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Abstract: Amyotrophic lateral sclerosis (ALS) is a severe and incurable neurodegenerative disease, 

characterized by the progressive death of motor neurons, leading to paralysis and death. It is a rare 

disease distinguished by high patient-to-patient heterogeneity, making its study arduous and 

complex. Extracellular vesicles (EVs) emerged as an important player in ALS development. Thus, 

ALS phenotype-expressing cells can spread their abnormal bioactive cargos through the secretion 

of EVs, even at far distant tissues. Importantly, due to their nature and composition, EVs’ formation 

and cargo can be exploited for the better comprehension of this elusive disease and identification of 

novel biomarkers, as well as for potential therapeutic applications, such as those based on stem cell-

derived exosomes. This review highlights the recent advances in the identification of the role of EVs 

in ALS etiopathology and how EVs can be promising new approaches for therapeutic strategies. 

Keywords: amyotrophic lateral sclerosis; neurodegenerative diseases; extracellular vesicles; 

exosomes; miRNA; biomarkers 

 

1. The Current State-of-the Art of ALS 

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. Described for the first 

time in the 19th century by Charcot, ALS is characterized by the degeneration of lower (spinal and 

bulbar) and upper (corticospinal) motor neurons [1]. The selective loss of motor neurons (MNs) in 

the primary motor cortex, brainstem, and spinal cord progressively leads to severe effects such as 

loss of motor control, paralysis, and death. Death usually occurs due to respiratory failure. About 

half of ALS patients show impairments in cognitive functions and behavior, with 5-25% of patients 

ending up developing frontotemporal dementia (FTD) [2–4], which is an uncommon type of 

dementia characterized by changes in the frontal and temporal lobes.  

ALS is considered a rare disease, having an incidence that ranges between 0.6 to 3.8 persons out 

of 100000, and a prevalence between 4.1 and 8.4 per 100 000 individuals, with the average age of onset 

between 51 and 66 years old [5]. The life expectancy of ALS patients is short, between 24 to 50 months. 

However, about 10% of patients manage to live for more than 10 years [5], a fact that reflects the high 

patient-to-patient phenotypic variability that characterizes ALS. The triggering elements of the 

disease remain unknown, although in several individuals a genetic cause can be attributed. Some 

studies point it toward having a possible oligogenic or polygenic nature, as mutations in two or more 
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genes may be required for the disease [6,7]. People with a history of ALS cases in their family, and 

that carry ALS-related genes, are more likely to develop the disease (familial, fALS), representing 5 

to 10% of all the cases. For the remaining 90% to 95%, the illness can occur spontaneously, meaning 

without a family history (sporadic, sALS) [6], and still be linked to ALS-related genes. Currently, ALS 

is difficult to diagnose, due to the absence of a test that can, solely, lead to its identification, unless it 

is a familial form. In the absence of family history, a battery of exams is often performed to discard 

other possible pathologies. Currently, ALS remains cureless, and the available treatments are sparse 

and mostly palliative. Merely two approved medications are currently prescribed to patients, 

Riluzole and Edaravone, with the latter only being approved in some countries. Yet, those present 

merely small benefits in delaying ALS progression, usually only by some months [8]. Therefore, the 

discovery of new and more effective drugs is of the utmost importance. 

1.1. Risk Factors for ALS Onset and Progression 

The likelihood of developing ALS and its progression is influenced by numerous factors, 

including genetic and non-genetic origins. One important non-genetic factor is age, as individuals 

who develop ALS in early adulthood tend to experience slower disease progression rates [9,10]. 

Another factor is gender, with men being about 1.3 times more likely to develop ALS than women, 

and earlier in life [11]. Gender also plays a role in ALS onset type, being a spinal-onset more common 

in men, while women are more likely to present a bulbar-onset [10]. In addition to genetic factors, 

exposure to certain modifiers throughout an individual’s life may also contribute to the risk of 

developing ALS [12]. Several environmental and lifestyle factors that have been identified as 

potential risk factors for ALS onset include hazardous smoking habits [13], higher lipid levels [14], 

prolonged exposure to pollutants [15], heavy metals [16], chemicals [17], electromagnetic fields [17], 

a history of electric shock [18], and head trauma [19]. Other factors that have been linked to an 

increased risk of ALS include military service [20], participation in professional sports [21,22], and 

occupations that involve repetitive physical work [12,23,24]. However, some of these factors are 

contested due to studies with inconclusive results [25]. These factors can eventually lead to epigenetic 

and genomic changes that may contribute to ALS onset, for instance, the occurrence of C9ORF72 

(chromosome 9 open reading frame 72) somatic mutations [26]. Scientific reports consistently 

evidence an interaction between genetic and environmental risk factors. Epigenetic alterations, 

mostly comprising DNA methylations, were identified by screening ALS patients’ biofluids, and 

postmortem brain and spinal cord tissues. In this regard, [27] reported gene and CpG islands 

methylations in 38 differentially methylated sites, when studying 10 sALS patients’ brain samples 

[27]. Similarly, Figueroa-Romero et al. (2012) identified 3574 methylated genes in postmortem sALS 

patients’ spinal cord [28]. Cai et al. (2022) recently proposed a role for DNA methylation in the 

pathogenesis of sALS. Their study involved analyzing and comparing the blood of 32 healthy 

controls with 32 sALS patients, leading to the identification of 12 differentially methylated regions 

(DMRs) in 12 genes, and 34 differentially methylated positions (DMPs) in 13 genes. The abnormal 

methylation patterns were primarily associated with genes involved in the regulation of crucial 

cellular functions that have previously been linked to ALS, including microtubule-based movement, 

ATP-nucleotide binding, and neuronal apoptosis [29]. Despite research efforts to enlighten the impact 

of environmental and lifestyle factors on the different cellular and molecular processes involved in 

ALS onset and progression, the exact mechanisms underlying motor neuron degeneration are still 

not sufficiently understood [1]. 

1.2. ALS Genetics and Associated Mechanisms 

ALS is a highly heterogeneous disease that can be caused by a wide array of different genes, 

some having hundreds of possible mutations [30]. Consequently, distinct fundamental cellular 

processes have been reported to be dysfunctional in different stages of the disease, including DNA 

repair mechanisms, RNA metabolism, mRNA axonal transport, protein homeostasis, protein 

trafficking, protein misfolding and aggregation, calcium regulation, mitochondrial function [31], 

redox signaling, lipid metabolism, glutamate signaling, and autophagy [32]. ALS-related gene 
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mutations may also affect intercellular communication and function, such as neurovascular function 

[33–35], glial-related neuroinflammation, [10,36–38], and neuron-glia interaction [39,40]. Among the 

several genes identified to be ALS-related, some are involved in both fALS and sALS, such as TDP-

43 (TAR DNA-binding protein 43), also known as TARDBP (transactive response DNA binding 

protein), SOD1 (copper-zinc superoxide dismutase 1), C9orf72, and FUS (fused in sarcoma), among 

others [41]. Nevertheless, for 32% and 89% of the patients with fALS and sALS, respectively, the 

mutations that are involved are unknown [42,43]. 

One of the most studied ALS-related genes is SOD1, which encodes for an important antioxidant 

protein, superoxide dismutase [44], responsible for converting superoxide radicals in hydrogen 

peroxide and oxygen [45]. Mutant SOD1 (mSOD1) alters different metabolic pathways and also 

results in the formation of misfolded SOD1 protein aggregates and neurodegeneration [46,47]. 

Accordingly, mSOD1 aggregates’ accumulation impairs axonal transport and is neurotoxic to spinal 

cord MNs, from the presymptomatic phase onwards, in the ALS mice SOD1-G93A model [48]. mSOD 

1 is also responsible for the alteration of the dynamic interaction between MNs and their surrounding 

glial cells, evoking a non-cell autonomous toxicity mechanism, driven either by the promotion of the 

secretion of neurotoxic cytokines, through the loss of glial cell’s supporting properties, or both, 

leading to the death of MNs [49,50]. In one proposed mechanism, extracellular mSOD1 is 

endocytosed by microglia and activates caspase-1, leading to upregulation of IL-1β [51,52]. IL-1β is 

one of the pro-inflammatory cytokines potentially involved in ALS neuroinflammation-related 

processes [53], like microgliosis or astrogliosis. In ALS patients’ postmortem tissue samples, 

microglia is in a proinflammatory state [54] and releases several cytokines, such as IL-1α and TNF-α, 

that induce astrocytes neurotoxicity [54]. Such evidence points to a deleterious crosstalk between 

microglia and astrocytes, thus tracing for an increased proinflammatory and neurotoxic 

microenvironment. Therefore, the progressive degeneration of corticospinal and spinal motor 

neurons may depend on their vulnerability to both mSOD1 aggregates accumulation and the effects 

of surrounding glial cell’s dysregulation, a fact emphasizing the simultaneous occurrence of a lower 

and upper MNs degeneration [55]. 

The most commonly mutated gene in both fALS and sALS patients is the C9ORF72. The 

C9ORF72 gene contains 11 exons, and (GGGGCC)n is located between exons 1a and 1b. (GGGGCC)n 

is located in the first intron of V1 and V3 and in the promoter region of variant 2. This gene codes for 

a protein with the same name whose function is not fully understood but is thought to be involved 

in different cellular activities, such as protein transport, vesicle formation, autophagy, RNA 

processing, cell signaling, among others [56,57]. It has been suggested that C9RF72 may partake in 

the autosomal and lysosomal function of macrophages and microglia through the regulation of 

inflammatory responses, possibly being related to MNs survival, relevant in ALS [58,59]. Wild-type 

C9ORF72 forms a complex with SMCR8 (Smith–Magenis syndrome chromosomal region candidate 

gene 8) and WDR41 (WD40 repeat-containing protein 41), to carry out the mentioned functions, 

including their effect on macrophages and microglia [57,60]. Due to the nature of this procedure, this 

function has been proposed to be affected in ALS when in the presence of mutations, but further 

studies are needed [57,59]. C9ORF72 mutation is non-also the most common mutation in ALS but is 

also responsible for FTD. This mutation is reflected as an increase in the number of hexanucleotide 

(G4C2)n repeat expansions (HRE) in the non-coding region of C9ORF72, which results in both loss-

of-function linked to C9ORF72 haploinsufficiency and a gain of function resulting in the expression 

of abnormal bidirectionally transcribed RNAs carrying the repeat [61]. This repeat expansion leads 

to abnormal RNA molecules biosynthesis, which are then translated into dipeptide repeat proteins 

(DPRs) that contain multiple copies of the specific amino acid sequence GGGGCC. DPRs such as 

poly-proline-arginine (poly-PR), poly-glycine-arginine (poly-GR), and poly-glycine-alanine (poly-

GA) are cytotoxic [62], and accumulate in neurons [63], and may then spread to glial cells via 

intercellular communication [64], thus impairing protein folding and transport, inducing oxidative 

stress and disrupting mitochondrial function [65]. An important player in the pathophysiology of 

ALS patients carrying C9ORF72 expansion is poly-GA which induces the intracellular aggregation of 

phosphorylated TDP-43 proteins, through the impairment of TDP43 nuclear translocation and 
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cytoplasm mislocation [66,67]. In fact, a pathological hallmark of these patients is the presence of 

TDP-43 inclusions in neurons and oligodendroglial cells. The C9ORF72 gene was also recently 

associated with nucleolar dysfunction [68] and DNA repair inhibition [69]. Another important 

cellular process that is affected by C9ORF72 gene mutation is vesicular and protein trafficking [70] 

C9ORF72 HRE was found to reduce the interaction between C9orf72 and the Rab GTPase key 

regulator Rab7L1, resulting in a decreased extracellular vesicles (EVs) release [70]. The role of 

C9ORF72 in protein trafficking was further demonstrated in the human spinal cord of an ALS patient 

(with C9ORF72-intronic repeat expansion mutation), where an increased proportion of motor 

neurons showed colocalization of C9orf72 with Rab 5, Rab 7 and Rab 11 (when compared to healthy 

individuals) possibly resulting in the dysregulation of endosomal trafficking [70]. Interestingly, these 

proteins were recognized to be tangled with vesicle trafficking regulation from the multivesicular 

bodies (MVB) to the plasma membrane, being involved, among other instances, in autophagy [70]. 

On its own, TARDBP, which codes for TDP-43, is also another commonly mutated gene in ALS. 

In normal physiological conditions, TDP-43 is primarily found in the nucleus, where it participates 

in the regulation of gene expression [71]. However, mutations in this gene in ALS or FTD patients 

lead to a mislocalization of the corresponding protein, accumulating in the cytoplasm in the form of 

abnormal TDP-43 aggregates, and generating anomalous ubiquitin-positive inclusions in the nucleus 

and cytoplasm [72]. Those inclusions can affect physiological functions of p62 (also known as 

SQSTM), involved in autophagy and proteasome regulation. Sequestration of p62 within the TDP-43 

aggregates leads to autophagy and proteasome functions impairment, driving further accumulation 

of misfolded proteins within the cells [73,74]. Indeed, aggregates co-localizing TDP-43 with p62, and 

also with SOD1, were found in post-mortem ventral spinal cord tissues of fALS and sALS patients, 

despite the existence of different aggregation profiles among them [74]. This can occur even in the 

absence of mutations in the respective genes, which may be attributed to incorrect protein folding, 

namely of SOD1 [74,75]. 

Another commonly ALS-linked mutated gene is FUS, which encodes for the RNA- binding 

protein FUS. In healthy individuals, FUS is found in the nuclei and relates to gene expression 

regulation, DNA repair, and RNA processing [76]. Yet, in ALS and FTD patients, FUS translocates 

into the cytoplasm, creating FUS inclusions, that can boost further nefarious effects, such as RNA 

mislocation associated with sequestering of the motor protein kinesin-1 [77], and axonal transport 

impairments [78]. FUS mutations in ALS may also impair mitochondrial function through 

sequestration of respiratory chain complex mRNAs in the cytoplasm [79]. Moreover, FUS loss of 

function can lead to neuronal dysfunction and death [80]. It is possible that FUS mislocation into the 

cytoplasm may contribute to their incorporation into EVs, and then, by dissemination to other cells 

via intercellular transfer, ALS disease’s phenotype is spread onto circulation [81,82]. 

2. Extracellular Vesicles and Their Role in ALS Onset and Development 

2.1. EVs Overview 

Extracellular vesicles (EVs) are endogenous bilipid layer, plasma membrane, or endosome-

derived nanoparticles released by most eukaryotic cells into the extracellular space [83]. They were 

first described by [84] and initially thought to be a cellular waste product. Most literature reports that 

cells can synthesize and secrete three main types of EVs: exosomes or exosome-like vesicles, 

microvesicles or ectosomes, and apoptotic bodies [85,86]. However, more recently, other types of EVs 

were reported, such as retrovirus-like vesicles and mitovesicles. The former are 90-100 nm particles 

that possess a subset of retroviral proteins and carry endogenous retroviral sequences, but not for 

cellular entry nor retroviral propagation [87]. Mitovesicles are of mitochondrial origin, possessing 

components of this organelle, such as mitochondrial proteins, lipids, and mitochondrial DNA 

(mtDNA) [88]. mitovesicles are distinguishable from exosomes and microvesicles by their 

morphology, size, and content [88]. EVs classification relies on several parameters, such as their size, 

content, function, biogenesis, and release pathways, among others [85]. EVs’ biological functions 

depend on their type and their highly specific bioactive cargo, which represents the progenitor cell 

state [89,90]. There are different ways to identify EVs, such as by physical characterization through 
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microscopy, proteomic analysis, RNA sequencing, functional characterization, and the biochemical 

analysis of their composition [91]. An important way to identify EVs is through the presence of 

specific surface protein markers, which may depend on many factors, such as their origin. In the case 

of exosomes, some proteins tendentially common among them and often used in their identification 

include annexin, CD9, CD63, CD81, HSP70, and flotillin [92,93]. 

It has been recognized that EVs play a fundamental role in intercellular communication, 

functioning as vehicles for transporting and delivering a range of cellular bioactive cargos, including 

membrane and cytosolic proteins, lipids, DNA, mRNA (messenger RNA), and miRNA (microRNA) 

[94,95]. Through the action of their specific shuttled content, EVs may directly influence recipient 

cells’ cellular state. That occurs, for instance, via miRNA-induced gene expression post-

transcriptional regulation processes [96], which include numerous cellular epigenetic regulations 

[97,98]. EVs have a role in the maintenance of cellular homeostasis by being pivotal in cellular uptake 

mechanisms [99]. An example of this is the ligand/receptor interaction within brain synaptic 

transmission [100,101]. EVs are also important in the maintenance of stem cell plasticity [102] and in 

the formation of new tissues, since they are important for angiogenesis [103,104], for the generation 

of morphologic gradients for tissue genesis along neuronal development [105,106], and neuronal 

regeneration [107,108]. 

Regarding their release pathways, EVs are delivered into the extracellular space via SNARE-

mediated fusion of multivesicular endosomes with the plasma membrane [109]. The direct budding 

of vesicles with the plasma membrane results in microvesicles [110,111]. Additionally, those vesicles 

that may shed from cells undergoing programmed cell death, originate the apoptotic bodies [112]. 

Following exocytosis, EVs may remain in the extracellular space, surrounding the secreter cell or, 

instead, travel elsewhere, such as into the brain, by crossing the blood-brain-barrier (BBB) [113], or 

from the brain into the periphery. As within the brain, exosomes are released by several cell types, 

such as by neurons [114], microglial cells [115], astrocytes [116], and oligodendrocytes [117]. 

Different EVs are noticeable in plasma [118], urine [119], breast milk [120], cerebrospinal fluid 

[121], semen, peritoneal and bronchoalveolar lavage fluids, amniotic fluid and even in tumor 

effusions [83,86], thus allowing long-distance intercellular information exchange [89]. 

2.2. The Role of EVs in ALS 

EVs have been associated with numerous pathologies, from metastatic cancers [122] to 

neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, among many others 

[123–125]. Under such pathological conditions, EVs shuttle enclosed misfolded proteins and other 

neurotoxic elements that potentially induce dysfunction in the recipient cells [125,126]. EVs are being 

increasingly recognized as being of great importance also in the pathogenesis of ALS and in the 

identification of biomarkers, which will be explored in this section (Figure 1). 
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Figure 1. The role of EVs in ALS. EVs contribute to the pathogenesis of ALS (left-reddish side). EVs 

are produced by different cell types of the central nervous system and the neuromuscular junction. In 

the context of ALS, EVs may carry disease-related biological molecules (proteins and miRNAs) 

involved in the transformation and degeneration of brain and neuromuscular elements, thus 

contributing to the spread of the pathology between different cell types. Furthermore, EVs can reach 

long distances in the body, contributing to the exchange of harmful molecules between the brain and 

the neuromuscular junction. Considering this, the molecules transported by EVs circulating in the 

bloodstream and cerebrospinal fluid have been considered potential biomarkers for the diagnosis and 

prognosis of ALS. Finally, EVs also have therapeutic potential. Blocking the exchange of EVs carrying 

harmful molecules and administering EVs with a neuroprotective cargo may slow the progression of 

ALS or revert its pathological effects (right-greenish side). ALS: Amyotrophic Lateral Sclerosis, EV: 

extracellular vesicle, miRNA: micro RNA. Figure created with BioRender.com. 

2.2.1. EVs in ALS Disease Progression and Pathological Mechanisms 

EVs have emerged as significant players in the progression of ALS, with increasing evidence 

pointing to their role in the dissemination of detrimental biocargos. EVs allow for the hypothetical 

prion-like propagation of ALS-related mutant misfolded proteins and dysregulated miRNAs [81], 

which are believed to contribute to the severity and progression of the disease [127–129]. The most 

common cargos found in EVs from ALS patients include misfolded proteins such as mSOD1, FUS, 

TDP43, C9orf72 expansions DPRs, and other neurotoxic elements [64,81]. These harmful cargos have 

been screened in both astrocytes and neuronal-derived exosomes in different ALS disease models, 

such as the SOD1-G93A mice model, one of the most commonly used animal models for studying 

ALS. In this model, the mutated SOD1 gene harbors a substitution of glycine for alanine at the codon 

93. Recently, [130] demonstrated that mutant SOD1 (mSOD1) accumulation occurs in cellular 

vacuoles, which may be constituted by different portions of organelles, and once released, lead to the 

existence of different types of EVs, particularly mitoEVs. The formation and type of these vacuoles, 

and resulting EVs, appear to be related to the stage of ALS pathology in this mice model. 

Interestingly, it seems that before motor symptoms onset, those vacuoles are already present and are 

mainly of mitochondrial origin, having a high content of mSOD1, ultimately resulting in the release 

of mSOD1-containing EVs [130]. The authors of this study hypothesized that these EVs, derived from 

damaged neurons, may be responsible for the initiation of a sequence of signaling cascades that 

contribute to neuroinflammation, glial-mediated neurotoxicity, and prion-like spreading of the 
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disease. The existence of different vacuoles/EVs phenotypes and associated cell death pathways may 

have different roles in the onset and severity of symptoms, as well as in the heterogeneity, and 

progression of the disease. 

Exosomal TDP-43 is another significant cargo that plays a crucial role in ALS progression. A 

longitudinal study conducted on ALS patients demonstrated an increase in the exosomal TDP-43 

ratio in peripheral blood during the course of the disease, particularly in the early stages [131]. This 

rise in TDP-43 ratio is associated with elevated levels of neurofilament light chain (NFL) in the plasma 

of these patients, which is more prevalent in individuals with a rapid disease progression [131]. 

Further evidence supports the significance of exosomal TDP-43 in disease propagation. Ding et al. 

(2015) described the damaging effect of exosomes enclosing TDP-43 C-terminal fragments (CTFs) 

from the cerebrospinal fluid of ALS patients with FTD (ALS-FTD-CSF) in human glioma cells (U251 

cells). After being incubated with the ALS-FTD-CSF-derived exosomes, naive U251 cells developed 

intracellular TDP-43 aggregates in the form of tunneling nanotubes (TNTs)-like structures [132]. 

Although in vivo studies are required, this previous work suggests that EVs may act as a vehicle for 

the spread of TDP-43 aggregates in the context of ALS. 

EVs and their toxic payloads not only damage neurons but also spread pathological signaling 

by transferring them between different cell types, including neurons, astrocytes, and muscle cells. 

Evidence of these interactions was provided by a study showing that EVs-mediated transfer of DRPs 

occurred between MNs-like NSC34 cells and rat cortical neurons, and then from these to rat cortical 

astrocytes [64]. This transfer is relevant to ALS, as EVs carrying C9orf72-encoded DPRs were 

identified to be involved in the exchange between human C9orf72 induced pluripotent stem cell-

derived motor neurons (hiPSC-MNs) and control iPSC-derived spinal MNs [64]. In NSC34 cells 

transfected with mutant SOD1(G93A) (hSOD1-G93A NSC34 cells), miR-124 was found to be 

upregulated and transferred to EVs. When these cells were co-cultured with N9-microglial cells, miR-

124 contained in mSOD1 exosomes was translocated to N9-microglial cells, resulting in phenotypic 

alterations such as the reduction in their phagocytic capability and activation of neuroinflammation 

pathways [133]. Exosomes released by mouse astrocytes overexpressing G93A SOD1 were also 

previously shown to be responsible for the transfer of mutant SOD1 to mouse spinal neurons and 

induce MNs death [134]. Moreover, astrocytic-derived exosomes from the plasma of sALS patients 

were found to transport inflammation-related cargos, including IL-6, a pro-inflammatory interleukin, 

which was increased in these vesicles and positively associated with the rate of disease progression 

[135]. The negative impact of EVs and their cargos on the interaction of affected muscle cells with 

MNs was further demonstrated by evidence showing that multivesicular bodies released from ALS 

muscle cells were neurotoxic to healthy MNs [136]. In this study, EVs derived from muscle cells 

obtained from biopsies of sALS patients were exposed to healthy hiPSC-MNs and were shown to be 

neurotoxic through increased FUS expression, resulting in shorter and less branched neurites, 

atrophic myotubes, and enhanced cell death [136]. The observed cell death was greatly reduced by 

immunoblocking the vesicle uptake by MNs with anti-CD63. Finally, a study by Anakor and 

colleagues supports the cause-and-effect relationship between muscle cell vesicles and MNs. 

Exposure of MNs to ALS patients’ skeletal muscle cells-derived exosome-like vesicles (MuVs) 

resulted in reduced neurite length, number of neurite branches, and reduced MNs survival and 

myotubes by 31% and 18%, respectively. Moreover, adding ALS-derived MuVs to healthy astrocytes 

led to an increase in the proportion of stellate astrocytes and, thus to mild activation of these cells 

[137]. 

2.2.2. miRNAs and Misfolded Proteins EVs Cargo in ALS: Potential ALS Biomarkers 

One particular cargo of EVs, microRNAs (miRNAs), has attracted research interest as potential 

biomarkers for ALS due to their versatile functions in regulating gene expression across a wide range 

of processes, including neural development, cell proliferation and differentiation, protein 

ubiquitination, apoptosis, and other transcriptional regulatory processes (summarized in Table 1). 

Despite their link to ALS progression, the mechanisms underlying alterations in their expression and 

levels remain inconclusive. In fact, defective RNA metabolism and miRNA dysregulations are closely 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 June 2023                   doi:10.20944/preprints202306.0657.v1

https://doi.org/10.20944/preprints202306.0657.v1


 8 

 

associated with ALS [138]. miRNA profiles in ALS exhibit significant variations among patients and 

can be over- or under-expressed, as they are transported by EVs across multiple biofluids and tissues 

(summarized in Table 1). Most of the research has been focused on screening ALS patients’ plasma-

circulating EVs using a variety of research methodologies, ranging from RT-qPCR analysis to 

microarrays [139]. 

Table 1. miRNAs cargo in Amyotrophic lateral sclerosis-related extracellular vesicles. 

miRNA Main Targets Biological role Expression 

miR-9-1-5p, 

miR-9-2-5p, 

miR-9-3-5p* 

PAK4, CoREST, CPEB3, ECAD*, 

elavl3, FoxG1, Hes1, IGF2BP3, 

Nr2e1/TLX, REST, Sirt1, Zic5; 

IGF2-PI3K/Akt signaling 

Cell differentiation regulation, neuronal 

function, synaptic plasticity 

neurotransmitter release; skeletal muscle 

cell proliferation and differentiation 

inhibition regulation [140]; apoptosis 

inhibition [142] 

downregulated: blood 

plasma-derived EVs [143] 

miR-10b-5p NFAT5; KLF11-KIT signaling 

Regulation of insulin production, lipid 

metabolism and gastrointestinal motility 

[144], myoblasts differentiation [145]. 

Tumorigenic inhibitor [146] 

downregulated: CSF 

exosomes and blood 

plasma-derived EVs 

[147,148] 

miR-15a-5p 

BCL2, Cyclin D1, FEAT, PD-1, 

ROR1, CXCL10-ERK-LIN28a-

let-7 axis, NF-κB signaling, 

Wtn/β-catenin signaling 

Tumor progression inhibition [149] 
upregulated: blood 

plasma-derived EVs [143] 

miR-24-3p eNOS, GATA2, PAK4 

Tumor suppression, angiogenesis 

regulation and cell protection against 

apoptosis [150] 

upregulated: blood 

plasma-derived EVs [151] 

miR-26a-5p 
ADAM17, Bid, FAF1, SERBP1, 

Wnt5; TGF-β signaling 

Osteogenic differentiation and cell 

proliferation regulation [152] 
upregulated: serum [153] 

miR-27a-3p AQP11, BTG2 

Tumor suppression [154], protection 

against blood-brain barrier and brain 

injury after brain hemorrhage [155] 

downregulated: serum-

derived exosomes [156] 

miR-29b-3p C1QTNF6/AMPK signaling 
Modulation of inflammatory response 

[157] 

downregulated: CSF 

exosomes and blood 

plasma-derived EVs 

[147,148] 

miR-34a 

AXIN2, BCL2, BIRC5, CD44, 

DGKζ, E2F3, MDMX, MET; 

MYCN, NOTCH1, NANOG, PD-

L1, SIRT1, SNAI1, SOX2; 

cyclins, cyclin-dependent 

kinases, TGF-β1/Smad signaling 

Cell proliferation, apoptosis, autophagy 

and cellular senescence regulation 

[158,159], matrix proteins deposition [159] 

downregulated: ALS 

iMNs- derived exosomes 

and CSF [160] 

miR-100-5p 

ANKAR, AP1AR, EPDR1, ICK, 

NR1I3, SMARCA5, 

ST6GALNAC4, TMPRSS13, 

TTC39A; mTOR signaling 

Cell survival regulation (e.g, apoptosis) 

[161], and autophagy [162,163] 

downregulated: blood 

plasma- derived EVs [143] 
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miR-124–3p 
CDK6, EfnB1, PTBP1, REST, 

SCP1, Sox9; NeuroD1; 

Synaptic connectivity and plasticity 

regulation [164] 

upregulated: CSF 

exosomes [147] 

miR-127-3p 

BCCIP, BOLA1, FAM27D1, 

KCNK2, LOC100134822, 

MTCP1, PSD95, RBPMS, SIRT3, 

SLC25A2, TPTE2, ZNF3, 

NeuroD1, NR2A-subunit 

Neurogenesis, synapse formation and 

motor neuron integrity maintenance, 

mitophagy, ROS and misfolded proteins 

accumulation [165] 

upregulated: serum 

[153]; downregulated: 

blood plasma [143,153] 

miR-144-3p 

ABCA1, CCNT2, FoxO1, FST, 

GABRA1, HGF, IGIP, NFE2L2, 

ST3GAL6, UBE2D1, UBR3 

Adipogenesis regulation, metastasis and 

cell proliferation inhibition [166] 

upregulated: blood 

plasma- derived EVs [143] 

miR-146a-5p IRAK-1; NF-κB signaling 

Immune cell activity, hematopoiesis and 

malignant transformation regulation 

[167] 

upregulated: blood 

plasma-derived EVs 

[148,168] 

miR-149-3p AKT2 
Cell proliferation inhibition in cancer 

[169] 

upregulated in blood 

plasma-derived EVs [151] 

miR-150-3p CASP2, SP1 

Neuroprotection of neural stem cells 

exosomes after ischemic insult and cell 

proliferation inhibition [170,171] 

downregulated: blood 

plasma-derived EVs [151] 

miR-151a-3p 
SOCS5, SP3, YTHDF3; 

JAK2/STAT3 signaling 
Tumorigenic inhibitor [172] 

upregulated: blood 

plasma-derived EVs 

[148,168] 

miR-151a-5p AGMAT, CYTB, SMARCA5 Cellular ATP production regulation [173] 

upregulated: blood 

plasma-derived EVs 

[148,168] 

miR-181a-1-

5p 

Kras, NRAS, VCAM-1, 

ZNF780A, ZNF780B, ZNF204P, 

ZNF439, ZNF527, ZNF559, 

ZNF594, ZNF781, ZNF844 

Tumorigenic suppressor, immune 

response regulation and cell proliferation 

[174–176] 

downregulated: blood 

plasma- derived EVs [143] 

miR-181a-2-

5p 
STAT3, TGFβR3 Tumorigenic suppressor [177] 

downregulated: blood 

plasma- derived EVs [143] 

miR-181b-1-

5p 

BAZ2B,  NOVA1, TGFβ1, 

ZNF780A, ZNF780B, ZNF439, 

ZNF527, ZNF559, ZNF594, 

ZNF781, ZNF844; 

MEK/ERK/p21 pathway 

Cell proliferation, invasion and 

metastasis in cancer [178], apoptosis 

inhibition [179] and autophagy [180] 

downregulated: blood 

plasma- derived EVs [143] 

miR-181b-2-

5p 
BCL2, TIMP3; annexin A2 

Cell migratory proteins modulation [181] 

and chemosensitivity in cancer cells [182] 

downregulated: blood 

plasma- derived EVs [143] 

miR-183-5p 

AKAP12, CCDC121, DHRSX, 

FKSG83, GNG5, NUDT4, PFN2, 

PDCD4, PSEN2, RIPK3, 

SLAIN1, XPNPEP3, 

Neuron protection against motor cell 

death in ALS (under stress conditions) 

[183] 

upregulated: blood 

plasma- derived EVs [143] 
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miR-194-5p 
 HIF-1, NR2F2, NR2F6, PAK2; 

MAPK1/PTEN/AKT signaling 
Tumorigenic inhibition [184] 

upregulated: ALS iMNs- 

derived exosomes 

[143,160] 

miR-197-5p 
HSPA5, KIAA0101, TIMP2/3; 

AKT/mTOR axis signaling 

Tumor suppression, cell proliferation 

[185], autophagy regulation [186], 

angiogenesis promotion [187]. 

Recognized biomarker for myocardial 

fibrosis and heart failure [188] 

downregulated: 

postmortem frontal cortex 

and spinal cord [153] 

miR-199a-1-

3p 

BCAR3, CDNF, DNMT3a, 

FABP12, HVCN1, KLHL3, 

RAP2a; SERPINE2SRR, 

TMEM161B, TSGA10, WFDC8 

Growth and angiogenesis inhibition in 

tumors [189] 

downregulated: blood 

plasma- derived EVs 

[143] 

miR-199a-2-

3p 
caveolin-2, Ppargc1a, Sirt1 

Regulation of cell proliferation and 

survival [190] 

downregulated: blood 

plasma- derived EVs 

[143] 

miR-199a-3p 

CCND1, CD44, c-MYC, 

DNMT3a, EGFR, ETNK1, YAP1; 

mTOR 

Cell proliferation regulation and 

apoptosis induction [190] 

upregulated: blood 

plasma-derived EVs 

[148,168] 

miR-199b-

3p 

CDNF, BCAR3, FABP12, 

HVCN1, KLHL3, SERPINE2 

TSGA10, SRR, TMEM161B, 

WFDC8; Phospholipase Cε  

Tumor suppression [191] 

downregulated: blood 

plasma- derived EVs 

[143] 

miR-199a-5p 

DDK1, ITGA3, WTN2; 

CREB/BDNF signaling, NF-κB 

signaling  

Tumorigenic inhibitor [192] 

upregulated: blood 

plasma-derived EVs 

[148,168] 

miR-298 JMJD6 
Tumor suppression, cell proliferation and 

metastasis inhibition [193] 

downregulated: 

postmortem frontal 

cortex, spinal cord and 

serum [153] 

miR-335 ROCK1, survivin Tumor suppression [194] 

downregulated: ALS 

iMNs- derived exosomes 

[160] 

miR-338-3p 

C5orf47, C6orf141, DGKB, IDNK 

PREX2, IZUMO3, PIM1, 

ROBO1, SP3, 

TAX1BP3,ZNF141, ZNF208 

Tumor suppression; cell proliferation, 

migration and invasion inhibition 

[195,196] 

downregulated: blood 

plasma- derived EVs [143] 

miR-342-3p 

ATF3, FOXQ1, RAP2B, 

MAP1LC3B; HDAC7/PTEN axis 

signaling, RhoC GTPase 

Prion-based neurodegeneration and 

intracellular motor proteins, axon 

guidance, cell proliferation and apoptosis 

regulation [197,198], tumor suppression, 

autophagy and reduction of cell stemness 

[199] 

upregulated: postmortem 

frontal cortex, spinal cord 

and serum- derived EVs 

[153] 
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miR-363-3p 

CD69, DCAF6, FAM24A, 

FBXW7, FNIP1, MAN2A1, 

FBXW7, KLF4, PTEN; PI3K/AKT 

signaling 

Osteogenic differentiation [200] 
upregulated: blood 

plasma- derived EVs [143] 

miR-371a-5p BCL2; BECN1, SOX2 
Tumor suppression; cell proliferation, 

migration and autophagy [201] 

upregulated in blood 

plasma-derived EVs [151] 

miR-450a-2-

3p 
FOXP3, IGF2, MAPK1, KSR2 Tumorigenic inhibition [202] 

upregulated: postmortem 

spinal cord and serum 

[153] 

miR-494-3p SEMA3A 
Axonal maintenance [negative regulation 

of semaphorin 3A (SEM3A)] [203] 

downregulated: 

astrocyte-derived EVs 

and in cortico-spinal tract 

tissue [203] 

miR-502-5p SP1 
Tumor suppression, regulation of cell 

proliferation and migration [204] 

downregulated: 

postmortem frontal cortex 

and spinal cord [153] 

miR-512-5p 
 ETS1, hTERT, SOD2; Wnt/β-

catenin signaling 

Tumor suppression, and apoptosis 

induction [205] 

upregulated: postmortem 

frontal cortex [153] 

miR-520f-3p 
C2orf69, NDST4, SOX9, Wnt 

signaling 
Tumor suppression [206] upregulated: serum [153] 

miR-532-3p 

C13orf34, C22orf46, DNAL4, 

ENSA, FOXP3, KLHL12; 

OPHN1, RPRML, RPS3, 

ZNF514; β-catenin 

Cell proliferation, metastasis inhibition 

and apoptosis enhancing [207] 

upregulated: blood 

plasma-derived EVs [143] 

miR-551b-

3p 

H6PD, Cyclin D1, TRIM31/Akt 

signaling 
Tumor inhibition [208] upregulated: serum [153] 

miR-549a yet to be studied 
Angiogenesis and metastasis induction 

[209] 

downregulated: 

postmortem frontal cortex 

and spinal cord [153] 

miR-587 RPSA Tumor suppression [210] 
downregulated: serum-

derived EVs [153] 

miR-625-3p GABBR2, SCAI 
Tumor suppression [158]. Cancer cells 

migration and invasion inhibition [211] 

downregulated: ALS 

iMNs-derived exosomes 

and CSF [160] 

miR-629-5p AKAP13, CAV1, SFRP2 Tumor cell growth regulation [212] 

upregulated: ALS iMNs- 

derived exosomes 

[143,160] 

miR-634 HSPA2; mTOR signaling 
Tumor suppression and apoptosis 

enhancing [213,214] 

downregulated: blood 

plasma-derived EVs [151] 

miR-664a-5p 

AC093802.1, ANKRD36; 

CCNDBP1, DNASE2, FBXO17, 

HMGA2, IDH2, PTCD3, SEPT7, 

ZNF256, ZNF772 

Osteogenic differentiation, controlled 

apoptosis [215] and neuronal 

differentiation [216] 

downregulated: blood 

plasma- derived EVs [143] 
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miR-766-3p 
NF-κB signaling, TGFBI 

signaling 

Inhibition of inflammatory responses 

[217] and apoptosis promotion in cancer 

[218] 

downregulated: serum-

derived EVs [153] 

miR-877-5p FOXM1 
Tumor suppression, cell proliferation, 

migration and invasion reduction [219] 

downregulated: serum-

derived EVs [153] 

miR-939-5p 
ARHGAP4, HIF-1 alpha, IGF-1R; 

PI3K/Akt signaling 

Cell migration and invasion in certain 

types of cancer [220] 

upregulated: blood 

plasma-derived EVs [151] 

miR-1207-5p 
CX3CR1; NF-κB signaling, 

SARS-CoV-2 RNA 
inflammatory response regulation [221] 

upregulated: blood 

plasma-derived EVs [151] 

miR-1246 

CDR1as, DNAH, FAM53C, 

FAM169B, GSG1L, KIAA1370, 

LIG4; NFE2L3, NR2F2, SGOL1, 

WDR77, ZNF23, ZNF267; NHEJ 

signaling 

Modulation of DNA damage following 

ionizing radiation exposure [222,223] 

upregulated: blood 

plasma-derived EVs [151] 

miR-1254 Smurf1; PIK/Akt signaling, 
Cell proliferation, migration and invasion 

inhibition [224] 

downregulated: 

postmortem frontal 

cortex, spinal cord and 

serum [153] 

miR-1255a SMAD4; TGF-β signaling 

Related with breast cancer malignant 

phenotype and downstream effector of 

TGF-β [225] 

upregulated in serum 

[153] 

miR-1260b 

C2orf48, CASP8, CTAGE1, 

GOLGA8A, MED13L, PABPN1, 

USP48, ZNF256, ZNF594, 

ZNF788; MAPK pathway 

Tumorigenesis promotion [226] 
downregulated: blood 

plasma-derived EVs [143] 

miR-1262 SCL2A1, ULK1 Tumor suppression [227] 
upregulated in serum 

[153] 

miR-1268a ABCC1 
Mediation of temozolomide resistance in 

glioblastoma [228] 

downregulated: blood 

plasma-derived EVs [151] 

miR-1268b 
AKT, BCL2, ERBB2, PI3KCA, 

PI3K-AKT signaling 
Apoptosis inhibition [229] Upregulated: serum [153] 

miR-1285-5p CDH1, Smad4, TMEM194A Cell proliferation regulation [230] 
upregulated: postmortem 

frontal cortex [153] 

miR-1290 

AKAP7, CDR1as, FAM19A5, 

HIGD2A, OGN MYO10, 

OSBPL6, RP11-1167A19.2, 

SGOL1, WDR77 

Cell proliferation, migration and invasion 

regulation in cancer [231] 

downregulated: blood 

plasma-derived EVs [143] 

miR-1913 
not yet studied, but 732 

predicted targets in [232] 

Potential non-invasive biomarker for 

prostate cancer [233] 

downregulated: blood 

plasma-derived EVs [151] 

miR-2861 
STAT3, MMP2, 

EGFR/AKT2/CCND1 signaling 

Tumor suppression, cell proliferation 

regulation and apoptosis [234] 

downregulated: blood 

plasma-derived EVs [151] 

miR-3176 AR, PTEN 
Promotion of tumorigenesis and tumor 

progression [235] 

downregulated: blood 

plasma-derived EVs [151] 
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miR-3177-3p 
not yet studied, but 65 predicted 

targets in [236] 
to be studied 

downregulated: blood 

plasma-derived EVs [151] 

miR-3605-5p SCABR2 Adipocyte lipolysis regulation [237] 
downregulated: blood 

plasma-derived EVs [151] 

miR-3619-3p Wnt/β-catenin signaling 
Cell migration and invasion promotion 

[238] 

upregulated: blood 

plasma-derived EVs [151] 

miR-3911 not yet studied Possible sALS biomarker [139] 
downregulated: blood 

plasma-derived EVs [151] 

miR-3940-3p 
BIRC5, IL-2Ry, KCNA5, Integrin 

α6 

Regulation of maternal insulin resistance, 

T cell activity promotion and metastasis 

inhibition in cancers [239] 

downregulated: blood 

plasma-derived EVs [151] 

miR-4286 

APLN, C15orf34, CBX2, 

FAM222B, HKDC1, INPP4A, 

ZFP36L1, PARVG, PRX PTEN, 

RNF43, SALL1; TMSB4X, 

JAK2/STAT3 signaling, 

PI3K/Akt signaling, TGF-

ß/TGF-ß1/Smad signaling 

Cell proliferation, apoptosis and 

inflammatory response modulation [240–

243] 

downregulated: blood 

plasma-derived EVs [151] 

miR-4298 SOD2, TGIF2 
Cell proliferation, migration and invasion 

of cancer cells [244] 

upregulated: blood 

plasma-derived EVs [151] 

miR-4443 

INPP4A, METLL3, TRIM14; 

JAK2/STAT3 signaling, NF-κB 

signaling, Ras signaling, TGF-

β1 signaling 

Metastasis and energy metabolism 

suppression [245] 

downregulated: 

postmortem frontal cortex 

and spinal cord [153] 

miR-4454 

ABHD2/ NUDT21, Vps4a, 

Rab27A; GNL3L/ NF-κB 

signaling; TGF-β/MAPK 

pathway 

Insulin signaling [246], metastasis 

progression in cancer [247,248] and 

apoptosis regulation [249] 

downregulated: CSF 

exosomes and blood 

plasma-derived EVs 

[143,147,148]; 

upregulated: serum [153] 

miR-4505 HSPA12B; galectin-9 Tumorigenesis [251] 
upregulated: blood 

plasma-derived EVs [151] 

miR-4507 TP53; PI3K-AKT signaling 
Cell proliferation and migration in lung 

cancer [252] 

downregulated: blood 

plasma-derived EVs [151] 

miR-4508 

 ABL1, ASB6, CAPN15, HOOK3, 

IRAK3, KIAA0754, LEPROTL1, 

PEX26, RGS6, 

U2AF2,VAV3,YES1 

Immune response regulation, 

phagocytosis and cellular protein 

modification [253] 

downregulated: blood 

plasma-derived EVs [151] 

miR-4646-5p 
ABHD16A; PHD3; 

PHD3/HIF1A signaling 

Ubiquitination and cell proliferation and 

invasion regulation [254,255] 

downregulated: blood 

plasma-derived EVs [151] 

miR-4674 p38k Angiogenesis regulation [256] 
downregulated: blood 

plasma-derived EVs [151] 

miR-4687-5p ATP10D, THRSP metastasis and cancer progression [257] 
downregulated: blood 

plasma-derived EVs [151] 
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miR-4688 not yet studied 
miRNA sponge and cancer progression 

[258] 

upregulated blood 

plasma-derived EVs [151] 

miR-4700-5p not yet studied not yet studied 
upregulated blood 

plasma-derived EVs [151] 

miR-4736 AR Inflammatory response regulation [259] 
upregulated blood 

plasma-derived EVs [151] 

miR-4739 BMP-7; ITGA10/PI3K signaling 
Apoptosis and differentiation regulation 

[260] 

upregulated blood 

plasma-derived EVs [151] 

miR-4745-5p SIRT6/PCSk9 signaling sensibility to anesthetics regulation [261] 
upregulated blood 

plasma-derived EVs [151] 

miR-4788 
not yet studied, but 29 predicted 

targets in [262] 

Polycystic ovary development, nervous 

system development, neurotransmitter 

levels regulation and transport and 

synapsis [263] 

downregulated: blood 

plasma-derived EVs [151] 

miR-7641-1 

BCL2, CAS9, C9orf153, PARP, 

RAB7L1, RPS16, TMEM156, 

TMPRSS11BNL, TNFSF10 

Oncogenic miRNA, cell proliferation, 

migration and invasion regulation [264] 

and apoptotic signaling in cancer [265] 

downregulated: blood 

plasma- derived EVs [143] 

miR-7975 C9orf41, GDNF 
Glutamatergic neurotransmission 

regulation [266] 

upregulated: serum of 

sALS patients [153] 

miR-7977 

CD84, MRPS12, MRPL27, 

MUC19, TRAPPC2, SIRT3, 

Hyppo-YAP signaling 

Hematopoiesis regulation [267], oxidative 

stress and insulin resistance [268] 

downregulated: blood 

plasma-derived EVs [143] 

let-7c-5p 

ARID3B, C14orf28, DNA2, FIGN, 

HMGA2, LIN28B, TRIM71 

SMARCAD1; 

CTHRC1/AKT/ERK signaling 

Microglia activation inhibition. Cell 

migration and proliferation Inhibition 

and apoptosis enhancement [269] 

downregulated: blood 

plasma-derived EVs [143] 

In the quest for an ALS molecular biomarker fingerprint, [156] reported a downregulation of 

miR-27a-3p in ALS patients’ serum-derived exosomes. [143] found 27 differentially expressed 

miRNAs, 5 of them upregulated and 22 downregulated when comparing, via next-generation 

sequencing, EVs isolated from ALS patients’ plasma samples with those from healthy controls. Some 

of these miRNAs were relevant to ALS diagnosis as they were related to Revised ALS Functional 

Rating Scale (ALSFRS-R) scores. This is the case for miR-193a-5p, which allowed distinguishing 

patients with a low versus high score. miR-15a-5p was demonstrated to be important in 

differentiating controls from ALS patients. In a separate study, [151] analyzed miRNA profiles in 

neuron-derived EVs from ALS patients’ plasma samples via microarrays, and identified 30 

differentially expressed miRNAs, 13 up-regulated and 17 down-regulated. In another study, [270] 

performed miRNA screening in ALS patients’ serum-derived exosomes, using RT-qPCR analysis. 

Due to the small sample size used in this study, no statistically significant differences were observed 

in the expression levels of any miRNA. However, a recent study by [153] analyzed the miRNA cargo 

profiles of EVs isolated from postmortem homogenates of frontal cortex, spinal cord, and serum of 

sALS patients. The authors found no difference in the number of EVs between patients and controls, 

but ALS patients presented larger spinal cord vesicles and smaller-sized vesicles in serum. Two 

miRNAs related to axon guidance and long-term potentiation were significantly dysregulated in all 

analyzed tissues: miR-342-3p was upregulated, and miR-1254 was downregulated. Furthermore, 

miRNA levels were reduced in the frontal cortex and spinal cord of sALS patients, while they were 

increased in serum. Another study by [160] analyzed EVs isolated from MNs cultures, obtained from 
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fibroblasts-reprogrammed iPSCs of ALS patients carrying C9ORFf72, SOD1, and TARDBP 

mutations. These authors found dysregulation of several miRNAs, specifically upregulations in miR-

629-5p and miR-194-5p levels and downregulations in miR-34a-5p, miR-1267, and miR-625-3p. 

Interestingly, the latter was found to be constantly downregulated in C9orf72 MNs-exosomes and 

upregulated in EVs from TARDBP-MNs. In the same study, miR-625-3p was predicted to be a 

mediator in cell-to-cell communication, immune system pathways, and autophagy. Furthermore, in 

another study from the same authors [271], using iPSC-derived MNs progenitors from fALS and 

sALS patients, further dysregulation was found, notably of miR-34a, which is involved in cell cycle 

regulation, autophagy, apoptosis, neurogenesis, and neuronal differentiation [272]. Sproviero et al. 

(2021) also searched for potential ALS EVs miRNA biomarkers and found dysregulation of hsa-miR-

206, hsa-miR-205-5p, miR-1-3p, hsa-miR-205-5p, hsa-miR-200b-3p, hsa-miR-200c-3p, hsa-miR-6888-

3p, hsa-miR-31-5p, hsa-miR-141-3p, and hsa-miR-210-3p in the plasma of ALS patients [273]. In a 

different approach, Yelick et al. (2020), using in situ hybridization analysis, found a downregulation 

of miR-124-3p in exosomes from SOD1-G93A mice spinal MNs. Moreover, in this study, the authors 

found a significant correlation between cerebrospinal fluid (CSF) exosomal miR-124-3p expression 

levels and the disease stage of male ALS patients, as denoted by the ALSFRS-R score [147]. It is worth 

noting that miR-124-3p is a recognized oncogene [274,275] with an essential role in cell proliferation 

and apoptosis [274], being linked with poor survival rates in hepatocellular carcinoma patients [276]. 

Conversely, its upregulation was shown to decrease the metastatic behavior of hepatocarcinoma 

cells, through the reversion of CRKL expression, which resulted in the suppression of the 

extracellular signal- regulated kinase (ERK) pathway and the malignant cells proliferation inhibition 

[277]. Importantly, its upregulation was found to be protective against post-traumatic 

neurodegeneration through the activation of Rela/ApoE signaling pathway [278] and which 

downregulation was linked with neurodegeneration and neuroinflammatory states post-traumatic 

brain injury (TBI) [279]. 

Other miRNAs differentially expressed in serum-derived extracellular vesicles from 50 ALS 

patients were reported recently by [148]. Statistically significant robust results yielded a differential 

expression of seven miRNAs included in extracellular vesicles, two of them upregulated (miR-151a-

5p, miR-146a-5p), and three downregulated (miR-4454, miR-10b-5p, miR-29b-3p) [148]. Among the 

reported functions, those specific miRNAs have been found to be linked with tumorigenesis [280–

282] and protection against cell apoptosis [283]. 

Despite the recent advances in understanding the role of miRNAs associated with EVs, in 

driving the progression of ALS, this field is still in its early stages. Analysis of miRNA expression 

profiles suggests that the current knowledge is insufficient to predict their involvement in the 

pathological mechanisms of ALS [284]. In a study that analyzed the results of research from 2013 to 

2018, Foggin et al. (2019) reported that most of the dysregulated miRNAs were either up or 

downregulated. This outcome may be due to intrinsic differences in the methodologies used for 

miRNA detection or to other factors, such as different miRNA expression across different tissues and 

sample extraction protocols. Interestingly, eight of the nine most commonly dysregulated miRNAs 

were predicted to target at least one of the most commonly mutated genes in ALS, but a random 

sample of unrelated miRNAs that were not found to be dysregulated in ALS patients also retrieved 

a similar prediction [284]. Nonetheless, the search for miRNAs as potential biomarkers for ALS 

remains promising, due to their good preservation in different types of biological samples, such as 

CSF and blood, often with an advantage over several proteins in allowing for a more reliable and 

faster diagnosis and a closer classification and understanding of each case. In this scope, as suggested 

by [160], it is important to analyze miRNAs isolated from different human biological samples (e.g., 

MNs, exosomes, and CSF) of different ALS types. Likewise, miR-206 has been proposed to be a 

potential biomarker in a study by Toivonen et al. (2014) since it displayed consistent changes towards 

its upregulation across ALS disease progression in the SOD1 mice [285]. miR-206 is a microRNA that 

has been identified as a tumor suppressor involved in regulating the transforming growth factor-β 

(TGF-β) signaling pathway [286]. It is considered a myomiR because it is highly expressed in skeletal 

muscle [287] and plays a vital role in myogenesis and skeletal tissue regeneration [288,289]. In several 
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studies related to ALS pathology, consistent expression levels of miR-206 have been observed across 

different biological samples. For example, miR-206 was found to be overexpressed in the serum of 

sALS patients [290] and in both plasma and skeletal muscles of spinal onset ALS patients [291]. In a 

study performed with the SOD1-G93A ALS mice model, [288] investigated the role of miR-206 in 

ALS disease progression. Their findings suggested that miR-206 overexpression was associated with 

the onset of neurological symptoms, which may be attributed to skeletal muscle denervation. Indeed, 

when miR-206 was intentionally downregulated, the restoration of neuromuscular synapses was 

observed, indicating the potential of miR-206 as a therapeutic target for ALS. 

In addition to miRNAs, the protein cargo of EVs associated with ALS may also hold potential as 

novel biomarkers (summarized in Table 2). In a study by [292], 12 proteins were identified as being 

exclusive to EVs derived from post-mortem motor cortex tissue of ALS patients, including CD177, 

CHMP4B, CSPG5, DYNC1I2, IGHV3-43, LBP, RPS29, S100A9, SAA1, SCAMP4, SCN2B, and 

SLC16A1. Additionally, [293] discovered a potential new method for patient stratification based on 

levels of cyclophilin A, a protein involved in TDP-43 trafficking and function, in combination with 

the EVs size distribution in plasma-derived EVs from ALS patients. This approach could distinguish 

between slow and fast progression of the disease. Recently, [294] conducted a pilot study comparing 

the CSF and CSF-EVs from ALS patients and matched control subjects to search for novel ALS 

biomarker candidates. They found four differentially expressed proteins in ALS patients’ CSF, 

including downregulated MB and upregulated JAM-A, TNF-R2, and CHIT1. Although no proteins 

were differentially expressed in CSF-EVs, there was a trend for the downregulation of perlecan, a 

proteoglycan of the extracellular matrix involved in cell proliferation, differentiation, adhesion, 

migration, tissue repair and regeneration [295]. Conversely, Thompson et al. (2020) found no 

significant differences in terms of CSF-EVs concentration and size distribution between control and 

ALS groups. However, they did identify altered protein homeostatic mechanisms in ALS patients, 

including the downregulation of bleomycin hydrolase [296], a cytosolic cysteine protease that has 

been connected to the release of chemokines in inflammation and wound healing processes [297]. 

These data, together with those indicating the involvement of EVs in aggregated protein spread, 

suggest that the analysis of EVs protein content is mandatory for the development of innovative 

diagnostic/prognostic tools and even the identification of new therapeutic targets for ALS. Overall, 

while these studies have provided promising results, further research is needed to understand the 

role of miRNA and proteins transported by EVs in ALS development and progression, and their 

possible use as biomarkers. 

Table 2. Protein content in ALS-derived extracellular vesicles. 

Protein content Biological function Vesicle/Sample 

type 

Main results 

BLMH 

Enzyme with proteolytic 

activity. Involved in release 

of inflammatory chemokines 

and in wound healing [297] 

EVs from CSF of 

ALS patients 

(C9orf72 mutation)  

Downregulation in ALS patients CSF-

derived EVs 

CD163, FOXP3, IL2RA, 

MRC1 

Anti-inflammatory 

transcripts [298] 

Treg-derived EVs 

from spinal cord 

from SOD1G93A 

mice model and 

iPSC-derived from 

myeloid cells 

- Upregulation in spleen-derived 

myeloid cells after Treg- derived EVs 

treatment [299];  

- Intranasal administration of enriched 

Treg EVs slowed disease progression, 

increased survival, and modulated 

inflammation within the SOD1G93A 

mice spinal cord [299] 
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CD177, CHMP4B, 

CSPG5, DYNC1I2, 

IGHV3-43, LBP, RPS29, 

S100A9, SAA1, 

SCAMP4, SCN2B, 

SLC16A1, STAU1, 

FXYD6, DYNC1I1, 

DHX30 

Involvement in stress granule 

dynamics [292] 

MCEVs from ALS 

patients’ 

postmortem motor 

cortex tissue  

- 12 RNA-binding proteins only found 

in MCEVs from ALS patients (mainly 

downregulated) [292]; 

- 4 proteins significantly upregulated 

in MCEVs from ALS patients 

(DYNC1I1, DHX30, FXYD6, STAU1) 

[292] 

CHIT1 

Cleavage of chitin (protein 

found in cell walls of various 

pathogens). Expressed 

during the later stages of 

macrophage differentiation. 

Important in inflammation 

and tissue remodeling. In the 

ALS context, plays a role in 

the feed-forward loop that 

maintains inflammation 

[300] 

EVs from ALS 

patients’ CSF 

Upregulation in ALS patients CSF-

derived EVs [294] 

CUEDC2 

Regulates ubiquitin-

proteasome pathways and 

inflammatory response [301] 

Exos from sALS 

patients’ CSF 
Only expressed in ALS group [302] 

FUS and pFUS 

DNA repair, RNA splicing, 

dendritic RNA transport, 

miRNA function and 

biogenesis [303] 

MVs and Exos from 

sALS patients’ 

plasma 

Protein levels are higher in ALS 

patients’ plasma-derived MVs than 

Exos [81] 

HSP90 
Chaperone protein involved 

in protein folding [304] 

EVs from ALS 

patients and 

symptomatic 

SOD1G93A and 

TDP-43Q331K ALS 

mice models 

plasma 

Downregulation in EVs from sALS 

patients [293] 

JAM-A 

Regulation of several 

processes including 

paracellular permeability, 

platelet activation, 

angiogenesis and the 

modulation of junctional 

tightness in the blood brain 

barrier (BBB) [305] 

EVs from ALS 

patients CSF 

Downregulation in ALS patients CSF-

derived EVs [294] 
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IL-6, iNOS, IL-1b, IFN-

y 

Pro-inflammatory cytokines 

(IL-1b, IFN-y, IL-6) and 

enzyme (iNOS) produced in 

response to cytokines [306] 

Treg-derived EVs 

from spinal cord 

from SOD1G93A 

mice model and 

iPSC-derived from 

myeloid cells 

Downregulation in spleen-derived 

myeloid cells after Treg-derived  EVs 

treatment [299] 

MB 

Oxygen-binding molecule 

expressed in skeletal and 

cardiac muscle tissue 

[307,308]  

EVs from ALS 

patients CSF 

Downregulation in ALS patients CSF-

derived EVs [294] 

mfSOD1 
Antioxidant enzyme, 

protects cells from ROS [309] 

Vacuoles and EVs 

from spinal cord 

samples of 

SOD1G93A mice 

model 

Accumulation of mfSOD1-vacuoles in 

degenerating MNs, released into the 

extracellular space in the form of 

extracellular vesicles [130] 

NIR 

Translocates from the 

nucleolus to the nucleoplasm 

in response to the nucleolar 

stress [310] 

Exos from sALS 

patients CSF and 

anterior horn 

postmortem tissue 

sections 

Upregulation in sALS patients CSF-

derived exos [311] 

Nrf2 Antioxidant factor [312] 

EVs from spinal 

cord tissue of 

SOD1G93A mice 

model 

Upregulation after exposure to MSCs-

derived EVs, with consequent 

reduction of ROS [313] 

pCREB 

Involved in the synthesis of 

proteins required for LTP 

[314] 

Exos from 

SOD1G93A mice 

model SVZ-

derived NSCs, 

differentiated into 

G93A neuronal 

cells 

Downregulation in G93A cells, 

normalized with ADSC-exos treatment 

[315] 

PGC-1α 
Involved in the regulation 

cell metabolism [316] 

Exos from 

SOD1G93A mice 

model SVZ-

derived NSCs, 

differentiated into 

G93A neuronal 

cells 

Downregulation levels in G93A cells, 

normalized with ADSC-exos treatment 

[315] 

Phenylalanine 

Precursor for tyrosine [317], 

the monoamine 

neurotransmitters dopamine, 

norepinephrine, and 

epinephrine 

lEVs and sEVs 

from sALS 

patients’ plasma 

Downregulation in EVs from sALS 

patients [318] 
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pMLKL 
Effector of necroptotic 

pathways [319] 

Vacuoles and EVs 

from spinal cord 

samples of 

SOD1G93A mice 

model  

Upregulation in vacuoles of  

degenerating MNs (necroptotic 

pathway activation/phenotype 3) [130] 

PPIA 

Ubiquitous protein involved 

in protein folding, transport 

and signaling (e.g apoptosis, 

inflammation, etc) [320] 

EVs from ALS 

patients and 

symptomatic 

SOD1G93A and 

TDP-43Q331K ALS 

mice models 

plasma 

Protein levels and EV size distribution 

distinguish fast and slow ALS disease 

progression [293] 

pNFH 

Chaperone involved in TDP-

43 trafficking and function 

[321] 

EVs from ALS 

patients and 

symptomatic 

SOD1G93A and 

TDP-43Q331K ALS 

mice models 

plasma 

Upregulation in EVs from sALS 

patients [293] 

SOD1 

Binds copper and zinc ions, 

responsible for freeing 

superoxide radicals from 

cells [309] 

Exos from 

SOD1G93A mice 

model SVZ-

derived NSCs, 

differentiated into 

G93A neuronal 

cells 

ADSC-exos alleviated aggregation of 

cytosolic SOD1 in G93A ALS mice 

isolated neuronal cells [315] 

MVs and Exos from 

sALS patients’ 

plasma 

Protein levels are higher in ALS 

patients’ plasma-derived Exos than 

MVs [81] 

TDP-43 and pTDP-43 

RNA regulation 

(transcriptional regulation, 

alternative splicing and 

mRNA stabilization) [322] 

Exos from ALS 

patients CSF 
TDP-43 accumulation [323] 

MVs and Exos from 

sALS patients’ 

plasma 

Protein levels are higher in ALS 

patients’ plasma-derived MVs than 

Exos [81] 

TNF-R2 
Proinflammatory proteins 

activation [324] 

EVs from ALS 

patients’ CSF 

Upregulation in serum of ALS 

patients. TNF-R2 knocking down in 

ALS mouse model results in motor 

neuron protection [294] 

UBA1 

Involved in ubiquitination of 

proteins for degradation by 

the UPS [325] 

EVs from ALS 

patients’ CSF 

(C9orf72 mutation) 

Upregulation in ALS patients’ CSF-

derived EVs [294] 

Abbreviations: ALS (amyotrophic lateral sclerosis); ADSC (exo-adipose-derived stem cell exosomes); BLMH 

(pentameric proteasome-like protein Bleomycin hydrolase); CD206 (MRC1; mannose receptor C-Type 1); CHIT1 

(chitotriosidase/chitinase 1); CHMP4B (charged multivesicular body protein 4B); CSPG5 (chondroitin sulfate 
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proteoglycan 5); CSF (cerebrospinal fluid); CSF-EVs (CSF-derived extracellular vesicles); CUEDC2 (CUE 

domain-containing protein 2); DHX30 (DExH-box helicase 30); DYNC1I1 (dynein cytoplasmic 1 intermediate 

chain 1); DYNC1I2 (dynein cytoplasmic 1 intermediate chain 2); Exos (exosomes); EVs (extracellular vesicles); 

FOXP3 (forkhead box P3); FUS (fused in sarcoma); p-FUS (phosphorylated fused in sarcoma); FXYD6 (FXYD 

domain-containing ion transport regulator 6); lEVs (large extracellular vesicles); IFN-y (interferon-γ); IL-1β 

(interleukin-1β); IL-2RA (interleukin-2 receptor subunit α); IL-6 (interleukin-6); IGHV3-43 (immunoglobulin 

heavy variable 3-43); IGHV3-43 (immunoglobulin heavy variable 3-43); iNOS (inducible nitric oxide synthase); 

JAM-A (junctional adhesion molecule-A); LBP (lipopolysaccharide-binding protein); MB (myoglobin); MCEVs 

(motor cortex extracellular vesicles); mfSOD1 (misfolded protein SOD1); MNs (motor neurons); MRC1 (mannose 

receptor C-type 1/CD206); MSCs (mesenchymal stem cells); MVs (microvesicles); NIR (INHAT repressor); Nrf2 

(nuclear factor E2-related factor 2); NSCs (neuronal stem cells); pCREB (phosphorylated cAMP response 

element-binding protein); PGC-1α (peroxisome proliferator-activated receptor-γ coactivator); pMLKL 

(phosphorylated mixed lineage kinase domain-like protein); pNFH (phosphorylated neurofilament protein 

heavy unit); PPIA (cyclophilin A); ROS (reactive oxygen species); RPS29 (ribosomal protein S29); sALS (sporadic 

amyotrophic lateral sclerosis); sEVs (small extracellular vesicles); SCAMP4 (secretory carrier membrane protein 

4); SCN2B (sodium channel subunit β-2); SLC16A1 (solute carrier family 16 member 1); SOD1 (superoxide 

dismutase 1); STAU1 (staufen double-stranded RNA binding protein 1); SVZ (subventricular zone); S100A9 

(S100 calcium-binding protein A9); TNF-R2 (tumor necrosis factor receptor 2); TDP-43 (TAR DNA-binding 

protein 43); Treg (regulatory T cells); UBA1 (Ubiquitin-activating enzyme E); UPS (Ubiquitin-Proteasome 

System). 

3. Therapeutic Perspectives with EVs in ALS 

In recent years, several studies have proposed innovative next-generation EVs-related therapies, 

which hold great promise for the treatment of human diseases [326]. EVs present several therapeutic 

advantages due to higher biocompatibility and reduced immunogenicity over alternative carriers, 

such as some synthetic nanocarriers, that may also be prone to accumulation in the liver and spleen 

[327,328]. As natural nanoparticles, EVs can be easily isolated from various biofluids and can cross 

biological barriers to deliver potential therapeutics (Das et al. 2019). Despite some uncertainty 

regarding their functional mechanisms, it is becoming clear that these bioparticles shuttle diverse 

cargos capable of recapitulating the benefits of “whole-cell therapy,” either by preventing or 

mitigating abnormal cellular functions [329] 

One of the emerging therapeutic approaches related to EVs is the use of stem cell-derived EVs. 

These EVs have a positive impact on the pathophysiology of different neurodegenerative diseases 

[330]. In the case of ALS, these EVs may achieve beneficial effects by modulating the immune system, 

addressing mitochondrial dysfunction, and boosting MNs’ neuroprotection [331–333]. For example, 

exosomes derived from adipose-derived stem cells (ASCs) obtained from SOD1-G93A mice were 

shown to have a neuroprotective effect by reducing oxidative stress-related damage in MN-like NSC-

34 cells that overexpressed ALS-associated mutations, including SOD1(G93A), SOD1(G37R), and 

SOD1(A4V) [332]. Furthermore, the same research group observed that NSC-34(G93A) cells 

internalized ASC-derived exosomes, leading to the downregulation of pro-apoptotic proteins (Bax 

and cleaved caspase-3), and the upregulation of anti-apoptotic proteins (Bcl-2α), ultimately 

improving neuronal survival [334]. In a more recent study by these authors, ASC-derived exosomes 

obtained from SOD1-G93A mice were used to slow the progression of ALS by reducing glial cell 

activation and improving motor performance. Interestingly, these exosomes showed an affinity 

towards the lesioned areas of the brain, suggesting targeted delivery, although the exact mechanisms 

behind this phenomenon still need further elucidation [335]. Similarly, ASCs-derived exosomes were 

found to increase the expression levels of phospho-CREB/CREB and PGC-1α in neurons derived from 

neural stem cells of SOD1-G93A mice. This resulted in a reduction of cytosolic SOD1 aggregates and 

rescued mitochondrial dysfunction [315]. Additionally, the same type of exosomes was shown to 

rescue the inherent impairment in oxidative phosphorylation (OXPHOS) specifically linked to the 

mitochondrial complex I in NSC-34(G93A) cells [336]. In their study, human bone marrow 

endothelial progenitor cells (hBM-EPC)-derived exosomes were shown to restore mouse brain 

endothelial cells previously damaged through in vitro exposure to SOD1-G93A mutant male mice 
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plasma. The results indicated a significant reduction in microvascular endothelium damage. 

Interestingly, blocking the β1 integrin of exosomes using an anti-CD29 blocking antibody prevented 

their internalization by recipient cells, thereby increasing brain endothelial cell death percentage. 

These findings suggest that hBM-EPC-derived exosomes have the potential to repair endothelial 

damage in ALS and that their internalization by recipient cells may play a critical role in their 

therapeutic effects. In another study, Garbuzova-Davis et al. (2020) investigated the potential 

therapeutic role of exosomes derived from human hBM-EPCs in repairing endothelial damage in 

ALS. To induce damage, the researchers exposed a mouse brain endothelial cell line to plasma from 

SOD1-G93A male mice. They found that ALS animals’ plasma-derived exosomes treatment 

significantly increased endothelium cell death. However, a significant reduction in cell death was 

obtained by supplementing brain endothelium, previously exposed to ALS plasma derived 

exosomes, with 1 μg/mL of the hBM-EPC-derived exosomes for 24 hours. Moreover, when those EVs 

were pre-treated with an anti-CD29 blocking antibody to block β1 integrin, EVs were prevented from 

being internalized by recipient cells, resulting in a significant increase in brain endothelium cell 

death. These findings suggest that hBM-EPC-derived exosomes have the potential to reduce the 

number of damaged endothelial cells in ALS, but their beneficial effects may be dependent on proper 

internalization by cells [337]. On the other hand, the negative effects of ALS-related EVs were 

reverted in a study by Varcianna et al. (2019). The authors isolated EVs from human induced 

astrocytes derived from C9ORF72-ALS sALS patients (C9ORF72-ALS iAstrocytes-derived EVs) and 

found that originally they compromised both neurite network maintenance and MNs survival of the 

HB9-GFP+ mouse cultured MNs (Hb9-GFP+ MNs). Such an effect was related to the downregulation 

of miR-494-3p content in those EVs. Nevertheless, following treatment with the C9ORF72-ALS 

iAstrocytes-derived EVs, where miR-494-3p levels were intentionally upregulated, HB9-GFP+ mouse 

cultured motor neurons presented neurite network restoration and decreased MNs death. These 

beneficial effects of miR-494-3p overexpression may be related to its function as a negative regulator 

of semaphorin 3A (SEMA3A) and other targets involved in axonal maintenance [203]. 

Besides the described therapeutic possibilities, EVs have emerged as promising drug carriers, 

with the potential to deliver synthetic drugs to the brain. This is especially important as many proteic 

and small-molecule neurological drugs may fail to bypass the blood-brain barrier (BBB), which can 

hinder their effectiveness [338]. Encapsulating these drugs within EVs could help overcome this 

limitation by allowing them to cross the BBB and improve drug targeting and efficiency [339]. While 

EVs are not currently being used to deliver drugs for ALS treatment, they have been employed in the 

treatment of other brain diseases, such as brain tumors, using doxorubicin-loaded exosomes [340]. 

Therefore, this approach may also be a promising avenue for future ALS research. 

4. Conclusions 

ALS is a fatal neurodegenerative disease with a complex and unclear etiopathology that strongly 

impacts patients’ health and well-being. With no cure available so far, searching for an effective 

treatment that can improve patients’ life expectancy and quality of life is paramount. ALS presents 

several important challenges and hurdles to its research, due to the intrinsic complexity and 

heterogeneity of the disease. Nevertheless, important advances have been made in recent years. 

Among these are the recent advances in ALS-related EVs research, which are emerging as key players 

in the surfacing and development of the disease by allowing for the transport of biomolecular cargo 

from cell to cell, thus spreading the anomalies across the system. 

EVs also have promising potential to be employed as a source of potential biomarkers for early 

detection of ALS and personalized prognostic purposes. Furthermore, they may also be exploitable 

to tackle existing altered mechanisms and for application in a variety of therapeutic strategies, such 

as being employed for drug delivery purposes, as they can carry different types of molecules, both 

natural and artificial. Specifically, within the ALS research area, stem cell-derived EVs’ use is arising 

for therapeutic purposes, of higher relevance given the disease heterogeneity and allowing for a 

precision-based approach. 
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While the use of stem cell-derived EVs for therapeutic purposes is promising, further innovative 

and consensual approaches are needed to reverse the disease’s biopathologic mechanisms and 

translate this knowledge into real-life applications that can bring hope to both patients and their 

families. 
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