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Abstract: Smart Living, an increasingly prominent concept, entails incorporating sophisticated
technologies in homes and urban environments to elevate the quality of life for citizens. A critical
success factor for Smart Living services and applications, from energy management to healthcare
and transportation, is the efficacy of human action recognition (HAR). HAR, rooted in computer
vision, seeks to identify human actions and activities using visual data and various sensor modalities.
This paper extensively reviews the literature on HAR in Smart Living services and applications,
amalgamating key contributions and challenges while providing insights into future research
directions. The review delves into the essential aspects of Smart Living, the state of the art in
HAR, and the potential societal implications of this technology. Moreover, the paper meticulously
examines the primary application sectors in Smart Living that stand to gain from HAR, such as smart
homes, smart healthcare, and smart cities. By underscoring the significance of the four dimensions
of Context Awareness, Data Availability, Personalization, and Privacy in HAR, this paper serves as
a valuable resource for researchers and practitioners striving to advance Smart Living services and
applications.
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1. Introduction

Smart Living is an innovative lifestyle that leverages technology to improve quality of life,
increase efficiency, and minimize waste. This concept is widely studied by scholars and researchers,
who emphasize its various dimensions such as technology, security, health, and education [1]. The
Smart Living lifestyle is predicated on the integration of advanced information and communication
technology (ICT), smart sensing technology, ubiquitous computing, big data analytics, and intelligent
decision-making to achieve efficient energy consumption, better healthcare, and a general improvement
of the services offered to the society towards a high standard of living [2,3].

From a more general perspective, Smart Living is closely related to the concept of smart cities,
which seeks to enhance citizenship characteristics such as awareness, independence, and participation
[4]. It aims to transform life and work through ICT, promoting sustainable economic growth and high
quality of life while preserving natural resources through participatory governance [5]. Central to
this concept is creating benefits for citizens, considering their welfare and participation [6]. Smart
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Living technologies empower users to access and analyze information related to their lives, including
personal health and living conditions [3]. As proposed by Giffinger et al. [4], a smart city framework
encompasses six main components: smart economy, smart people, smart governance, smart mobility,
smart environment, and Smart Living. The integration of stakeholders such as people, machines,
devices, and the environment is crucial for the realization of Smart Living, which includes aspects
such as smart lighting, smart water, smart traffic, smart parking, smart buildings, smart industry,
location/context-based services, and many others [7].

Although Smart Living is driven by intelligent networking and immersive information, it is
essential to emphasize the quality of living facilitated by smart technology under sustainable conditions
rather than solely driven by technological innovation [8]. As the definitions of Smart Living continue
to evolve with advancements in real-time monitoring systems, it is essential to adapt smart designs
and accommodate smart devices, intelligent technology, and sensors to foster a more sustainable and
efficient lifestyle for individuals and communities [7,9]. In such a technological landscape, HAR is an
integral component of Smart Living, contributing significantly to relevant applications, including home
automation, healthcare, safety, and security. In fact, by accurately identifying and interpreting human
actions, Smart Living systems can deliver real-time responses, offering support and assistance tailored
to individual needs. Recognizing human actions is paramount for effectively implementing any Smart
Living application, making it a critical area of research and development in pursuing enhanced quality
of life and more efficient, sustainable living environments. From a strictly technological perspective,
Context Awareness, Data Availability, Personalization, and Privacy are vital dimensions interwoven
with HAR in Smart Living services and applications. Actually, these dimensions are instrumental in
tailoring Smart Living systems to better cater to individual needs and preferences while preserving
privacy and ensuring the availability of relevant data.

A cornerstone of effective HAR in Smart Living services and applications is context awareness,
which involves the intelligent perception and interpretation of surrounding environments and
situations [10]. By comprehending the context in which human activities occur, Smart Living systems
can respond more appropriately and adapt to specific circumstances. Furthermore, adaptation is
intrinsically linked to personalization, allowing systems to deliver customized experiences and
services that cater to each user’s unique preferences and requirements [11]. Personalization and
context awareness work in tandem to create a seamless, intuitive, and user-centric environment that
enhances the overall quality of life [12].

However, implementing context awareness and personalization necessitates collecting, processing,
and storing vast amounts of personal data, raising privacy concerns. As Smart Living services and
applications become increasingly intertwined with users’ daily lives, protecting sensitive information
and maintaining user trust is paramount [13]. Thus, balancing harnessing data for personalization and
preserving privacy is essential. To achieve this equilibrium, advanced privacy-preserving techniques,
such as encryption and anonymization, must ensure that user data remains confidential [14]. Lastly,
data availability plays a crucial role in the effective functioning of HAR in Smart Living services and
applications. The accessibility and reliability of data are integral to the performance of these systems, as
they rely on the continuous flow of information to make informed decisions and deliver personalized
experiences. Ensuring data availability is particularly challenging due to the dynamic nature of Smart
Living environments and the necessity to maintain data consistency across various platforms and
devices. Developing robust data management strategies and infrastructure is critical to successfully
implementing HAR in Smart Living services and applications [15].

This review concentrates on HAR in Smart Living services and applications by examining
the contemporary state-of-the-art through the lens of the dimensions mentioned above: Context
Awareness, Data Availability, Personalization, and Privacy. This analysis aims to provide a
comprehensive understanding of the current landscape and identify opportunities for further research
and development in HAR for Smart Living services and applications by investigating the existing
literature, advancements, and trends. By focusing on these dimensions, this review seeks to elucidate
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the challenges and potential solutions associated with effectively implementing HAR systems in
many Smart Living environments, ultimately fostering enhanced quality of life and more efficient,
sustainable living conditions.

In the previous authors’ work [16], the dimensions of Multimodality, Real-time Processing,
Interoperability, and Resource-Constrained Processing have been yet analyzed from the perspective
of sensing technologies. Composing the dimensions addressed in this review with those previously
analyzed outlines what one can define as the temple of Smart Living. Services and applications form
the roof, sensor technologies form the floor, and the dimensions mentioned above form the pillars, as
depicted in Figure 1.

Figure 1. The Temple of Smart Living.

The temple of Smart Living represents the culmination of technological advancements, research,
and innovation, creating an environment that fosters a higher quality of life, sustainability, and
efficiency. At its core, this temple is supported by pillars representing the fundamental dimensions of
Smart Living: Context Awareness, Data Availability, Interoperability, Multimodality, Personalization,
Privacy, Real-time Processing, and Resource-Constrained Processing. Each pillar contributes to the
strength and functionality of the temple, enabling a seamless integration of services, applications, and
sensor technologies. This harmonious combination empowers individuals and communities to lead
smarter, more connected lives where technology is harnessed to optimize every aspect of daily living.

As we delve into the analysis of the dimensions of Context Awareness, Data Availability,
Personalization, and Privacy in the context of HAR for Smart Living services and applications, we
will explore how these pillars interact and intertwine, forming the foundation upon which this temple
stands. By examining the current state-of-the-art and identifying potential areas for further research
and development, we aim to unlock the full potential of HAR systems within the realm of Smart
Living. Through this endeavor, we strive to create a future where technology seamlessly integrates
with our lives, enhancing our well-being and paving the way for a sustainable and efficient society.
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1.1. Background on HAR in general

HAR is an area of research that focuses on identifying and understanding human activities
through the analysis of data acquired from various sensors.

It has applications in many fields such as intelligent video surveillance [17], customer attributes,
shopping behavior analysis [18], healthcare [19], military [20], and security [21]. Despite its potential,
HAR remains a challenging task due to cluttered backgrounds, occlusions, viewpoint variations, data
noise and artifacts. The recognition of human activities can be approached in two primary ways:
using environmental (or ambient) sensors and wearable sensors [22]. Environmental or ambient
sensors are fixed at predetermined points, while wearable sensors are attached to the user. In the case
of environmental/ambient sensing, smart homes and camera-based systems are examples of HAR.
However, these systems face issues such as privacy, pervasiveness, and complexity [23,24].

Deep learning (DL) models, such as Convolutional Neural Networks (CNNs), have been shown to
yield competitive performance in visual object recognition, human action recognition, natural language
processing, audio classification, and other tasks [25]. CNNs are a type of deep model that learns a
hierarchy of features by building high-level features from low-level ones. They have been primarily
applied on 2D images, but researchers have started exploring their use for HAR in videos [26].

HAR systems require two main stages: training and testing (evaluation). The training stage
involves collecting time-series data of measured attributes from individuals performing each activity,
splitting the time series into time windows, applying feature extraction, and generating an activity
recognition model using learning methods. During the testing stage, data is collected during a time
window, feature extraction is performed, and the trained learning model is used to generate a predicted
activity label. There are several design issues in HAR systems, including the selection of attributes
and sensors, obtrusiveness, data collection protocol, recognition performance, energy consumption,
processing, and flexibility [22,23]. Addressing these issues is crucial for the successful implementation
of HAR systems in various real-life applications.

The state-of-the-art HAR systems can be categorized into different groups based on their learning
approach, response time, and the nature of the sensors used. Systems can be classified as supervised,
semi-supervised, online (often referred also as real-time), offline, and hybrid (combining environmental
and wearable sensors). Each of these groups has its own unique challenges and purposes, and they
should be evaluated separately.

Hence, HAR is a rapidly evolving field, driven by advancements in DL models, sensor technology,
and data processing techniques. The application of CNNs and other DL models to HAR in videos is a
promising direction that can potentially improve the performance and capabilities of HAR systems.
However, addressing the various design issues and evaluating the performance of HAR systems under
realistic conditions remain critical challenges that need to be overcome to fully harness the potential of
HAR in various domains.

1.2. Background on HAR in Smart Living Services and Applications

In the context of Smart Living, HAR refers to identifying and analyzing human activities and
behaviors using various sensors and computing technologies to provide intelligent, responsive, and
personalized services within living environments [27]. These environments include homes, offices,
healthcare facilities, and public spaces. HAR-based applications in Smart Living aim to enhance
occupants’ quality of life, safety, and well-being by leveraging technology to automate and adapt to
the needs of individuals. The employment of HAR in Smart Living has led to a wide array of practical
use cases. In elderly care, for example, HAR systems can be used to monitor daily activities, detect
falls, and assess senior citizens’ health status, enabling timely assistance and improving their quality
of life [28]. In smart homes, HAR can facilitate the automation of appliances and lighting based on
occupants’ activities and contribute to energy conservation [29]. In security, HAR can detect and alert
occupants of potential intruders or suspicious activities [30].
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Building on the foundations of HAR in Smart Living, several critical dimensions play a significant
role in ensuring that these systems are truly effective, adaptable, and user-centric. These dimensions
include context awareness, data availability, personalization, and privacy, all of which contribute
to the overall functionality and success of the Smart Living experience. Context awareness enables
HAR systems to respond intelligently to the varying needs and preferences of occupants in diverse
living environments. By incorporating this dimension, Smart Living solutions can better tailor their
services, adapting to different situations and ensuring seamless integration into the daily lives of
individuals [31]. On the other hand, personalization empowers users by providing services specifically
customized to their needs and preferences, providing a more comfortable, convenient, and intuitive
living environment, ultimately enhancing the quality of life for all occupants [32].

Privacy is a vital aspect of Smart Living, as it helps establish trust and acceptance among users
[33]. Respecting occupants’ privacy by safeguarding their data and ensuring transparency in data
collection practices can significantly impact the adoption and success of HAR systems in various
living environments. Privacy concerns and ethical considerations are important when implementing
HAR systems in Smart Living environments. Ensuring the proper anonymization of data, gaining
consent from occupants, and providing transparency in data collection and usage is essential for
maintaining trust and user acceptance. Finally, data availability is a crucial dimension that ensures the
smooth functioning of HAR systems by providing access to the necessary information for real-time
decision-making and analysis [34]. A robust data infrastructure enables Smart Living solutions to
function effectively, adapt to changing circumstances, and deliver a truly intelligent and responsive
experience. By incorporating these dimensions into Smart Living solutions, we can create an ecosystem
where HAR-based applications work in harmony with the needs and preferences of occupants,
ultimately resulting in a more efficient, secure, and personalized living environment.

1.2.1. A Short Note on the Mining of Action

In academic literature, the meaning of the term "action" may vary depending on the context and
the authors’ perspective. Some scholars employ the terms "action" and "activity" interchangeably,
treating them as synonymous, while others make distinctions between the two.

For a subset of authors, a more structured meaning is assigned to the term "activity" than "action."
For instance, they consider the activity of cooking as a complex process consisting of a sequence of
more basic actions. Such actions include pouring water into a container, turning on the stove, waiting
for the water to boil, and pouring the hot water into a cup. In this view, activities are perceived as
interconnected actions contributing to a specific goal.

On the other hand, some authors ascribe even more basic meanings to the term "action." They
may classify actions as simple, everyday movements or positions, such as walking, sitting, or lying
down. In this perspective, actions are closely related to the concept of static or dynamic postures,
representing the various states of an individual’s body during different activities.

In the context of this review paper, the authors have opted to utilize the term "action" with a
broader connotation. The chosen definition encompasses a wide spectrum of meanings, ranging from
high-level activities, which may be influenced by the context, to more basic static or dynamic postures.
This inclusive approach to the term "action" allows for a comprehensive analysis and discussion in the
review, incorporating diverse perspectives and interpretations from the academic literature.

This review paper will comprehensively analyze the current state-of-the-art HAR within Smart
Living. The remainder of the paper is organized as follows: First, we delve into the existing review
works in the field, identifying the gaps and motivating the need for this comprehensive study. We
then describe the search and inclusion criteria for selecting the relevant literature. Section 3 presents
an overview of the common publicly available datasets used in the studies, followed by a discussion
of the widely used performance metrics for evaluating machine learning (ML) algorithms in Section 4.
Section 5 explores the various dimensions of HAR in Smart Living through the proposed framework.
This framework allows us to examine the interplay between different aspects of HAR and Smart Living.
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Section 6 presents a critical discussion addressing potential concerns and challenges, offering valuable
insights for researchers and practitioners. Finally, we conclude the paper in Section 7, summarizing
our findings and providing some closing considerations for future research and development in HAR
in Smart Living services and applications.

2. Review of Related Works and Rationale for This Comprehensive Study

Recent progress in DL methods for human activity recognition (HAR) has been surveyed by Sun et
al. [22], focusing on single-modality and multimodality methods. The need for large datasets, effective
fusion and co-learning strategies, efficient action analysis, and unsupervised learning techniques has
been emphasized. Saleem et al. [35] present a comprehensive overview of HAR approaches and trends,
proposing a HAR taxonomy and discussing benchmark datasets. They also identify open challenges
for future research, including high intra-class variations, inter-class similarities, background variations,
and multi-view challenges.

Challenges and trends in HAR and posture prediction are discussed by Ma et al. [36] discuss,
highlighting four main challenges: significant intra-class variation and inter-class similarity, complex
scenarios, long untrimmed sequences, and long-tailed distributions in data. They review various
datasets, methods, and algorithms and discuss recent advancements and future research directions.
Arshad et al. [23] examine the state of HAR literature since 2018, categorizing existing research and
identifying areas for future work, including less explored application domains like animal activity
recognition.

A comprehensive survey of unimodal HAR methods is provided by Singh et al. [37], classifying
techniques based on ML concepts and discussing differences between ML and DL approaches. Kong
and Fu [38] survey techniques in action recognition and prediction from videos, covering various
aspects of existing methods and discussing popular action datasets and future research directions.
Gu et al. [39] present a comprehensive survey on recent advances and challenges in HAR using DL,
examining various DL models and sensors for HAR and discussing key challenges.

Optimal ML algorithms, techniques, and devices for specific HAR applications are examined by
Kulsoom et al. [40], providing a comprehensive survey of HAR. They conclude that DL methods have
higher performance and accuracy than traditional ML approaches and highlight future directions,
limitations, and opportunities in HAR. Gupta et al. [41] present a comprehensive review of HAR,
focusing on acquisition devices, AI, and applications, and propose that the growth in HAR devices is
synchronized with the Artificial Intelligence (AI) framework. They also recommend that researchers
expand HAR’s scope in diverse domains and improve human health and well-being.

Bian et al. [42] present an extensive survey on sensing modalities used in HAR tasks, categorizing
human activities and sensing techniques and discussing future development trends in HAR-related
sensing techniques, such as sensor fusion, smart sensors, and novel sensors. Ige et al. [43]
survey wearable sensor-based HAR systems and unsupervised learning, discussing the adoption
of unsupervised learning in wearable sensor-based HAR and highlighting future research directions.
Najeh et al. [44] explore the challenges and potential solutions in real-time HAR using DL and
hardware architectures, analyzing various DL architectures and hardware architectures and suggesting
new research directions for improving HAR.

After reviewing the literature, it becomes evident that existing survey and review studies can be
broadly categorized into two groups: 1) those providing a comprehensive general overview of the
field and 2) those focusing on specific aspects such as ML, DL, sensing, and computer vision. However,
it is essential to note that, to the authors’ knowledge, there is a lack of research specifically targeting
Smart Living while thoroughly evaluating the existing literature on crucial dimensions essential for
Smart Living from the perspective of services and applications.

For this review, an extensive literature analysis was conducted by investigating 511 documents
found through a focused Scopus search. This search was constructed to include many pertinent papers
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by incorporating specific keywords related to HAR and Smart Living. The search employed the
following structure:

TITLE (action OR activity OR activities) AND TITLE (recognition OR classification OR classifying
OR recognize OR classified OR classifier OR detector OR detecting OR discriminating OR discrimination)
AND TITLE-ABS-KEY ("smart home" OR "smart building" OR "smart environment" OR "smart space"
OR "Smart Living" OR "smart city" OR "smart cities" OR "assisted living" OR "ambient intelligence" OR
"smart ambient") AND PUBYEAR > 2019.

The query sought articles featuring titles that incorporated terms associated with actions or
activities and their identification, categorization, or discovery. Additionally, the exploration was
narrowed to articles containing title-abstract keywords connected to a range of Smart Living scenarios,
including smart homes, smart buildings, smart environments, smart cities, and ambient intelligence,
among other examples. The query also emphasized publications released in 2020 or later, guaranteeing
that the analysis considered the latest developments in the domain. The primary factor for choosing
a paper for this review was its relevance to one or more of the aforementioned key aspects of Smart
Living. This strategy facilitated the assembly of an extensive and pertinent collection of literature,
laying the groundwork for a well-informed and perceptive assessment of HAR within the sphere of
Smart Living.

The papers obtained from the above query can be further classified based on the specific themes
they address. In particular, the following, possibly overlapped, categories emerge:

• Context Awareness
• Data Availability
• Interoperability
• Machine and Deep Learning
• Multimodality
• Personalization
• Privacy
• Real-time Processing
• Resource-Constrained Processing
• Sensing technologies
• Services and Applications

The categories listed above with their respective quantities are represented in Figure 2. The plot
reveals that the most prominent categories are Services and Applications, Machine and Deep Learning,
and Sensing Technologies. As said, ML, DL, and sensing have already received extensive coverage
in previous review works. Additionally, Interoperability, Multimodality, Real-Time Processing,
Resource-Constrained Processing, and Sensing Technologies have been thoroughly analyzed in the
previous review study by the authors [16].
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Figure 2. Distribution of research papers on key topics in Smart Living. Each bar represents the
quantity of papers focusing on a specific topic. It is important to note that the quantities of papers may
overlap, as individual papers can address multiple topics simultaneously.

This work aims to explore and analyze the concepts of Context Awareness, Data Availability,
Personalization, and Privacy, which have not been given much attention in previous reviews. Moreover,
the focus of this work is on services and applications that cover various subjects, as shown in Figure 3.
These subjects are crucial in creating a seamless and intelligent living environment. Here is a brief
overview of these aspects:

• Health Status Surveillance: Refers to monitoring and assessing an individual’s health-related
aspects such as food intake, lifestyle, well-being, physical activity, sleep, and the use of technology
like robots or mirrors to support healthcare or anomaly detection.

• Smart Interaction: Involves various forms of interactive communication between humans
and computers, including hand gestures, natural interaction, brain-computer interfaces, and
human-computer interaction.

• Ambient Assisted Living (AAL): Encompasses technologies and systems designed to support
independent living for older adults or individuals with specific needs, focusing on activities of
daily living, active and healthy living, as well as assistive and complex human activities.

• Security Surveillance: This relates to using surveillance systems to monitor and detect suspicious
or violent activities, ensuring safety and security in various environments.

• Health Hazard Surveillance: Involves the monitoring and identifying potential health hazards,
such as falls, anomalies, or dangerous situations, particularly in settings like bathrooms.

• Energy Management: Refers to strategies and technologies for efficient energy use, including
smart meters, energy-saving techniques, power consumption monitoring, and occupancy-based
management.

• Home/Building Automation: Involves the automation of various tasks and systems within
homes or buildings, utilizing ambient intelligence, intelligent appliances, or white goods (such as
household appliances).

• Smart Robotics: The field of robotics encompasses the development and application of robots in
various domains or tasks, enhancing automation and intelligent interaction.
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Figure 3. Percentage Distribution of services and applications in Smart Living. The pieplot visually
represents the percentage distribution of research papers focusing on specific services and applications
within the Smart Living domain.

3. Common Publicly Available Datasets

Numerous accessible public datasets are often employed for HAR; however, it is vital to
understand that these datasets may not fully address specific requirements for Smart Living services
and applications. A key consideration when choosing a dataset for Smart Living services and
applications is the kind of human action incorporated within the dataset. The human actions must be
pertinent to the Smart Living context and represent individuals’ everyday routines and tasks in their
homes, workplaces, or urban settings. This way, it is ensured that the HAR models derived from these
datasets cater to the distinct demands of Smart Living solutions.

Another essential factor to consider is the dataset’s subject diversity, including differences in age,
gender, and physical capabilities. A broader representation of human activities can be achieved with a
diverse group of subjects, which helps create more resilient and versatile HAR models that serve a
wider population and can adapt to various individuals and circumstances.

Additional aspects to consider when choosing a dataset for HAR in Smart Living are data quality,
the number of sensors utilized, the placement of these sensors, and the duration of recorded activities.
These factors can considerably influence the effectiveness and dependability of HAR models, making
it crucial to consider them when selecting the most appropriate dataset for a specific application.

In this review, we have meticulously chosen several pertinent datasets extensively used by the
research community for HAR studies. These datasets comprise: Opportunity [45], PAMAP2 [46],
CASAS: Aruba [47], CASAS: Cairo [48], CASAS: Kyoto Daily life [49], CASAS: Kyoto Multiresident
[50], CASAS: Milan [49], CASAS: Tokyo [51], CASAS: Tulum [49], WISDM [52], ExtraSensory [53],
MHEALTH [54], UCF101 [55], HMDB51 [56], NTU RGB+D [57], SmartFABER [58], PAAL ADL
Accelerometry [59], Houses: HA, HB, and HC. [60], UCI-HAR [61], Ordonez [62], Utwente [63],
IITR-IAR [64].

An overview of the different datasets used by the review works is provided in Table 1.
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Table 1. Common Publicly Available Datasets

Reference Name Sensors Subjects No / Type of
environment

Actions/Contexts

Roggen et al. [45] Opportunity Getting up, grooming, relaxing, preparing
and consuming coffee and a sandwich, and

cleaning up; Opening and closing doors,
drawers, fridge, dishwasher, turning lights

on and off, and drinking in different
positions.

12 Body-worn, object-attached,
ambient sensors (microphones,

cameras, pressure sensors).

Reiss and Stricker [46] PAMAP2 Lie, sit, stand, walk, run, cycle, Nordic
walk, iron, vacuum clean, rope jump,
ascend and descend stairs, watch TV,

computer work, drive car, fold laundry,
clean house, and play soccer.

9 Inertial Measuring Units (IMUs),
ECG.

Cook and Diane [47] CASAS: Aruba Movement from bed to bathroom, eating,
getting home, housework, leaving home,

preparing food, relaxing, sleeping, washing
dishes and working.

1 adult, 2 occasional visitors Environment sensors: motion, light,
door and temperature.

Cook et al. [48] CASAS: Cairo Bed (four different types), bed to toilet,
breakfast, dinner, laundry, leave home,

lunch, night wandering, resident1 work,
resident2 medicine.

2 adults, 1 dog Environment sensors: motion and
light sensors.

Cook and
Schmitter-Edgecombe [49]

CASAS: Kyoto Daily
life

Making a call, washing hands, cooking,
eating and washing the dishes.

20 Environment sensors: motion,
associated with objects, from the

medicine box, a flowerpot, a diary, a
closet, water, kitchen and telephone

use sensors.
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Table 1. Cont.

Reference Name Sensors Subjects No / Type of
environment

Actions/Contexts

Cook et al. [51] CASAS: Tokyo Working, preparing meals, and sleeping. 2 Environment sensors: motion, door
closure, light.

Weiss et al. [52] WISDM Walking, jogging, stairs, sitting, standing,
kicking a soccer ball, dribbling a basketball,

catch with a tennis ball, typing, writing,
clapping, brushing teeth, folding clothes,

eating (pasta, soup, sandwich, chips), and
drinking from a cup.

51 (undergraduate and
graduate university students
between the ages of 18 and

25)

Accelerometer and gyroscope
sensors, which are available in both

smartphones and smartwatches.

Singla et al. [50] CASAS: Kyoto
Multiresident

Fill medication dispenser, hang up clothes,
move couch and coffee table, sit on couch,

water plants, sweep kitchen floor, play
checkers, set out dinner ingredients, set

dining room table, read magazine, simulate
electric bill payment, gather picnic food,

retrieve dishes from cabinet, pack supplies
in picnic basket, pack food in picnic basket.

2 (pairs taken from 40
participants)

Environment sensors: motion, item,
cabinet, water, burner, phone and

temperature.

Cook and
Schmitter-Edgecombe [49]

CASAS: Milan Bathing, bed to toilet, cook, eat, leave home,
read, watch TV, sleep, take medicine, work

(desk, chores), meditation.

1 woman, 1 dog, 1 occasional
visitor

Environment sensors: motion,
temperature, door closure.

Vaizman et al. [53] ExtraSensory Sitting, walking, lying, standing, bicycling,
running outdoors with friends, talking with

friends, exercise at the gym, drinking,
sitting at home watching TV, traveling on a

bus while standing.

60 Accelerometers, gyroscopes, and
magnetometers sensors, which are
available in both smartphones and

smartwatches.

Banos et al. [54] MHEALTH Standing still, sitting and relaxing, lying
down, walking, climbing stairs, waist

bending forward, frontal elevation of arms,
knees bending (crouching), cycling, jogging,

running, jump front & back

10 Accelerometers, gyroscopes,
magnetometers, EEG.
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Table 1. Cont.

Reference Name Sensors Subjects No / Type of
environment

Actions/Contexts

Soomro et al. [55] UCF101 N. 101 action classes divided into five types:
Human-Object Interaction, Body-Motion

Only, Human-Human Interaction, Playing
Musical Instruments, Sports.

N.A. RGB video clips (25 FPS, 320x240
pixels).

Kuehne et al. [56] HMDB51 N. 51 action categories grouped into five
types: general facial actions, facial actions

with object manipulation, general body
movements, body movements with object

interaction, and body movements for
human interaction.

N.A. RGB video clips.

Shahroudy et al. [57] NTU RGB+D N. 40 daily actions (e.g., drinking, eating,
reading), 9 health-related actions (e.g.,

sneezing, staggering, falling down), and 11
mutual actions (e.g., punching, kicking,

hugging).

40 3 Microsoft Kinect v2 sensors
located at the same height but from

three different horizontal angles:
-45°, 0°, and +45°.

Riboni et al. [58] SmartFABER Preparing food, consuming meal, taking
medicines, opening and closing of drawers,
fridge and cabinet doors, use of appliances,
non-critical anomalies, critical anomalies.

21 elderly individuals in a
smart home laboratory (7

healthy seniors, and 14 with
early symptoms of MCI).

Presence, contact, pressure, RFID,
magnetic.

Climent-Perez et al. [59] PAAL ADL
Accelerometry

Six broad categories: eating and drinking,
hygiene/grooming, dressing and

undressing, miscellaneous and
communication, basic health indicators,

and house cleaning.

52 (26 women, 26 men) Wrist-worn device with
accelerometer.

van Kasteren et al. [60] Houses: HA, HB, and
HC.

Sleeping, leaving the house, toileting,
showering, having breakfast, having

dinner, and drinking

1 Reed switches, pressure mats,
mercury contacts, passive infrared

(PIR), float sensors.

Anguita et al. [61] UCI-HAR Standing, sitting, laying down, walking,
walking downstairs, and walking upstairs.

30 Accelerometers and gyroscopes
embedded in a Samsung Galaxy S II

smartphone.
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Table 1. Cont.

Reference Name Sensors Subjects No / Type of
environment

Actions/Contexts

Ordonez et al. [62] Ordonez Leaving, toileting, showering, sleeping,
breakfast, dinner, drink, idle/unlabeled,
lunch, snack, spare time/tv, grooming.

N.A. PIR sensors (motion detection), reed
switches (open/close states of doors

and cupboards), float sensors
(flushing of toilets).

Shoaib et al. [63] Utwente Walking, jogging, biking, walking upstairs,
walking downstairs, sitting, standing,

eating, typing, writing, drinking coffee,
giving a talk, smoking.

10 Accelerometer, a gyroscope, and
linear acceleration sensors located

on the wrist and in the pocket.

Imran et al. [64] IITR-IAR Clapping, crouching, hopping, running,
walking, waving, dropping object,

carrying/pointing a gun, picking up object,
recording video, clicking selfie, throwing

object, chasing, fighting, handshaking,
hugging, kicking, passing object, punching,

pushing.

35 Cameras.
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4. Performance Metrics

Classification algorithms are evaluated using various metrics. Accuracy (A), Recall (R), Precision
(P), F1-score (F1S), macro-F1-score (mF1S), and Specificity (SP) are some commonly used ones.
Accuracy (A) is determined by the formula

A =
TP + TN

TP + TN + FP + FN
. (1)

This metric measures the ratio of correct predictions made by the model to the total number of
predictions made. Recall (R), also known as sensitivity or true positive rate, measures the proportion
of relevant instances retrieved. It is determined by the formula

R =
TP

TP + FN
. (2)

Precision (P) represents the proportion of true positives among the predicted positives. It is
determined by the formula

P =
TP

TP + FP
. (3)

The F1-score (F1S) is the harmonic mean of precision and recall, balancing their trade-offs. It is
calculated using the formula

F1S = 2 × P × R
P + R

. (4)

The macro-F1-score (mF1S) calculates the average of the F1-scores for each class, treating all
classes equally regardless of their size. It is determined using the formula

mF1S =
1
N

N

∑
i=1

F1Si. (5)

Lastly, Specificity (SP) is determined by the formula

SP =
TN

TN + FP
(6)

and measures the proportion of true negatives among the predicted negatives, reflecting the model’s
ability to correctly identify negative instances.

Regarding the symbols above, TP, TN, FP, and FN commonly represent different outcomes in a
binary classification problem. They are defined as follows:

• TP: True Positives - the number of positive cases correctly identified by a classifier.
• TN: True Negatives - the number of negative cases correctly identified as negative by a classifier.
• FP: False Positives - the number of negative cases incorrectly identified as positive by a classifier.
• FN: False Negatives - the number of positive cases incorrectly identified as negative by a classifier.

5. HAR in Smart Living Services and Applications

The analytical framework presented above provides a comprehensive perspective on the various
dimensions of HAR in Smart Living. However, it is crucial to analyze each dimension critically to
ensure that the development of intelligent living environments addresses potential concerns and
challenges. Starting from the corpus of papers obtained with the query indicated above, the most
representative papers of the dimensions analyzed, namely Context Awareness, Data Availability,
Personalization, and Privacy, have been selected. This selection process ensures that the following
state-of-the-art examination is based on highly relevant and significant works in HAR.

To facilitate a systematic and organized presentation, each section in the following schematically
reports the selected works for each dimension. Dedicated tables provide concise and structured
information about each paper, including the methodology employed, the dataset used, the
performances achieved, the sensors adopted, and the most prominent actions considered in each
work. These tables not only enhance readability but also serve as a quick reference for understanding
the critical aspects of each work.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 June 2023                   doi:10.20944/preprints202306.0672.v1

https://doi.org/10.20944/preprints202306.0672.v1


15 of 40

Moreover, the selected papers also focus on identifying and analyzing the actions most considered
in the context of HAR in Smart Living. By prioritizing these actions, researchers can gain insights into
the specific human activities that have garnered significant attention in the literature. This approach
enables a deeper understanding of the current research landscape and highlights areas that require
further investigation and improvement.

By adopting this comprehensive approach, this paper aims to provide a detailed overview of the
state of the art in HAR for Smart Living services and applications. Including the most representative
papers and providing essential details about each work’s methodology, dataset, performances, sensors,
and prioritized actions contribute to a more thorough understanding of the advancements and
challenges in this evolving field.

5.1. Context awareness

Context awareness is a key aspect in designing Smart Living environments, where systems
recognize, interpret, and respond to various contextual factors, including time, location, user
preferences, and activities. By understanding and adapting to users’ contexts, these systems can
enhance user experience, promote independence, and facilitate convenience [65–70]. Some studies
have focused on improving feature extraction and resolving activity confusion by using marker-based
Stigmergy, a concept derived from social insects that explains their indirect communication and
coordination mechanisms (Xu et al. [65]). This approach allows for efficient modeling of daily activities
without requiring sophisticated domain knowledge and helps protect the privacy of monitored
individuals.

Other research has explored context awareness in HAR for multitenant smart home scenarios,
developing methodologies that constrain sensor noise during human activities (Li et al. [66]). By
integrating the spatial distance matrix (SDM) with the Contribution Significance Analysis (CSA)
method and the broad time-domain CNN algorithm, these approaches ensure accurate and efficient
HAR systems. In multi-user spaces, researchers have addressed the challenges of complex sequences
of overlapping events by employing transformer-based approaches, such as AR-T (Attention-based
Residual Transformer), which extracts long-term event correlations and important events as elements
of activity patterns (Kim [67]). This method has shown improved recognition accuracy in real-world
testbeds.

Ehatisham-ul-Haq et al. [68] propose a two-stage model for activity recognition in-the-wild (ARW)
using portable accelerometer sensors. By incorporating the recognition of human contexts, the model
provides a fine-grained representation of daily human activities in natural surroundings. Despite its
limitations, the proposed method has achieved reasonable accuracy. Buoncompagni et al. [69] present
Arianna+, a framework for designing networks of ontologies that enable smart homes to perform
HAR online. This approach focuses on the architectural aspects of accommodating logic-based and
data-driven activity models in a context-oriented way, leading to increased intelligibility, reduced
computational load, and modularity.

Lastly, Javed et al. [70] explore context awareness in HAR systems for sustainable smart cities.
They propose a framework for HAR using raw readings from a combination of fused smartphone
sensors, aiming to capitalize on the pervasive nature of smartphones and their embedded sensors
to collect context-aware data. The study reports promising results in recognizing human activities
compared to similar studies, achieving an accuracy of 99.43% for activity recognition using Deep
Recurrent Neural Network (DRNN).

Moreover, context awareness plays a critical role in the development of intelligent, Smart Living
environments, and various research efforts have explored different methodologies and approaches to
improve HAR systems by incorporating context-aware information. These advances contribute to the
development of sustainable smart cities and healthier societies. The works discussed in this section are
summarized in Table 2.
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Table 2. Context awareness.

Reference Methods Dataset/s Performance Sensor/s Actions

Xu et al. [65] Marker-based
Stigmergy, DwN.

CASAS (Aruba) R=0.9669, P=0.9598,
F1S=0.9633.

Environment sensors (CASAS). Cooking, watching
TV, reading, and

sleeping

Li et al. [66] Spatial Distance
Matrix, Contribution
Significance Analysis,
Time-Domain CNN.

CASAS (Cairo, Milan,
Kyoto)

A=0.9708, P=0.9535,
R=0.9611, F1S=0.9571.

Environment sensors (CASAS). All activities included
in Cairo, Milan and

Kioto datasets.

Kim [67] Activity Recognition
Transformer.

CASAS, Self-collected A=0.955, P=0.962, R=0.955,
F1S=0.954.

Environment sensors (CASAS),
brightness, speaker recognition,
sound level, light use, person

presence, seat occupying.

Chatting, seminar,
technical discussion,
and group study in
the seminar room
testbed, and move
furniture, play a

game, prepare for
dinner, and pack a

picnic.

Ehatisham-ul-Haq et
al. [68]

Supervised Machine
Learning, Boosted
Decision Tree (DT),

Neural Network
Classifiers.

ExtraSensory A=0.8943 (avg.).%. Smartphone and smartwatch
accelerometers

Sitting, walking,
lying, standing,
running, and

bicycling.

Buoncompagni et al.
[69]

Ontology networks,
logic-based reasoning.

CASAS F1S=0.78 (min.), F1S=0.98
(max).

Refer to CASAS (no further details
provided).

Refer to CASAS (no
further details

provided).

Javed et al. [70] Deep recurrent neural
network (DRNN),
Recurrent neural
networks (RNNs),

Smart city, Internet of
things (IoT).

Self-collected involving
12 subjects.

A=0.9943 (max.). Accelerometer, gyroscope,
magnetometer in smartphone and

Google Fit.

In a vehicle, on foot,
still, tilting, walking.
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Table 2. Cont.

Reference Methods Dataset/s Performance Sensor/s Actions

Ehatisham et al. [71] Decision Tree (DT),
Random Forest (RF),

and Neural Networks
(NN).

ExtraSensory. A=0.83 Accelerometers, gyroscopes. All activities of
ExtraSensory

datasets.

Ceron et al. [72] K-Nearest Neighbor
(KNN), Naive Bayes
(NB), and Hoeffding

Tree (HT).

Self-collected, 22
participants (11 young
people, and 11 older

adults)

F1=0.88 IMU placed in the participants’s
shoe, and Bluetooth low energy
beacons (BLE) deployed in the

indoor environment.

Walking, Climbing,
Being still, Using jug,

Sweeping, Using
Bathroom sink, Using

toilet.

Srihari et al. [73] Deep learning based
Spatio-temporal

recognition,
frame-based ROI

detection.

IITR-IAR. A=0.985 (avg.). FLIR T1020 camera, FLIR ONE
thermal camera.

All activities of
IITR-IAR dataset.

Mohamed et al. [74] Adaptive Profiling
Model using
multi-label

classification, Label
Combination(LC)-Random

Forest (RF).

CASAS. A=0.99 (avg.) Ambient sensor data of the CASAS
datasets.

Medication dispenser,
reading magazine,

sweeping floor,
setting Table for
Dinner, reading

magazine, gathering
picnic food,

retrieving dishes
from cabinet, packing

supplies for picnic
food, hanging clothes,

move furniture,
watering plants,
playing checkers,

prepare dinner, pay
bills, retrieving

dishes from
cabinet,packing

picnic food.
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Table 2. Cont.

Reference Methods Dataset/s Performance Sensor/s Actions

Sridharan et al. [75] Sequence matching,
DTW algorithm.

Self-collected. A=0.918 (avg.). Low power transmitting wearable
beacon with embedded sensors

clipped on to the shirt collar.

Five micro-activities:
Sitting on Centre of

Couch, Sitting on Left
of Couch, Sitting on

Right of Couch,
Using the Shower,

Using the Bathroom
Sink. Walking routes:
Bathroom to Kitchen

Fridge, Kitchen
Fridge to Bathroom,

Kitchen Fridge to
Sink, Couch to Front
Door, Couch No.2 to

Front Door.
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5.2. Data Availability

Data availability is a major challenge in developing robust HAR systems for Smart Living
services and applications. These systems require accurate and diverse data to learn the intricacies
of human movements and interactions, yet acquiring sufficient real-world data for training can be
time-consuming and expensive. Moreover, publicly available datasets may not adequately represent
the diversity of human actions or the specific contexts in which Smart Living services and applications
operate. To address these limitations, researchers employ various strategies, such as data augmentation,
synthetic data generation, simulation, and transfer learning [76,77].

Data augmentation and synthetic data generation techniques help enhance the diversity of
training data and mimic real-world situations, enabling models to generalize better and perform well
on unseen data.

For instance, Vishwakarma et al. [76] developed SimHumalator, a simulation tool for generating
human micro-Doppler radar data in passive WiFi scenarios. Nan and Florea [77] employed data
augmentation techniques, such as uniform sampling, random movement, and random rotation, to
artificially generate new samples for skeleton-based action recognition.

Annotation of collected data is another critical issue, as it is labor-intensive, time-consuming,
and often requires domain experts. To mitigate these annotation difficulties, researchers are exploring
the use of unsupervised and semi-supervised learning techniques, which take advantage of the vast
amounts of unlabeled data to improve the performance of HAR systems without the need for manual
annotation [78,79]. For example, Riboni et al. [78] presented an unsupervised technique for activity
recognition in smart homes. Their approach utilized HMMs and employed a knowledge-based strategy
incorporating semantic correlations between event types and activity classes. The unsupervised method
demonstrated a high level of accuracy, comparable to that of the supervised HMM-based technique
reported in existing literature. Additionally, Dhekane et al. [79] proposed a real-time annotation
framework for Activity Recognition, leveraging the Change Point Detection (CPD) methodology.

Semantic and ontology-based approaches can significantly address the data availability problem
by facilitating the annotation process, supporting data integration from multiple sources, and enabling
reasoning and inference [80]. These approaches can streamline the annotation process by defining
a structured and consistent vocabulary for describing human actions, reducing ambiguities and
inconsistencies in annotation. Moreover, ontologies can automate certain aspects of the annotation
process, reducing the time and effort required by human annotators. By establishing a common
semantic framework, researchers can more easily combine and compare datasets, leading to improved
performance and generalization in HAR models. Another advantage of semantic and ontology-based
approaches is their ability to support reasoning and inference. By capturing relationships and
hierarchies between actions, objects, and contexts, these approaches can enable HAR systems to
make inferences about unseen or underrepresented actions based on their similarities to known actions
[80]. This can fill gaps in the training data and support the development of more robust models even
when faced with limited data.

Leveraging ubiquitous sensing devices, such as smartphones, is another way to address data
availability. For example, Liaqat et al. [81] proposed an ensemble classification algorithm that uses
smartphone data to classify different human activities. This approach significantly expands the
potential for widespread adoption of HAR systems, ensuring more people, especially older adults,
can benefit from ambient assisted living solutions for improved monitoring and support. Moreover,
data availability remains a significant challenge in the development of HAR systems for Smart Living
services and applications. Researchers are adopting various strategies, including data augmentation,
synthetic data generation, simulation, transfer learning, unsupervised and semi-supervised learning,
semantic and ontology-based approaches, and the use of ubiquitous sensing devices to overcome this
challenge. By enhancing the diversity and quality of training data, these approaches help improve the
performance and generalization of HAR models.

The works discussed in this section are summarized in Table 3.
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Table 3. Data Availability

Reference Methods Dataset/s Performance Sensor/s Actions

Vishwakarma
et al. [76]

Human micro-Doppler
signatures, motion capture,

CLEAN algorithm,
spectrograms.

Synthetically
generated.

A=0.694 (min.),
A=0.9784 (max.).

WiFi (simulated), Kinect
(motion capture).

Rotating body, kicking, punching,
grabbing an object, walking back/forth
in front of the radar, standing up from
a chair, sitting down on a chair, human

walk to fall, standing up from the
ground to walk.

Riboni et al.
[78]

Hidden Markov Models
(HMMs), Viterbi Algorithm,

OWL 2 Ontology.

CASAS A=0.7213. Passive Infrared Motion
Sensors, Temperature
Sensors, Door Sensors,
Furniture Sensors, Item

Sensors.

Fill a medication dispenser, hang up
clothes, move the couch and coffe table,
sit on the couch and read, water plants,
sweep the kitchen floor, play a game of
checkers, set out ingredient for dinner,
set dining room table, pay an electric
bill, prepare a picnic basket, retrieve
dishes, pack supplies in the picnic

basket.

Dhekane et al.
[79]

Similarity-based Change Point
Detection (S-CPD), Sensor

Distance Error (SDE), Feature
Extraction, Classification, Noise

Handling, Annotations.

CASAS (Aruba,
Kyoto, Tulum, and

Milan).

A=0.9534 (min.),
A=0.9846 (max.).

Motion, light, door and
temperature, associated with

objects.

All activities included in Aruba, Kyoto,
Tulum, and Milan.

Zilelioglu et
al. [82]

Semi-supervised generative
adversarial networks (GANs)
using temporal convolutions.

PAMAP2,
Opportunity.

A=0.90. Wearable IMUs,
objectsequipped with
sensors, and ambient

sensors.

All activities of PAMAP2,
Opportunity-locomotion, and LISSI

HAR dataset.
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Table 3. Cont.

Reference Methods Dataset/s Performance Sensor/s Actions

Nan et al. [77] Graph Convolutional Networks
(GCN), Temporal

Convolutional Networks
(TCN).

NTU RGB+D A=0.8273 (min.),
A=0.9825 (max.).

Microsoft Kinect v2 sensors. Drinking, eating, reading, writing,
brushing teeth, sneeze/cough,
staggering, falling, touch head

(headache), touch chest
(stomachache/heart pain), touch back

(backache), touch neck (neckache),
nausea or vomiting condition, use a

fan (with hand or paper)/feeling
warm, punching/slapping another

person, kicking another person,
pushing another person, etc.

Civitarese et
al. [80]

OWL 2 ontology, Markov Logic
Network (MLN), Hidden
Markov Model (HMM),

probabilistic and ontological
reasoning, semantic

correlations, temporal
reasoning.

CASAS,
SmartFABER.

A=0.61 (min.),
A=0.80 (max.),

F1S=0.67 (min.),
F1S=0.76 (max).

Presence, contact, pressure,
RFID, magnetic, motion,
light, door, temperature.

Fill medication dispenser, watch DVD,
water plants, answer the phone,

prepare birthday card, prepare soup,
clean, choose outfit, taking medicines,

cooking, eating.

Liaqat et al.
[81]

Random forest, KNN, logistic
regression (LR), multilayer

perceptron (MLP), decision tree,
quadratic discriminant analysis

(QDA), SVM, convolutional
neural network, and long

short-term memory (LSTM).

Self-collected
involving 30 subjects.

A=0.98 (max). Accelerometer, gyroscope,
and magnetometer in the

smartphone.

Standing, sitting,laying, walking,
walking downstairs and walking

upstairs.
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5.3. Personalization

Personalization is crucial in Smart Living technologies, particularly in the realm of HAR.
Recognizing individual uniqueness when performing specific actions can lead to improved recognition
accuracy and personalized experiences, overcoming the challenges of a “one-size-fits-all” approach
[83]. Researchers have found that by identifying similarities between a target subject and individuals
in a training set, emphasizing data from subjects with similar attributes can enhance the overall
performance of HAR models [84].

CNNs have been successful in HAR due to their ability to extract features and model complex
actions. However, generic models often face performance deterioration when applied to new subjects.
Studies have proposed personalized HAR models based on CNN and signal decomposition to address
this challenge, achieving better accuracy than state-of-the-art CNN approaches with time-domain
features [83]. In healthcare applications, personalization has been explored for classifying normal
control individuals and early-stage dementia patients based on Activities of Daily Living (ADLs).
Studies have demonstrated that personalized models, considering individual cognitive abilities, exhibit
higher accuracy than non-personalized models, underlining the importance of personalization in
classifying normal control and early-stage dementia patients [85].

Several studies have proposed novel approaches for sensor-based HAR that focus on
personalization by maintaining the ordering of time steps, crucial for accurate and robust HAR systems.
They have introduced network architectures combining dilated causal convolution and multi-head
self-attention mechanisms, offering a more personalized and efficient solution for sensor-based HAR
systems [86]. Researchers have also explored personalized approaches for HAR within smart homes
by utilizing a multilayer perceptron (MLP) neural network. The proposed method adapts to individual
users’ patterns and habits, achieving high recognition accuracy across all activity classes [87]. Recent
work has focused on addressing the challenges associated with recognizing complex human activities
using sensor-based HAR.

By exploring hybrid DL models combining convolutional layers with Recurrent Neural Network
(RNN)-based models, researchers have demonstrated the potential of these models to contribute
significantly to personalization in various applications involving wearable sensor data [88].

To address the challenge of personalization in sensor-based HAR, particularly in healthcare
applications, studies have proposed unsupervised domain adaptation approaches that allow sharing
and transferring of activity models between heterogeneous datasets without requiring activity labels
for the target dataset. This approach enhances the personalization aspect of activity recognition models,
allowing adaptation to new, unlabeled datasets from different individuals or settings [89].

Furthermore, personalization plays a vital role in enhancing the effectiveness and efficiency of
HAR models. By considering individual uniqueness and utilizing various techniques such as CNNs,
RNN-based models, and unsupervised domain adaptation, researchers have made significant strides
in creating more tailored and accurate HAR systems for Smart Living and healthcare applications.

The works discussed in this section are summarized in Table 4.
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Table 4. Personalization

Reference Methods Dataset/s Performance Sensor/s Actions

Gholamiangonabadi
et al. [83]

Stationary Wavelet Transform,
Empirical Mode Decomposition

(EMD), Ensemble EMD.

MHEALTH, WISDM. A=0.912 (avg.,
MHEALTH), A=0.576

(avg., WISDM).

Accelerometers, gyroscopes,
magnetometers.

All activities of MHEALTH and
WISDM datasets.

Kwon et al.
[85]

Personalized anomaly detection
criteria, MMSE score,

Shapiro–Wilk test, Wilcoxon
rank-sum test, Spearman

correlation analysis, random
forest.

Self-collected, 13
participants (7

healthy seniors, 6
early-stage
dementia).

A=0.912 Environmental sensors
(installed on household
appliances and various
locations): door sensors,

motion sensors,
temperature-humidity

sensors, vibration sensors,
lidar sensors, and smart

plugs.

Using the telephone, shopping,
preparing food/cooking, household

chores, using transportation, walking
outdoors, taking medications,

managing finances, grooming, using
household appliances.

Hamad et al.
[86]

Dilated causal convolution,
multi-head self-attention

mechanisms.

Houses, Ordonez,
UCI-HAR.

F1S=0.7393 (min.),
F1S=0.9224 (max.).

Embedded binary sensors,
inertial wearable sensors.

All activities from used datasets (see
Houses, Ordonez, and UCI-HAR

datasets).

Gorjani et al.
[87]

Multilayer perceptron (MLP)
neural network.

Self-collected. A=0.98 (avg.). Two individual wearable
gadgets based on

STMicroelectronics
development boards with
3-axis magnetometer, 3D

accelerometer, and 3D
gyroscope worn on wrist-

and ankle-worn.

Climbing down the stairs, Climbing up
the stairs, Using a computer, Relaxing,
Running, Standing, Vacuum cleaning,

Walking, Writing using a pen.

Mekruksavanich
et al. [88]

Gate recurrent unit (GRU),
bidirectional GRU (BiGRU),

CNN BiGRU, LSTMs, BiLSTMs.

Utwente, PAMAP2,
WISDM.

A=0.8209 (min),
A=0.9878 (max.),
P=0.8625 (min),
P=1.0000 (max),
R=0.9110 (min.),
R=0.9889 (max),

F1S=0.8561 (min.),
F1s=1.0000 (max.).

Accelerometer,
magnetometer, and
gyroscope in two

smartphones worn in right
pants pockets and on right

wrists (emulating a
smartwatch).

Walking, standing, jogging, sitting,
biking, walking upstairs/downstairs,

typing, writing, drinking, talking,
smoking, eating, lying, running,

cycling, vacuum cleaning, ironing,
brushing teeth.
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Table 4. Cont.

Reference Methods Dataset/s Performance Sensor/s Actions

Sanabria et al.
[89]

Ensemble learning, Variational
autoencoder, feature alignment.

Houses (HA, HB,
HC), CASAS (Aruba,

Twor).

F1S=0.547 (min.),
F1S=0.917 (max.).

Wireless motion sensor,
passive infrared (PIR),

switch, pressure sensors.

Leaving house, toileting, showering,
having breakfast, having dinner, and
drinking, meal preparation, eating,

working, sleeping, bed to toilet
transition, housekeeping.

Ganesh et al.
[90]

Random Forest Classifier. Self-collected, 4 male
subjects.

A=0.989. RGB camera. gym activities:push-up, squat, plank,
forward lunge, and sit-up.
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5.4. Privacy

Privacy concerns in HAR have been addressed through two primary aspects: sensor choice
and data security. Researchers have focused on exploring sensing modalities that do not capture
privacy-sensitive information. Device-free sensing approaches have emerged as a viable alternative
to intrusive body-worn or ambient-installed devices, with examples such as WiFi and radar-based
sensors [91–94]. Privacy-preserving techniques have also been developed for traditional audio and
video-based methods, using inaudible frequencies or occluding person data [95–97]. Studies have
demonstrated the importance of contextual information in HAR and its potential for preserving privacy
without sacrificing performance [97].

Researchers have also developed privacy-preserving HAR systems using low-resolution infrared
array sensors, showcasing promising recognition accuracy [98]. Furthermore, inaudible acoustic
frequencies have been explored for daily activity recognition, resulting in privacy-preserving accuracies
of up to 91.4% [95]. Data security has been addressed through local training via federated architecture,
preventing data from being sent to third parties [99]. Detection of spoofing attacks in video replay and
vulnerability to adversarial attacks in video and radar data have also been investigated [100,101].

Diversity-aware activity recognition frameworks based on federated meta-learning architecture
have been proposed, which preserve privacy-sensitive information in sensory data and demonstrate
competitive performance in multi-individual activity recognition tasks [99]. Studies have also
revealed radar-based CNNs’ vulnerability to adversarial attacks and a connection between adversarial
optimization and interpretability [100]. Lightweight DL-based algorithms capable of running alongside
HAR algorithms have been developed to detect and report cases of video replay spoofing [101].

Researchers have proposed novel methodologies for explainable sensor-based activity recognition
in smart-home environments, transforming sensor data into semantic images while preserving privacy
[102]. Federated learning has also been leveraged to develop personalized HAR frameworks, allowing
training data to remain local and protecting users’ privacy [103]. The studies collectively contribute
to addressing privacy concerns and advancing HAR research. In this section, privacy concerns in
HAR have been addressed by focusing on sensor choice and data security. Researchers have explored
device-free sensing approaches that do not require intrusive sensors and developed privacy-preserving
techniques for traditional audio and video-based methods. Contextual information has been shown to
play a crucial role in HAR performance and privacy preservation. Data security has been enhanced
through federated learning and local training, reducing the need to share data with third parties.
Research has also investigated vulnerability to adversarial attacks, spoofing detection, and the
connection between adversarial optimization and interpretability. Innovative methodologies have
been developed to provide explainable activity recognition while preserving privacy in smart-home
environments. Federated learning has been employed to create personalized HAR frameworks that
protect users’ privacy. These studies collectively represent the state-of-the-art in addressing privacy
concerns in HAR and pave the way for advancements in the field, ensuring that users’ privacy is
maintained while delivering reliable recognition performance.

The works discussed in this section are summarized in Table 5.
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Table 5. Privacy

Reference Methods Dataset/s Performance Sensor/s Actions

Shen et al.
[99]

Federated Meta-Learning,
CNN-based attention module,

cluster-specific features.

Two self-collected
datasets with 30 and

48 participants.

A=0.8395 (min.),
A=0.9348 (max.),

F1S=0.7836 (min.),
F1S=0.9037 (max.).

Motion-reactive sensors such
as accelerometer, gyroscope,
linear acceleration, gravity,

rotation vector, and
magnetic field sensors, as

well as sensors for location,
phone state, temperature,

atmospheric pressure,
humidity, proximity, WIFI

network, running
application, screen status,

flight mode, battery charge,
battery level, doze modality,
headset plugged in, audio

mode, music playback,
audio from the internal mic,
notifications received, touch
event, and cellular network

info.

Housework, self-care, eating, study,
lesson, social life, watching TV shows

or movies, social media usage,
traveling, coffee break, phone calling
or chat, reading or listening, hobbies,

work, and rest/nap.

Yin et al. [98] Butterworth filter, LSTM Self-collected
involving one subject.

A=0.98287 (avg). Low-resolution (8x8)
infrared array.

Lying, standing, sitting, walking, and
empty.

Iravantchi et
al. [95]

Raspberry Pi, infrasound
frequencies, Fast Fourier

Transform, Principal
Component Analysis, Random

Forest Classifer.

Self-collected in three
homes and four

commercial
buildings.

A=0.914 (avg). Microphones 127 everyday household and
workplace objects.

Climent-Pérez
et al. [104]

Many-objective evolutionary
algorithm.

PAAL ADL
Accelerometry.

A=0.68 Wrist-worn devices
equipped with
accelerometers.

All activities of PAAL v2.0 dataset

Zhang et al.
[105]

CNN. Self-collected. A=0.90. off-the-shelf FMCW radar
operating at C-band (5.8

GHz).

walking, sitting down, standing up,
picking up an object, drinking water,

and falling.
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Table 5. Cont.

Reference Methods Dataset/s Performance Sensor/s Actions

Beaulieu et al.
[106]

Deep learning model
combining EfficientNetB0 and
LSTM neural networks using

transfer learning and
minimalist data pre-processing.

Self-collected, 10
participants.

A=0.655. three XeThru X4M200
Ultra-Wideband (UWB)

radars.

Drinking, Sleeping, Putting on Jacket,
Cleaning, Cooking,Making Tea, Doing

the Dishes, Brushing teeth, Washing
hands, Reading, Eating, Walking,

Putting on Shoes, Taking Medication,
Using Computer.

Shang et al.
[107]

LSTM-CNN. Self-collected, 5
participants in a

classroom.

A=0.941. WiFi signal transmitter and a
Channel State Information

(CSI) receiver.

two static movements of standing and
sitting, and three dynamic movements
of falling, standing up and stepping.

Yan et al. [97] Inflated 3D ConvNet,
Mask-Residual Convolutional

Network (RCN).

UCF101, HMDB51. A=0.611 (min.),
A=0.931 (max.).

RGB camera All activities included in UCF101 and
HMDB51 datasets.

Arrotta et al.
[102]

Explainable AI, Grad-CAM,
LIME, Model Prototypes,

CNNs.

Self-collected,
CASAS.

F1S=0.90 (avg.,
Self-collected),
F1S=0.80 (avg.,

CASAS)

Magnetic sensors (doors and
drawers), pressure mats,
smart-plugs, and inertial
sensor in smartwatches.

Answering phone, clearing table,
cooking a hot meal, eating, entering

home, leaving home, making a phone
call, cooking a cold meal, setting up

table, taking medicines, working,
washing dishes, watching TV.

Yu et al. [103] Federated learning,
semi-supervised online

learning.

Self-collected
involving 15 subjects,

UCI-HAR.

A=0.8169 (avg.,
Self-collected),
A=0.9268 avg.,

(HAR-UCI),
F1S=0.7998 (avg.,

Self-collected)F1S=0.9232
(avg., UCI-HAR).

Self-collected: accelerometer,
gyroscope, and

magnetometer on 7 body
parts, including chest, one
forearm, head, shin, one

thigh, one upper arm and
waist; UCI-HAR:

accelerometer and
gyroscope, 3-axial linear
acceleration and 3-axial

angular velocity of a
smartphone on the waist.

Running, standing, lying, sitting,
walking, jumping, climbing stairs
down and up, walking upstairs,

downstairs, sitting, standing, laying.
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6. Smart Living Services and Applications

HAR systems have shown great potential in enhancing Smart Living services and applications,
spanning diverse areas such as Assisted Living, Health Status Surveillance, Health Hazard Surveillance,
Energy Management, Security Surveillance, and Natural Interaction. These applications aim to improve
the lives of seniors, monitor health conditions, optimize energy consumption, and enhance security
across various settings by utilizing cutting-edge ML techniques, sensor data, and innovative strategies
like radar phase information and WiFi-based recognition [108,109].

HAR systems have been particularly effective in Assisted Living applications, improving the
quality of life for elderly individuals and those with chronic conditions, while supporting healthcare
professionals and caregivers in providing more effective care [19,108]. For instance, HAR has been
used to monitor the daily routines of older persons and detect deviations in their behavior, as well as
to recognize fall activities and notify caregivers or medical professionals during emergencies [109,110].
HAR systems can also identify ADLs in smart home environments and provide valuable information
about older adults’ health conditions to family members, caretakers, or doctors, helping to adapt care
plans as needed [19].

Health Status Surveillance plays a significant role in Smart Living services and applications,
addressing the needs of an aging population and patients with neurodegenerative disorders. ML
and signal processing techniques, such as Support Vector Machines (SVMs) and Random Decision
Forest classifiers, can be employed to disaggregate domestic energy supplies and assess ADLs [111].
Preventive healthcare can also be supported by recognizing dietary intake using DL models like
EfficientDet [112] and monitoring physical activity through smartphone accelerometer sensor data and
DL models [113].

Health Hazard Surveillance is essential for the well-being and safety of elderly populations in
Smart Living services and applications. HAR systems can help monitor older adults’ daily activities,
identify potential hazards, and alert caregivers or medical professionals in emergencies. This approach
allows for timely intervention and can prevent the exacerbation of health conditions or accidents,
ensuring a safer environment for seniors [114,115].

Energy management in smart homes and buildings can be improved by incorporating HAR into
Smart Living services and applications. By understanding and monitoring human behavior, these
systems can optimize energy consumption while maintaining comfort for the occupants. HAR can
be employed to optimize energy consumption in Heating, Ventilation, and Air Conditioning (HVAC)
systems [116] and in Building Energy and Comfort Management (BECM) systems by learning users’
habits and preferences and predicting their activities and appliance usage sequences [117].

Security surveillance can be significantly enhanced by applying HAR in Smart Living
environments. Accurate identification and classification of activities based on visual or auditory
observations can contribute to a safer, more secure environment in various contexts. This can be
achieved through approaches like using a fine-tuned YOLO-v4 model for activity detection combined
with a 3D-CNN for classification purposes [118] and employing SVM algorithms to classify activities
based on features extracted from audio samples [119].

In addition to enhancing security surveillance in various settings, such as video surveillance,
healthcare systems, and human-computer interaction, HAR systems can provide accurate activity
detection and recognition, offering valuable insights for security personnel in real-world scenarios like
university premises or urban environments [118,119]. By incorporating radar phase information and
WiFi-based approaches, HAR systems can significantly improve natural interaction in Smart Living
services and applications, providing low-latency, real-time processing, and touch-free sensing benefits
for various applications, including elder care, child safety, and smart home monitoring [120,121].

Natural interaction in Smart Living services and applications can be improved by recognizing
human actions and gestures in a non-intrusive, privacy-preserving manner. Exploiting radar phase
information and WiFi-based approaches in HAR can enhance natural interaction significantly in Smart
Living services and applications, providing low-latency, real-time processing, and touch-free sensing
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benefits. Recent advancements in radar phase information extraction from high-resolution Range
Maps (RM) offer a promising alternative to traditional methods, such as micro-Doppler spectrograms,
which suffer from time-frequency resolution trade-offs and computational constraints [120]. The
Histogram of Oriented Gradients (HOG) algorithm can capture unique shapes and patterns in the
wrapped phase domains, demonstrating high classification accuracy of over 92% in datasets of arm
gestures and gross-motor activities. By employing various classification algorithms, such as Nearest
Neighbor, linear SVM, and Gaussian SVM, improved performance and robustness in various activity
aspects, including the aspect angle and speed of performance, can be achieved [120].

The ubiquity of WiFi devices in modern buildings provides an opportunity for cost-effective,
touch-free activity and gesture recognition systems. Human activities and gestures can be accurately
recognized by harnessing the Channel State Information (CSI) value provided by WiFi devices [121].
Median filtering techniques can be applied to filter out noise from the CSI, and massive features can be
extracted to represent the intrinsic characteristics of each gesture and activity. Using data classification
algorithms, such as Random Forest Classifier (RFC) and SVM with cross-validation techniques, can
achieve high recognition accuracy rates of up to 92% and 91%, respectively [121].

Overall, the integration of HAR systems into Smart Living services and applications offers a
promising avenue for enhancing the lives of seniors, monitoring health conditions, optimizing energy
consumption, and bolstering security across various settings. With continued advancements in ML,
sensor technology, and innovative recognition strategies, the potential of HAR systems in Smart Living
services and applications will undoubtedly continue to grow, paving the way for more sustainable,
secure, and supportive living environments.

The works discussed in this section are summarized in Table 6.

Table 6. Smart Living Services and Applications

Reference Type Description Methods and Techniques

[108] Assisted
Living

HAR system for assisted living,
designed to monitor the vital signs
and home automation of patients
in order to reduce pressure on the

social health insurance system.

Object detection, Neural network,
Human-Object Interaction (HOI)
detection, Scene understanding,

NVIDIA Jetson AGX processing unit,
Convolutional Neural Networks

(CNNs), MQTT Protocol.

[109] Assisted
Living

Assist in monitoring the
well-being of elderly, and can be

used in situations like the
COVID-19 pandemic to remotely

monitor patients.

Segmentation (activity, sensor, time,
area), Features (Time Domain ,

Frequency Domain Environment),
Supervised Learning, K-Nearest

Neighbor (KNN), Random Forest
Classifier (RFC), Decision Tree (DT),

Naïve Bays (NB), Linear Support Vector
Machine (SVM), Ensemble Model.

[110] Assisted
Living

HAR for elderly people in smart
homes.

Naive Bayes supervised learning
algorithm, Prediction model for ADL,

SVM, Linear Regression (LR), and
K-Nearest neighbors (K-NN), CASAS

dataset.

[19] Assisted
Living

The system monitors and assesses
the health of the elderly and also
records their action histories and
behaviors, reducing the workload

of caregivers as an ambient
assisted living system.

Stereo depth camera, UV-disparity
maps, Spatial-temporal features, Depth

motion appearance (DMA), Depth
motion history (DMH), Histogram of
Oriented Gradients (HOG) descriptor,

Automatic rounding method,
Continuous long frame sequences
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Table 6. Cont.

Reference Type Description Methods and Techniques

[122] Assisted
Living

The system identifies behavioral
patterns and detects anomalies in

the activities of older persons
through ADL applications and IoT

data

Large-scale sensor data, Anomaly
detection, Parametric statistical

approach, Self-reported routines,
Internet of things (IoT) devices,

Real-time monitoring, SMS-based
notification service, Off-the-shelf

sensors, Uncontrolled environment.

[123] Assisted
Living

Classification scheme for fall
detection and prevention in smart

home AAL.

Argumentation enabled devices, Fuzzy
argument based classification scheme
(CleFAR), Fall Activity Recognition

(FAR), Fall prevention system, Random
Forest (RF), SVM, Naive Bayes (NB),
Decision Tree (DT), Artificial Neural
Networks (ANN), Weighted Voting

Scheme (WVS), Wearable fall detection
systems.

[124] Assisted
Living

Complex human activities
prediction from a single

accelerometer sensor using a local
weighted machine learning

approach.

Locally Weighted Random Forest
(LWRF) machine learning algorithm,
Time and frequency features, PAAL

ADL Accelerometry Dataset, Gender
recognition, Accelerometer signal
domain, Mental status tracking.

[111] Health Status
Surveillance

Non-intrusive monitoring
wellbeing of dementia patients
living alone using smart meter

load disaggregation.

SVM classifier, Random Decision Forest
(RDF) classifier.

[112] Health Status
Surveillance

Multi-dish food recognition model
to improve dietary intake
reporting in the context of

preventive healthcare.

EfficientDet-D1, EfficientNet-B1,
bidirectional feature pyramid network

(BiFPN). Comparison with: SSD
Inception V2, Faster R-CNN Inception

ResNet V2.

[113] Health Status
Surveillance

Monitoring of physical activities of
elderly people using smartphone.

Deep learning models, smartphone
accelerometer sensor data, UCI and

WISDM datasets.

[125] Health Status
Surveillance

Context-awareness system for
human-robot scene interpretation

in ambient assisted living
scenarios, particularly for the

elderly, improving robot
performance and activity

recognition.

Topological Bayesian network (BN)
models, learning and inferring informal

relationships, OpenMarkov.

[126] Health Status
Surveillance

Monitoring activities of daily
living (ADLs) and detecting
abnormalities in occupant

behavior.

Fuzzy Ontology Activity Recognition
(FOAR), fuzzy temporal ontologies,
Fuzzy Semantic Web Rule Language

(SWRL).

[114] Health
Hazard

Surveillance

Highly accurate bathroom activity
recognition system using

privacy-preserving infrared
proximity sensors.

Raspberry Pi devices, Wi-Fi, Bluetooth,
Bluetooth Low Energy, WebSockets for

real-time data transfers.
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Table 6. Cont.

Reference Type Description Methods and Techniques

[115] Health
Hazard

Surveillance

Recognize normal activities of
elderly residents, separate them
from anomalous activities, and

identify anomalous days based on
the number of activities performed

in a day.

Probabilistic Neural Network (PNN),
H2O autoencoder for anomaly

detection, curve fitting (variations from
the mean in daily activities).

[116] Energy
Management

Save energy by dynamically
changing the setpoint of a

connected thermostat through
human activity recognition based

on computer vision while
preserving occupant’s thermal

comfort.

RGB-Depth cameras, skeleton-based
models over 3D representation,

Recurrent Neural Networks (RNN) for
Human Activity Recognition (HAR),
Long Short-Term Memory Networks

(LSTMs), and EnergyPlus™ for energy
consumption simulations.

[117] Energy
Management

Building Energy and Comfort
Management (BECM) system that
monitors, recognizes, and predicts
user preferences and habits related

to appliance usage.

Probabilistic Prediction, Scheduling
Algorithm.

[118] Security
Surveillance

Multimodal approach for
recognizing suspicious human
activities in smart city security

using computer vision and
Internet of Things (IoT)

technology.

YOLO-v4, 3D-CNN, intersection over
union (IOU), Internet of Things

(IoT)-based architecture, UCF-Crime
and MS-COCO datasets.

[119] Security
Surveillance

Classify children’s activities
(running, playing, crying, and
walking) using environmental

sound.

Audio recordings from smartphones,
time-domain and frequency-domain

features, Python programming
language, PyAudio-Analysis library,

and SVM algorithm.

[120] Natural
Interaction

Classify human gross-motor
activities and arm gestures based

on phase information from
high-resolution radar range maps.

Histogram of Oriented Gradients
(HOG) for feature extraction, Nearest
Neighbor (NN), linear SVM, Gaussian

SVM for classification, and feature
fusion of different data domains.

[121] Natural
Interaction

Human activity and gesture
recognition schemes using CSI

provided by WiFi devices.

Hampel identifier algorithm for
preprocessing, RGB image creation

from CSI data, data augmentation to
reduce overfitting, Deep CNNs

(AlexNet, VGG19, and SqueezeNet) for
classification and feature extraction.

7. Discussion: Open Issues and Future Research Directions

The integration of multiple sensing technologies is a promising research direction for improving
HAR systems in Smart Living services and applications. Combining data from various sensor types,
such as wearable devices, cameras, and ambient sensors, can yield richer contextual information
and lead to more accurate and reliable activity recognition. As each sensor type has its strengths
and weaknesses, their integration can compensate for individual limitations and provide a more
comprehensive understanding of users’ activities. Future research should explore efficient sensor
fusion techniques and investigate how to effectively exploit complementary sensor data for improved
activity recognition.

Federated learning presents another avenue for future research in HAR, with potential benefits in
both performance improvement and privacy preservation. By enabling data sharing across multiple
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devices, federated learning allows HAR systems to learn from diverse, real-world data without
directly accessing users’ sensitive information. This approach can lead to more robust models that can
better generalize to different populations and contexts while respecting users’ privacy. Researchers
should focus on optimizing federated learning algorithms, as well as addressing challenges related to
communication efficiency, data heterogeneity, and security in distributed learning settings.

Another vital aspect of HAR in Smart Living services and applications is human-centered design.
A multidisciplinary approach that involves collaboration between computer scientists, engineers,
psychologists, and social scientists is essential for ensuring that HAR systems meet the diverse
needs and preferences of end-users. By prioritizing user experience and incorporating insights from
various fields, researchers can develop more intuitive, adaptable, and user-friendly HAR systems that
seamlessly integrate into people’s everyday lives. Future research should emphasize the importance of
human-centered design principles, investigate novel interaction modalities, and explore methods for
eliciting user feedback and preferences to inform system development.

The importance of overall system design, particularly emphasizing low-power consumption and
lightweight processing, must be considered for Smart Living services and applications. Despite this,
many studies still need adequate attention to these crucial aspects. As smart environments frequently
face limitations in energy consumption, device size, and battery life, developing energy-efficient and
lightweight solutions becomes imperative. Energy-harvesting wearable devices, which can capture
and store energy from various sources like solar, thermal, or kinetic energy, can significantly mitigate
energy consumption concerns. Employing such energy-harvesting methods makes it possible to
extend the battery life of wearable devices or even eliminate the need for batteries, substantially
reducing the system’s overall energy consumption. Additionally, low-power ML algorithms for
HAR can help minimize energy usage without compromising performance. These algorithms can be
designed to run on resource-constrained devices, such as microcontrollers or edge devices, enabling
HAR to be processed locally. This reduces the need for transmitting data to the cloud, which can be
power-intensive, and results in lower latency and increased privacy. To further enhance the energy
efficiency of Smart Living services and applications, it is important to optimize both hardware and
software components. This optimization could involve employing energy-efficient processors, memory,
and communication modules on the hardware side. On the software side, researchers can focus on
developing lightweight algorithms that require minimal computational resources and can adapt
dynamically to the available energy budget. Smart Living services and applications can become
more viable and sustainable in the long run by prioritizing low-power consumption and lightweight
processing in the overall system design.

Multi-resident HAR represents an important area for further exploration, as most existing studies
concentrate on single-occupant scenarios. The ability to accurately detect and analyze the actions
of multiple individuals in a shared environment opens up many practical applications, addressing
diverse needs across various sectors. In assisted living facilities, for instance, multi-resident HAR
can significantly enhance residents’ quality of care and support. By simultaneously monitoring
the activities of multiple individuals, caregivers can receive real-time updates on each resident’s
well-being, enabling timely interventions if necessary. It is particularly beneficial for detecting falls,
wandering, or other behaviors requiring immediate attention, ultimately contributing to a safer and
more responsive living environment. Smart homes also stand to benefit greatly from advancements in
multi-resident HAR. By recognizing the activities of various family members, smart home systems
can make personalized environmental adjustments, such as controlling lighting, temperature, and
entertainment settings based on individual preferences and habits. Additionally, multi-resident HAR
can bolster security measures by identifying and differentiating between authorized family members
and potential intruders. Addressing the challenges associated with multi-resident HAR will likely
involve refining existing techniques and developing novel approaches. For example, researchers may
need to devise innovative ways to differentiate between the actions of multiple individuals, even
when their activities overlap or occur nearby. Furthermore, integrating data from various sensor types,
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including wearable devices, cameras, and ambient sensors, could enhance the accuracy and reliability
of multi-resident HAR systems.

Lastly, it is essential to address ethical considerations and privacy concerns in Smart Living
environments that employ HAR systems. While recent advances in privacy-preserving techniques
have made some progress, privacy remains a significant concern in HAR. Researchers should continue
exploring ways to develop secure and privacy-preserving HAR systems that protect individuals’ data
and privacy, such as through differential privacy, homomorphic encryption, or secure multi-party
computation. In addition, the vulnerability of HAR models to adversarial attacks and the connection
between adversarial optimization and interpretability warrant further investigation. Developing
explainable HAR models that provide transparent and interpretable insights into their decision-making
processes can help build trust and facilitate user acceptance of these systems in Smart Living services
and applications.

8. Conclusion

This comprehensive review has meticulously examined the role of HAR within the realm of Smart
Living, delving into its various dimensions and pinpointing both the challenges and opportunities that
lie ahead for future research. The proposed framework emphasizes the critical importance of context
awareness, data availability, personalization, and privacy, in the context of Smart Living services and
applications. Through a critical analysis of these aspects, this review accentuates the necessity to
tackle biases and inaccuracies, manage the complexity and privacy concerns, strike a balance between
real-time processing and resource efficiency, and prioritize privacy-preserving techniques.

As we look to the future, researchers should concentrate on refining and amalgamating
data availability approaches, devising innovative synthetic data generation techniques, optimizing
federated learning algorithms, and delving into the individual sensing technologies and systemic
aspects of HAR systems. In addition to these technical advancements, addressing the challenges
of accuracy, reliability, scalability, and adaptability in Smart Living services and applications is of
paramount importance for the development of effective, secure, and ethical HAR solutions. Prioritizing
low-power consumption and lightweight processing in system design, researchers can contribute to
the creation of more sustainable, accessible, and efficient Smart Living solutions that cater to a wide
range of users and environments. This will, in turn, enhance the quality of life for those who reside in
Smart Living spaces, promoting a more comfortable, safe, and convenient living experience.

The development of multi-resident HAR represents a crucial area for further exploration, as
it has significant practical applications in assisted living facilities and smart homes. The ability to
recognize and interpret the activities of multiple individuals simultaneously can contribute to a safer,
more responsive, and personalized living environment. For instance, in an assisted living facility,
multi-resident HAR systems can monitor the well-being of the elderly and provide timely assistance
when required, ensuring their safety and independence. Similarly, in a smart home setting, these
systems can facilitate energy conservation, enhance security, and enable seamless interaction between
the residents and their environment.

Moreover, addressing the ethical implications of HAR systems is essential, as the widespread
adoption of these technologies raises concerns regarding user privacy, data ownership, and potential
misuse of sensitive information. Researchers should work towards establishing clear ethical guidelines
and developing privacy-preserving techniques that protect user data while still enabling effective
HAR solutions. In light of the rapid advancements in AI, ML, and sensor technologies, the potential of
HAR systems in Smart Living services and applications is immense. However, realizing this potential
requires a multidisciplinary approach, bringing together researchers from various fields such as
computer science, engineering, psychology, and social sciences. This collaboration will help bridge
the gap between technology and human-centered design, ensuring that HAR systems not only meet
technical requirements but also address the diverse needs and preferences of the end-users.
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Ultimately, by overcoming the challenges and leveraging the opportunities highlighted in this
review, researchers and practitioners can develop innovative, robust, and user-friendly HAR systems
that seamlessly integrate into Smart Living spaces, transforming the way we live and interact with our
environment.
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Abbreviations

The following abbreviations are used in this manuscript:

AAL Ambient Assisted Living
ADL Activity of Daily Living
AI Artificial Intelligence
BiGRU Bi-directional Gated Recurrent Unit
CNN Convolutional Neural Network
CPD Change Point Detection
CSI Channel State Information
DE Differential Evolution
DL Deep Learning
DT Decision Tree
GRU Gated Recurrent Unit
HAR Human Action Recognition
HMM Hidden Markov Model
IMU Inertial Measuring Unit
ICT Information and Communication Technology
IoT Internet of Things
KNN K-Nearest Neighbors
LR Logistic Regression
LSTM Long Short-Term Memory
LSVM Linear Support Vector Machine
ML Machine Learning
MLP Multilayer perceptron
PIR Passive Infrared
RCN Residual Convolutional Network
RF Random Forest
RGB Red-Green-Blue
RNN Recurrent Neural Network
SDE Sensor Distance Error
SVM Support Vector Machine
TCN Temporal Convolutional Network
UWB Ultra-Wideband
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