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Abstract: This paper reviews numerical methods used to simulate desiccation cracks in clayey soils.
It examines five numerical approaches: Finite Element (FEM), Lattice Boltzmann (LBM), Discrete
Element (DEM), Cellular Automaton (CAM), and Phase Field (PFM) Methods. The FEM is widely
used to capture moisture diffusion, shrinkage, and cracking during drying. LBM is used to simulate
fluid flow in clayey soils, while the DEM focuses on capturing the behavior of individual particles
and their interactions. CAM simplifies crack evolution with computational efficiency, while PFM
provides a continuous representation of crack formation and propagation. The author discusses the
complexity of the problem, the continuum mechanics governing and constitutive equations that
describe it, and the influence of various factors such as the multiphase nature of soils, heterogeneity,
nonlinearities, coupling, scales of analysis, and computational aspects. The review highlights the
characteristics, strengths, and limitations of each method. It emphasizes the importance of appro-
priate method selection for every problem depending on the aim of the analysis. The article con-
cludes by reviewing the integration of multiple numerical methods to enhance the simulation of
desiccation cracks in clayey soils.
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1. Introduction

After more than a century of research from experimental [1, 40-55], theoretical [2, 49,
62-64], and numerical points of view [3, 56-61], desiccation cracks in clayey soils are still
an open research field due to their complexity. It has two very different components, des-
iccation, which is the loss of water due to water evaporation, and cracking, a failure pro-
duced when reaching the strength of the soil. The first is a thermo-hydromechanical
(THM) problem [4] and the second is a fracture mechanics (FM) problem [5]. This topic is
important because when clayey soil desiccates and cracks, its properties change becoming
more permeable and less strong against loads.

Simulating desiccation cracks in clayey soils is a complex task due to several reasons.

Firstly, clayey soils are multiphase mediums composed of soil particles, and pores
that contain only air, only water, or water and air, depending on if the condition is dry,
saturated, or unsaturated [4].

Secondly, clayey soils exhibit coupled nonlinear THM behavior when drying then is
a Multiphysics problem. As moisture content decreases, the soil undergoes significant vol-
ume changes due to the suction generated in the soil matrix, resulting in shrinkage first
and cracking when the soil strength is reached. This nonlinear behavior requires advanced
constitutive models and numerical techniques to accurately capture the soil's response to
environmental contour conditions [6]. The coupling of multiple physical processes, in-
cluding fluid flow, heat transfer, and deformation is accounted for by incorporating tem-
perature-dependent and moisture-dependent properties. Additionally, constitutive rela-
tionships are employed to couple moisture content and mechanical behavior.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202306.0625.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 June 2023 doi:10.20944/preprints202306.0625.v1

Day 21 Day 30 Day 36

Figure 1 - Drying, wetting, flooding, and drying 36 days test on cylindrical 80 cm in diameter
and 10 cm high clays sample in an environmental chamber.
From Dr. Hector U. Levatti — Ph.D. [15]

Thermal expansion coefficients and thermal conductivity should be considered as
functions of mechanical strain/stress to account for the coupling between temperature and
deformation [4].

Thirdly, the behavior of desiccation cracks is influenced by various factors such as
soil composition, mineralogy, pore structure, and initial moisture content. The inherent
variability and uncertainties associated with these factors make it difficult to predict crack
formation and propagation accurately [7, 15, 20].

Fourthly, simulating desiccation cracks often requires considering different scenar-
ios, from laboratory specimens to field-scale applications. Accounting for scale effects and
capturing the heterogeneity of soil properties is crucial for realistic simulations [8].

Finally, simulating desiccation cracks in clayey soils requires computationally inten-
sive simulations due to the need to solve complex nonlinear coupled equations and handle
large deformation and long-term drying processes.

In section 4.1 the equations for the THM problem are presented. This problem in-
volves several interconnected physical processes in a portion of a multiphase soil system
that is in mechanical equilibrium, equation (1). The shrinkage that takes place as moisture
is lost is governed by the principle of balance, known as Richards' equation (2), and the
generalized Darcy’s Law (10). At the same time, there will be a distribution of temperature
governed by the heat balance equation (3) and Fourier’s law (12). Mechanical deformation
arises from shrinkage, exhibiting elastic and plastic behavior described by the THM con-
stitutive model, equation (7).

In the pores of the soil, there are physical processes that occur during the desiccation
and cracking. The air dissolution in water is governed by Henry’s law [4], and the diffu-
sion of air in water is governed by Fick’s law [4], with water molecules moving from areas
of high moisture content to low moisture content. Additionally, heat transfer occurs under
effects such as Soret’s thermal diffusion of water vapors in the air because of pressure
gradients produced by temperature gradients [9-11], vapor effusion, and Stefan’s flow
[12]. Fortunately, in many cases, they can be neglected and continue capturing the main
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mechanisms that govern the desiccation and cracking processes. So, they are not neces-
sarily needed in a formulation and a numerical model [15].

At the beginning of the desiccation, the soil is a saturated fluid slurry but with time,
the condition turns to compacted unsaturated soil. For this reason, the degree of satura-
tion must be included in the formulation and simulation by using for example a simplified
Van Genuchten’s formula [13] or more complex variations that include the effect of tem-
perature.

To accurately model the mechanical behavior of clayey soils during desiccation, THM
constitutive equations are necessary. These equations define the relationship between
stress and strain and capture the material's response when suction and temperature
change. The simplest stress-strain relationship is the generalized isotropic linear elastic
model commonly known as Hooke's law, which characterizes stress-strain behavior in the
linear elastic range. Even if the soil’s mechanical behavior is considered elastic, the equa-
tion must include the effect of the temperature and suction to couple the thermal, hydrau-
lic, and mechanical processes. More sophisticated models are nonlinear, viscoelastic, or
plasticity, such as bilinear, Mohr-Coulomb models, and many others.

To simulate the initiation and propagation of cracks, Griffith's criterion (tensile
strength controls the initiation of the cracks) or linear elastic fracture mechanics (LEFM)
equations are commonly used due to their simplicity [5]. LEFM principles and its rules
determine the critical crack length and assess crack propagation [6]. Incorporating LEFM
principles allows for the analysis of crack formation and growth during desiccation. The
numerical simulation of crack propagation is in particular a very challenging problem in
the context of FEM [6]. For this reason, several approaches to simulate the cracking pro-
cess have been proposed apart from the FEM. LBM, DEM, CAM, and PFM are all alterna-
tives to the FEM that have been used to effectively simulate the desiccation cracks in
clayey soils and cracks in other problems [16-19, 22-26, 29].

These numerical techniques enable the solution of complex equations and the simu-
lation of desiccation cracks in clayey soils. Boundary conditions, initial conditions, and
appropriate numerical algorithms also play a crucial role in accurately capturing the be-
havior of desiccation cracks.

Figure 1 shows a laboratory test made on a cylindrical sample to study the problem
of desiccation cracks in clayey soils under controlled conditions [15]. A whole cycle of
drying, wetting, flooding, drying, and cracking demonstrated that flooding produces
more cracks and wetting modifies suction profiles. Even when this problem is usually
studied as a desiccation problem, the first semi-cycle in Figure 1, wetting and flooding are
part of the problem and significantly affect the cracking process. Today, the research com-
munity is working mainly on semi-cycles of desiccation. To fully understand this problem
the whole cycle must be understood.

In Section 2, physical and non-physical methods are reviewed, then, in Section 3, the
integration of these methods is reviewed and commented on. Finally, in Section 4, the
combination of FEM and CAM is reviewed in detail as a promising alternative.

2. Methods to simulate desiccation cracks in clayey soils

In the attempt of simulating desiccation cracks in soils, researchers have used physi-
cal-based approaches and non-physical-based approaches. In this section, five of the most
effective methods to resolve this problem are commented on in terms of main character-
istics, strengths, and limitations. The strengths of these methods are presented in Table 1.

Physical-based Models

2.1. The Finite Element Method (FEM)
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Figure 2 — Soil-atmosphere and Soil-structure (tray) interaction can significantly
affect the behavior of the cracks.

FEM and its variant XFEM [15, 21] have been extensively used for simulating desic-
cation cracks in clayey soils at a macroscale level and can be applied too at micro and
mesoscale levels. Researchers have employed FEM to study moisture diffusion, shrink-
age, and cracking behavior during drying.

FEM resolves classic transient continuum mechanics partial differential equations
that describe the phenomenon (Section 4).

FEM has been successful in capturing the complex behavior of desiccation cracks
since it is able to deal with complex geometries and heterogeneity. It can map the distri-
bution of stress in the soil mass locating the areas of concentration of stresses that produce
cracks. FEM deals well with coupling the thermo-hydromechanical physical processes
that the problem includes. The accuracy of this method relies on the appropriate imple-
mentation of constitutive models and boundary conditions [15].

The limitations FEM has shown are mesh dependency, making it challenging to cap-
ture intricate crack patterns. Additionally, it has shown difficulties in accurately predict-
ing crack propagation without explicit crack geometry modeling. FEM and the other
methods presented here neglect soil-structure and soil-atmosphere interaction (Figure 2),
which can significantly influence crack formation and behavior. Finally, calibrating con-
stitutive models to accurately represent soil behavior is always a challenge when using
FEM and any other numerical approximation. These limitations drive the need for spe-
cialized techniques and alternative numerical methods to overcome these challenges and
improve the accuracy of simulations.

2.2 Lattice Boltzmann Method (LBM)

LBM was used to study clayey soils undergoing desiccation at a mesoscale level [24]
and it was introduced to simulate fluid flow for the first time in 1986 [39].

LBM enables the consideration of pore-scale processes during drying. The fluid do-
main is discretized into a lattice structure, with each lattice node representing a small vol-
ume or pore. Instead of solving the governing equations at a continuum level, LBM sim-
ulates the behavior of individual fluid particles, represented by lattice cells or lattice Boltz-
mann particles, that move and interact within the lattice. By explicitly representing the
individual fluid particles and their interactions, LBM allows for the consideration of var-
ious pore-scale processes during dryings, such as capillary effects, evaporation, fluid-solid
interactions, and convective flows.

LBM employs a simplified kinetic model to describe the motion of fluid particles.
These particles propagate along discrete lattice directions and undergo collisions with
neighboring particles, leading to the redistribution of mass, momentum, and energy. The
particle interactions at the pore scale directly influence the macroscopic behavior of the
fluid.
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LBM provides a means to couple pore-scale simulations with larger-scale models,
such as FEM, to capture the interactions between the microscopic and macroscopic phe-
nomena. This enables the integration of pore-scale information into continuum-based sim-
ulations and improves the accuracy of predictions at larger scales.

LBM provides insights into the fundamental mechanisms of crack formation, but its
computational cost can be relatively high due to the need for fine spatial resolution [16,
22, 23]. LBM can solve physical equations of balance and equilibrium. LBM is based on
the Boltzmann equation that is derived from the principles of conservation of mass, mo-
mentum, and energy, hence, a physical-based model.

The limitations of the LBM are that accurate representation of soil behavior in LBM
requires proper material characterization, which can be challenging due to the complexity
of clayey soil slurry behavior during desiccation. Modeling crack propagation may need
additional techniques, as the inherent lattice structure of LBM may not directly capture
the process. Additionally, LBM primarily focuses on fluid flow, potentially overlooking
some soil mechanics aspects when the soil acquires consistency, such as the mechanical
behavior of the soil matrix, which influences crack initiation and propagation.

2.3 Phase Field Method (PFM)

PFM appeared in 1992 and it was used as an effective tool for simulating desiccation
cracks in clayey soils from micro to mesoscale levels. PEM describes the evolution of a
system with multiple phases and has been applied to represent the degree of saturation
or water content in the soil [17, 24, 25, 29, 34].

PFM provides a continuous representation of crack formation and propagation, ena-
bling the study of complex crack patterns. However, the computational cost associated
with PFM is high.

PFM is a mathematical framework that can be used to solve physical equations of
balance and equilibrium, so, it is a physical-based method.

PFM is commonly employed to simulate phase transitions and evolving interfaces in
various physical systems, such as solidification, solid-state transformations, and fluid dy-
namics, in combination with LBM [35].

The limitations of PFM are the difficulty in accurately calibrating the model parame-
ters to represent the specific behavior of clayey soils. The constitutive relations and mate-
rial properties used in the PFM may need to be carefully tuned to capture the unique
characteristics of clayey soils, such as their complex moisture retention and swelling-
shrinkage behavior. Additionally, the PFM tends to smooth out crack features due to its
diffuse interface representation of cracks, potentially overlooking small-scale crack de-
tails. The cracks change the contour conditions of the problem; since the method treats the
cracks with continuous functions the method cannot update the contour conditions.

Non-physical-based Models

2.4 Discrete Element Method (DEM)

DEM has been used to simulate the behavior of granular materials and clayey soils.
DEM considers individual particles and their interactions, enabling the simulation of
crack formation during drying [18, 26]. DEM has proven effective in capturing the defor-
mation and interaction between soil particles during drying, but its applicability to large-
scale problems can be limited due to high computational costs.

While the DEM can accurately simulate the behavior of granular materials, it does
not solve the macroscopic equations of balance and equilibrium. Instead, it focuses on
capturing the microscale interactions between individual particles and their resulting col-
lective behavior.
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Table 1. Methods that tackle effectively challenges when simulating desiccation cracks in clayey
soils, and the scale levels they work into. The methods are classified into non-physical-based (nPb)
and physical-based (Pb) methods into columns for every scale level.

non-Physical- Scale level
Common  based (nPb) Microscale Mesoscale Macroscale
Challenges Physical- b b b b b b
based (Pb) n " n
. DEM
Heterogeneity FEM CAM FEM CAM FEM
CAM
. . DEM
Multiphase medium CAM PFM CAM PFM CAM FEM
Coupled Nonlinear THM  DEM LBM
problem  CAM PFM CAM PEM CAM  FEM
Effect of the soil composi-
. . DEM LBM
tion, mineralogy, pore struc- CAM PFM CAM PEM CAM FEM

ture, initial moisture content

Dealing efficiently with com-
putationally intensive meth- CAM CAM CAM
ods at large-scale simulations

DEM LBM

Large deformations CAM PFM CAM PEM CAM FEM
Capture shrinkage and
. . DEM LBM
Crackmg using advar}ced CAM PFM CAM PEM CAM FEM
constitutive equations
Complex crack patterns CAM CAM CAM

The limitations of the DEM method are that, firstly, DEM requires a substantial num-
ber of discrete particles to accurately represent the soil structure, making it computation-
ally demanding for large-scale simulations.

Additionally, the accurate characterization of material properties, such as particle-
particle interactions, contact forces, and soil-water interaction, can be challenging in
clayey soils. The calibration of DEM parameters specific to clayey soils is often complex
and time-consuming.

Furthermore, DEM struggles to capture intricate crack patterns and accurately pre-
dict crack propagation due to its discrete nature. The method may also overlook important
factors, such as the influence of soil matrix behavior and complex moisture redistribution
phenomena, which are crucial in desiccation crack simulations.

Thus, while DEM offers valuable insights into the microscale behavior of soil parti-
cles, its limitations need careful consideration and validation when simulating desiccation
cracks in clayey soils.

2.5 Cellular Automaton Method (CAM)

CAM (Cellular Automaton or Cellular Automata) has been employed to simulate the
growth and pattern formation of desiccation cracks in clayey soils and is able to work
from micro to macro scale levels [19, 32, 33]. This method uses a grid of cells with different
states to represent the crack initiation, propagation, and interaction. CAM offers a simpli-
fied representation of crack evolution and is computationally efficient, allowing for the
simulation of large-scale crack patterns. The method can simulate heterogeneity in the
soil; however, it may lack accuracy in capturing the mechanical behavior of the soil. CAM
represents the soil as a 2D, or 3D grid of cells and uses rules to simulate the drying process
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and the resulting stress distribution. The model calculates the evolution of the system over
time based on these rules and the initial conditions specified.

This method is what is called a mechanistic method that does not necessarily use
physical-based equations to establish its rules. So, one limitation of CAM is the challenge
of accurately representing the complex behavior of clayey soils within the simplified cel-
lular automaton framework.

CAM relies on predefined rules and assumptions, which may not fully capture the
intricacies of crack formation and propagation in clayey soils. Additionally, the model's
grid-based nature may result in limited spatial resolution, potentially overlooking fine-
scale details of crack patterns.

These limitations underscore the need for cautious interpretation and validation of
results when applying CAM to simulate desiccation cracks in clayey soils, as well as the
potential for combining CAM with other methods to address these shortcomings.

Nothing stops scientists from improving CAM to use as rules the classic physical-
based equations, but this is something that is yet an open research area.

3. Integration of methods to improve simulations and analysis

All the methods in the previous section share limitations encompass difficulties in
accurately characterizing material properties and behavior, representing complex interac-
tions between soil particles, cracks, and fluid flow, and addressing computational de-
mands, particularly for large-scale simulations. Challenges also arise in capturing intricate
crack patterns, accurately predicting crack propagation, and incorporating the mechanical
behavior of the soil matrix. Furthermore, simulating soil-structure and soil-atmosphere
interactions, moisture redistribution, and the microstructure of clayey soils can be chal-
lenging [34]. The limitations underscore the need for careful consideration of method se-
lection, calibration of constitutive models, and the exploration of techniques to overcome
these challenges and enhance the accuracy and reliability of desiccation crack simulations
in clayey soils.

Researchers have explored the combination of multiple numerical methods to simu-
late the process of desiccation cracks in clayey soils. By combining different methods, they
aim to leverage the strengths of each approach to overcome individual limitations and
improve the overall accuracy and reliability of the simulations.

For example, the coupling of FEM with DEM [27] or LBM [28] has been investigated.
This hybrid approach allows for the simultaneous modeling of soil deformation and crack
propagation, considering the discrete behavior of soil particles or the fluid flow within the
soil matrix. This combination enables capturing both the macroscale behavior of the soil
structure and the microscale interactions between particles or fluid.

Another approach involves combining FEM with PFM [30] to simulate crack propa-
gation. The FEM provides an accurate representation of soil deformation, while the PFM
handles the evolution and propagation of cracks. This combination enables the simulation
of complex crack patterns and the prediction of crack paths without explicitly tracking
them.

Additionally, researchers have explored the integration of different methods using a
multi-scale approach [31]. This involves coupling methods such as FEM, DEM, or LBM at
different length scales to capture the behavior of the soil from the microscale to the macro-
scale. This allows for a more comprehensive understanding of desiccation crack formation
and evolution.

While the combination of multiple methods shows promise, it is still an active area
of research, and the specific combinations and approaches vary depending on the research
objectives and available computational resources.

FEM and CAM are the only methods able to work from micro to macro scale levels
being computationally efficient for large-scale simulation. FEM is the best method to sim-
ulate the desiccation process taking into consideration the complexities of the soil behav-
ior and is a physical-based method. For this reason, in the next section, the fundamental
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equations that combine FEM and CAM are presented as a promising approach to tackling
the desiccation cracks in clayey soils.

4. Finite Element and Cellular Automaton Method (FEM-CAM)

The problem of desiccation cracks in clayey soils is a Multiphysics and multiphase prob-
lem (soil matrix + water and air in the pores) that can be resolved using FEM for the THM
process and CAM for the cracking problem by developing a FEM-CAM method.

4.1 Govern and constitutive equations for desiccation in clayey soil problems.

During the desiccation process, the three phases of the soil interact in general thermally,
hydraulically, and mechanically. Once the contour conditions in suction, temperature,
and displacements are set, and if the soil-structure and soil-atmosphere interaction are
neglected, the main equations that define the THM problem of desiccation in clayey soils
are the governing equations and constitutive equations from Continuum Mechanics.

Governing equations

4.1.1 Equilibrium equation (Cauchy Equation of Motion)

If no dynamic effects are considered, the equilibrium equation of the soil matrix is as
follows.

V-o+pg=0 (1)

Equation (1) is an elliptic partial differential equation where, o, is the total stress ten-
sor, and p is the average density of the multiphase medium (soil, water, and air). The
vector g is the gravity vector.

4.1.2 Balance Equation (Continuity Equation also known as Richards’ equation)

Equation (2) is a parabolic partial differential equation that represents the balance of
water in the pores of the soil. In an unsaturated porous medium (the general case that
includes the saturated case, S, =1, and the dry case, S, = 0), the water mass balance
equation is written as follows:

)
V- ('@ + 5 (p"nS,) = 0 )

In equation (2), p" is the water density, q is Darcy’s velocity vector, t is time, n
is the porosity of the soil, and S, is the degree of saturation of water in the soil pores.

4.1.3 Conservation of Energy Equation (First law of thermodynamics)

If thermal effects are considered, the first law of thermodynamics establishes the need
for the heat transfer equation in the soil. Equation (3) is a parabolic partial differential
equation.

do
V- (K%v0) + q° — pSCE =0 3)

In equation (3), p° is the density of the soil, ¢ is the specific heat capacity, 8 is the
temperature, q° is the heat transfer rate, and K? is the thermal conductivity (could be
scalar for isotropic permeability or tensorial for anisotropic permeability.

Constitutive equations

4.1.4 Stress-strain thermos-mechanical constitutive law
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For the most general case of unsaturated soils, the effective stress tensor (¢”) is:
o =0—u1+ y(u, —u,)1 (4)

Inequation (4) o is the total stress tensor. The air and water pressure are respectively
u, and u,,, x is a parameter that depends on the degree of saturation, the stress history
and the soil’s fabric and 1 = §;j, is the identity tensor.

In this formulation, the matrix suction and the net mean stress define the effective
stress tensor ¢’ through equation (4).

The net stress 6™ and the suction s are:

o™t =0 —u,l 5)

S=Ug — Uy (6)

The general strain-stress relation must be written in differential form, because of the
nonlinearity of the material behavior.

do = D(g,0,5)de @)

For the most general THM case, D is a tangent matrix in function of the strain, &,
temperature, 8, and suction, s. Equation (7) establishes the coupling between tempera-
ture, suction, and mechanical effects.

The deformations are calculated by addition of a component due to the net stress plus
a component due to the suction plus a component due to temperature. Equation (8) con-
siders, then, the additive deformation hypothesis:

de = de™ + def + de? = C(K, G)do™ + h(K®)ds + t(K?)do (8)

In equation (8), the parameter K is the volumetric modulus and G is the shear mod-
ulus of the soil matrix; the parameter, K°® is the volumetric modulus due to changes in
suction; the parameter, K’ is the volumetric modulus due to changes in temperature.
These parameters must be established depending on the constitutive model chosen (linear
elastic, non-linear elastic, viscoelastic, plastic, etc.) the factor C is a 4th order compliance
tensor and h, t are 2nd order tensors.

The net stress increments can be obtained from (8):

de™t = C!(de — h(K®)ds — t(K?)d6) = D(de — h(K*)ds — t(K?)d6) 9)

In equation (9), D = C7%, is the tangent stiffness tensor.
4.1.5 Generalized Darcy’s law for unsaturated soils and permeability tensor.

The generalized Darcy’s law for unsaturated soils is:
q = —K(S,) - (Vs — gp*) (10)

In equation (10) q is the velocity of Darcy vector; Vs is the gradient of the suction;
K(S;,n,0) is a permeability tensor that changes with water saturation degree, S,., poros-
ity, n, and temperature, 6; g is the gravity vector and p" is the water density. The per-
meability tensor, K, can be isotropic or anisotropic.

4.1.5.1 Water retention curve
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The van Genuchten function [13], is usually adopted in this formulation to relate
changes between the degree of saturation and the suction, s.

-2

Sp=(1+ ( > )ml fo = exp[-n(n —n)] (11)

Py f

Where, 1, is a material parameter and P, is the air-entry value for the initial porosity
ny, adopted as the reference value. Function, f,,, considers the changes of porosity during
desiccation and its effect in the water retention curve by means of a parameter, 7. For non-
deformable soils, f, = 1, because porosity is constant.

4.1.6 Fourier’s law

This is the constitutive law for the thermal problem.
q° = —K°ve (12)
In equation (12), q° is the heat transfer rate and KY is the thermal conductivity.

4.2 Integration of FEM with CAM to simulate desiccation cracks in clayey soils.

CAM models the soil as a grid of cells, and each cell can be in different states repre-
senting soil moisture content, stress, or cracking. The mathematical formulation of the
desiccation crack problem using CAM involves expressing the evolution of moisture con-
tent, suction, temperature, and stress, in the soil domain that can be calculated by a THM
or HM model resolved by FEM.

CAM first produces a grid representation of the soil and can establish heterogeneity.

A cracking criterion is defined based on stress thresholds or stress gradients. The
criterion determines when a cell transitions from an intact state to a cracked state. For
example, a simple criterion could be the crack initiate when the tensile strength is reached
in any cell.

Once a cell transitions to a cracked state, crack propagation rules determine how
cracks propagate to neighboring cells. This can be based on stress redistribution or local
crack propagation rules. The direction and extent of crack propagation can be influenced
by factors such as stress concentration, crack coalescence, and crack branching.

The moisture content, suction, stress, temperature, and cracking states are updated
at each time step using FEM. The specific equations and constitutive relationships used
will depend on the chosen model