by various scholars to build an accurate model to predict solar 

energy generation. As a similar prior study, Jung et al. built a solar energy generation prediction 

model using various time series techniques such as autoregressive integrated moving average 

(ARIMA) and vector autoregressive model (VAR) and compared which model predicts more 
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accurately [2]. In addition, regression analysis is also broadly used when predicting solar energy 

generation [3, 4]. 

In addition to traditional time series techniques, research on building a solar energy generation 

prediction model with machine learning and deep learning algorithm is also being actively 

conducted. Kim et al. applied long short-term memory (LSTM) [5], and Lee and Lee used support 

vector machine (SVM) to make a solar energy generation model [6]. Besides LSTM and SVM, several 

neural network (NN) algorithms such as RNN and RBFNN are used when predicting solar energy 

generation [7-14]. 

In this paper, we constructed three solar energy generation prediction models with gradient 

boosting machine (hereinafter referred to as GBM). The difference between three models lies on the 

preprocessing procedure and the range of training set. By varying the conditions of training set used 

in model building, the main purpose is to compare the normalized mean absolute error (hereinafter 

referred to as nMAE) of the three models and check which one showed the highest accuracy. 

2. Academic Background 

2.1. GBM(Gradient Boosting Machine) 

The main idea of gradient boosting is to connect several weak learners, but to update the error 

by generating the next weak learner based on the error of the previous weak learner. Here, the weak 

learner refers to a decision tree. The algorithm is operated by reducing errors with continuous 

generation of a new tree, which is renewed by reflecting the errors of the previous one. The main 

hyperparameters initially set in the gradient boosting algorithm are as follows. 

1. The total number of trees. 

2. The maximum depth of each tree. 

3. The minimum number of samples for the terminal node of each tree. 

4. Learning rate, which implies the weight of each tree. 

 

Figure 1 below is a simple schematic diagram of the gradient boosting algorithm. First, the initial 

predicted value is set as the average of the actual value. Second, after generating the first tree based 

on the error between the actual and the initial predicted value, the error with the actual value is 

calculated. Next, a second tree is generated based on the calculated error, and then the error with the 

actual value is calculated again. After repeating the above process as many as the total number of 

times settled in hyperparameter, the final prediction is derived by reflecting the learning rate on each 

tree. 

 

Figure. 1 The principal concept of gradient boosting machine. 

 

Equation (1) below shows how to calculate final predicted value for each observation. As 

explained above, when the initial predicted value is determined as ��(�), the error of each tree ℎ�(�) 
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is calculated � times, and the learning rate � is reflected to each tree to sum up the error and final 

predicted value ��(�) is drawn. 

                                                               ��(�) =  ��(�) +  � � ℎ�(�)

�

���

                                                     (1) 

where ��(�) : initial predicted value 

 ��(�) : final predicted value 

 � : learning rate 

 ℎ�(�) : predicted error of each tree 

 � : the number of trees 

 

3. Building Models and Evaluation 

3.1. Exploratory Data Analysis and Preprocessing 

To build an energy generation prediction model, data observed at 15 spots across the country 

were used. The data were recorded with the interval of an hour from 00:00 on 1 January 2020 to 23:00 

on 31 December 2021. The given data set consists of two types. The ‘basic data set (hereinafter referred 

to as data set B)’ consists of 8 variables, prediction time, energy generation quantity (the target value), 

clear sky global horizontal irradiance (cGHI), solar zenith angle (Szen), solar azimuth angle (Sazi), 

extraterrestrial radiation (Extl), predicted ground temperature (Temp_nwp), and predicted global 

horizontal irradiance (GHI_nwp). The ‘advanced data set (hereinafter referred to as data set A)’ 

contains about 60 additional weather variables such as cloud cover, ground atmospheric pressure, 

altitude, visibility etc. 

The Step 1 of preprocessing procedure below is given and Step 2 to Step 5 are the additional 

procedure we added to build more accurate models. 

Preprocessing procedure: 

1. Step 1: Combining all data set B observed from the 15 spots and delete the observations with 

missing values. 

2. Step 2: Combining data set B and data set A. It means that about 60 weather variables that only 

existed in data set A were added to data set B. 

3. Step 3: Dealing with ‘GHI_sat’ variable. As the ‘GHI_sat’ is an observed value in the past, the 

value is substituted with the one that was recorded 48 hours ago. 

4. Step 4: Checking missing values once again and substitute them with the data of the same time 

one day before. 

5. Step 5: For some variables, normalizing and standardizing the data to construct models. 

 

After going through the five preprocessing procedures for model construction, the data was 

separated into training data set and test data set. The training data set contains the data from 00:00 

on 1 January 2020 to 23:00 on 31 December 2020, and the test data set contains the data from 00:00 on 

1 January 2021 to 23:00 on 31 December 2021. Figure 2 below shows the separation of target variable 

(energy generation quantity) from one of the 15 points. 
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Figure 2. The overview of training and test data set for energy generation in one spot. 

 

3.2. Experiment 

Table 1 below shows the various combinations of preprocessing procedure and the range of 

training data set applied to each model we made. In terms of preprocessing procedure, Model 2 and 

Model 3 went through more exquisite steps compared to Model 1. Also, the range of training data set 

used in model construction differs from the model. When building Model 1 and Model 2, the whole 

training data set was used while Model 3 was constructed with only upper 10% of energy generation 

capacity. By varying the properties of training data set in model building, we tried to compare which 

one showed the highest accuracy. 

Unlike Model 1 and Model 2, data with an energy generation capacity of upper 10% were used 

among the training data set for Model 3. The reason why only upper 10% of energy generation 

capacity data was used for constructing Model 3 is the fact that the accuracy of energy generation 

prediction is calculated only with the data of upper 10% energy generation capacity [16]. Therefore, 

we expected more accurate model construction would be possible if this criterion is applied to both 

model construction and accuracy calculation. 

Table 1. Preprocessing procedure and the range of training data set applied to each model 

Model 
Preprocessing procedure 

applied to the model 

The range of training set 

applied to the model 

Model 1 Step1 Whole training data set 

Model 2 Step1 ~ Step5 Whole training data set 

Model 3 Step1 ~ Step5 Upper 10% of energy generation capacity 

 

When constructing models, grid search was used for hyperparameter selection. The selected 

values are as follows. The same hyperparameter values was applied to all three models so that it 

would be able to guarantee an objectivity of evaluating the performance of the models. 

1. The total number of threes: 500 

2. The maximum depth of each tree: 10 

3. The minimum number of samples for the terminal node of each tree: 20 

4. Learning rate: 0.05 
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3.3. Evaluating Accuracy of Energy Generation Prediction Model 

In this study, nMAE was used as a measure to evaluate the accuracy of the energy generation 

prediction model, which is officially used in the energy generation prediction system. MAE refers to 

the average of absolute errors between the actual value and the predicted value, and nMAE is an 

index that normalizes the MAE. In other words, since the difference between the actual and the 

predicted value is an evaluation index of accuracy in nMAE, the smaller the value, the more precisely 

the model is considered to have predicted the actual value. 

Table 2 below shows the nMAE of three models (Model 1, Model 2, and Model 3) applied to the 

test data set from 00:00 on 1 January 2021 to 23:00 on 31 December 2021 for the 15 spots. In average, 

Model 2 has shown an nMAE of 8.41%, an improvement of 12.77% over nMAE of 9.64% in Model 1. 

In addition, the nMAE of Model 3 which was built with training data set of energy generation 

capacity of upper 10% was 8.08%, showing 16.14% better performance than Model 1. Moreover, it is 

remarkable that Model 3 showed an improvement compared to the Model 2, showing 3.87% higher 

accuracy. It is proved that model construction using training data set only with an energy generation 

capacity of upper 10% is more effective than using whole training data set. 

With respect to each spot, all 15 spots showed an improvement in accuracy as the model 

develops from Model 1 to Model 3. Regardless of the types of models, spot 1 showed the highest 

accuracy with the nMAE of 7.69% for Model 1, 7.04% for Model 2, 6.70% for Model 3 respectively. In 

contrast, spot 3 showed the lowest accuracy with the nMAE of 11.48% for Model 1, 10.39% for Model 

2, 9.90% for Model 3 respectively. As the model developed from Model 1 to Model 2, spot 14 showed 

the biggest improvement with the nMAE decrease of 15.81%. From Model 2 to Model 3, spot 12 

improved the most with the nMAE decrease of 7.31% 

Table 2. Comparing the accuracy of three models for each spot 

Spot 

Model 1 Model 2 Model 3 

nMAE nMAE 
Comparison 

with Model 1 
nMAE 

Comparison 

with Model 1 

Comparison 

with Model 2 

Spot 0 8.01% 7.16% -10.57% 6.97% -13.03% -2.75% 

Spot 1 7.69% 7.04% -8.50% 6.70% -12.87% -4.78% 

Spot 2 8.84% 8.17% -7.61% 8.00% -9.50% -2.04% 

Spot 3 11.48% 10.39% -9.55% 9.90% -13.80% -4.70% 

Spot 4 8.66% 7.64% -11.77% 7.49% -13.51% -1.98% 

Spot 5 10.91% 9.64% -11.58% 9.19% -15.74% -4.71% 

Spot 6 7.99% 7.38% -7.69% 7.10% -11.20% -3.80% 

Spot 7 9.00% 8.17% -9.18% 7.87% -12.48% -3.63% 

Spot 8 9.36% 8.60% -8.14% 8.30% -11.36% -3.51% 

Spot 9 8.99% 8.30% -7.59% 8.18% -8.98% -1.51% 

Spot 10 10.64% 9.92% -6.80% 9.60% -9.81% -3.23% 

Spot 11 8.81% 7.91% -10.18% 7.63% -13.40% -3.59% 

Spot 12 10.76% 9.93% -7.68% 9.20% -14.43% -7.31% 

Spot 13 9.92% 8.95% -9.83% 8.54% -13.97% -4.59% 

Spot 14 9.87% 8.31% -15.81% 8.15% -17.37% -1.85% 

Average 9.64% 8.41% -12.77% 8.08% -16.14% -3.87% 

 

For the visual comparison of the three models, Figure 3 below graphically shows 

the actual value of the energy generation (black solid line) and the values predicted 

with the three models (orange, green, and blue dotted line respectively) for some 

periods of time in test data set, which is from 00:00 on 1 July 2021 to 23:00 on 7 July 

2021, for spot 0. Although the three models commonly showed a tendency to 
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overestimate or underestimate in some certain periods of time, in general, the 

result showed that Model 3 derives the predicted value with the smallest error 

compared to the actual value. 

 

 
Figure 3. The actual and predicted value of energy generation of three model for spot 0. 

4. Discussion 

Traditionally, time series analysis has been widely used for the prediction of solar energy 

generation. Using the same data, one of time series analysis methods, autoregressive integrated 

moving average (hereinafter referred to as ARIMA) was conducted and the accuracy was compared 

with Model 1, Model 2, and Model 3. 

4.1. ARIMA 

The ARIMA model uses past observations, errors, and a difference procedure to explain current 

values. It includes both autoregressive (AR) model and the moving average (MA) model. A time 

series observation �� follows the �����(�, �, �) process, where � is the parameter of AR model, 

� is a differential parameter, and � equals to the parameter of MA model respectively. When the 

mean value of �� equals to �, the equation of ARIMA model is as follows. In this case, �(�) and 

�(�) are the polynomials for AR and MA model respectively, � indicates back shift operator.  

 

                                                                         �(�)�� =  �(�)��
                                                               (2) 

 

where  �� = (1 − �)�(�� − �) 

  �(�) = 1 − ��(�) − ⋯ − ��(��) 

  �(�) = 1 − ��(�) − ⋯ − ��(��) 

  ��~��� �(0, ��) 

 

More precise explanation of each parameter is as follows. 

1. p: The parameter for AR model. The observation value of (� − 1), … , (� − �) time points 

affect the � time point value. 

2. d: The parameter for differencing. The observation value of (� − �) time point is deducted 

from � time point value to make the data stationary. 

3. q: The parameter for MA model. The error of the continuous observation value 

(� − 1), … , (� − �) affect the � time point value. 

 

After testing whether the data satisfies stationarity, parameter �, �, � are inferred by calculating 

the corrected Akaike’s information criterion (hereinafter referred to as AICc) of potential model. The 
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residual analysis method, which tests the independence of the residuals by calculating the ACF and 

PACF of the residuals, is mainly used as a statistical diagnosis method to determine the 

appropriateness of the inferred model. Finally, we predict future time prediction values using the 

constructed model as a prediction model. In this study, we used AICc to test appropriateness when 

inferring the parameter �, �, �. Compared to Akaike’s information criterion (AIC), AICc is an index 

where a penalty is added with the number of parameters. Table 3 below shows the 15 time series 

models for each spot with training data set. Like GBM, the training data set contains the data from 

00:00 on 1 January 2020 to 23:00 on 31 December 2020, and the test data set contains the data from 

00:00 on 1 January 2021 to 23:00 on 31 December 2021. 

Table 3. ARIMA model results for each spot 

Spot ARIMA(�, �, �) Spot ARIMA(�, �, �) Spot ARIMA(�, �, �) 

Spot 0 (5,1,0) Spot 5 (5,1,0) Spot 10 (5,1,0) 

Spot 1 (5,1,0) Spot 6 (5,1,0) Spot 11 (1,1,0) 

Spot 2 (5,1,0) Spot 7 (1,1,0) Spot 12 (5,1,0) 

Spot 3 (5,1,0) Spot 8 (5,1,0) Spot 13 (1,1,0) 

Spot 4 (5,1,0) Spot 9 (5,1,0) Spot 14 (1,1,0) 

 

Table 4 below shows the nMAE of ARIMA of the model evaluation period, which is the period 

of test data set, containing the data from 00:00 on 1 January 2021 to 23:00 on 31 December 2021. Spot 

13 showed the highest accuracy with the nMAE of 8.42%, while spot 10 showed the lowest accuracy 

with the nMAE of 27.76%. 

Table 4. Normalized MAE of ARIMA model results for each spot 

Spot nMAE Spot nMAE Spot nMAE 

Spot 0 13.92% Spot 5 10.52% Spot 10 27.76% 

Spot 1 11.48% Spot 6 18.87% Spot 11 10.26% 

Spot 2 15.57% Spot 7 11.03% Spot 12 26.88% 

Spot 3 19.49% Spot 8 24.71% Spot 13 8.42% 

Spot 4 13.00% Spot 9 10.18% Spot 14 18.08% 

5. Conclusion 

In this study, using GBM, three regression models that predict solar energy generation were 

built and an experiment was conducted to compare prediction accuracy with nMAE. The difference 

between three models lies on the preprocessing method and the range of training data set. By 

differing the preprocessing procedure and the range of training data set, the intention was to compare 

which combination of data engineering method makes the most accurate result. 

Experiment has shown that Model 2, with some additional preprocessing procedure compared 

to Model 1, has a better prediction performance. In addition, considering the fact that nMAE in the 

renewable energy generation prediction system is calculated only with the data with upper 10% of 

the energy generation capacity, a Model 3 was built in the same way but only data with upper 10% 

of the energy generation capacity were used as training data set. As a result, Model 3 even showed a 

higher performance compared to Model 2, as well as Model 1. The experiment showed that nMAE of 

Model 1, Model 2, and Model 3 was 9.64%, 8.41%, and 8.08% respectively. 

Compared to Model 1, Model 2 went through additional preprocessing procedures so that it can 

predict solar energy generation more accurately. These additional preprocessing procedures include 

combining extra information, adjusting timeline of certain weather variable, normalizing and 

standardizing the data. This difference makes Model 2 to be more adequate for solar energy 

prediction, as the nMAE got better by 12.77%. Moreover, in contrast with Model 1 and Model 2, 

Model 3 was constructed with upper 10% of the energy generation capacity. By handling the range 

of training data set to match it with the range of accuracy calculation, it was able to derive the 
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achievement with 16.14% of nMAE reduction compared to Model 1, 3.87% of nMAE reduction 

compared to Model 2 respectively. 

For further analysis, a time series analysis has been conducted for the comparison with three 

GBM models. Table 5 below shows the nMAE of ARIMA and three GBM models. Overall, compared 

to ARIMA, three models with GBM showed higher accuracy. Among the three models built with 

GBM, as the model develops from Model 1 to Model 3, the nMAE showed a progressive improvement 

with its decrease. 

Table 5. Normalized MAE of ARIMA model and GBM for each spot 

Spot ARIMA(�, �, �) Model 1 Model 2 Model 3 

Spot 0 13.92% 8.01% 7.16% 6.97% 

Spot 1 11.48% 7.69% 7.04% 6.70% 

Spot 2 15.57% 8.84% 8.17% 8.00% 

Spot 3 19.49% 11.48% 10.39% 9.90% 

Spot 4 13.00% 8.66% 7.64% 7.49% 

Spot 5 10.52% 10.91% 9.64% 9.19% 

Spot 6 18.87% 7.99% 7.38% 7.10% 

Spot 7 11.03% 9.00% 8.17% 7.87% 

Spot 8 24.71% 9.36% 8.60% 8.30% 

Spot 9 10.18% 8.99% 8.30% 8.18% 

Spot 10 27.76% 10.64% 9.92% 9.60% 

Spot 11 10.26% 8.81% 7.91% 7.63% 

Spot 12 26.88% 10.76% 9.93% 9.20% 

Spot 13 8.42% 9.92% 8.95% 8.54% 

Spot 14 18.08% 9.87% 8.31% 8.15% 

 

Figure 4 shows a graph of nMAE for each model of three remarkable spots. About spot 10, 

compared to the ARIMA, three models with GBM showed a dramatical reduction of nMAE. From 

ARIMA to Model 1, the nMAE decreased by 61.66%. With respect to spot 5 and spot 13, it is 

phenomenal that ARIMA showed higher accuracy than GBM models. Especially in spot 13, the 

nMAE of ARIMA recorded 8.42%, which is the smallest nMAE among the four models. 

  

 

Figure 4. The nMAE of three spots with four models. 

 

In the future, to build a model with a higher accuracy, we would like to build models with 

weather variables that have a great influence on energy generation prediction. In this study, we used 

all the variables from the given data. However, if some weather variables that have a large impact on 

energy generation prediction are selected using the concept of variable importance and then the 
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model is built with only those variables, it will not only improve the model performance but also 

shorten the time required to build the model. Several studies have already proved that solar 

irradiance and atmospheric temperature has a great influence on solar energy generation [17, 18]. 

In addition, rather than building prediction models for 15 spots respectively, clustering the spots 

into some number of groups regarding their geographical or climate feature would be a meaningful 

trial to expect more accurate models. 
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