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Abstract: Crack inspection is important to monitor the structural health of pavement structures

and to facilitate an easier rehabilitation process. Currently, pavement crack inspection is conducted

manually, which is inefficient and costly at the same time. For solving the problem, this work has

developed a robotic system for automated data collection and analysis in real-time. The robotic

system navigates on the pavement and collects visual images from the surface. A deep learning-based

semantic segmentation framework named RCDNet was proposed and implemented on the onboard

computer of the robot to identify cracks from the visual images. Simulation results show that the deep

learning model obtained 96.29% accuracy for predicting the images. The proposed robotic system was

tested on both indoor and outdoor environments and was observed that it can complete inspecting a

3m×2m grid within 10 minutes and a 2.5m×1m grid within 6 minutes. This outcome shows that

the proposed robotic method can drastically reduce the time of manual inspection. Furthermore, a

severity map based on the results from visual images was also generated to provide an idea of which

locations should be paid more attention to repair in a test grid.

Keywords: crack detection; deep learning; mobile robotic system; NDE analysis; pavement inspection

1. Introduction

Roads in South Korea are constituted by a length of 105673 KM of which 89,701 are paved roads

(91.6%) [1]. These pavement roads can be damaged due to various reasons including surface cracking,

delamination, honeycomb, etc. Cracks in pavement roads are one of the most potent indicators of

pavement damage. Cracking in the pavement is quite unavoidable and there are many underlying

factors (e.g., exposure to the sun, rain erosion, natural weathering, and long-term driving of the vehicle)

that accelerate the pavement surface cracking. If these cracks cannot be localized and repaired in time,

they will have a negative impact on the safe driving of vehicles. Consequently, it can cost deadly

accidents as well as expenditure of a huge amount of money for the maintenance and repairment of

pavements. So, crack detection at an early stage is very essential to inspect as well as evaluate the

structural health and serviceability of the paved roads. Over the decades, manual crack detection was

a very common practice for localizing cracks on paved roads. However, the manual method lacks

efficiency and accuracy, it is expensive because of the involvement of the domain experts. Moreover, it

is considerably tedious, arduous, and time-consuming because the experts monitor the cracks with the

naked eye by roaming along the roads. Therefore, for lessening the workload of the experts and making

the system fast as well as cost-effective, researchers are bringing automation the crack detection. With

the advancement of Computer Vision (CV) technology, various vision-based methodologies have

already been developed for performing automatic crack detection. Early implementation of the CV

techniques for crack detection was to some extent limited to the threshold-based approaches (i.e. pixel

intensity was used as the feature) [2], [3], and other hand-crafted feature-based approaches. Some

of the prominent hand-crafted feature extraction techniques are: wavelet features [4], Local Binary

Pattern (LBP) [5], Digital Image Co-relation [6], Gabor filters [7], and so on. But these methods can
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only extract the local patterns instead of the global patterns which pulls the detection results backward.

A few research works [8], [9], [10] used model-based traditional CV algorithms which use geometric

characteristics of the images to perform crack detection in a global view. The advantages of the

model-based techniques over the feature-based techniques are that the model-based techniques can

detect cracks in adverse conditions such as noisy environments, poor illumination conditions, shadow

problems, etc. Though these model-based methods can partially solve the noise problems and can

detect cracks more continuously, their performance is not satisfactory enough during detecting cracks

with complex patterns or intensity inhomogeneity.

In recent years, Deep Learning is being extensively applied in CV tasks for its noteworthy

representation ability. DL models do not need hand-crafted features rather they can extract valuable

features (both local and global) automatically from the input data. A few research works have already

devoted their efforts to utilizing the properties mentioned above of deep learning for learning robust

feature representation and detecting cracks with more precision. Zhang et al introduced Convolutional

Neural Network (CNN) classifier for the first time in 2016 for detecting cracks in concrete structures

[11]. The primary objective of this study was to develop a patch-based classifier for detecting cracks

in concrete structures. Later on, Cha et al. [12], and Eisenbach et al. [13] also performed patch-based

classification which can only identify the presence or absence of cracks in a corresponding image patch.

Researchers also utilized another scheme of deep learning called object detection for localizing the cracks

along with identification in an image [14], [15]. However, these models can only classify and localize the

cracks in a concrete structure instead of detecting cracks at a pixel level. So, for solving this issue, Yang

et al. incorporated an image segmentation technique for detecting concrete cracks at a pixel level [16].

Crack segmentation involves classifying each of the pixels in an image as ’crack’ or ’non-crack’. Instead

of predicting the class only in an image; crack segmentation predicts an output image highlighting the

pixels containing the cracks which localize the cracks as well as extracts the original shape of the cracks.

Moreover, the segmented images can later be used for finding out a few important pieces of information

(i.e. crack length, width, area) which give ideas about crack severity in concrete structures. Considering

the advantages of crack segmentation over crack detection and classification researchers from all over the

world are devoting their efforts to developing crack segmentation methods and quantifying the cracks to

present an automated crack detection system [17], [18].

However, along with the automated detection of cracks, automatic data collection is also necessary

for developing a fully automated pavement inspection system. While automated crack detection

increases accuracy, automated data collection can save time and also handle safety issues. As a whole,

many research works have already utilized robotic vehicles as well as unmanned aerial vehicles for

collecting the images automatically [19], [26]. However, most research works collect the data by

their vehicle and transfer them to another computer for analysis, which can not be considered as e

real-time detection for saving time. So, considering the above-mentioned issues, this work is going

to develop a robotic-assisted pavement inspection system by which this work collects image data

automatically as well as detects cracks from images in real time by using our proposed deep learning

models. Furthermore, after predicting the images this work will quantify the cracks for presenting the

severity maps of the cracks. In this work, this work will solve the problems of manual crack detection

techniques through our proposed system. The automatic data collection will save time and also handle

the safety issues, the detection using our proposed deep learning model will increase the accuracy,

and finally, as this work is proposing a totally automated pavement inspection system, it will not

need expertise involvement which will reduce the expenses also. This work is going to develop a

robotic-assisted pavement inspection system. The main contributions of this study are:

• Developing a robotics platform that will collect visual data automatically.
• Presenting a novel deep learning model for implementing it on the robot onboard computer to

detect cracks from the RGB images in real-time.
• Presenting a crack quantification algorithm for finding out crack length, width, and area.
• Finally, presenting a visualization of the crack severity map.
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The rest of this research is organized as follows: Section 2 provides an overview of the existing research works

which focus on developing robotic vehicles for pavement inspection. Section 3 presents the architecture

of the robotic platform used in this work. Section 4 presents the crack segmentation technique from RGB

images. Section 5 presents the working principle of the robotic platform. Section 6 discusses the experimental

procedure and shows the obtained result of our proposed system. This work is concluded in Section 7.

2. Literature Review

In this Section, this work will briefly summarize the existing state-of-the-art related works which

focus on developing robotic-assisted systems for inspecting cracks in concrete structures in real-time.

2.1. Robotic System for Crack Inspection

Over the past decades, various research works have been performed for developing robotic

vehicles to inspect cracks automatically. The first work this study discusses in this section dated back

to 2007 [19], designed an automated inspection system of cracks in concrete tunnels using a mobile

robot. They collected the images by using a CCD camera which was interfaced with the robot and

stored the images in the robot’s brain. Later the extracted cracks on a different computer using the

Sobel edge detection algorithm. Like [19] Oyekola et al. also designed a robotic system for detecting

cracks on concrete tank surfaces [20]. The authors also first collected the images and later detected

cracks using a thresholding algorithm developed by the MATLAB programming language. Li et al.

utilized the robotic platform developed by Guimu Robot Co Ltd. for detecting cracks on the pavement

structures [21]. The authors developed an unsupervised algorithm named Multiscale Fusion Crack

Detection (MFCD) for inspecting the cracks. However, in this work also the cracks are not detected

in the onboard computer. La et al. developed a wall climbing robot for detecting cracks on steel

bridges [22]. The robot was equipped with several sensors and a camera as well. During navigating

through the steel bridges it collected data and passed them in real-time to the ground station for

further processing and detecting cracks using a Hessian-matrix-based filter. In another work, La et al.

used the Seekur mobile robot platform and modified it by installing several NDE sensors (e.g., GPR,

USW, ER, IE), and a camera for concrete bridge deck monitoring [23]. The authors collected the images

and passed them to the remote computer for extracting the cracks using a Gradient-based algorithm.

They also presented the delamination maps of the cracking using the NDE data. The robot could

localize itself and maneuver automatically on the bridge deck. However, this robotic system needs

multiple onboard computers for navigating and processing everything. Hendrik et al. developed a

legged robot named ANYmal for inspecting the crack conditions in the underground tunnels [24]. The

authors considered the tactile sensory system instead of the vision data because of the presence of

noise, water, etc. on the surface. They collected the signals from the footstep of the robot and classified

the crack conditions using the Support Vector Machine (SVM) algorithm. The authors classified 5

types of crack conditions including good, satisfactory, fair, critical, and failure for providing an idea

about the severity. Le et al. developed a mobile robotic system for in-line inspection of the pipes [25].

The authors integrated multiple sensors (e.g. Lidar, optic sensors) on the robot and classified these

combined sensory data by the SVM algorithm for detecting cracks on the pipes. Lei et al. developed a

low-cost unmanned aerial vehicle for inspecting cracks in concrete structures [26]. They collected the

images using their UAV and classified cracks by the SVM classifier running on the onboard computer.

Pan et al. utilized low-altitude images collected from UAV for detecting cracks on asphalt pavements

[27]. The authors collected centimeter-level spatial resolution images and utilized a hybrid model

(ANN+SVM) for inspecting the cracks. Montero et al. developed a mobile robotic system for detecting

cracks in concrete tunnels [28]. They designed the mobile robot with a movable crane and a robotic

arm. The movable crane carries the vision sensor and the robotic arm while the robotic arm carries

an ultrasonic sensor. They designed the crane as movable so that it can reach different heights and

directions for collecting data accurately. They collected images and passed them to the host computer

which analyze the images using CNN and they contacted the ultrasonic sensor also with the tunnel
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wall for analyzing the cracks. Li et al. developed a quadrotor flying robot for detecting cracks in

concrete bridges and tunnels [29]. The authors focused on reconstructing 3D metrics for knowing the

location of the defects and severity information by a visual-inertial fusion approach. They proposed a

novel Deep Learning model named AdaNet to detect cracks using their own crafted dataset named

Concrete Structure spalling and Cracking (CSSC). Gui et al. developed a robotic system using the

ARIR robotic platform for detecting cracks on airport pavement [30]. They utilized one vision camera

and GPR sensor for collecting surface and subsurface data. The data were passed to an analysis center

to process the collected data. They employed an intensity-based algorithm for detecting cracks from

images and a voting-based CNN to predict the GPR data. Finally, the authors stitched the collected

data to present a continuous grid for visualization. Ramalingam et al. developed a mobile robotic

platform named Panthera for segmenting cracks and detecting garbage on the road [31]. The authors

adopted SegNet for the segmenting task and a DCNN-based object detector for detecting garbage.

Furthermore, they utilized Mobile Mapping System (MMS) for localizing the defects also. He et al.

developed an unmanned surface vessel (USV) for inspecting cracks on the bottom part of bridges or

urban culverts [32]. The authors installed both RGB cameras and LIDAR for collecting information

from the environment. The authors proposed a novel Deep Learning model name CenWholeNet for

detecting cracks. The USV was controlled from a ground station module where the LIDAR and video

information was also transmitted from the robot’s brain (Intel NUc mini pc). Yang et al. developed a

wall climbing robot for detecting cracks and spalling on concrete structures [33]. The authors collected

data using an RGB-D camera and predicted the cracks on the images by utilizing a novel deep learning

model named InspectionNet deployed in Intel Nuc Mini PC. They also developed a map-fusion

module for their work to highlight the detected cracks. Yuan et al. developed a mobile robotic platform

for detecting cracks in reinforced concrete structures [34]. The authors proposed a Mask-RCNN-based

model for segmenting the cracks on the images collected from a stereo camera. They utilized an Nvidia

Jetson Xavier device to implement the edge computing technique and pass the predicted frames to

the host computer through the WebSocket protocol. They designed a UI for successfully controlling

the robot and collecting the frames. Another important feature of this work is that after quantifying

the damages the researchers presented actual size information on a 3D cloud point reconstruction of

the inspected structures. Table 1 presents the summary of the robotic platforms for crack inspection.

Though there is already much remarkable research works for detecting pavement cracks automatically,

there is still a huge research scope for improving the methods. To the best of our knowledge, no

previous works except [33], [34] quantified the cracks after detecting them by their robotic system.

Besides this, to the best of our knowledge, no previous works considered both indoor and outdoor

environments for inspecting cracks by a robotic-assisted system. After considering the research scope,

this work is going to develop a robotic-assisted maintenance system for pavement structures that will

combine automated data acquisition, DL-based crack detection, crack quantification, and severity

mapping in both indoor and outdoor environments.

Table 1. Summary of robotic platforms for crack inspection.

Researchers
Inspected
Structure

Robot
Platform

Deep
Learning

Remarks

Yu et al.[19]
Concrete
Tunnel

Mobile robot No

Images were collected by the robotic system.
An image processing algorithm was utilized
in an external computer for detecting cracks

and crack information.

Oyekola et al.[20]
Concrete

Tank
Mobile robot No

Images were collected by the robotic system.
A threshold-based algorithm was used in

another computer for detecting the cracks. No
postprocessing techniques were applied for

obtaining geometrical information about
the cracks.
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Table 1. Cont.

Researchers
Inspected
Structure

Robot
Platform

Deep
Learning

Remarks

Li et al.[21]
Concrete
pavement

Guimi robot
co ltd.

No
Detected crack using an unsupervised

learning algorithm named MFCD. Detection
was not performed in onboard ocmputer

La et al.[22]
Steel

bridge
Wall climbing

robot
No

Images were collected and passed to the
ground station in real-time. Cracks were

detected using the Hessian-matrix algorithm.
Images were stitched and reconstructed to 3d

for giving a visual idea.

La et al.[23]
Bridge
deck

Seekur robot No
Combined visual sensor and NDE sensors for
crack inspection. Presented stitched images
after crack detection and delamination map.

Hendrik et al.[24]
Concrete
sweres

ANYmal
(legged robot)

Yes
(Machine
learning)

Tactile sensory system were used to collect
time series signals from the footstep of

ANYmal and Support Vector Machine (SVM)
were used to classify good, satisfactory, fair,

critical, failure types or cracks.

Le et al.[25]
Concrete

pipe
Mobile robot

Yes
(Machine
Learning)

Data from the camera and other sensors were
fused to classify using SVM for detecting

cracks.

Lei et al.[26]
Concrete
Pavement

UAV
Yes

(Machine
Learning)

Images were collected by a CCD camera and
the cracks were detected in the onboard
computer of the UAV by SVM. The crack

parameters were also computed.

Pan et al.[27]
Asphalt

pavement
UAV

Yes
(Machine
learning)

Colected images using the UAV and the
cracks were detected using Random Forest

(RF), SVM, Artificial Neural Network (ANN)
models.

Montero et al.[28]
Concrete
Tunnel

Mobile robot Yes

Collected RGB images using a camera and
ultrasound data by an ultrasonic sensor. The

data were passed to another computer for
processing. A CNN model was used for
detecting cracks from the images and a

traditional method was used for estimating
crack depth from the ultrasonic data.

Li et al.[29]
Concrete
Bridge

Flying robot Yes

A deep learning model was developed named
Adanet for detecting cracks and 3d metrics

were also reconstructed for getting the crack
location and severity information. A dataset

named Concrete Structure spalling and
Cracking (CSSC) was also developed by this

system.

Gui et al.[30]
Airport

pavement
ARIR robot Yes

Both surface and subsurface data were
collected by a camera and GPR interfaced into

the robotic system. An intensity-based
algorithm and voting-based CNN were

applied for processing image and GPR data.
A large-scale stitched image was presented to

visualize the cracks.

Ramalingam et
al.[31]

Concrete
pavement

Panthera robot Yes

A SegNet-based model was developed to
detect cracks and garbage. The system detects

cracks on the onboard computer (Nvidia
Jetson nano). A Mobile Mapping System was

also utilized to localize the cracks.
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Table 1. Cont.

Researchers
Inspected
Structure

Robot
Platform

Deep
Learning

Remarks

He et al.[32]
Concrete
Bridge

USV Yes

A USV was applied to detect cracks in the
bottom of a concrete bridge. The system

detects cracks on the onboard computer (Intel
NUC Mini PC) using cenWholeNet from the

RGB and Lidar data. The results are then
passed to the ground station in real-time.

Yang et al.[33]
Concrete

wall
Climbing

robot
Yes

A network named InspectionNet was used for
detecting the cracks from the RGB-D camera
on the onboard computer (Intel Nuc Mini PC)
of the robotic system. A map-fusion module
was also proposed to highlight the cracks.

Yuan et al.[34]
Reinforced
concrete

Mobile robot Yes

This robotic system used the stereo camera for
collecting pictures and utilized a Mask RCNN

model on the onboard computer (Nvidia
Jetson nano) to detect cracks. A UI was also

developed which controls the robot and
receives data using WebSocket protocol. A 3d
point cloud was reconstructed from the actual

size of the cracks.

3. Architecture of the AMSEL Robot

The design and configuration of the AMSEL robot developed for pavement crack inspection

are described in this Section. Figure 1 displays the configuration in the lab environment and Table 2

presents the specifications of the robot.

(a) Top view (b) Front view

Figure 1. AMSEL robot configuration on the lab environment.
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Table 2. AMSEL robot specifications.

Parameter Dimension Unit

AMSEL Height 21 cm
AMSEL Width 48.5 cm

AMSEL Length (with sensor frame) 91 cm
AMSEL Length (without sensor frame) 74 cm

Sensor frame height 35.3 cm
Sensor frame length 17 cm
Sensor frame width 36 cm

Wheel numbers 4 -
Wheel radius 13.25 cm

Continuous driving time >4 hrs
Power source Lipo battery 22V

Sensor RGB camera, vibration sensor -

3.1. Mechanical Unit

The mechanical system of the AMSEL robot is comprised of two different components; (a) a

Chassis module unit, and (b) a Reconfigurable sensory frame. Figure 2 displays the mechanical

components of the AMSEL platform.

AMSEL Mechanical and Functional Units

Chassis Module Unit
Reconfigurable 

Sensory Frame

i ii iii iv

(a) AMSEL Robot chassis with and without 

metal cover plate

(b) Sensor frame in normal mode and 

extended mode

Figure 2. Mechanical components of AMSEL.

3.1.1. Chassis module

The chassis module is the physical frame of the AMSEL robotic platform which give the vehicle

a distinct shape. Figure 2a (i) and (ii) display the chassis of the AMSEL robot with and without the

metal cover. The shape of the AMSEL chassis is a rectangle like a mobile robot. The chassis is made of

lightweight steel. The dimension of the chassis is 21×48.5×71 centimeters. The motors, motor drivers,

power source, and other electrical, as well as controller components, are accommodated on the left,

and right rails and center of the chassis box. The box is covered with a metal plate, which carries the

wifi router and keeps the components secure from rain and dust inside the chassis box.

3.1.2. Reconfigurable sensory frame

The sensor frame carries the vibration sensors, solenoids, and vision sensors. The sensor frame

has a reconfiguration mechanism to go down for making contact between the vibration sensors and
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the ground as well as go up during the navigation time. Figure 2 b (iii) and (iv) shows the sensor frame

in two different modes. The height, width, and length of the frames are 35, 36, and 17 centimeters

respectively when the sensors are not touching the ground. The stepper motor is also attached to the

frame for moving it up and down.

3.2. Electrical & Functional Unit

The electrical and programming unit of the AMSEL robot consists of three different types of

components; (a) sensory units, (b) electrical units, and (c) control units. Figure 3 illustrates the electrical

and sensory components.

AMSEL Electrical and other Units

Sensory and Electrical 

Units

(a) Sensory and Electrical components

Programming and 

Control Units

i
ii iii

iv
v vi

vii

(b) Intel Nuc and Python for control

Figure 3. Sensory, electrical, programming, and control units in AMSEL.

3.2.1. Electrical Units

The AMSEL robot’s electrical block consists of various devices including a camera, battery, power

supply board, DC motors, etc. The list and short description of the utilized electronic devices are

provided below:

• Vision System: A Logitech c922 Pro HD Stream Webcam has been utilized as the vision system

of the AMSEL robotic platform (Figure 3a (i)).
• Power source: In the AMSEL robot, a Polytronics Lithium-Polymer (Li-Po) battery has been used

as the power source. The model number of the utilized battery is PT-B16-Fx30 (Figure 3a (ii)).
• Power supply board: A custom-designed power supply board has been utilized to split the

power from the Li-Po battery among the other electronic devices used in the robotic platform

(Figure 3a (iii)).
• DC motors: For navigating the robot, four DC motors have been used in the AMSEL robot (Figure

3a (iv)). The DC motors used in this robot are 200W Brushless DC (BLDC) motors. The model

number of these motors is TM90-D0231.
• BLDC motor controller: For driving and controlling the motors in the AMSEL robot four BLDC

motor controller have been used (Figure 3a (v)). The model number of the utilized controller is

TMC-MD02.
• Serial communication adapter: The AMSEL robotic platform uses multiple serial communication

adapters for converting the RS485 communication to USB communication as the system’s main

controller uses USB communication protocol (Figure 3a (Vi)).
• Router A Tplink Archer Ax73 outer has been used in the AMSEL robot for communicating with

the host pc in the ground station (Figure 3a (vii)).
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3.2.2. Control Unit

The control system of the AMSEL robotic platform is divided into two parts mainly. One is

the software control unit and the other one is the hardware control unit. For the software control, a

graphical user interface (GUI) (Figure 4) has been designed using python programming language and

implemented on a host computer at the ground station.

Figure 4. Illustration of the graphical user interface for controlling the AMSEL robot.

The GUI communicates with the primary hardware controller of the AMSEL robot using socket

communication technology, where the robotic platform works as the server and the host pc works as

the client. The GUI has various buttons which are used to send commands to the robotic platform. The

vehicle executes the corresponding commands as well as sends the image data to the host pc through

the socket communication channel. The primary controller in the hardware is an Intel Nuc mini PC,

with 6 cores and 8GB RAM, and running on windows 10. The control unit in the hardware architecture

is comprised of two control blocks and all of them are controlled by the primary controller. Figure 5

displays the control blocks and hardware architecture of the AMSEL platform.

B
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2
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er
 S

u
p
p
ly

 B
o
ar

d

2
4
V

, 
1
2
V

, 
5
V

Intel Nuc Mini PC

Router BLDC Motor Driver

BLDC Motors

Navigation Control Unit

Primary Control System

C922 Pro Webcam

Vision System Control

Figure 5. Hardware architecture of AMSEL robot.

From Figure 5 it can be seen that the hardware architecture of the AMSEL robot is composed of

three control blocks including a vision system unit associated with Deep Learning, and a navigation

control unit. The vision block is comprised of a Logitech C922 Pro HD webstream camera. The camera

gets powered by the intel nuc mini pc and communicates with it by using a USB 3.0 communication

interface. For processing the images Deep Learning frameworks (Tensorflow, Keras) have been

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 June 2023                   doi:10.20944/preprints202306.0601.v1

https://doi.org/10.20944/preprints202306.0601.v1


10 of 33

installed in the primary controller. This control block capture the images, detect cracks using Deep

Learning technology, and passes the images to the host computer using server-client communication

technology. The navigation control unit is comprised of the motor controllers and the motors which are

powered by the power supply board. The primary controller communicates with the motor controllers

using serial communication technology. The primary controller sends the commands to the motor

controller and they drive the motors as per the commands. The motor controllers can also send the

spatial encoder data to the primary controller for taking decisions on the navigation and generating

the next commands.

4. Crack Detection and Quantification from Image

4.1. Proposed Architecture for Crack Segmentation

Crack detection can be considered a semantic segmentation problem where the "Crack" and

"Non-crack" pixels will be predicted as two different classes. This work has proposed a novel

lightweight crack detection method named "RCDNet: Real-Time Crack Detection Network" based on

deep learning. This work has utilized the encoder-decoder architecture as the base framework of our

proposed model. The model was designed in such a way that it can exploit all the necessary information

for good prediction with only a lower number of model parameters and fewer computational

complexities. The main purpose of reducing the model size is to make it compatible with implementing

it on the onboard computer of the robotic platform and detecting cracks in real-time. The overall

architecture of the proposed model is shown in Figure 6.

CECA CECA CECA CECA CECA

GAMGAMGAMGAM

Decoder

Encoder
Input Data

Result

H×W×3

H×W×3

H/2×W/2×16 H/4×W/4×16 H/8×W/8×32 H/16×W/16×64 H/32×W/32×128

H/2×W/2×16 H/4×W/4×16 H/8×W/8×32 H/16×W/16×64 H/32×W/32×128

H×W×16 H/2×W/2×16 H/4×W/4×32 H/8×W/8×64 H/16×W/16×128

1
×

1
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o
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Figure 6. Structure of the Proposed model.

As illustrated in Figure 6, our proposed model has two major parts including a dual

channel encoder module and a decoder module; while the encoder and the decoder parts contain

a context-embedded channel attention (CECA) module and a global attention module (GAM)
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respectively. The encoder part of our model extracts different levels of feature information (low-level

to high-level) from the RGB images of size 512×512 in each of the encoder stages. This work utilizes a

dual-channel encoder module for extracting information of different scales. Later, this work fuses this

multi-scale information at the beginning of the CECA module, which ensures the availability of more

detailed and rich contextual information from the original images. After this multi-scale feature fusion,

the CECA module passes the aggregated features through a channel attention branch for providing

more weights to the most important channels of the feature map and thus produces a new channel

refined feature map. Then the GAM in the decoder part collects the low-level features from the CECA

modules and the upsampled high-level features from the convolution blocks of the decoder. GAM

utilizes the high-level feature maps as the guide to weigh the low-level features and later fuses them

with the high-level features. After that, the GAM module passes this weighted channel refined feature

to a spatial attention branch to produce spatial refined features. The spatial refined features give more

weight to important pixels of a channel for predicting the cracks accurately. Finally, after repeating the

process in each stage of the decode block, our model gradually restores the feature maps and produces

the segmentation map with the same resolution as the input image at the last decoder stage. The

design of each branch of our model is discussed briefly in the following subsections.

4.1.1. Encoder Module

This work has designed a symmetric dual-channel encoder module for extracting information on

different scales from the pavement images. The purpose of using a dual-channel encoder module is to

collect maximum information from the images by performing multi-scale feature fusion. Literature

shows that in CNN convolution kernel size can be divided into two groups: small kernel size (1×1, 2×2,

3×3) and larger kernel size (5×5, 7×7, 11×11). The two groups have different types of characteristics

in the case of extracting features. The smaller kernels are more likely to extract local, complex, and

fine-grained features. On the other hand, the larger kernels have a bigger receptive field and can

extract widespread and global features. Conventional CNN models usually use either smaller kernels

or larger kernels in their network. However, many important pieces of information get overlooked and

missed in this strategy which hampers an accurate detection of the cracks. To overcome this problem,

in our network this work proposes a dual-channel encoder scheme so that the feature maps from each

encoder stage can contain both rich spatial information and the precise location information of the

cracks in pavement images. The utilized kernel size in the encoder channels of our network is 3×3

and 7×7 respectively. Both of the encoder channels of our proposed network consist of five encoder

blocks, where each of the blocks is followed by a 2×2 maxpooling layer. The encoder blocks in our

model consist of a convolution layer with the same number of filters for encoder channel 1 and encoder

channel 2. The first two blocks used 16 filters and the later ones utilized 32,64,128 filters respectively

for performing the convolution operation and extracting feature maps of different numbers from

every stage. The first encoder block of our network receives the original RGB images with the size

of H×W×C. Here H,W is the height, and weight of the images, and C represents the number of

channels. After going through each of the encoder blocks the images got downsampled by half due to

the maxpooling layers and the blocks produced feature maps as the number of utilized filters. So, after

the first encoder block in both of the channels, the output feature size becomes H/2×W/2×16. And

finally, at the end of the encoder module, this work obtains the feature map of size H/32×W/32×128.

4.1.2. Context Embedded Channel Attention Module

After extracting features from the encoder channels, this work designed a context-embedded

channel attention (CECA) module for fusing the information of the corresponding stages of every

channel and recalibrating the extracted features based on the inter-channel relationships and

dependencies. The main purpose of the CECA module is to give more weight to the important

channels of a feature map and overlook the unnecessary ones for improving the feature representation.

The structure of the proposed CECA module is shown in Figure 7
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Figure 7. CECA module structure.

As shown in Figure 7, our CECA module first takes the feature maps of the encoder channels

f3×3, f7×7 ∈ R
H×W×C as inputs and aggregates them to generate a context embedded feature map F∈

R
H×W×C. In the later part of the CECA module, the embedded feature map F gets passed through

two parallel branches of the global average pooling (Gap) layer and the global maxpooling (Gmp) layer.

The Gap layer produces a descriptor feature da ∈ R
C×1×1 which contains the information of channel

statistics by consolidating the spatial information. And the feature dm ∈ R
C×1×1 produced from the

Gmp layer contains important information about the object features. Mathematically,

da = Gap(F)

dm = Gmp(F)
(1)

The descriptor features da and dp are then fed to a shared MLP layer for attaining the degree of

association among the channels. For reducing the computational complexities the number of hidden

layers was selected as RC/r×1×1, where r is the reduction ratio. At the end of the parallelly branched

MLP layers, the outputs are fused and passed through a sigmoid activation function for generating a

feature map V.

V = σ{MLP[da] + MLP[dm]} (2)

Finally, the output of our CECA module B ∈ R
H×W×C is obtained by multiplying the original

feature maps from the encoder stages with the feature map V. So, the CECA is defined as follows:

B = V ⊗ f3×3 ⊗ f7×7 (3)

So, using the CECA blocksthsi work is getting refined activation maps that focus more on important

channels and suppress the unnecessary ones. The size of the refined activation maps is the same as the

intermediate activation maps extracted from the encoder stages.

4.1.3. Decoder with Global Attention Module

The decoder module of our proposed model consists of five convolution blocks and four global

attention module (GAM) blocks. Each of the convolution blocks consists of two convolution layers,

where the convolutional layers have the same number of filters corresponding to the encoder blocks.

The convolutional layers are followed by a Rectified Linear Unit (ReLU) activation function and a batch

normalization layer. The size of the kernels utilized in the decoder layers is 3×3. In the GAM blocks,
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this work is fusing the upsampled high-level feature Xh ∈ R
H×W×2C generated by the convolution

blocks in the previous decoder stage and the low-level features Xl ∈ R
H×W×C generated by the CECA

module. However as shown in Figure 8, before fusing the features from different stages the GAM

module weight the low-level features based on the high-level features to put more focus on the key

information.

Low Level 
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Figure 8. GAM module structure.

For generating the weighted features GAM firstly performs a 3×3 convolution on the low-level

features. And the high-level features are passed through the channel attention block of the CECA

module to assign more weights to the important channels and recalibrate the high-level features.

Then the low-level features and high-level features are multiplied to generate weighted low-level

features ∈ R
H×W×C. Later the original high-level feature map xh gets compressed by passing through

a 1×1 convolution layer to have the same dimension as xl . At the end of this stage, the weighted

low-level features and high-level features are merged to produce a channel refined feature y0 ∈

R
H×W×C. Mathematically,

y0 = E + conv1×1(xh)

y0 = conv3×3(xl) + V(xh) + conv1×1(xh)
(4)

After obtaining the channel refined feature, GAM performs spatial attention on the y0 for extracting the

spatial interpixel relations. The primary goal of utilizing spatial attention is to focus on the important

pixels of a channel that highlight meaningful features to provide prospective crack information. For

performing the spatial attention, the channel refined feature y0 is passed through an average pooling

and maxpooling layer along with the spatial dimension. As a result, this work gets two feature maps,
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qap = ap(y0)

qmp = mp(y0)
(5)

Then these two dimensional outputs qap ∈ R
1×H×W and qmp ∈ R

1×H×W are concatenated as

Q = (qap, qmp) (6)

After this step, the concatenated feature map goes through a 7×7 convolution layer followed by a

sigmoid activation function. And this work finally obtains the feature map S∈ R
H×W×C. The output

activation map S from the GAM block contains the most essential pixel information for detecting

cracks as it is filtered out both in spatial and channel-wise dimensions. This output is then fed into to

convolutional layer of the next decoder stage for reconstructing the pixels and predicting the cracks on

road images. Following this process in all the five decoder blocks; this work gets a feature map of size

H×W×16. Later this work applies a 1×1 convolution to obtain the predicted image with the same

shape (H×W×C) as the original image.

4.2. Dataset Description & Training of the Model

4.2.1. Dataset

The dataset this work utilized in this work for training the crack segmentation model is a public

benchmark dataset named Crack500 dataset [35]. The dataset was collected by smart mobile phones

from the main campus of Temple University, USA. The researchers initially collected 500 images with

a resolution of 2000×1500 pixels. Considering the issue of a small number of images, and the large

size of the images, each image was cropped into 16 non-overlapped parts. The researchers only kept

the regions that have resolutions of more than 1,000 pixels. Consequently, the final dataset contains

3368 images. The dataset also provides annotated ground truth for each of the images.

4.2.2. Implementation Details

The crack segmentation problem can be considered a class imbalance problem since the number of

pixels containing cracks can be very low. Therefore, for handling the class imbalance problem during

crack prediction, this work has used the dice loss function in this work. The dice loss function can be

calculated using the following formula:

DiceLoss = 1−
2 ∑i mini + γ

m2
i + n2

i + γ
(7)

where m represents the predicted probabilities of the classes, n denotes the ground truth data, and γ

denotes the smoothing factor. This work divided the dataset into 7:3 for training and testing the model

and resized input images and ground truths in the size of (512×512×3) and (512×512×3), respectively.

This work chose the Adam optimizer for optimizing our model. This work set the batch size at 2,

the learning rate at 0.001, and trained the model till 100th epochs. This work utilized python version

3.6.13 as the development language and Keras version 2.6.0 as the Deep Learning framework. This

work trained the model and conducted our experiments in a computer configured with Windows 10

operating system, 32 GB RAM, Intel core i9-11900k @ 3.50 GHz CPU processor, and NVIDIA Geforce

RTX 3080Ti graphics card.

4.3. Crack Severity Analysis

The proposed model provides us with the segmented cracks from the images. However, it is also

needed to determine the number of cracks and other morphological features (e.g., length, maximum
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width, area, density) to analyze the severity of cracks in any particular sample picture. And for that,

this work utilized the conventional image processing technique described below.

4.3.1. Counting the Cracks

In the first step of our crack severity analysis section, this work has calculated the number of

individual cracks in railway sleeper images. For counting the cracks, this work has utilized the concept

of contour detection in the images. Contour detection is a process that can be explained as a closed

curve with an orientation that joins all the continuous points (along with the boundaries) having

similar pixel intensities. Let an image as 2D function f(x,y) then,

f (x, y) = c (8)

where c is the constant pixel value. So, using the contour detection process, this work is getting the

connected regions of the crack denoting pixels predicted by the proposed model and crack boundaries.

Thus this work can calculate the number of detected contours, i.e., the number of individual crack

objects.

4.3.2. Extracting Morphological Features

After extracting the individual crack objects from the previous step, this work calculated the

cracks’ morphological features (length, width, area, and density). To calculate the length and the

maximum width of the cracks, this work applied the Algorithm 1. From the previous section, this

work has got the boundaries of the contours, i.e., cracks. Let a contour C=[X,Y] which is an array of

two columns with N length, where, x0, x1,......xn ∈X denotes the rows of the image and y0, y1,......yn

∈Y denotes the columns of the image. Let (x0, y0) and (xn, yn) are the starting point and the ending

point of the contour i.e. crack respectively. To find out the length of the crack, this work has calculated

the distance between the starting point and the ending point of the crack boundary using the distance

formula. After then for calculating the maximum width of a crack, this work first decided whether the

crack is horizontal or longitudinal in nature based on the number of rows and columns of the image

inside the contour. If the crack has more columns than rows, then the crack is horizontal type as its

length is toward the horizontal direction of the image frame. On the other hand, a crack is longitudinal,

if the contour has more rows. For finding the maximum with of a horizontal crack, this work has

traversed from the starting column y0 to the ending column yn of the crack boundary. During this

crossing, this work has found out and stored the rows where any particular column yj has traveled in

a list named occurs. This work estimated the number of rows traveled by any column yj when this

searching loop was completed, and this work appended the results for each column to a list entitled

widths. Finally, this work has searched for the maximum value in the list, and thus this work has

calculated the maximum width of a crack. Furthermore, this work also estimated the location of the

maximum with of the crack. For that, this work found the position of the first and last rows of the

column which traveled maximum rows. For finding out the width of a longitudinal crack, this work

utilized the same process, however, this time this work traversed through the rows from x0 to xn

and stored the number of columns traversed by a particular row xj. Later, based on these this work

estimated the maximum number of columns traversed by a particular row xj, which represents the

maximum width of a longitudinal crack. This work calculated the area of the contours as the area of

the individual cracks. After that, this work added the area of the individual cracks and got the total

area covered by the cracks in an image. Finally, this work divided the total area of the cracks by the

number of pixels to get the density of the cracks in an image.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 June 2023                   doi:10.20944/preprints202306.0601.v1

https://doi.org/10.20944/preprints202306.0601.v1


16 of 33

Algorithm 1: Algorithm for length and width calculation

1 contour=[X,Y]

Length=

√

(xn − x0)
2 + (yn − y0)

2

if Y > X then

2 Initialize an empty list named widths

for i←(y0, yn) do

3 Initialize an empty list occurs

for j← N do

4 if yj == i then

5 update occurs using xj

6 end

7 update widths using max(occurs)−min(occurs) +1

8 end

9 Maximum width = max(widths)

10 else if Y < X then

11 Initialize an empty list named widths

for i←(x0, xn) do

12 Initialize an empty list occurs

for j← N do

13 if xj == i then

14 update occurs using yj

15 end

16 update widths using max(occurs)−min(occurs) +1

17 end

18 Maximum width = max(widths)

19

5. AMSEL Robot Working Method

The AMSEL robot platform conducts data collection and data processing fully autonomously.

The working principle of the AMSEL platform is illustrated in Figure 9.

Navigation
Wheel 

encoders

Camera
Collect 

Images

Crack 

Segmentation

Crack 

Quantification

Crack severity 

Map

Robot Host PC Results

Figure 9. The working principle of the AMSEL robot navigation inspection system.

As it can be seen from Figure 9, the robotic system is divided into two working stations, i.e. robot

device and the host computer. The AMSEL robot navigates on the concrete pavement and collects

images from the surface. The robot collects images from a height of 30 cm and the covered area by

one image is 302mm×227mm. After collecting the image data with a resolution of 640×480 pixels, the
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onboard computer of the AMSEL platform resizes the image in a resolution of 512×512 pixels and

segments the cracks in the collected picture by utilizing the proposed deep-learning model described

in Section 4.1. Then the robot transmits the processed image to the host computer in real-time. Finally,

the host computer shows the image in the user interface of the robotic system and stores it on the

device to further analyze the crack severity using the algorithm described in Section 4.3.

5.1. Manual Navigation and Pavement Inspection

In the manual mode, the robot’s movement and pavement inspection by a user from the user

interface of the AMSEL robot system. The user interface has four navigation buttons, i.e. Forward,

backward, Right, and left. The user navigates the robot using these buttons to the place where the

user wants. For navigating manually, the user can control the speed of the robot as well by sending a

specified velocity in RPM to the robot. The user has the flexibility to place the robot in any position and

orientation in this manual mode. Figure 10 shows the manual inspection process in both indoor and

outdoor environments. During the navigation, the user turns on the camera by pressing the "Video"

button on the UI and checks whether there is a crack or not in a certain location by monitoring the

Video display portion of the UI.

(a) Image collection in indoor (b) Image collection in outdoor

Figure 10. Manual navigation and data collection in the indoor and outdoor environment.

5.2. Automated Navigation and Pavement Inspection

In the automated navigation process, the AMSEL robot navigates through a predefined survey

area. The navigation area is a rectangle with a width a meter and a length b meter, where the robot takes

a,b as input from the user interface at the host computer. When the receives inputs and commands to

move autonomously, it starts navigating automatically and collecting data lane by lane. The number

of lanes depends on the width of the survey area. Figure 11 diagram of the survey area.

The AMSEL robot follows the stop-and-go a certain distance method for conducting the pavement

inspection process. In this work, the AMSEL robot goes for each 25cm and stops to collect NDE data.

The distance between two consecutive lanes is also selected as 25cm in this work. Algorithm 2 displays

the method of the AMSEL robot’s automated navigation and pavement procedure respectively. Figure

12 shows the automated inspection process in the outdoor environment. From Algorithm 2 it can be

seen that, after getting the command of the automated navigation, the AMSEL robot calculates the

number of lanes nl and the number of steps ns in each lane. The number of lanes nl is determined by

dividing the width a of the survey area by 0.25 as the distance between two lanes is 25cm. And the

number of steps ns is determined by dividing the length of the survey area by 0.25 as the robot will

move 25cm in each step. Then the robot starts performing the assigned tasks in the steps. First, the

robot captures one picture and detects cracks in that. After detecting cracks in the picture, the picture

is transferred to the host computer along with the robot location on the survey grid and the density
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of cracks in the image. Then the robot directly moves to the next scanning location. For navigating

the correct distance and placing the robot in the precise position, this work has calibrated the spatial

encoder data of the motors. After calibration, this work found that for moving 1 meter, wheels change

their position by 1176 points.
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Figure 11. The diagram of survey area for the AMSEL robot.

(a) Image collection in indoor (b) Image collection in outdoor

Figure 12. Automated navigation and data collection in the indoor and outdoor environment.

Based on this, this work calculated the value for navigating 25cm. By considering the change in

position of the wheels, this work has calibrated for left and right turn by 90◦ also. When the robot

completes all the steps on a lane, it checks whether it is an odd or even lane. If it is an odd lane, the

robot turns right, moves 25cm, and turns right again for placing itself at the beginning of the next lane.

On the other hand, if the lane is an even lane, the robot turns left, moves 25cm, and turns left again to

place it at the beginning of the next lane. The robot continues these processes till it completes scanning

the last lane. After completing the last lane, it again checks whether the last is odd or even. If the last

lane is odd, the robot turns left, and navigates the a meter distance, turns left again, and navigates the

b meter distance. After this, it makes a 360◦ turn to go back to the starting position and orientation of

the robot. On contrary, if the final lane is even, the robot turns right, navigates the ameter distance,

and turns right again to go back to the starting position and orientation of the robot.
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orientation of the robot.

Algorithm 2: Algorithm for automated navigation and inspection

1 nl=a/0.25
ns=b/0.25
for i←(1, nl) do

2 for i←(1, ns) do

3 Capture image
Detect Cracks
Send image
Calculate crack density d

4 Move 25cm forward

5 end

6 if i <nl then

7 if (i %2)!=0 then

8 Turn right
Move 25cm forward
Turn right

9 else if (i %2)=0 then

10 Turn left
Move 25cm forward
turn left

11 else

12 Scan is completed
13 end

14 end

15 if (a %1)!=0 then

16 Turn right
Move "a" meter forward
turn left

17 else if (a %1)=0 then

18 Turn left
Move "a" meter forward
Turn left
Move "b" meter forward
Turn left

6. Results & Discussion

6.1. Performance of the Deep Learning Model

This work has used one segmentation model named RCDNet for predicting the images. For

evaluating the performance of our proposed RCDNet this work used four metrics: Accuracy,

Intersection over Union, Dice loss, and Dice coefficient. The percentage of successfully categorized

pixels is referred to as pixel accuracy while a binary segmentation task is being performed. However,

due to the class imbalance issue, pixel accuracy is not the best metric to evaluate the segmentation

task. For the majority of the Non-lane pixels in the case of lane detection, the images in the dataset are

severely unbalanced. The Dice coefficient and the IOU, on the other hand, are seen to be more useful
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metrics because they depend on the overlap between the anticipated picture and the ground truth

image. The metrics can be mathematically represented using the following equation.

Dice Coefficient =
2 ∑ YpYt

∑ Yp + ∑ Yt

IoU =
∑ YpYt

(∑ Yp + ∑ Yt)− (∑ YpYg)

(9)

The calculation demonstrates that the Dice coefficient represents the sum of the pixels in the two

overlapping regions. The IOU also stands for the region of overlap between the expected and actual

images, which is delineated by the union area. Figure 13 displays the accuracy, loss, Dice coefficient,

and IoU trend for our proposed model over the epochs of both the training and test sets.

(a) Pixel accuracy (b) Dice loss

(c) Dice coefficient (d) IoU

Figure 13. Curves of accuracy, loss, dice coefficient, and IoU while training and testing the models at

100 epochs.

From Figure 13 it can be seen that our model has been trained well. There is not so much difference

in the curves of the training set and test set which indicates that the model did not experience underfit

or overfit. The training curves for all the metrics did not fluctuate throughout all the epochs. Between

the first and about the third epochs of our model, the test curves began to rise quickly. But from the

third epoch, it gradually increased and began to stabilize. But around the 27th, 52nd, 84th, and 97th, they

went through four minor oscillations of varying degrees. However, our model was able to handle this
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variation and starting with the very next epochs, the curves stabilized once more. Finally, our model

showed promising results in terms of metrics. Table 3 presents the result of our developed model from

the perspective of the previously mentioned metrics on both the train set and the test set.

Table 3. RCDNet model performance in both train and test set

Accuracy
(%)

Dice
Coefficient

(%)
IoU (%)

Dice
Loss(%)

Train set 96.35 97.40 97.35 0.0180

Test set 96.29 97.33 96.90 0.0214

6.2. Pavement Assessment in Manual Mode

For the manual assessment of the pavement, the AMSEL robotic platform was navigated by

an operator both in indoor and outdoor environments. The robot moved in different places and

collected pictures using its visual sensor. The onboard computer segmented the crack pixels and sent

the predicted images to the ground stations. After getting the segmented results from the RCDNet,

this work measured the length, width, area, and density of the cracks. Though the crack measurement

algorithm produces the result in a pixel unit, the size of the cracks in the physical unit can be calculated

easily. As the vision sensor of the robotic system can cover an area of 302mm×227mm with a pixel

resolution of 640×480; 1 pixel is about 0.47mm both in height and width of the picture. Furthermore,

this work compared these results with manually measured data. In this study, the severity of the cracks

was also been assessed. The density of the cracks was calculated as the ratio of the cracked pixels and

the total pixels of an image. The severity scale density used in this work is shown in Table 4.

Table 4. Assessing severity of road cracks.

Measurements (M) Severity Limit

Area (mm) Fair M<0.4%
Poor 0.4% ≤M<1 %

Severe M>1 %

Figure 14 and Figure 15 show the original images, predicted black and white images, overlapped

images, and the images after the crack measurement algorithm in indoor and outdoor environments

respectively. Table 5 and Table 6 show the comparison between the manually collected data and the

digitally extracted data from the as well as show the severity in indoor and outdoor environments

respectively.
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Figure 14. Manually collected images from indoors.
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(e) (f) (g) (h)

Figure 14. Manually collected images from indoors. (a) Original Image (b) Predicted black and white

images (c) Overlapped images (d) Images showing the location of maximum width
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Figure 15. Manually collected images from outdoors.
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(i) (j) (k) (l)

Figure 15. Manually collected images from outdoors (a) Original Image (b) Predicted black and white

images (c) Overlapped images (d) Images showing the location of maximum width

Table 5. Comparison between the manually measured and digitally measured crack size indoor.

Picture
Number
of cracks

Manual length
Manual

maximum
width

No of cracks
after

prediction

Digital
Length

Digital
Maximum

Width
Area Density Severity

1.jpg 1 227mm 10mm 1 227.45mm 8.93mm 1039.75mm2 1.44%. Severe

2.jpg 2 72mm, 187mm
3mm,
7mm

2
72.04mm,
178.75mm

2.82mm,
7.52mm

484.675mm2 0.67%. Poor

3.jpg 1 302mm 17mm 1 295.91mm 15.97mm 2123.575mm2 2.94%. Severe

4.jpg 1 150mm 5mm 1 157.67mm 5.11mm 318.66mm2 0.44%. Poor

5.jpg
Web
crack

- - Web crack - - 4330.93mm2 6%. Severe

6.jpg 1 240mm 5mm 1 232.56mm 5.64mm 344.98mm2 0.47%. Poor

7.jpg 1 325mm 8mm 1 312.24mm 7.82mm 545.32mm2 0.83%. Poor

8.jpg
Web
crack

- - Web crack -mm - 599.83mm2 0.88%. Poor

9.jpg 1 302mm 9mm 1 302mm 8mm 1227.775mm2 1.70%. Severe

10.jpg 1 200mm 3mm 1 192.28mm 2.82mm 200.33mm2 0.32%. Fair

For indoor, from Figure 14, it can be seen that all the cracks are well predicted in the indoor

environment. Even in the presence of shadow (Image2, Image3, Image5), and external noise (Image9)

the RCDNet model detects the cracks accurately. However, if this work observes Image2, Image8, and

Image10 very closely, it can be noticed that there is some discontinuity in the detection. A very little

portion of the cracks is not detected in the images. This work manually measured the widths of those

portions and found the limitation of our proposed RCDNet, it can not detect cracks with widths less

than 1mm from 30cm height. From Table 5, it can be seen that the difference between the manually

measured data (length, width) and digitally measured data of the cracks is very small for the indoor

images. This work has found that the average error rate of the measurements is 2.219% and 6.155%

respectively for the length and maximum width. One finding is that the table shows more errors in the

case of width calculation. However, this work believes that this large error was due to the ambiguity

of determining cracks with the scale by the naked eye.
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Table 6. Comparison between the manually measured and digitally measured crack size outdoor.

Picture
Number
of cracks

Manual length
Manual

maximum
width

No of cracks
after

prediction

Digital
Length

Digital
Maximum

Width
Area Density Severity

11.jpg 1 232mm 8mm 1 224.87mm 7.52mm 1144.09mm2 1.59%. Severe

12.jpg 1 307mm 10mm 1 300.86mm 10.81mm 1912.665mm2 2.65%. Severe

13.jpg
Web
crack

- - Web crack - - 2747.5mm2 3.81%. Severe

14.jpg
Web
crack

- - Web crack - - 3699.37mm2 5.12%. Severe

15.jpg 1 351mm 17mm 1 341.33mm 15.81mm 1713.26mm2 2.37%. Severe

16.jpg 1 240mm 9mm 1 225.67mm 18.33mm 1712.32mm2 2.37%. Severe

17.jpg 2
312mm,
255mm

9mm,6mm 2
305.15mm,
238.87mm

8mm,
6.11mm

2575.13mm2 3.56%. Severe

18.jpg 1 323mm 10mm 1 306.92mm 10.81mm 1841.572mm2 2.55%. Severe

19.jpg 2 268mm, 98mm 8mm,18mm 2
253mm,

63.92mm
8.46mm,
17.86mm

1487.54mm2 2.06%. Severe

20.jpg 1 230mm 9mm 1 224.43mm 10mm 1179.81mm2 1.63%. Severe

For outdoor, from Figure 15, it can be seen that all the images are predicted accurately. However,

if this work takes a closer look at Image12, Image13, Image14, and Image19 there is little misprediction.

From Image12, the finding is that, when the sunshine is so extreme and there is a dark shadow, our

model may mispredict the Shadowline as a crack. In Image13 and Image19 little portions of the cracks

are not detected. The problem this work has here is that the depth between the edges of the cracks

is very small, which does not look like a crack rather than a scratch on the pavement. However, the

overall prediction in the outdoor environment is also quite accurate. From Table 6, it can be seen that

the difference between the manually measured data and digitally measured data is also very small in

the outdoor images like the indoor images. The relative error rate of the measurements is 6.703% and

5.631% respectively. The unexpected finding from this table is the error rate in the length calculation.

However, this work can observe that Image19 which has two cracks, is not predicted accurately due to

the less depth and shows a bigger deviation in error. And this deviation affects the average error rate

badly.

This work has also performed a linear regression between manually measured and digitally

measured length as well as the width of the cracks to check the stability of digitally measured data

both for indoor and outdoor data. The linear regression for both indoor data and outdoor data in

Figure 16 (a,b) and Figure 16 (c, d) show that the value of R2 in both cases (i.e. length, width) is close

to 1. Besides this, the worthy finding is that the regression efficiency for both data is also close to 1.

This clearly indicates that the proposed system has good absolute accuracy for crack length and width

measurement.

In the case of the severity, from indoor images, this work found that among the ten images, four

images are in severe condition. Among the severe cracks, Image 5 is the most severe (6% cracked).

Of the other images, five images are in poor crack condition and one image is in fair crack condition.

From the outdoor images, this work found that all the cracks are in severe condition. Among them,

Image 4 is in the highest rank (5.12% severe).
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(m) (n)

(o) (p)

Figure 16. Manual measurement vs digital measurement: (a) length in indoor, (b) width in indoor, (c)

length in outdoor, (d) width in outdoor

6.3. Pavement Assessment in Automated Mode

The autonomous pavement assessment of the AMSEL robot was tested in both indoor and outdoor

environments. For the automated assessment of the AMSEL robot in an indoor environment, this

work has chosen a 3m×2m grid in the parking lot of Dong-A University, Busan, South Korea. For

inspecting the 3m×2m grid, the AMSEL robot takes around 10 minutes. For the outdoor, this work

has chosen a 2.5m×1m grid in the outdoor parking lot of Dong-A University, Busan, South Korea. For

inspecting the 2.5m×1m grid, the AMSEL robot takes around 6 minutes, which is way faster than

manual inspection. In the indoor and outdoor environment, the robot collected and predicted 108 and

50 images respectively. Figure 17 and Figure 18 show the stitched picture after segmenting the cracks

of each location in indoor and outdoor environments respectively.
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Figure 17. Stitched image collected from the indoor.
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Figure 18. Stitched image collected from the outdoor.
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The AMSEL robot platform also calculates the area of the cracks in each image and the density

of the cracks to show the severity of each location. The area and severity of each location indoor and

outdoor are illustrated in Fig 19 (a), (b) and 19 (c), (d).

(a) Area distribution in indoor grid (b) Density distribution in indoor grid

(c) Area distribution in outdoor grid (d) Density distribution in outdoor grid

Figure 19. Illustration of the severity of the cracks in the outdoor grid.

By analyzing Fig 19 (a), (b) and (c), (d), this work has found the severity statistics and the most

severe location both in the indoor and outdoor grid respectively. Table 7 and Table 8 show the statistics

of the detected cracks in the indoor and outdoor grid respectively.

Table 7. Statistics of the detected cracks for indoor area shown in Figure 17.

Number of cracks Maximum Area Minimum Area Total Area Total Density

43 3841.995mm2, Loc. (x=0m, y=0.25m) 38.305mm2 ,Loc. (x=2m, y=3m) 22617.69mm2 0.38%

Table 8. Statistics of the detected cracks for the outdoor area shown in Figure 18.

Number of cracks Maximum Area Minimum Area Total Area Total Density

18 1741.35mm2, Loc. (x=0.5m, y=0.25m) 308.2025mm2 ,Loc. (x=0.75m, y=0.5m) 15231.88mm2 0.68%

From Table 7, it can be seen that among the 108 images total of 43 images contain cracks on the

indoor grid. Among the cracks, the crack in the location of the first lane, the first stoppage has a

maximum area of 3841.995mm2, and the crack in the location of the last lane, the last stoppage has a

minimum area of 38.305mm2. The total cracked area is 22617.69mm2 and the grid is 0.38% cracked of

its total area. From Table 8, it can be seen that among the 50 images total of 18 images contain cracks

on the grid. Among the cracks, the crack in the location of the third lane, the first stoppage has a

maximum area of 1741.35mm2, and the crack in the location of the fourth lane, the second stoppage
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has a minimum area of 308.20252. The total cracked area is 15231.88mm2 and the grid is 0.60% cracked

of its total area.

7. Conclusions

In this work, a semi-automated robotic platform named AMSEL has been reported for inspecting

pavement cracks in real-time. An encoder-decoder-based lightweight deep learning model named

RCDNet was proposed to detect pavement cracks. The robotic platform was developed for manual

and automated navigation to complete the inspection. Both indoors and outdoors, the robot was able

to navigate and collect as well as analyze the data accurately. Extensive testing and deployment of the

AMSEL showed the advantage over manual testing during pavement crack inspection and evaluation.

The crack severity map was also generated based on the analysis of image data from the robot for

providing a simple and efficient way to monitor pavement cracks. In future work, this work plans to

integrate NDE sensors including IE, GPR, USW, ER, etc. Besides these, this work wants to add multiple

visual sensors for covering a large area quickly to make the inspection process faster. Finally, our plan

is to fuse all sensor data and develop a deep-learning model to obtain various defect information and

construct a correlation model among the NDE sensors.
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