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Abstract: Inflammasomes are multiprotein complexes that activate inflammatory responses by
inducing pyroptosis and secretion of pro-inflammatory cytokines. Along with many previous
studies on inflammatory responses and diseases induced by canonical inflammasomes, an
increasing number of studies have demonstrated that non-canonical inflammasomes, such as mouse
caspase-11 and human caspase-4 inflammasomes, are emerging key players in inflammatory
responses and various diseases. Flavonoids are natural bioactive compounds found in plants, fruits,
vegetables, and teas and have pharmacological properties in a wide range of human diseases. Many
studies have successfully demonstrated that flavonoids play an anti-inflammatory role and
ameliorate many inflammatory diseases by inhibiting canonical inflammasomes. Others have
demonstrated the anti-inflammatory roles of flavonoids in inflammatory responses and various
diseases, with a new mechanism by which flavonoids inhibit non-canonical inflammasomes. This
review discusses recent studies that have investigated the anti-inflammatory roles and
pharmacological properties of flavonoids in inflammatory responses and diseases induced by non-
canonical inflammasomes and further provides insight into developing flavonoid-based
therapeutics as potential nutraceuticals against human inflammatory diseases.

Keywords: flavonoid; non-canonical inflammasome; anti-inflammatory; inflammatory disease;
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1. Introduction

Inflammasomes are multiprotein complexes comprised of a pattern recognition receptor (PRR)
and inflammatory molecules that provide the molecular platforms of inflammatory responses in
response to various pattern-associated molecular patterns (PAMPs) and danger-associated molecular
patterns (DAMPs) [1,2]. There are two main classes of inflammasomes: canonical and non-canonical.
Canonical inflammasomes include nucleotide oligomerization domain-like receptor (NLR) family
inflammasomes, such as NLRP1, NLRP3, NLRC4, NLRP6, NLRP9, and NLRP12, and non-NLR
family inflammasomes, such as pyrin and absent in melanoma 2 (AIM2) inflammasomes [1,2].
Numerous studies have successfully demonstrated that canonical inflammasomes activate
inflammatory responses under the stimulation of PAMPs and DAMPs, leading to the onset and
progression of various inflammatory diseases [3-8]. Other types of inflammasomes have recently
been identified, including human caspase-4, caspase-5, and mouse caspase-11 inflammasomes, which
were named non-canonical inflammasomes because they have similar roles to but are distinguished
from canonical inflammasomes [9-12]. Lipopolysaccharide (LPS) has been identified as the only
PAMP that activates non-canonical inflammasomes via direct interaction with caspase-4/5/11 [13-16].
Activation of non-canonical inflammasomes induces the proteolytic cleavage of gasdermin D
(GSDMD), and the amino-terminal fragments of GSDMD (N-GSDMD) generate GSDMD pores in cell
membranes, resulting in pyroptosis, an inflammatory form of cell death [13-16]. Activation of non-
canonical inflammasomes also induces proteolytic activation of caspase-1, but unlike canonical
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inflammasomes, they indirectly activate caspase-1. They directly activate the NLRP3 canonical
inflammasome, and the activated NLRP3 canonical inflammasome induces the proteolytic activation
of caspase-1, which suggests that canonical and non-canonical inflammasomes play a cooperative
role in activating inflammatory signaling pathways [17-20]. Activated caspase-1 subsequently
promotes proteolytic maturation and secretion of the pro-inflammatory cytokines interleukin (IL)-1f3
and -18 through GSDMD pores [13-16]. Emerging studies have demonstrated that non-canonical
inflammasomes also play critical roles in inflammatory responses and in numerous infectious and
inflammatory diseases [21-38].

Flavonoids are a group of natural ingredients, particularly secondary metabolites, widely found
in fruits, vegetables, grains, nuts, seeds, bark, roots, stems, flowers, teas, and wine, and are essential
for humans to improve health, increase longevity, and promote immunity [39]. Flavonoids play
numerous pharmacological roles in various human diseases, including cancers and infectious,
cardiovascular, neurodegenerative, respiratory, allergic, and metabolic diseases [40-46].
Considerable efforts have also been made to demonstrate the anti-inflammatory role of flavonoids in
inflammatory responses and diseases [47-49]; however, most studies have focused on priming, the
preparation step of inflammatory responses [50-54]. Recent studies have also reported the anti-
inflammatory role of flavonoids by targeting inflammasome activation in the triggering step of
inflammatory responses [49,55-59]. Interestingly, growing evidence has demonstrated that
flavonoids also have anti-inflammatory actions and alleviate various inflammatory diseases by
inhibiting non-canonical inflammasomes in the triggering step of inflammatory responses. This
review summarizes and discusses recent studies investigating the anti-inflammatory effects of
flavonoids by targeting non-canonical inflammasomes, especially caspase-11 non-canonical
inflammasome, and provides new insights into the development of flavonoids and flavonoid-based
remedies as potential nutraceuticals that prevent and treat inflammation-related human diseases.

2. Flavonoids
2.1. General Overview of Flavonoids

Flavonoids are an important class of phytochemicals with polyphenolic structures and are
ubiquitously present as secondary metabolites in plants, fruits, vegetables, and beverages. In recent
years, interest in flavonoids as bioactive compounds that play pharmacological roles in various
human diseases, which can be developed as pharmaceutical leads, has exponentially increased.
Studies have reported that flavonoids play an essential role in protecting cells from oxidative stress
[60,61]. Several studies have reported that flavonoid-mediated antioxidative activity results in
anticancer effects in various types of cancers, including gastric, liver, breast, prostate, cervical,
pancreatic, brain, and blood cancers [62-71]. Flavonoids have been demonstrated to play a protective
role in metabolic diseases, such as diabetes mellitus, obesity [72-75], and cardiovascular diseases
[41,76-78]. Flavonoids also exert multiple neuroprotective activities in the brain by protecting
neurons against neurotoxins; inhibiting neuroinflammation and neurodegeneration; and increasing
memory, cognitive, and learning function [79-81]. Moreover, many studies have successfully
demonstrated that flavonoids play an anti-inflammatory role in inflammatory responses and diseases
[47-49]. Early studies demonstrating the anti-inflammatory roles of flavonoids focused on the
priming process, which is an inflammation-preparing step [50-54]. Interestingly, recent studies have
further shown that flavonoids also play an anti-inflammatory role by targeting inflammasome
activation during the triggering process, which is an inflammation-activating step in inflammatory
responses and diseases [49,55-59], strongly suggesting that flavonoids are natural pharmacological
compounds with anti-inflammatory activity by targeting both priming and triggering processes in
inflammatory responses and diseases.

2.2. Structure and Classification of Flavonoids

More than 10,000 compounds belong to the flavonoid family [82]. Flavonoids have the common
structure of a 15-carbon C6—C3—-C6 skeleton consisting of two phenyl rings, known as the A and B


https://doi.org/10.20944/preprints202306.0663.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 June 2023 doi:10.20944/preprints202306.0663.v1

rings, and one heterocyclic ring, known as the C ring, containing oxygen (Figure 1A). Flavonoids can
be classified into different subgroups, such as flavones, flavonols, flavanones, flavanols, isoflavones,
leucoanthocyanidins, anthocyanidins, and chalcones, depending on the position of the linkage
between rings B and C, oxidation of the C ring, and degree of unsaturation (Figure 1B) [83,84]. The
rings can be modified by hydrogenation, hydroxylation, methylation, malonylation, sulfation, and
glycosylation, which can exert different biological and pharmacological effects [83,84].

Basic skeleton of flavonoids

Flavone Isoﬂavone Flavonol ‘Iz‘/;t‘ Flavanol
Flavanonol Anthocyanin Leucoanthocyanidin Chalcone
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Figure 1. The structure of flavonoids. (A) The basic backbone of flavonoids. (B) The chemical structure
of flavonoid subgroups; flavone, isoflavone, flavonol, flavanone, flavanol, flavanonol, anthocyanin,
leucoanthocyanidin, and chalcone.

Flavones consist of a backbone of 2-phenylchromen-4-one bearing a phenyl substituent at
position 2 (Figure 1B). Flavones are widely found in leaves, flowers, and fruits, and luteolin, apigenin,
tangeritin, chrysin, and 6-hydroxyflavone are flavonins.

Isoflavones are isomers of flavones that differ from flavones in the location of the phenyl group.
Flavones are chromones substituted with a phenyl group at the 2-position, whereas isoflavones have
a phenyl group at the 4-position of the C ring (Figure 1B). The most common sources of isoflavones are
soybeans and lequminous plants, and the major isoflavones in soybeans are genistein and daidzein. Isoflavones
are phytoestrogens that exert pharmacological effects on various hormonal and metabolic diseases [85].

Flavonols have a 3-hydroxyflavone backbone with a hydroxyl group at position 3 of the C ring
and are diverse at different positions in the patterns of glycosylation, methylation, and hydroxylation
(Figure 1B). Various vegetables, fruits, teas, and red wine are rich sources of flavonols. Quercetin,
kaempferol, morin, myricetin, and fisetin belong to this subclass of flavonoids.

Flavanones, also known as dihydroflavones, have the same structure, but the C ring is saturated
between positions 2 and 3 (Figure 1B). Flavanones are generally present in many citrus fruits and are
responsible for their bitter taste. Many flavanones, such as hesperidin, hesperetin, narirutin,
naringenin, naringin, and eriodictyol, have been discovered over the past decade. Interestingly,
flavanones have been demonstrated to have various pharmacological activities, including
antioxidative, anti-inflammatory, and antiallergic effects [86,87].

Flavanols, also known as flavan-3-ols, are derivatives of flavans that possess a 2-phenyl-3,4-
dihydro-2H-chromen-3-ol backbone and have a saturated C ring between 2 and 3 (Figure 1B).
Flavanols are abundant in some fruits and include a wide range of compounds, such as catechin,
epicatechin gallate, epigallocatechin, epigallocatechin gallate, proanthocyanidins, theaflavins, and
thearubigins.
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Flavanonols, also known as dihydroflavonols or catechins, consist of the backbone of 3-hydroxy-
2,3-dihydro-2-phenylchromen-4-one and are 3-hydroxy derivatives of flavanones (Figure 1B).
Flavanonols are highly diversified and multi-substituted in structure, and like flavanones and
flavanols, they have a saturated C ring between 2 and 3 (Figure 1B). Flavanonols are found in some
plants, such as Myrsine sequinii, Paepalanthus argenteus, and Smilax glabra, [88,89] and include
xeractinol, taxifolin, aromadendrin, and engeletin.

Anthocyanins are flavonoids with the most complicated chemical structure and are based on the
chemical structure of the flavylium cation with various substituted groups of hydrogen atoms (Figure
1B). Anthocyanins are predominantly found in various fruits and flowers and are responsible for
their color. More than 30 anthocyanins have been identified, including cyanidin, delphinidin,
malvidin, pelargonidin, peonidin, and petunidin.

Leucoanthocyanidins are a group of derivatives of anthocyanidins and anthocyanins that
possess the structure of flavan-3,4-diols (Figure 1B). Leucoanthocyanidins have been identified as
intermediates in anthocyanidin biosynthesis in flowers [90] and are found in Anadenanthera peregrina
and several species of Nepenthes and Acacia. Leucoanthocyanidins include leucocyanidin,

leucodelphinidin, leucofisetinidin, leucomalvidin, leucopelargonidin, leucopeonidin,
leucorobinetinidin, melacacidin, and teracacidin.

Chalcones have a unique structure characterized by the absence of the C ring of the basic
flavonoid skeleton, and are referred to as open-chain flavonoids (Figure 1B). Chalcones are found in
some fruits and vegetables as well as in certain wheats. The major chalcones include phloridzin,
arbutin, phloretin, and chalconaringenin.

3. Caspase-11 Non-Canonical Inflammasome
3.1. Discovery and Structure

Numerous studies have investigated the roles of canonical inflammasomes in innate immune
responses stimulated by various PAMPs and DAMPs. Inflammatory responses are highly activated
in response to cholera toxin B in an NLRP3 inflammasome-dependent manner in LPS-primed
macrophages, and this inflammatory response is abolished in macrophages derived from the mouse
strain 12956, which expresses a truncated nonfunctional caspase-11 protein [9]. This strain of 12956
mice is also much more resistant to the lethal dose of LPS that induces acute septic shock [9], which
suggests that caspase-11 is different from the canonical inflammasomes and plays a unique role in
inflammatory responses in macrophages with a molecular mechanism distinct from that of the
canonical inflammasomes. Follow-up studies have successfully established that caspase-11-mediated
inflammatory responses are activated by the caspase-11 inflammasome, which does not belong to
canonical inflammasomes; therefore, this inflammasome was named the caspase-11 non-canonical
inflammasome [9].

Caspase-11 belongs to a group of inflammatory caspases that is distinguished from a group of
apoptotic caspases. Caspase-11 is an intracellular PRR consisting of an amino-terminal caspase
recruitment domain (CARD), followed by two catalytic domains: a p20 large catalytic domain and a
carboxyl-terminal p10 small catalytic domain (Figure 2A). Caspase-11 was initially discovered in
mice, and many studies have attempted to identify human caspase-11. Unexpectedly, human
caspase-11 has not yet been identified; however, numerous studies have confirmed that caspase-4/5
are homologs of mouse caspase-11 [12,13,15,91]. Human caspase-4/5 has a domain structure similar
to that of mouse caspase-11, but their amino acid lengths are different; mouse caspase-11 and human
caspase-4/5 are 373, 377, and 434 amino acids in length, respectively (Figure 2A).

3.2. Caspase-11 Non-Canonical Inflammasome-Activated Inflammatory Signaling Pathways

Canonical inflammasomes are activated in response to a variety of PAMPs and DAMPs [1,2].
However, unlike canonical inflammasomes, LPS is the only PAMP that activates non-canonical
inflammasomes [13-16]. LPS is an endotoxin found in the cell walls of gram-negative bacteria.
Extracellular LPS derived from gram-negative bacteria enters host cells via endocytosis mediated by
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cell surface receptors, such as Toll-like receptor 4 and receptor for advanced glycation end-product
[17]. Extracellular LPS also enters the host cells via bacterial outer membrane vesicle-mediated
internalization [17]. LPS is released from internalized endosomes or vacuoles containing intracellular
gram-negative bacteria. Guanylate-binding proteins (GBPs) are interferon (IFN)-inducible GTPase
family members that are expressed in response to IFN stimulation. The GBPs bind with endosomes
and vacuoles and consequently disrupt their membrane integrity, leading to the release and cytosolic
access of LPS to mouse caspase-11 and human caspase-4/5 [92-95].

Caspase-11 senses intracellular LPS via direct interactions. This direct interaction is mediated by
the binding of the CARDs of the caspase-11 with the lipid A moiety of LPS, which is a highly
conserved component of LPS, resulting in the formation of LPS-caspase-11 complexes (Figure 2B)
[13-16]. The caspase-11 non-canonical inflammasome is then formed by oligomerization of LPS-caspase-
11 complexes through CARD-CARD interaction, and the caspase-11 non-canonical inflammasome is
subsequently activated by auto-proteolysis (Figure 2B) [96]. Auto-proteolysis is a key determinant of
caspase-11 non-canonical inflammasome activation. Activation of the caspase-11 non-canonical
inflammasome is mediated by auto-proteolysis at the 285 aspartic acid residue (Aspzss) of caspase-11,
and the 254 cysteine residue (Cyszs4) of caspase-11 has been identified as a critical residue that has
enzymatic activity that triggers Asp2ss auto-proteolysis (Figure 2B) [97].

A Cc
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Figure 2. Caspase-11 non-canonical inflammasome-activated inflammatory signaling pathways. (A)
Comparison of the structure of mouse caspase-11 and human caspase-4 and -5. Mouse caspase-11 and
human caspase-4 and -5 have the same domains (N-terminal CARD, p20, and C-terminal p10) with
different amino acid lengths. (B) Direct recognition of LPS by caspase-11. Caspase-11 recognizes LPS
by direct interaction between the CARD of caspase-11 and lipid A of LPS, leading to the formation of
an LPS-caspase-11 complex. C254 is the 254 cysteine residue of caspase-11 that has auto-proteolytic
enzymatic activity. D285 is the 285 aspartic acid residue of caspase-11 that undergoes auto-proteolysis. (C)
Caspase-11 non-canonical inflammasome-activated inflammatory signaling pathways.

Activation of the caspase-11 non-canonical inflammasome induces two main inflammatory
signaling pathways by activating several downstream effector molecules [13-16]. Caspase-11 non-
canonical inflammasome activation directly promotes proteolytic processing of GSDMD at the 276
asparagine residue (Aspzz) to produce both N-GSDMD and carboxyl-terminal GSDMD fragments.
N-GSDMD then moves to the cell membranes and generates GSDMD pores in them, leading to cell
swelling and osmotic rupture, known as pyroptosis. Caspase-11 non-canonical inflammasome
activation also promotes proteolytic activation of caspase-1, and the active form of caspase-1
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subsequently induces proteolytic maturation and secretion of the pro-inflammatory cytokines IL-1[3
and -18 through GSDMD pores. Interestingly, the caspase-11 non-canonical inflammasome indirectly
activates caspase-1 through functional interplay with the NLRP3 canonical inflammasome. The direct
interaction between caspase-11 non-canonical and NLRP3 canonical inflammasomes potentiates the
activation of the NLRP3 canonical inflammasome, leading to the proteolytic activation of caspase-1
[98]. Caspase-11 non-canonical inflammasome also indirectly activates the NLRP3 canonical
inflammasome. Potassium ion (K*) efflux is a key event in the activation of the NLRP3 canonical
inflammasome, and caspase-11 non-canonical inflammasome activation induces potassium ion (K*)
efflux through pyroptosis-mediated cell membrane damage and membrane gate proteins, such as P2
«7 channels, bacterial pore-forming toxins, and pannexin 1 channels [17-20]. These results strongly
suggest that canonical and non-canonical inflammasomes play a cooperative rather than an
independent role in inflammasome-activated inflammatory signaling pathways. The caspase-11 non-
canonical inflammasome-activated inflammatory signaling pathway is shown in Figure 2C.

4. Caspase-11 Non-Canonical Inflammasome

Many studies have demonstrated the anti-inflammatory roles of various flavonoids in
inflammatory responses and diseases by suppressing the activation of canonical inflammasomes,
particularly the NLRP3 canonical inflammasome [49,55-59]. Interestingly, a growing number of
studies have also reported that flavonoids exert strong anti-inflammatory activity by inhibiting the
activation of the caspase-11 non-canonical inflammasome, which is a key player in inflammatory
responses and various immunopathological conditions. Here, we summarize and discuss recent
studies that have investigated the anti-inflammatory role of various flavonoids in inflammatory
responses and diseases.

4.1. Luteolin

Luteolin is a 3’,4’,5,7-tetrahydroxyflavone (Figure 3A) found in various vegetables, fruits,
flowers, and medicinal plants, and plays an anti-inflammatory role by decreasing the production of
inflammatory mediators and pro-inflammatory cytokines [99]. Luteolin also exerts an anti-
inflammatory effect by inhibiting the activation of the NLRP3 canonical inflammasome in
macrophages [100,101]. Recently, Hwang et al. demonstrated the in vitro and in vivo anti-
inflammatory roles of luteolin by targeting the caspase-11 non-canonical inflammasome in
macrophages. Luteolin in Viburnum pichinchense inhibited caspase-11 non-canonical inflammasome-
activated pyroptosis and IL-1f3 production in macrophages [102]. An in vivo study further showed
that luteolin-containing V. pichinchense ameliorated HCI/EtOH-induced gastritis in mice [102],
suggesting that the ameliorative effect of luteolin on gastritis may be mediated by inhibiting the
activation of the caspase-11 non-canonical inflammasome in macrophages. Yan et al. investigated
luteolin-inhibited caspase-4/11 non-canonical inflammasome activation in sepsis. Luteolin inhibited
in vitro activity of human caspase-4, pyroptosis and the secretion of the pro-inflammatory cytokines
IL-1pB, -16, and -1a in macrophages [103]. Luteolin also suppresses LPS-induced lethal sepsis in mice
[103]. These results indicated that luteolin suppresses inflammatory responses by targeting human
caspase-4 and mouse caspase-11 non-canonical inflammasomes in macrophages, which can protect
against endotoxin-stimulated lethal sepsis. Zhang et al. demonstrated an inhibitory effect of luteolin
on caspase-11 non-canonical inflammasome activation in sepsis-induced lung injury. Luteolin
reduces the serum levels of pro-inflammatory cytokines and alleviates caspase-11 non-canonical
inflammasome-activated pyroptosis in the lung tissues of cecal ligation and puncture (CLP)-induced
acute lung injury (ALI) in mice [104]. Luteolin also attenuates CLP-induced ALI in mice [104], which
strongly suggests that it exerts an inhibitory action on pro-inflammatory cytokine production and
lung pyroptosis by inhibiting the caspase-11 non-canonical inflammasome and, as a result,
ameliorates sepsis-induced ALI. Taken together, luteolin has strong anti-inflammatory activity by
targeting human caspase-4 and mouse caspase-11 non-canonical inflammasomes in inflammatory
responses and immunopathologies, such as gastritis, sepsis, and sepsis-induced ALI.
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Figure 3. The chemical structure of the flavonoids discussed in this review. (A) Luteolin, (B)
scutellarin, (C) apigenin, (D) epigallocatechin-3-gallate, (E) quercetin, (F) kaempferol, (G) icariin, (H)
baicalin, (I) morin, and (J) naringenin.

4.2. Scutellarin

Scutellarin is a 4',5,6-hydroxyflavone-7-glucuronide (Figure 3B) that is frequently found in the
genera Scutellaria (Lamiaceae) and Erigeron (Asteraceae) and has long been used in traditional
Chinese medicine. Scutellarin has been demonstrated to show various pharmacological activities for
neurodegenerative, metabolic, infectious, and cardiovascular diseases as well as cancers [105,106].
Studies have also demonstrated the anti-inflammatory activity of scutellarin by inhibiting canonical
inflammasomes, particularly the NLRP3 canonical inflammasome, in inflammatory responses and
various diseases [107-112]. Recently, Ye et al. reported an inhibitory role of scutellarin in non-
canonical inflammasome-activated inflammatory responses in macrophages. Scutellarin suppressed
LPS-stimulated proteolytic activation of caspase-11 and GSDMD, resulting in reduced pyroptosis and
IL-1B secretion in bone marrow-derived macrophages and J774A.1 macrophages [113]. Scutellarin
also inhibits NLRP3 canonical inflammasome activation, but scutellarin-mediated inhibition of
caspase-11 non-canonical inflammasome activation is independent of NLRP3 canonical
inflammasome pathways in macrophages [113], suggesting that scutellarin simultaneously inhibits
both caspase-11 non-canonical and NLRP3 canonical inflammasomes, leading to reduced pyroptosis
and IL-1f3 secretion in macrophages. Peng et al. also reported the role of scutellarin in inflammasome-
activated inflammatory responses and idiopathic pulmonary fibrosis (IPF). Inflammatory responses,
including the elevated expression of NLRP3, caspase-11, caspase-1, ASC, GSDMD, and pro-
inflammatory cytokines IL-1§3 and -18, were significantly induced in the lung tissues of bleomycin-
induced pulmonary fibrosis mice [108]. Interestingly, scutellarin alleviated lung damage and
suppressed inflammatory responses, except for the increased expression of caspase-11 [108],
indicating that caspase-11 non-canonical inflammasome activation may not be the key molecule in
scutellarin-mediated inhibitory effects on inflammatory responses and IPF pathogenesis. Given the
evidence from these studies, scutellarin is an anti-inflammatory flavonoid that may selectively inhibit
caspase-11 non-canonical inflammasome-activated inflammatory responses depending on the
disease type.

4.3. Apigenin

Apigenin is a 4',5,7-trihydroxyflavone (Figure 3C) found in a wide variety of fruits, vegetables,
chamomile teas, and medicinal herbs. Apigenin presents multiple pharmacological activities,
including antioxidative, anticardiovascular, antidiabetic, neuroprotective, and anticancer activities
[114-118]. Apigenin has also been demonstrated to exert anti-inflammatory effects by inhibiting
inflammatory mediators, pro-inflammatory cytokines, cell adhesion molecules, and signaling
molecules [119-121] and by ameliorating various immunopathological conditions [120-122].
Numerous studies have further demonstrated apigenin-mediated anti-inflammatory action in the
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activation of canonical inflammasomes, particularly the NLRP3 inflammasome [56,123-125];
however, studies demonstrating the non-canonical inflammasome-inhibited anti-inflammatory role
of apigenin have been very limited. A recent study reported the anti-inflammatory role of apigenin
in inflammatory bowel disease by targeting the caspase-11 non-canonical inflammasome. Dietary
apigenin ameliorated colon damage in dextran sulfate sodium-induced colitis in mice [124]. Apigenin
also inhibits the proteolytic activation of caspase-11 and -1, resulting in decreased secretion of IL-13
and -18 in the colon tissues of mice with colitis [124]. These results strongly suggest that apigenin is
an anti-inflammatory flavonoid that protects against the development of chronic ulcerative colitis by
targeting caspase-11 non-canonical inflammasome activation, and as a result, inhibits the production
of downstream pro-inflammatory cytokines.

4.4. Epigallocatechin-3-gallate (EGCG)

Epigallocatechin-3-gallate (EGCG), a type of catechin, is a gallate ester obtained by the formal
condensation of gallic acid with the (3R)-hydroxy group of (-)-epigallocatechin (Figure 3D). EGCG is
most abundant in teas and is also found in fruits, such as apples and plums; vegetables, such as
onions; and nuts, such as pecans and hazelnuts. EGCG has therapeutic potential against various
pathological conditions, such as neurodegenerative, cardiovascular, and infectious diseases, obesity,
diabetes, oxidative stress, and cancer [126]. EGCG has anti-inflammatory activity and therapeutic
potential against chronic inflammatory diseases, such as rheumatoid arthritis, gouty arthritis, and
systemic lupus erythematosus, by targeting various inflammatory molecules and pro-inflammatory
cytokines [58,126]. EGCG also plays an anti-inflammatory role and ameliorates some chronic
inflammatory diseases by inhibiting canonical inflammasomes, such as NLRP1, NLRP3, and AIM2
[56,127-130]. An interesting study further reported the anti-inflammatory role of EGCG through the
inhibition of the non-canonical inflammasome in microglial inflammation and neurotoxicity. EGCG
decreases LPS/A-stimulated inflammation and neurotoxicity in microglial cells [129]. EGCG reduced
the proteolytic activation of caspase-11 and further inhibited caspase-11 non-canonical
inflammasome-activated secretion of IL-1f3 and IL-18 in LPS/A-stimulated microglial cells [129].
These results suggest that EGCG attenuates microglial inflammation-mediated neurotoxicity by
inhibiting the activation of the caspase-11 non-canonical inflammasome and subsequent production
of pro-inflammatory cytokines in microglial cells.

4.5. Quercetin

Quercetin is a 3,3',4',5,7-pentahydroxyflavone (Figure 3E) that occurs naturally in various fruits
and vegetables. Quercetin is a strong antioxidant that belongs to the flavonol group and is generally
present in the glycoside form. Quercetin and its derivatives show promising pharmacological effects,
including antioxidant, antidiabetic, antimicrobial, neuroprotective, anticardiovascular, and
anticancer effects [131-138]. Quercetin is one of the most studied flavonoids in inflammatory
responses and diseases [139-142]. Quercetin also plays an anti-inflammatory role by inhibiting
inflammasomes, particularly the NLRP3 canonical inflammasome [143-146]. Recently, an interesting
study demonstrated that quercetin plays an anti-inflammatory role by inhibiting the caspase-11 non-
canonical inflammasome in macrophages and in gastritis. Quercetin in V. pichinchense ameliorated
HCI/EtOH-induced gastritis in mice and inhibited caspase-11 non-canonical inflammasome-
activated pyroptosis and IL-13 secretion in RAW264.7 macrophages [102]. These results indicated
that quercetin in V. pichinchense plays an anti-inflammatory role and ameliorates gastritis by
inhibiting the caspase-11 non-canonical inflammasome in macrophages.

4.6. Kaempferol

Kaempferol is a 3,4',5,7-tetrahydroxyflavone (Figure 3F) and a natural flavonol abundantly
found in a variety of plants, such as Pteridophyta, Pinophyta, and Angiospermae; plant-originating
foods, such as broccoli, spinach, kale, beans, and tea; and fruits, such as apples, grapes, tomatoes, and
peaches [147]. Kaempferol has been demonstrated to have pharmacological activity in various
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immunopathological conditions, including infectious, neuronal, cardiovascular, and metabolic
diseases, as well as cancers [147-152]. Similar to quercetin, kaempferol is a flavonoid that exhibits a
strong anti-inflammatory effect and has potential as an anti-inflammatory therapeutic [153-157].
Kaempferol also suppresses canonical inflammasomes, and as a result, alleviates numerous
inflammatory diseases [56,158-160]. However, few studies have reported the anti-inflammatory role
of kaempferol by inhibiting non-canonical inflammasomes. A recent study reported kaempferol-
mediated anti-inflammatory activity by inhibiting the caspase-11 non-canonical inflammasome in
macrophages. Kaempferol in V. pichinchense suppressed caspase-11 inflammasome activation,
leading to reduced pyroptosis and IL-1f3 secretion in RAW264.7 macrophages [102]. Kaempferol also
alleviated HCI/EtOH-induced gastritis in mice [102], suggesting that, similar to quercetin, kaempferol
mitigates gastritis by targeting caspase-11 non-canonical inflammasome in macrophages, which
provides evidence that quercetin and kaempferol might be promising anti-inflammatory therapeutics
against gastritis by targeting both canonical and non-canonical inflammasomes in macrophages.

4.7. Icariin

Icariin is a 7-(3-D-glucopyranosyloxy)-5-hydroxy-4'-methoxy-8-(3-methylbut-2-en-1-yl)-3-(a-L-
rhamnopyranosyloxy) flavone, which is an 8-prenyl derivative of kaempferol (Figure 3G). Icariin is
a natural flavonoid found in several plant species belonging to the Epimedium genus. Icariin has
biological roles and pharmacological activities, including antiaging, antiosteoporosis, antioxidative,
antiatherosclerotic, and anticancer activities [161-165]. Additionally, icariin exerts anti-inflammatory
effects by inhibiting the priming step and canonical inflammasomes in inflammatory responses and
diseases [166-171]. Icariin also plays an anti-inflammatory role by inhibiting non-canonical
inflammasomes in LPS-stimulated inflammatory responses [172]. Icariin and phosphorylated icariin
reduced LPS-induced inflammatory responses and decreased the expression of caspase-4, a human
homolog of mouse caspase-11, in LPS-stimulated human LS174T intestinal goblet cells [172]. These
results indicated that icariin and phosphorylated icariin alleviate LPS-induced inflammatory
responses by targeting the caspase-4 non-canonical inflammasome in human intestinal goblet cells.

4.8. Baicalin

Baicalin is a 7-D-glucuronic acid-5,6-dihydroxyflavone that belongs to the flavone subgroup
(Figure 3H) and is found in several species of the genus Scutellaria, including Scutellaria baicalensis
and Scutellaria lateriflora. Baicalin is the major metabolite of baicalein originally isolated from S.
baicalensis. Baicalin has significant antiviral, antibacterial, antioxidative, and anticancer activities
[173-176]. Baicalin attenuates inflammatory responses and ameliorates inflammatory diseases by
modulating various inflammatory signaling pathways, including the NLRP3 canonical
inflammasome-activated signaling pathways [177-183]. Baicalin also plays an anti-inflammatory role
by targeting non-canonical inflammasomes and has been demonstrated to protect against mycotoxin-
induced liver and kidney injury by inhibiting the caspase-11 non-canonical inflammasome. Baicalin
ameliorated zearalenone (ZEA)-induced inflammation and pathological changes in the liver and
kidneys of chicks [184]. Baicalin decreased the ZEA-induced expression of caspase-11 and
inflammatory cytokines in the liver of chicks [184], suggesting that baicalin attenuates mycotoxin-
induced inflammation and tissue injury by inhibiting the caspase-11 non-canonical inflammasome
and the subsequent production of pro-inflammatory cytokines.

4.9. Morin

Morin, a 2',3,4',5,7-pentahydroxyflavone (Figure 3I), is a natural pigment obtained from the
Moraceae family. Morin is associated with numerous pharmacological properties, such as
antimicrobial, antioxidative, antidiabetic, anticancer, and tissue-protective effects, and has been
widely used in the treatment of various human diseases [185]. Morin has also been reported to have
anti-inflammatory activity, with neuroprotective, hepatoprotective, gastroprotective, and articular
protective effects in various inflammatory diseases [186-190]. Similar to a study demonstrating the
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baicalin-mediated inhibitory effect on liver and kidney injury by targeting the caspase-11 non-
canonical inflammasome [184], a recent study also reported that morin plays a protective role in
toxin-induced liver and kidney injury by inhibiting the caspase-11 non-canonical inflammasome.
Morin alleviated aflatoxin B1 (AFB1)-induced liver and kidney damage in chicks [191]. Further
mechanistic studies revealed that morin suppressed the production of caspase-11, pro-inflammatory
cytokines, and inflammatory factors, resulting in the inhibition of caspase-11 non-canonical
inflammasome-induced inflammatory responses in AFBl-stimulated livers [191]. These results
suggest that morin reduces toxin-induced inflammatory responses and protects against
inflammatory liver and kidney injury by inhibiting the caspase-11 non-canonical inflammasome and
downstream pro-inflammatory cytokines.

4.10. Naringenin

Naringenin is a 4',5,7-trihydroxyflavonone (Figure 3]) and within the flavonoid groups, it is a
flavanone derived from naringin or narirutin. Naringenin is predominantly present in a variety of
citrus fruits, such as grapefruits, oranges, herbs, and tomatoes. Naringenin has many
pharmacological properties, including antimicrobial, antiaging, antiasthma, antidiabetic,
antihyperlipidemic,  antioxidative,  anticancer, neuroprotective, cardioprotective, and
hepatoprotective effects [192]. Moreover, naringenin exhibits anti-inflammatory properties by
targeting various signaling pathways involved in priming-induced and canonical inflammasome-
activated inflammatory responses, leading to the attenuation of a wide range of immunopathological
conditions [192-195]. Recently, an interesting study reported the anti-inflammatory and protective
roles of naringenin in ER stress-induced renal ischemia/reperfusion (I/R) injury by targeting non-
canonical inflammasomes. Naringenin ameliorated renal I/R injury by improving renal function and
attenuating renal tissue damage in mice [196]. Naringenin also significantly reduced the generation
of caspase-4 and -11 as well as proteolytic cleaved GSDMD, resulting in the inhibition of pyroptosis
and apoptosis in the renal tissues of I/R mice and hypoxia/reoxygenation (H/R)-exposed HK-2 cells
[196]. These results suggest that naringenin has strong anti-inflammatory properties and protects
renal tissues against I/R injury by inhibiting the caspase-11 non-canonical inflammasome and
inflammasome-activated pyroptosis.

5. Conclusions

Flavonoids are naturally occurring bioactive compounds that modulate many biological
activities. Considerable efforts have been made to elucidate the protective and pharmacological roles
of flavonoids in a wide range of human immunopathologies. However, many previous studies have
demonstrated that these effects are mediated by flavonoids, mainly focusing on the priming step of
inflammatory responses. In addition, despite numerous studies focusing on the triggering step of
inflammatory responses, the effects of flavonoids have focused heavily on canonical inflammasomes,
particularly the NLRP3 inflammasome [55,56,58], which has prompted questions regarding the
pharmacological roles of flavonoids in inflammatory responses and diseases induced by the
activation of non-canonical inflammasomes, such as mouse caspase-11 and human caspase-4 non-
canonical inflammasomes. Interestingly, recent studies have provided substantial evidence to
support the new anti-inflammatory roles of flavonoids in inflammatory responses and diseases by
targeting non-canonical inflammasomes, as summarized in Table 1. Despite these successful studies,
there remain several limitations in understanding the anti-inflammatory roles of flavonoids in non-
canonical inflammasome-activated inflammatory responses and diseases. First, as summarized in
Table 1, most studies have used mouse cells and animal disease models, particularly mouse disease
models, in which flavonoids target the mouse caspase-11 non-canonical inflammasome rather than
the human caspase-4 non-canonical inflammasome in inflammatory responses and diseases. This is
unavoidable because non-canonical inflammasomes were first discovered in mice, and studies
should prove the pharmacological effects of flavonoids on inflammatory diseases using animal
models before using patients. However, the pharmacological roles of flavonoids in inflammatory
diseases should be investigated in patients by targeting the human caspase-4 non-canonical
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inflammasome. Second, previous studies have been limited to several inflammatory diseases, such
as gastritis, colitis, endotoxemia, and organ injuries. Given the evidence that non-canonical
inflammasome-activated inflammatory responses share common molecular mechanisms, future
studies should be extended to cover a larger number of inflammatory diseases. Finally, although
more than 6,000 naturally occurring flavonoids have been identified [84], only a few have been
demonstrated to attenuate non-canonical inflammasome-associated inflammatory responses and
diseases. Since substantial evidence has emphasized that non-canonical inflammasomes are key
players in inducing inflammation, leading to the exacerbation of multiple inflammatory and
infectious diseases [13-15,24,37,197-200], further studies to identify new flavonoids targeting non-
canonical inflammasomes and to demonstrate their pharmacological roles in diseases associated with
non-canonical inflammasomes need to be undertaken. In conclusion, this review discusses the
emerging anti-inflammatory roles of flavonoids in inflammatory responses and multiple
immunopathologies induced by non-canonical inflammasomes, as summarized in Figure 4. This
review improves current knowledge of the new anti-inflammatory roles of flavonoids and provides
insights into the development of flavonoids as nutraceuticals to prevent and treat a variety of human
diseases associated with non-canonical inflammasomes.

Luteolin, Scutellarin

Apigenin, EGCG { m Inactive caspase-t1

Quercetin, Kaempferol s : (— 4
Icariin, Baicalin C)-C) Active caspase-11

Morin, Naringenin

L-
GSDMD l N-GSDMD o
o) — @

GSDMD pore

Iﬂfﬂﬂ([ { I TFTererereryesn
LupupiuL| HILU‘JU(MUUU

Pyroptosis @ (J Secretion of IL-1p & IL-18

.

Inflammatory responses

g

Gastritis, Endotoxemia, Colitis, Neurotoxicity, Liver/Kidney injury

Figure 4. Schematic summary of flavonoid-mediated ameliorative properties in inflammatory
responses and immunopathologies by targeting non-canonical inflammasomes.

Table 1. Flavonoid-mediated anti-inflammatory roles by targeting the caspase-11 non-canonical

inflammasome.
Flavonoids Diseases Roles Models Ref.
p T gy R -
Luteohfl in ‘Vlburnum plchmchctnse inhibited caspase- o \ w647 cells
11 non-canonical inflammasome-activated pyroptosis and
. Lo HCI/EtOH-
Gastritis IL-1B production in macrophages . ... [102]
. o . . induced gastritis
L] Viburnum pichinchense containing luteolin mice
ameliorated HCI/EtOH-induced gastritis in mice
Luteolin o Luteolin inhibited in vitro activity of human
caspase-4 RAW264.7,
Sepsis o Luteolin reduced pyroptosis and the secretion of IL-  THP-1 cells [103]
P 1B, IL-16, and IL-1a in macrophages LPS-induced
° Luteolin suppressed LPS-induced lethal sepsis in sepsis mice

mice
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o Luteolin reduced the serum levels of pro-
inflammatory cytokines in the lung tissues of CLP-induced
ALIin mice
ALI L Luteolin alleviated caspase-11 non-canonical
inflammasome-activated pyroptosis in the lung tissues of
CLP-induced ALI in mice
L Luteolin attenuated CLP-induced ALI in mice
] Scutellarin suppressed LPS-stimulated proteolytic
activation of caspase-11 and GSDMD in macrophages
o Scutellarin reduced pyroptosis and IL-1f3 secretion in
macrophages
Inflammatory ° Scutellarin inhibited NLRP3 canonical
response inflammasome activation
L Scutellarin-mediated inhibition of caspase-11 non-
canonical inflammasome activation was independent of
NLRP3 canonical inflammasome pathways in
Scutellarin macrophages
[ J Expression of NLRP3, caspase-11, caspase-1, ASC,
GSDMD, IL-1p3, and IL-18 significantly increased in the
lung tissues of bleomycin-induced pulmonary fibrosis
mice.
IPF ° Scutellarin alleviated the lung damage of bleomycin-
induced pulmonary fibrosis mice.
° Scutellarin suppressed the inflammatory responses
except for the increased expression of caspase-11 in the
lung tissues of bleomycin-induced pulmonary fibrosis mice
° Apigenin ameliorated colon damage in DSS-induced
colitis mice
Apigenin inhibited proteolytic activation of caspase- DSS-induced
11 and -1 in the colon tissues of colitis mice colitis mice
L Apigenin decreased the secretion of IL-1f3 and IL-18
in the colon tissues of colitis mice
° EGCG decreased LPS/AB-stimulated inflammation
and neurotoxicity in microglial cells
EGCG reduced proteolytic activation of caspase-11
in LPS/AB-stimulated microglial cells
° EGCG inhibited the caspase-11 non-canonical
inflammasome-activated secretion of IL-1f3 and IL-18 in
LPS/AB-stimulated microglial cells
L Quercetin in Viburnum pichinchense ameliorated
HCI/EtOH-induced gastritis in mice
Quercetin Gastritis ® Quercetin inhibited caspase-11 non-canonical
inflammasome-activated pyroptosis and IL-1(3 secretion in
macrophages
L Kaempferol in Viburnum pichinchense suppressed
caspase-11 inflammasome-activated pyroptosis and IL-13
Kaempferol — Gastritis secretion in macrophages
° Kaempferol alleviated HCI/EtOH-induced gastritis
in mice
L Icariin and phosphorylated icariin reduced the LPS-
induced inflammatory responses in human LS174T
. intestinal goblet cells
.. Intestine i S
Icariin injury L Icariin and phosphorylated icariin decreased the LS174T cells  [172]
expression of caspase-4, a human homolog of mouse
caspase-11, in LPS-stimulated human LS174T intestinal
goblet cells

CLP-induced

ALI mice [104]

BMDMs,
J774A.1, [113]
RAW264.7 cells

Bleomycin-
induced [108]
pulmonary

fibrosis mice

Apigenin Colitis [124]

Inflammatory BV-2, SH-SY5Y

cells

EGCG [129]
response

RAW?264.7 cells
HCI/EtOH-
induced gastritis

[102]

mice

RAW264.7 cells
HCI/EtOH-
induced gastritis
mice

[102]
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® Baicalin ameliorated ZEA-induced inflammation
Liver & and pathologic changes of the liver and kidneys in chicks ~ZEA-induced
Baicalin . .. ® Baicalin decreased ZEA-induced expression of  liver and kidney [184]
kidney injury . . . . . . .
caspase-11 and inflammatory cytokines in the liver of injury chicks
chicks
[ ] Morin alleviated AFB1-induced liver and kidney
Liver & damage in chicks AFB1-induced
Morin . .. @ Morin suppressed the production of caspase-11, pro-liver and kidney [191]
kidney injury . . . . . .
inflammatory cytokines, and inflammatory factors in injury chicks
AFB1-stimulated livers
° Naringenin refined renal functions and attenuated
renal tissue damage in I/R mice
[ ] Naringenin ameliorated renal I/R injury in mice
. . Renal I/R ® Naringenin inhibited pyroptosis and apoptosis in HK-2 cells
Naringenin injury renal tissuegs of I/R mice anFc)lyH/ﬁ—exposed IEKI—DZ cells I/R injury mice [196]
o Naringenin reduced the generation of caspase-4,

caspase-11, and proteolytic cleaved GSDMD in renal
tissues of I/R mice and H/R-exposed HK-2 cells
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Abbreviations

PRR Pattern recognition receptor

PAMP Pathogen-associated molecular pattern
DAMP Danger-associated molecular pattern
NLR NOD-like receptor

CARD Caspase recruitment domain

AIM2 Absent in melanoma 2

LPS Lipopolysaccharide

GSDMD Gasdermin D

GBP Guanylate-binding protein

ALI Acute lung injury

IPF Idiopathic pulmonary fibrosis
EGCG Epigallocatechin-3-gallate

I/R Hypoxia/reoxygenation
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