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Abstract: This study rolls out a robust framework relevant for simulation studies through the
Generalised Autoregressive Conditional Heteroscedasticity (GARCH) model using the rugarch
package. The package is thoroughly investigated, and novel findings are identified for improved and
effective simulations. The focus of the study is to provide necessary simulation steps for volatility
estimation that involve "background (optional), defining the aim, research questions, method of
implementation, and summarised conclusion”. The method of implementation is a workflow that
includes writing the code, setting the seed, setting the true parameters a priori, data generation
process and performance assessment through meta-statistics. This novel, easy-to-understand steps
are demonstrated on financial returns using illustrative Monte Carlo simulation with empirical
verification. Among the findings, the study shows that regardless of the arrangement of the seed
values, the efficiency and consistency of an estimator generally remain the same as the sample size
increases. The study also derived a new and flexible true-parameter-recovery measure which can be
used by researchers to determine the level of recovery of the true parameter by the MCS estimator.
It is anticipated that the outcomes of this study will be broadly applicable in finance, with intuitive
appeal in other areas, for volatility estimation.

Keywords: bias, consistency; efficiency; simulation design; volatility estimation

1. Introduction

A simulation-based experiment is not often included in research because many upcoming
researchers do not have an adequate understanding of the nitty-gritty involved. Although the
details involved in simulation modelling are generally inexhaustible, this study, however, unveils
a crucial framework relevant for the simulation of financial time series data using the Generalised
Autoregressive Conditional Heteroscedasticity (GARCH) model for volatility estimation. Volatility
is a measure of the variability in an asset’s price over time [1]. The ultimate goal of the study is to
familiarise researchers with the concepts and art of simulation modelling through this model. This
framework is amply general for broad applicability and can be more easily verified in typical situations
in other non-financial sectors concerned with volatility estimation. The framework utilises the robust
simulating resources of the GARCH model, through set parameters, to generate data that are analysed,
and the estimates from the process are then used by chosen metrics to explain the behaviour of selected
statistics of interest.

Monte Carlo simulation (MCS) studies are computer-based experiments that use known
probability distributions to create data by pseudo-random sampling. The data may be simulated
through a parametric model or via repeated resampling [2]. MCS applies the concept of imitating
a real-life scenario on the computer through a certain model that can hypothetically generate the
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scenario. By simulating or repeating this process a considerably large number of times, it is possible to
obtain outcomes that can enable precise computation of desired issues of concern, like the possible
assumed error distribution/s that can suitably describe a given stock market for volatility estimation.
Simulation approaches can be applied flexibly to numerous problems and used to derive appropriate
solutions to questions that may be non-derivable by other methods [3]. In preparing for a simulation
experiment, reasonably ample time is needed to organise a well-written and readable computer code
and for simulated data generation. Implementation of a good simulation experiment and reporting
the outcomes require adequate planning. There is currently no general one-size-fits-all approach to
simulation modelling and to the choice of an adequate number of sample size/s, but the process can
be narrowed down to individual models.

Series of R application software packages like the rugarch [4], GAS [5], SimDesign [6], tidyverse [7],
to mention but a few, are currently available for simulation studies. This study exemplifies how the
GARCH model through the rugarch package can be effectively used to improve volatility estimation
through MCS experiment, with outcomes verified by real data empirical modelling. Although there
are good books on simulation approaches in general (see [8-10]), but up until now, to the best of our
knowledge, there has not been any monograph with direct step by step comprehensive layout on
simulation framework using the GARCH model. Hence, this study rolls out an inclusive simulation
design that is summarily required for a robust simulation practice in finance to estimate volatility
using this model, and the knowledge can be applied in any other field. Since the rugarch package
does not make provision for calculating the coverage probability !, this study also computes the MCS
estimator’s recovery levels through the "true parameter recovery (TPR)" measure as a proxy for the
coverage. The results show that the MCS estimates considerably recover the true parameters.

The raw data used for this study are the daily closing S&P South African sovereign bond index,
abbreviated S&P SA bond index. They are Standard & Poor data for the bond market in US Dollars
from Datastream [12] for the period 4th January 2000 to 11th June 2021 with 5598 observations. The rest
of the paper is organised as follows: Section 2 reviews the theories underpinning two heteroscedastic
models, the TPR measure, and the description of the design of the simulation framework. Section 3
presents the practical illustration of the simulation framework, with empirical verification, on financial
bond return data. Section 4 discusses the key findings and Section 5 concludes.

2. Materials and Methods

2.1. The GARCH Model

The GARCH model was developed by Bollerslev [13] as a generalisation of the Autoregressive
Conditional Heteroscedasticity (ARCH) model introduced by Engle [14]. It is a classical model that
is normally defined by its conditional mean and variance equations for modelling financial returns
volatility [15]. The mean equation is stated as:

Ty = Ui+ €, @

where 7; is the return series, &; = z;07 denotes the residual part of the return series that is random
and unpredictable, where z; ~ N(0,1) are the standardised residuals which are independent and

1 Coverage probability is the probability that a confidence interval of estimates contains or covers the true parameter

value [11].
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identically distributed (i.i.d.) random variables with mean 0 and variance 1 [16,17], y; is the mean
function that is usually stated as an Autoregressive Moving Average (ARMA) process,

p q
pr=Y dir—i+ ) e, )
i=1 i=1

where ¢; (i=1,...,p)and 6; (i =1, ..., q) are unknown parameters. The variance equation of the
GARCH(u,v) model is defined as:

OFf = W+ g+ ol + Pr07 g+ Putiy, ®
where w > 0 is the intercept (white noise), coefficients a; > 0 (j=1,...,0)and g; > 0(i =1, ...,
u) respectively measure the short-term and long-term effects of ¢; on the conditional variance [18].
The non-negativity restrictions on the unknown parameters, a; and f;, are imposed for o? > 0. The

equation shows that the conditional variance o7 is a linear function of past squared innovation &2 j

and past conditional variances 07 .. The GARCH model is a more parsimonious specification [19,20]
since it is an equivalence of a certain ARCH(co) model [21]. When u = 0 in Equation (3), the GARCH
model changes to the ARCH model with conditional variance stated as:

0P =wtared |+ ager, 4)

GARCH(1,1) is the simplest model specification with # = 1 and v = 1 in Equation 3, and it is conceivably
the best candidate GARCH model for several applications [21,22]. The volatility persistence of the
GARCH(1,1) is defined as ay + 1 (see [23,24]). Volatility persistence is used to evaluate the speed of
decay of shocks to volatility [15]. Volatility exhibits long persistence into the future if « + § — 1, hence
the closer the sum of the coefficients is to one (zero), the greater (lesser) the persistence. However, if
the sum is equal to one, then shocks to volatility persist forever and the unconditional variance is not
determined by the model. This process is called "Integrated-GARCH" [23,25]. If the sum is greater than
one, the conditional variance process is explosive, suggesting that shocks to the conditional variance are
highly persistent. Covariance stationarity of the GARCH model is ensued when Z;'}:l aj+ Y1 Bi <1,
while the unconditional variance of ¢; is 02 = E (¢2) = w/{1 — ( i1 0+ Xy Bi)} [21].

For the maximum likelihood estimation (MLE), the log-likelihood function for maximising the
likelihood of the unknown parameters given the observations is stated as:

L(de) = % ! exp <—€%) , ©)
t=1

2
\/ 2702 20;

where ¢ = (4, w,ay, ..., s, B1, -, Bu) " is a vector of parameters, and e = (ey, ..., ey) is a realisation
of length N. The quasi-maximum likelihood estimation (QMLE) based on the Normal distribution
and MLE have the same set of instructions for estimating 9, the only difference, however, is in the
estimation of a robust standard deviation of & (see [26-28]).

The maximised log-likelihood function with Student’s ¢ distribution (Duda and Schmidt, 2009) is

stated as:
N I (wzrl) 1, .5 v+1 &2
InL(de) = ; In T (%) L — Eln(U’ ) — (2) In {1 + 0_2(1/_2)] ’ (6)

where I'(-) and v are the gamma function and degree of freedom, respectively.
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2.2. The fGARCH Model

The family GARCH (fGARCH) model, developed by Hentschel [29], is an inclusive model that
nests some important symmetric and asymmetric GARCH models as sub-models. The nesting includes
the simple GARCH (sGARCH) model [13], the Absolute Value GARCH (AVGARCH) model [30,31], the
GJR GARCH (GJRGARCH) model [32], the Threshold GARCH (TGARCH) model [33], the Nonlinear
ARCH (NGARCH) model [34], the Nonlinear Asymmetric GARCH (NAGARCH) model [35], the
Exponential GARCH (EGARCH) model [19], and the Asymmetric Power ARCH (apARCH) model [36].
The sub-model apARCH is also a family model (but less general than the {GARCH model) that nests the
sGARCH, AVGARCH, GJRGARCH, TGARCH, NGARCH models, and the Log ARCH model [37,38].
The fGARCH (1, v) model is stated as:

4 u
o) = w+ Y ajo] (12— Agjl = Mjfzij = A1)’ + ) Bjof @)
j=1 j=1

This robust f{GARCH model allows different powers for o; and z; to drive how the residuals are
decomposed in the conditional variance equation. Equation (7) is the conditional standard deviation’s
Box-Cox transformation, where the transformation of the absolute value function is carried out by the
parameter 6, and 7y determines the shape. The A,; and A1; control the shifts for asymmetric small shocks
and rotations for large shocks, respectively. The fit of the full {GARCH model can be implemented
with y = J (see [24]). Volatility clustering in the returns can be quantified through the model’s volatility
persistence stated as:
u v
P=) Bi+) ®)
j=1 j=1
where ¢;, expressed in Equation (9), is the expected value of z; in the absolute value asymmetry
term’s Box-Cox transformation. Volatility clustering implies that large changes in returns tend to be
followed by large changes and small changes tend to be followed by small changes. The persistence is
obtained in this study through the "persistence()" function in R rugarch package. See [4,29] for details
on fGARCH and the nested models.

0 = E(|ze—j — Agjl — Mij(z—j — Agy))’ = /700(|Z = Agjl = Mj(z = A2)))°f(2,0,1,...)dz  (9)

2.3. The True Parameter Recovery Measure

Since the focus of MCS studies involves the ability of the estimator to recover the true parameter
(see [39]), this study applies the "true parameter recovery (TPR)" measure in Equation (10) to compute
the level (degree) of recovery of the true parameter through the MCS estimator. The TPR measure is a
means of evaluating the performance of the MCS estimates in recovering the true parameter. That is, it
is used to determine how much of the true parameter value is recovered by the MCS estimator.

) %, (10)

where K =0, 1, 2, ...,100 is the nominal recovery level, ¢ is the true data-generating parameter
and 9 is the estimator from the simulated (synthetic) data. For instance, a TPR estimated value of 95%
or 100% denotes that the MCS estimator recovers the complete 95% or 100% of the true parameter.

(6—9)

3 x K

TPR = (K

2.4. Simulation Design

The design of the simulation framework includes "background (optional), defining the aim,
research questions, method of implementation, and summarised conclusion". The method of
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implementation is a workflow that involves writing the code, setting the seed, setting the true
parameter/s a priori, data generation process, and performance evaluation through meta-statistics. As
summarised by the flowchart in Figure 1, these crucial steps are relevant for successful simulations
through the GARCH model. The details of each design step are as follows:

[ Background (optional) ]

[

I Define the aim ‘

I

I Research questions ‘
I

3

I Write the code ‘
| =
=8
g
I Set the seed ‘ S
! =
. =
I Set the true parameter a priori ‘ ‘%
l =
D
=
I Data generation process (DGP) ‘ N
S
J. =

I Meta-statistical evaluation of performance ‘
]
[ Discussion and summarised conclusion ]

Figure 1. Simulation design flowchart for volatility estimation.

2.4.1. Aim of the Simulation Study

After optionally stating the background that explains crucial underlying facts about the study, the
next step is to define the aim of the study, and it must be clearly, concisely and unambiguously stated
for the reader’s understanding. The focus of MCS studies generally dwells on estimators’ capabilities
in recovering the true parameters @, such that E(8) = ¢ for unbiasedness, 8 — ¢ as the sample size
N — oo for consistency, and root mean square error (RMSE) or standard error (SE) tends to zero as
N — oo for good efficiency or precision of the true parameter’s estimator. Hence, the aim of the study
may revolve around those properties, like bias or unbiasedness, consistency, efficiency or precision
of the estimator. The aim can also evolve from comparisons of multiple entities, like comparing the
efficiency of various error distributions, or comparing the performance of multiple models, or on
improvement to an existing method.

2.4.2. State the Research Questions

After defining the study’s aim, relevant questions concerning the purpose of the simulation should
be outlined. These will be pointers to the objectives of the study. The intricacies of some statistical
research questions make them better resolved via simulation approaches. Simulation provides a robust
procedure for responding to a wide range of theoretical and methodological questions and can offer a
flexible structure for answering specific questions pertinent to researchers’ quest [3].

2.4.3. Method of Implementation

The simulation and empirical modelling of this study are implemented in R Statistical Software,
version 4.0.3, with RStudio version 2022.12.0+353, using the rugarch [4,24], SimDesign [6], tidyverse [7],
zoo [40], aTSA [41] and forecast [42] packages. Computation is executed on Intel(R) Core(TM) i5-8265U
CPU @ 1.60GHz 1.80 GHz. The method of implementing the simulation is as follows:
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* Write the code: Carrying out a proper simulation experiment that mirrors real-life situations can
be very demanding and computationally intensive, hence readable computer code with the right
syntax must be ensued. MCS code must be well organised to avoid difficulties during debugging.
It is always safer to start with small coding practices, get familiar with them and ensure they run
properly with necessary debugging of errors before embarking on more intensive and complex
ones. Code must be efficiently and flexibly written and well arranged for easy readability.

* Set the seed: Simulation code will generate a different sequence of random numbers each time
it is run unless a seed is set [43]. A set seed initialises the random number generator [4] and
ensures reproducibility, where the same result is obtained for different runs of the simulation
process [44]. The seed needs to be set only once, for each simulation, at the start of the simulation
session [2,4], and it is better to use the same seed values throughout the process [2].

Now, through the GARCH model, this study carries out an MCS experiment to ascertain
whether the seed values’ pattern or arrangement affects the estimators’ efficiency and consistency
properties. Two sets of seeds are used for the experiment, where each set contains three different
patterns of seed values. The first set is 51 = {12345, 54321, 15243}, while the second set Sy =
{34567, 76543, 36547}. In each set, the study tries to use seed values arranged in ascending order,
then reverses the order, and finally mixes up the ordered arrangement. The simulation starts
by using GARCH(1,1)-Student’s ¢, with a degree of freedom v = 3, as the true model under four
assumed error distributions of a Normal, Student’s ¢, Generalised Error Distribution (GED) and
Generalised Hyperbolic (GHYP) distribution. Details on these selected error distributions can be
seen in [24,45]. The true parameter values used are (i, w, a, B) = (0.0678, 0.0867, 0.0931, 0.9059),
and they are obtained by fitting GARCH(1,1)-Student’s ¢ to the SA bond return data.

Using each of the seed patterns in turn, simulated dataset of sample size N = 12000, repeated
1000 times are generated through the parameter values. However, because of the effect of initial
values in the data generating process, which may lead to size distortion [46], the first N = {11000,
10000, 9000, 8000} sets of observations are each discarded at each stage of the generated 12000
observations to circumvent such distortion. That is, only the last N = {1000, 2000, 3000, 4000} are
used under each of the four assumed error distributions, as shown in Table A1, Appendix A.
These trimming steps are carried out following the simulation structure of Feng and Shi [28] 2.
An observation-driven process like the GARCH can be size distorted with regards to its kurtosis,
where strong size distortion may be a result of high kurtosis [47]. The extracts of the RMSE and
SE outcomes for the GARCH volatility persistence estimator & + f3 are shown in Table A1. For S;
in Panel A of the table, as N tends to its peak, the performance of the RMSE from the lowest to
the highest under the four error distribution assumptions is Student’s t, GHYP, GED and Normal
in that order, while that of SE from the lowest to the highest is GHYP, Student’s ¢, GED and
Normal in that order, for the three arrangements of seed values.

For S, in Panel B of the table, as N reaches its peak at 4000, the performance of the RMSE from
the lowest to the highest is Student’s ¢, GHYP, GED and Normal in that order, while that of SE
from the lowest to the highest is GHYP, GED, Student’s t and Normal in that order, for the three
Sy patterns of seed values. Hence, efficiency and precision in terms of RMSE and SE are the same
as the sample size N becomes larger under the three seeds, regardless of the arrangement of the
seed values under Sy, as also observed under S;. In addition, the flows of N consistency of the
estimator under the seed values in S are roughly the same; this is also applicable to those of the
seed values in 5. The plotted outcomes can be visualised as displayed by the trend lines within

2 This study only follows the authors’ trimming steps for initial values effect. The other trimming by the authors for

"simulation bias" (where some initial numbers of replications are further discarded after the initial value effect adjustment)
are not used here because it is observed that it sometimes distorts the estimators” v/ N consistency.
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the 95% confidence intervals in Figure 2 for the three seed values of sets S in Panel A and S; in
Panel B, where the efficiency and consistency outcomes are roughly the same with increase in N.

(A) Efficiency and consistency of the three S1 seed patterns (B) Efficiency and consistency of the three S2 seed patterns
S12345 S15243 S54321 S34567 S36547 S76543
! 04 n
0.075 03
w § w
1) )
g Metric g 02 Metric
E - RMSE - RMSE
LU 0,050 S W i Z s
X ‘ T | ' , [
| "‘%——/’N p 1 T — |
0025 ! 00
1000 2000 3000 4001000 2000 3000 4001000 2000 3000 4000 1000 2000 3000 40001000 2000 3000 40001000 2000 3000 4000
Sample size (N) Sample size (N)
(C) SL: The impact of sample size on RMSE and SE (D) S2: The impact of sample size on RMSE and SE
Normal Student's t 0 Normal Student's t
009 | : 03
006 X\\ | ¥
W | , | : w 01 ¥'\; N
00.03 . . ! 000
2 Metric 201 Metric
K GED GHYP =Ruse GED GHYP = RuSE
0 | SE 0 0.4 = SE
>0.09 S 03
o : ' Foz
: \K‘\ ] : 01
003 ' | i - 00
-0.1
1000 2000 3000 40001000 2000 3000 4000 1000 2000 3000 40001000 2000 3000 4000
Sample size (N) Sample size (N)

Figure 2. Panels A and B show the efficiency and v/N consistency in S; and S, for each seed pattern,

while Panels C and D reveal the impacts of sample size on RMSE and SE under the assumed errors in
Sl and 52.

To summarise, this study observes that, as N — oo, the pattern or arrangement of the seed values
does not affect the estimator’s overall consistency and efficiency properties, but this may likely
depend on the quality of the model used. The seed is primarily used to ensure reproducibility.
Panels C and D of the figure further reveal that the RMSE/SE — 0 as N — oo for the four error
distributions in S1 and S,.

Table A1 further shows that the MCS estimator & + j considerably recovers the true parameter
« + B at the 95% nominal recovery level, where some of the estimates even recover the complete
true value (0.9990) with TPR outcomes of 95%. These recovery outcomes can be seen in the visual
plots of Figure 3 (or as shown in Panels A and B of Figure A1, Appendix B), where Panels A(i)
and B(i) reveal that the MCS estimates perform quite well in recovering the true parameter as
shown by the closeness of the TPR outcomes to the 95% (i.e., 0.95) nominal recovery level for S;
and Sy, respectively. The bunched up TPR outcomes in Panels A(i) and B(i) are clearly spread
out as shown in Panels A(ii) and B(ii) for S and Sy, respectively. From these recovery outputs,
two distinct features can be observed. First, the TPR results do not depend on the sample size as
shown in Panels A and B of Figure 4 for 5; and S,, which is a feature of coverage probability
(see [11]); second, the closer (farther) the MCS estimate is to zero, the smaller (larger) the TPR
outcome, as revealed in Panels C and D of the figure.

¢ After setting the seed, the true parameter values of the true sampling distribution (or true model)
are then set a priori [48,49].
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A(i) S1: True parameter recovery outlook (the coverage) A(ii) S1: True parameter recovery outlook (the coverage)
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B(i) S2: True parameter recovery outlook (the coverage) B(ii) S2: True parameter recovery outlook (the coverage)
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Figure 3. TPR outcomes in Panels A(i) and B(i) for S; and Sy, respectively. The outcomes are clearly
spread out in Panels A(ii) and B(ii) for S; and S;. The dotted lines are the 95% (i.e., 0.95) nominal

recovery levels.

(A) SL: TPR outcomes vs sample size (B) S2: TPR outcomes vs sample size
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0941 t ! | 0.95 .
el . — | 0.94] |
g’) 0.92 I | 8 093(
g 0l91 g . Errors
goaul. 3 092 ~ A_Normal
=} GED GHYP =} GED GHYP ~ B_Studentst
0 9005 ~ C_GED
O 0,05 - vereereree e LSOV OIS FSOUII S E D_GHYP
Foodl ] . | | '_0.95 Ry T R -
093 - | ‘ o 0% \¥
092] - : ] - 093" : ;
0.91 0.92
1000 2000 3000 4000 1000 2000 3000 4000 1000 2000 3000 400m000 2000 3000 4000
Sample size (N) Sample size (N)
(C) S1: TPR outcomes vs MCS Estimates (D) S2: TPR outcomes vs MCS Estimates
Normal Student's t Normal
0.95 <095
0.94
0.94
0.93
8092 é 093
Errors
,8 0.91 8 ~ A_Normal
5 =1 GED GHYP ~ B_Student'st
0.5 © 0,95 - e e frrr e ~ C_GED
E 001 x D_GHYP
- F0.94
0.93
0.92 0.93
0.91
0.96 0.97 0.98 0.99 100 0.96 0.97 0.98 0.99 1.0C 0.97 0.98 0.99 1.007 0.98 0.99 1.00
MCS Estimates MCS Estimates

Figure 4. TPR outcomes against sample size (MCS estimates) in Panels A and B (Panels C and D).
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* Next, simulated observations are generated using the true sampling distribution or the true
model given some sets of (or different sets of) fixed parameters. Generation of simulated
datasets through the GARCH model is carried out using the R package "rugarch". Random data
generation involving this package can be implemented using either of two approaches. The
first approach is to carry out the data generating simulation directly on a fitted object "fit" using
the ugarchsim function [4,24] for the simulated random data. The second approach uses the
ugarchpath function, which enables simulation of desired number of volatility paths through
different parameter combinations [4,24].

The simulation or data generating process can be run once or replicated multiple times. This
study carries out another MCS investigation through the GARCH model to determine the effect
(on the outcomes) of running a given GARCH simulation once or replicating it multiple times.
That is, for a given sample size and seed value, the outcome of running the simulation once is
compared to that of running it with different replications like 2500, 1000, and 300. This MCS
experiment uses GARCH(1,1)-Student’s t, with v = 3, as the true model under four assumed
error distributions of a Normal, Student’s , GED and GHYP. However, it should be understood
that any non-normal error distributions (apart from the Student’s ¢ that is used here) can also be
used with GARCH(1,1) model for the true model. The GARCH(1,1)-Student’s ¢ fitted to the SA
bond return data yields the true parameter values (4, w, «, ) = (0.0678, 0.0867, 0.0931, 0.9059).

Using these parameter values, datasets of sample size N = 12000 are generated in each of the
four distinct simulations (i.e., simulations with 1, 2500, 1000, and 300 replicates). After necessary
trimmings in each simulation, to evade initial values effect, the last N = {1000, 2000, 3000} sets of
observations are used at each stage of the generated 12000 observations under the four assumed
innovation distributions. That is, datasets of the last three sample sizes, each simulated once,
then replicated L = {2500, 1000, and 300} times are consecutively generated. From the modelling
outputs, it is observed that the log-likelihood (llk), RMSE, SE and bias outcomes of &, B and
& + B estimators for each simulation under the four assumed errors are the same for the three
sample-size datasets with the same seed value, regardless of whether the simulation is run once
or replicated multiple times. For brevity, this study only displays the outcomes of the experiment
under the assumed GED error for each run in Table 1. However, increasing the number of
replications may reduce sampling uncertainty in meta-statistics [6].

¢ The generated (simulated) data are analysed, and the estimates from them are evaluated using
classic methods through meta-statistics to derive relevant information about the estimators.
Meta-statistics (see [6]) are performance measures or metrics for assessing the modelling outputs
by judging the closeness between an estimate and the true parameter. A few of the frequently
used meta-statistical summaries, as described below, include bias, root mean square error (RMSE)
and standard error (SE). For more meta-statistics, see [2,6,50].

Bias

The bias, on average, measures the tendency of the simulated estimators 9 to be smaller or
larger than their true parameter value ¢. It is defined as the average difference between the
true (population) parameter and its estimate [28]. The optimal value of bias is 0 [50,51]. An
unbiased estimator, on average, yields the correct value of the true parameter. Bias with a positive
(negative) value indicates that the true parameter value is over-estimated (under-estimated).
However, in absolute values, the closer the estimator is to 0, the better it is. Bias is stated
mathematically as E(8 — 8), but can be presented in MCS (see [39]) as bias = % Zle(ﬁi —9).
The two formulae are connected as:

E(F — 8) = E(5) — 6= -

L 1 & .
Y 8 -0 T Y (8 —0), (11)
i=1

ol
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Table 1. Outcomes of different simulation replicates.
Panel A: Simulation run once
o B N 11k RMSE; Bias; SE; RMSEB BiasB SEB RMSE&+B BiaSHB SEAHB

0.0931 09059 1000  -2020.5  0.0504 0.0328  0.0383  0.0551 -0.0443  0.0327 0.0719 -0.0115  0.0710
2000  -3813.8  0.0246 0.0046  0.0241 0.0462  -0.0374  0.0271 0.0608 -0.0327  0.0512
3000 -57342  0.0156  -0.0037  0.0152  0.0316  -0.0269  0.0166 0.0441 -0.0306  0.0317

Panel B: Simulation run with 2500 replications

0.0931 09059 1000  -2020.5 0.0504 0.0328 0.0383 0.0551 -0.0443  0.0327 0.0719 -0.0115 0.0710
2000  -3813.8 0.0246 0.0046 0.0241 0.0462 -0.0374  0.0271 0.0608 -0.0327 0.0512
3000  -5734.2 0.0156 -0.0037  0.0152 0.0316 -0.0269  0.0166 0.0441 -0.0306 0.0317

Panel C: Simulation run with 1000 replications

0.0931 09059 1000  -2020.5  0.0504 0.0328  0.0383  0.0551 -0.0443  0.0327 0.0719 -0.0115  0.0710
2000  -3813.8  0.0246 0.0046  0.0241 0.0462  -0.0374  0.0271 0.0608 -0.0327  0.0512
3000 57342  0.0156  -0.0037  0.0152  0.0316  -0.0269  0.0166 0.0441 -0.0306  0.0317

Panel D: Simulation run with 300 replications

0.0931 09059 1000  -2020.5  0.0504 0.0328  0.0383  0.0551 -0.0443  0.0327 0.0719 -0.0115  0.0710
2000  -3813.8  0.0246 0.0046  0.0241 0.0462  -0.0374  0.0271 0.0608 -0.0327  0.0512
3000 -57342  0.0156  -0.0037 0.0152  0.0316  -0.0269  0.0166 0.0441 -0.0306  0.0317

where & = 9;(i = 1, ..., L) is a finite ith number of the sample estimate & for the datasets, L is the
number of replications, and ¢ is the true parameter.

Standard Error

Sampling variability in the estimation can be evaluated via the standard error (SE) as stated
(see [39,52]) in Equation (12). Also called Monte Carlo standard deviation, it is a measure of the
efficiency or precision of the true parameter’s estimator, which is used to estimate the long-run
standard deviation of d; for finite repetitions. It does not require knowing the true parameter ¢
but depends on its estimator @; only. The smaller the sampling variability, the more the efficiency
or precision of the #'s estimator (see [2]). Sampling variability decreases with increased sample
size [50].

L
where 8 =) d/L. (12)
i=1

RMSE

The root mean square error (RMSE) is an accuracy measure for evaluating the difference between
a model’s true value and its prediction. RMSE measure indicates the sampling error of an
estimator when compared to the true parameter value [50] and it is stated as:

(13)

Its computation involves the true parameter ¢. An estimator with lesser RMSE is more efficient
in recovering the true parameter value [50,52], and minimum RMSE produces maximum
precision [53]. Consistency of the estimator occurs when RMSE decreases such that ¢ — ¢
as the sample size N — oo [2,24]. RMSE is related to bias and sampling variability as:

RMSE = 1/bias? + SE2. (14)

That is, the RMSE is an inclusive measure that combines bias and SE, such that low SE can be
penalised for bias. The mean squared error (MSE) is obtained by squaring the RMSE. MCS
is highly reliant on the law of large numbers, and it is expected that the distribution of an
appropriately large sample should converge to that of the underlying population as the sample
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size increases [54]. It is also expected that the Monte Carlo sampling error should decrease as the
sample size increases, but this is not always the case. That is, the sample size cannot always be
sufficiently increased to limit the sampling error to a tolerable level [54].

2.4.4. Discussion and Summary

After implementing the method, the last stage in the framework steps is the conclusion, which
needs to reflect a summary discussion of all logical findings from the experiments, with answers to
the research questions. The conclusion brings out the novelty of the research and may also include
the limitations experienced and opportunities for future work. In addition, relevant information on
simulation results can be conveyed through graphics, tabular presentation, or both.

3. Results: Simulation and Empirical

3.1. Practical lllustrations of the Simulation Design: Application to Bond Return Data

By way of illustration, this section practically describes how the stated steps can be applied using
Monte Carlo simulations with a real data empirical verification.

3.1.1. The Background

Itis believed that observation-driven models can appropriately estimate volatility when fitted with
a suitable error distribution [55]. Observation-driven modelling exist in the presence of time-varying
parameters, where parameters are functions of lagged dependent variables, concurrent variables and
lagged exogenous variables (see [56,57] for details). Data generation using the rugarch package can be
done through a variety of models that include the simple GARCH, the exponential GARCH (EGARCH),
the GJR-GARCH, the Component GARCH (CGARCH) [58], the Multiplicative Component GARCH
(MCGARCH) [59], among others, and two omnibus models apARCH and fGARCH (as described in
Section 2.2).

The apARCH model is less robust than the {GARCH model [24], hence the latter is used for the
data generation in this study. Specifically, {GARCH(1,1) model is used as the true data generating
process (DGP) for the MC simulation because the first lag of conditional variability can considerably
capture volatility clustering existing in the time series data. In other words, the dependence of volatility
on recent past activities is more than on distant past activities [60]. Hence, this illustrative study
showecases the effectiveness of the observation-driven model f{GARCH for estimating volatility, where
the outcomes of the model fitted with each of ten assumed innovation distributions of the Normal,
skew-Normal, Student’s t, skew-Student’s {, GED, skew-GED, GHYP, Normal Inverse Gaussian (NIG),
Generalised Hyperbolic Skew-Student’s t (GHST) distribution and Johnson’s reparametrised SU (JSU)
distribution are compared. Details on the error distributions can be found in [24,45,61-67].

The DGP fGARCH(1,1) model, as stated in Equation (15) is used to generate simulated return
observations using the non-Normal Student’s ¢ error with v = 4.1 as the true error distribution.

o) =w+ 107 (|ze-1 = An| = Ma{ze1 — Am })° + Bao) 4 (15)

Here, a Student’s t with shape parameter or degree of freedom v = 4.1 is used to ensure that E[z}] <
oo, which enables v/N consistency of the QML estimation following the assumption of Francq and
Thieu [68] (see [69]). Moreover, the Student’s ¢ distribution is used as the true error distribution in
this study because it can suitably deal with leptokurtic or fat tailed features [70,71] experienced in
financial data [29], and it is also assumed that stock prices appear to have a distribution much like
the Student’s t [72]. However, based on relevance and research needs, users may choose to use any
leptokurtic distributions, like the GED or others, for their data generation. Simulation through the
rugarch package can be carried out using the ugarchsim and ugarchpath functions, but not all the
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stated data generating models currently support the use of ugarchpath method (see [24]). Hence, this
illustration is implemented using the ugarchsim function through the "fit object" approach.

Further background study reveals the findings of Morris et al. [2], where the authors showed
that RMSE is more applicable as a performance measure where the objective of the simulation is
prediction rather than estimation. The authors discussed how more sensitive RMSE is to the choice
of the number of observations used during method comparisons than when only SE or bias is used.
Hence, for fairness in performance assessments, the SE is used as the key metric or measure of efficiency
(precision) in this illustrative study.

It is also noticed from the outcomes of the family GARCH modelling that two sets of standard
error (SE) estimates are returned. That is, the default MLE standard errors (SEs) and the robust QMLE
SEs [24,73,74]. This study used the robust QMLE SEs of the {GARCH modelling for the simulation
illustrations because they are claimed to be consistent (but not efficient) and asymptotically normally
distributed if the volatility and mean equations are well specified [27,75].

3.1.2. Aim of the Simulation Study

This study aims at obtaining the most appropriate assumed error distribution for conditional
volatility estimation when the underlying (true) error distribution is unknown.

3.1.3. Research Questions

This simulation study should result in responses to the following questions:

1. Which among the assumed error distributions is the most appropriate from the {GARCH process
simulation for volatility estimation?

2. Financial data are fat-tailed [76], i.e., non-Normal. Hence, will the combined volatility estimator
& + B of the most suitable error assumption still be consistent under departure from Normal
assumption?

3. What type (i.e., strong, weak or inconsistence) of v/N consistency, in terms of RMSE and SE, does
the fGARCH estimator & + j exhibit? X

4. How is the performance of the MCS estimator & + f3 in recovering the true parameter?

3.1.4. Method of Implementation

To initiate the implementation method, the written code is first used to fit the true model
fGARCH(1,1)-Student’s t to the SA bond return data through the ugarchfit function of the {GARCH
fit object (see [4,24] for details on the fit object). Next, through the ugarchsim function, using seed
12345 in the code, the outputs from the fit are set (or used) a priori as the true parameter values («,
B) = (0.0748, 0.9243) for the simulation process as shown in Table 2. These parameter values with
other estimates from the fit object are utilised directly or unaltered to generate N = 15000 sample size
observations, replicated 1000 times. However, after trimming down the simulated dataset, following
the simulation structure of Feng and Shi [28], to prevent the effect of initial values, by removing the
first N = {7000, 6000, 5000} sets of observations at each stage of the simulated 15000 observations, the
last N = {8000, 9000, 10000} are processed under each of the ten assumed innovation distributions as
shown in Table 2.

Figure 5 displays the visual outlooks of the simulated returns and volatilities for the first three
series in the 1000 replicated series for sample size N = 8000. These sampled visuals show that each of
the 1000 replicated series of the simulated (synthetic) data has a unique randomness and shape that
make them different from every other series. Hence, the estimate from the family GARCH simulation
is the average of all the estimates from the different replicated series.
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Table 2. True model f{GARCH(1,1)-Student’s t with true parameters a = 0.0748, B = 0.9243 and « + 8 = 0.9991.
N & B &+ p Ik RMSE;  Bias, SE;  RMSE;  Biasg SE; RMSE; ; Bias, 3 SE; ;s TPR; 5
95%

Panel A 8000 0.0835 0.9234 1.0069 -13860.4 0.0390  0.0087 0.0380  0.0377  -0.0009 0.0377 0.0761 0.0078  0.0757  95.74%
Normal 9000 0.0790 0.9259 1.0049 -15490.9 0.0297  0.0042 0.0294 0.0465  0.0015 0.0464 0.0760 0.0058  0.0758  95.55%
10000 0.0803 0.9281 1.0085 -17081.0  0.0088  0.0055 0.0069 0.0091  0.0038 0.0082 0.0178 0.0094  0.0151  95.89%

Panel B 8000 0.0834 0.9235 1.0069 -13860.4 0.0385  0.0086 0.0375 0.0372  -0.0009 0.0372 0.0752 0.0078  0.0748  95.74%
skew- 9000 0.0792 0.9262 1.0055 -15490.6 0.0138  0.0044 0.0131  0.0216  0.0019  0.0215 0.0352 0.0064  0.0346  95.61%
Normal 10000 0.0801 0.9284 1.0085 -17080.2 0.0085  0.0053 0.0066 ~ 0.0089  0.0041 0.0079 0.0173 0.0094 0.0145  95.89%
Panel C 8000 0.0736 0.9226 0.9963 -13337.1  0.0060 -0.0012 0.0058  0.0059  -0.0017 0.0056 0.0118 -0.0029  0.0115  94.73%
Studentt 9000 0.0727 0.9279 1.0006 -14912.0 0.0054 -0.0021 0.0050  0.0056  0.0036  0.0043 0.0094 0.0014  0.0093  95.14%
10000 0.0735 0.9263 0.9999 -16428.3 0.0043 -0.0013 0.0041 0.0035  0.0020 0.0028 0.0070 0.0008  0.0069  95.07%

Panel D 8000 0.0732 09225 0.9957 -13337.1 0.0084 -0.0016 0.0083  0.0064 -0.0018 0.0062 0.0149 -0.0034 0.0145  94.68%
skew- 9000 0.0715 0.9262 0.9977 -14912.2 0.0061  -0.0033 0.0051 0.0040  0.0019  0.0036 0.0088 -0.0014  0.0087  94.87%
Studentt 10000 0.0743 0.9277 1.0020 -16428.4 0.0035 -0.0005 0.0034 0.0041  0.0034 0.0024 0.0065 0.0029  0.0058  95.27%
Panel E 8000 0.0770 0.9244 1.0014 -13386.3 0.0079  0.0022 0.0076  0.0076  0.0001  0.0076 0.0153 0.0023  0.0152  95.22%
GED 9000 0.0734 0.9266 1.0000 -14966.3 0.0056  -0.0014 0.0054 0.0053  0.0023  0.0048 0.0103 0.0009  0.0103  95.09%
10000 0.0753 0.9275 1.0028 -16492.3 0.0036  0.0005 0.0035 0.0042  0.0032 0.0027 0.0073 0.0037  0.0062  95.35%

Panel F 8000 0.0750 0.9221 0.9971 -13386.2 0.0059  0.0002 0.0059  0.0059 -0.0022 0.0054 0.0115 -0.0020  0.0113  94.81%
skew- 9000 0.0734 0.9265 0.9999 -14966.0 0.0055 -0.0014 0.0054 0.0054  0.0022 0.0049 0.0103 0.0008  0.0103  95.08%
GED 10000 0.0753 0.9275 1.0028 -16492.3 0.0035  0.0006 0.0035 0.0040  0.0031 0.0025 0.0070 0.0037  0.0060  95.35%
Panel G 8000 0.0732 0.9234 0.9966 -13336.3 0.0065 -0.0016 0.0063 0.0054 -0.0009 0.0053 0.0119 -0.0025 0.0116  94.76%
GHYP 9000 0.0720 0.9279 0.9999 -14911.4 0.0057 -0.0028 0.0050 0.0056  0.0036  0.0043 0.0093 0.0008  0.0093  95.08%
10000 0.0729 0.9265 0.9994 -16427.7 0.0045 -0.0019 0.0040 0.0035  0.0022  0.0027 0.0067 0.0003  0.0067  95.03%

Panel H 8000 0.0731 0.9229 0.9961 -13343.3 0.0058 -0.0017 0.0056 0.0057 -0.0014 0.0055 0.0115 -0.0031  0.0111  94.71%
NIG 9000 0.0719 09275 0.9994 -14919.7 0.0059 -0.0029 0.0052 0.0053  0.0031 0.0043 0.0095 0.0003  0.0095  95.03%
10000 0.0729 0.9266 0.9995 -16438.1 0.0045 -0.0019 0.0041 0.0034  0.0023 0.0025 0.0066 0.0004  0.0066  95.04%

Panel I 8000 0.0711 0.9218 0.9930 -13435.0 0.0067 -0.0036 0.0056 0.0070  -0.0025 0.0065 0.0135 -0.0062  0.0121  94.42%
GHST 9000 0.0699 0.9261 0.9960 -15027.3 0.0071  -0.0049 0.0051 0.0049  0.0018 0.0046 0.0102 -0.0031  0.0097  94.71%
10000 0.0734 0.9266 0.9999 -16569.1  0.0038  -0.0014 0.0035 0.0034  0.0022 0.0026 0.0061 0.0008  0.0061  95.08%

Panel | 8000 0.0731 0.9232 0.9963 -13337.1 0.0057 -0.0017 0.0055 0.0057 -0.0011 0.0055 0.0114 -0.0028  0.0110  94.74%
JsU 9000 0.0719 09277 0.9996 -14912.4  0.0057 -0.0029 0.0050 0.0053  0.0033  0.0042 0.0091 0.0005  0.0091  95.04%
10000 0.0727 09264 0.9991 -16429.3 0.0045 -0.0020 0.0040 0.0033  0.0020 0.0026 0.0066 0.0000  0.0066  95.00%
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Figure 5. Simulated returns (in Panel A) and simulated volatility (Panel B) of the first three replicated
series.

After generating simulated observations, the f{GARCH(1,1) model is fitted to each simulated
dataset under the ten error assumptions. The full code that shows the command lines for the stages of
the method of implementation is available from the authors on request. The parsimonious ARMA(1,1)
model is also used in the code as the most suitable among the tested candidate ARMA models to
remove serial correlation in the simulated observations. However, consistency can still be achieved in
simulation modelling regardless of correlated sample draws. That is, the sampled variates do not need
to be independent to achieve consistency [77].

Next, the selected meta-statistics are now used to evaluate the estimators. The most suitable
assumed error distribution for volatility estimation will be obtained from the estimator/s with the
best precision and efficiency from the meta-statistical comparisons done under all the selected error
assumptions. Three meta-statistical summaries that include the bias, RMSE and SE, are used in this
illustration. The computation of the metrics is direct but may sometimes be nerve-racking, and manual
programming may even cause unanticipated coding errors and other abrupt setbacks. To circumvent
this, SimDesign statistical package [6,50] with in-built meta-statistical functions for computational
accuracy is used in this illustration, beginning from bias estimation. The log-likelihood (llk) of the
estimates, with the RMSE, bias and SE for &, 3 and & +  estimators are displayed in Table 2, but SE is
the key performance measure for efficiency and precision.

Now comparing RMSE for &, the results from the table show that both the skew-GED and
skew-Student’s ¢t outperform the other assumed innovations in efficiency with the least values as N
tends to the peak at 10000. For j, the JSU, followed by the GHST and NIG, outperforms the rest of the
innovation assumptions in efficiency with the least RMSE value as N tends to the peak. For & + f3, the
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GHST followed by the skew-Student’s t outperform the remaining eight innovation assumptions as N
tends to the peak, but the skew-Student’s t is the best as the sample size reaches the middle at N =
9000 for both & + 8 and .

Comparing bias for &, as N approaches the peak, the absolute values of biases for the GED and
skew-Student’s ¢ outperform the rest. For 3, the JSU and the true innovation Student’s t both take the
lead as N reaches the peak. For & + 3, the JSU followed by the GHYP outperform the other innovations
in absolute values of biases as N reaches the peak.

For precision and efficiency comparison in terms of the key performance metric SE, the
skew-Student’s t relatively outperforms the others in efficiency and precision as N tends to the
peak for &, f and & + f, in particular, for B and & + f. Finally, for the 1lk comparison, the GHYP
outperforms the rest, with the largest estimates at the three N sample sizes. To summarise, when
the true innovation is Student’s ¢, the skew-Student’s t assumed innovation distribution relatively
outperforms the other nine innovation assumptions in efficiency and precision, while the GHYP
performs better than the rest through the log-likelihood. It is observed here that the SEs of &, f and
& + B estimators for the assumed Normal innovation distribution are the largest when compared with
those of the other nine assumed innovation distributions. This justifies the claim that the QMLE of the
family GARCH model (with Normal innovation) is inefficient. Furthermore, it is observed from the
tabulated outputs that the RMSE and SE of the estimators are considerably /N consistent in recovering
the true parameters under the assumed innovations. The visual illustrations of the consistency for the
outputs of & + j estimator are graphically displayed in Figure 6.

Sample size effects on RMSE, SE and Bias
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Figure 6. The impact of sample size on RMSE, SE and bias for the {GARCH(1,1)-Student’s t MCS
modelling. The RMSE and SE are considerably v/N consistent, but bias is independent of N.
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The figure shows that the closer the absolute values of biases are to zero, the closer the SE is to the
RMSE. Whenever bias drifts away from zero, the gap between SE and RMSE widens, but if otherwise,
then their trend lines closely follow the same trajectory. The visual plots also show that RMSE and SE
decrease as N increases, but bias is independent of N.

It is also observed from the table and as shown in Panels A and B of Figure 7 that the MCS
estimates for the estimator & + j considerably recover the true (volatility) parameter value of 0.9991,
with TPR outcomes closely clustered around the 95% (i.e., 0.95) nominal recovery level under the ten
error assumptions. This indicates a good performance of the MCS experiments with suitably valid
outputs. However, the non-Normal errors perform slightly better in the recovery than the Normal and
skew-Normal errors, as clearly revealed in Panel B. It can also be seen from the tabular results that the
TPR outcomes are independent of N, and the closer the MCS estimate is to zero, the smaller the TPR

estimate.
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Figure 7. Panels A and B display the TPR outcomes, where the clustered outcomes in Panel A are
clearly spread out in Panel B. The dotted line is the 95% (i.e., 0.95) nominal recovery level.

3.2. Empirical Verification

Next, the outcomes of the MCS experiments are now empirically verified using the real return data
from the SA bond market index. Among the ten assumed error distributions, the most appropriate for
the f{GARCH process to estimate the volatility of the bond market’s returns is examined. For the market
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index, the price data are transformed to the log-daily returns by taking the difference of logarithms of
the price, expressed in percentage as:

P,
re =1In (f) x 100. (16)
P
The P; and P;_; are the closing bond price index at time ¢ and the previous day’s closing price at
time t — 1, respectively; r; is the current return, and In represents the natural logarithm.

3.2.1. Exploratory Data Analysis

To start with, the price index and returns are first inspected through exploratory data analysis
(EDA) as displayed in Figure 8. The EDA visually sheds light on the content of the dataset to reveal
relevant information and potential outliers. Figure 8 unearths some downswings or steep falls in the
volatility of price (in plot a) and returns (in plot ¢) around the years 2002, 2008, 2016 and 2020. The
most recent as shown by the plots for 2020 was due to the global covid-19 pandemic.

For further inspection, the figure is now separated into two panels: left and right. The left panels
contain plots a, b, e, f for daily bond prices, while the right panels consist of plots c, d, g, h for the
returns. The left panels reveal non-stationarity in the price index as observed in the price series plot,
the density plot, quantile-quantile (QQ) plot and the box plot. On the other hand, the right panels
show stationarity in the returns through the return series plot, the density plot, the QQ plot and the
box plot. These summarily elucidate the non-stationarity in the SA daily bond prices and stationarity
in the returns.

Daily Price
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Figure 8. EDA of price (panels 4, b, ¢, f) and returns (panels ¢, d, g, h) for SA Bond Index.

3.2.2. Tests for Serial Correlation and Heteroscedasticity

Next, linear dependence (or serial correlation) and heteroscedasticity are filtered out by fitting
ARMA-fGARCH models with each of the ten innovation distributions to the stationary return series.
ARMA(1,1) model, as stated in Equation (17), is found to be the most adequate, among all the examined
candidate ARMA(p,q) models, to remove serial correlation from the SA bond market’s return residuals.
Table 3 presents the outcomes of the Weighted Ljung-Box (WLB) test (see [78] for details) for fitting the
ARMA(1,1) model. The p-values of the test at lag 5 all exceed 0.05 under each error distribution. Based
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on this, we fail to reject the null hypothesis of "no serial correlation" in the SA bond market’s returns.
This means there is no evidence of autocorrelation in the return residuals.

(17)

Table 3. ARMA(1,1)-fGARCH(1,1) models’ empirical outcomes on SA Bond return data.

Panel A Panel B Panel C Panel D Panel E
Normal skew-Normal Student’st skew-Student'st GED
fi 0.0164*** 0.0078* 0.0387* 0.0177 0.0378**
w 0.0323 0.0278 0.0297* 0.0270* 0.0311*
& 0.0701* 0.0670* 0.0690* 0.0661* 0.0700*
,B 0.9093* 0.9170* 0.9188* 0.9236* 0.9137*
A 0.2504* 0.2344* 0.3499* 0.3445* 0.2879*
Ao 0.2245 0.2209*** 0.0729 0.0943 0.1445*
g = 5 1.4550* 1.4233* 1.2362* 1.2058* 1.3436*
Persistence (13) 0.9794 0.9825 0.9764 0.9792 0.9762
WLB (5) 0.3227 0.8383 0.9103 1.6060 1.3361
p-value (5) (1.0000) (1.0000) (1.0000) (0.9955) (0.9995)
ARCH LM statistic(7)  3.0979 3.1854 3.8897 4.1266 3.4264
p-value (7) (0.4953) (0.4793) (0.3627) (0.3287) (0.4369)
AP-GoF 87.2 64.56 42.32 18.48 53.68
p-value (0.0000) (0.0000) (0.0016) (0.4908) (0.0000)
Log-likelihood -8909.189 -8886.553 -8803.012 -8790.528 -8825.745
AIC 3.1862 3.1785 3.1486 3.1445 3.1568
BIC 3.1969 3.1903 3.1605 3.1576 3.1686
SIC 3.1862 3.1785 3.1486 3.1445 3.1567
HQIC 3.1899 3.1826 3.1528 3.1491 3.1609
Run-time (seconds) 4.3245 6.6636 7.6463 11.9177 9.1407
Panel F Panel G Panel H Panel I Panel |
skew-GED GHYP NIG GHST JSU
fl 0.0157 0.0156 0.0155 -0.0062 0.0159
w 0.0273* 0.0267* 0.0261* 0.0251* 0.0265*
& 0.0665* 0.0661* 0.0657* 0.0650* 0.0658*
,B 0.9206* 0.9241* 0.9246* 0.9284* 0.9243 *
A 0.2823* 0.3370* 0.3341* 0.3202* 0.3378*
Ao 0.1592** 0.0942 0.0964 0.1163** 0.0949
g = 5 1.3048* 1.2086* 1.2171* 1.1942* 1.2102*
Persistence (13) 0.9797 0.9795 0.9800 0.9826 0.9796
WLB (5) 2.5350 1.5990 1.8260 2.5920 1.7170
p-value (5) (0.7599) (0.9957) (0.9822) (0.7277) (0.9906)
ARCH LM statistic(7)  3.6331 4.0705 4.0249 4.2354 4.0750
p-value (7) (0.4026) (0.3365) (0.3430) (0.3139) (0.3359)
AP-GoF 46.18 17.01 22.23 29.37 21.66
p-value (0.0005) (0.5890) (0.2730) (0.0604) (0.3013)
Log-likelihood -8810.111 -8790.079 -8793.107 -8800.387 -8791.112
AIC 3.1515 3.1447 3.1454 3.1480 3.1447
BIC 3.1646 3.1589 3.1585 3.1611 3.1578
SIC 3.1515 3.1447 3.1454 3.1480 3.1447
HQIC 3.1561 3.1497 3.1500 3.1526 3.1493
Run-time (seconds) 19.0058 49.9461 20.7803 16.8525 10.6434

Note: The "x", "sx" and "* * " are 1%, 5% and 10% significance levels, respectively. The p-values at 5% significance levels are
given in the round brackets, while "(5)" and "(7)" are lags 5 and 7, respectively. The AP-GoF (for group 20) is the Adjusted
Pearson Goodness-of-Fit Test, and WLB denotes the Weighted Ljung-Box test.

Following the filtering of linear dependence in the return series, Engle’s ARCH test (see [14])
is carried out using the Lagrange Multiplier (LM) and Portmanteau-Q (PQ) tests to check for the
presence of heteroscedasticity or ARCH effects in the residuals. These tests are implemented based
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on the null hypothesis of homoscedasticity in the residuals of an Autoregressive Integrated Moving
Average (ARIMA) model. Both tests” outcomes show highly significant p-values of 0 as shown in
Figure 9. Hence, the null hypothesis of "no ARCH effect" in the residuals is rejected, which denotes the
existence of volatility clustering. Based on this, a heteroscedastic model can be fitted to remove the
ARCH effects in the series. To do this, the candidate robust {GARCH(u, v) models, with each of the ten
error distributions, are fitted to the SA bond returns, where the fit of the parsimonious f{GARCH(1,1)
model as shown in Equation (18) is found to be the most suitable.

o =w+a10] (|zi-1 — Ant| = An{zio — An })° + Bao] . (18)

120
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Figure 9. ARCH Portmanteau Q and Lagrange Multiplier tests.

After fitting the {GARCH model to the returns, the weighted ARCH LM test is used to ascertain
if ARCH effects have been filtered out. The p-value of the "TARCH LM statistic (7)" at lag 7 in
Table 3 is greater than 5% under each of the ten innovation distributions. Hence, this indicates that
heteroscedasticity is filtered out since we fail to reject the null hypothesis of "no ARCH effect" in the
residuals. These outcomes show that the variance equation is well specified.

3.2.3. Selection of the Most Suitable Error Distribution

Next, selection of the most suitable assumed error distribution to describe the market’s returns,
when fitted with the f{GARCH model for volatility estimation is obtained from Table 3. It is observed
from the table that all, but two, of the {GARCH volatility parameter estimates (@, &, ,3, A11, Aoq and 9)
under the ten innovation assumptions are statistically significant at 1% level. This means that these
parameters are actively needed in the model. The two exceptions are the insignificant « for the Normal
and skew-Normal, and the estimates A,; that are mostly not significant or barely significant. The
strongly significant A, indicates the dominance of asymmetric large shocks in the return series.

Comparison of the error distributions are carried out using the log-likelihood and four information
criteria that include the Akaike information criterion (AIC), Bayesian information criterion (BIC),
Hannan-Quinn information criterion (HQIC) and Shibata information criterion (SIC) (see [24] for
details). The largest log-likelihood value with the smallest values of the information criteria under a
given assumed innovation indicates that it is the most appropriate innovation distribution to describe
the market for volatility estimation.

It is observed from Table 3 that the values of all four information criteria are smallest under the
skew-Student’s t innovation distribution, but the GHYP innovation has the highest log-likelihood
value. Hence, the skew-Student’s t is the most suitable innovation assumption strictly based on
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the information criteria, while the GHYP is the most appropriate if the decision is made using the
log-likelihood. The GHYP and skew-Student’s ¢ also yield better goodness of fit (GoF) outcomes when
compared with the remaining eight errors, as shown by their large p-values in the table, which shows
that they are the best fit among the ten error assumptions for the distribution of the SA bond’s return
residuals. Hence, the volatility of the SA bond market’s returns can be most suitably estimated through
ARMA(1,1)-fGARCH(1,1) model fitted with the GHYP or skew-Student’s ¢ assumed error distribution.
These empirical results are consistent with the Monte Carlo simulation modelling outcomes. This
study also checked the empirical outcomes of fitting the less omnibus apGARCH(1,1) model to the
bond return data and we arrived at the same results (of skew-Student’s ¢t through information criteria
and GHYP via log-likelihood) obtained by f{GARCH(1,1) model (see Table 4). The table only shows the
outcomes of the log-likelihood and information criteria for brevity.

Table 4. ARMA(1,1)-apARCH(1,1) models” empirical outcomes on SA Bond data.

Panel A Panel B Panel C Panel D Panel E
Normal skew-Normal Student'st skew-Student’st GED
Log-likelihood -8910.136 -8887.475 -8803.200 -8790.782 -8826.007
AIC 3.1862 3.1784 3.1483 3.1443 3.1565
BIC 3.1957 3.1891 3.1590 3.1561 3.1671
SIC 3.1862 3.1784 3.1483 3.1443 3.1565
HQIC 3.1895 3.1822 3.1521 3.1484 3.1602
Panel F Panel G Panel H Panel I Panel J
skew-GED GHYP NIG GHST JSU
Log-likelihood  -8810.472 -8790.315 -8793.329 -8802.039 -8791.340
AIC 3.1513 3.1444 3.1452 3.1483 3.1445
BIC 3.1631 3.1575 3.1570 3.1601 3.1563
SIC 3.1513 3.1444 3.1452 3.1483 3.1445
HQIC 3.1554 3.1490 3.1493 3.1524 3.1486

For the run-time, it is observed that the skew-Student’s t is about four (approximately 4.2) times
faster than the GHYP for both simulation and empirical modelling. That is, it takes the GHYP
about four times the computational time it takes the skew-Student’s t to run the same process. Since
the empirical and simulation run-times are approximately the same, we only present the empirical
run-times for the ten innovations in Table 3 to conserve space. For both simulation and empirical runs,
the GHYP has the highest runtime among the ten innovations, followed by the NIG, while the Normal

has the least.

From the outputs of the ARMA(1,1)-fGARCH(1,1) model in Table 3, the mean and variance (from
the conditional standard deviation’s Box-Cox transformation in Section 2.2) equations of the model
fitted with each of the GHYP and skew-Student’s ¢ are stated as:

With GHYP : re = Ut ée
0.0156 + ¢;
of = w+ar0] ((|zi1 = An| — An{zie1 — Aa D)’ + Bro)

02086 0.0267 4 0.066107-27%6 (|z;_1 — 0.0942| — 0.3370{z;_1 — 0.0942})"-2%86 - 0.9241¢ 2%

With skew-Student’'st: ry = jpr—+eg
= 00177 +&
of = wtwao) (|z-1 — M| — Anf{zen — A} + By,
o} 2058 0.0270 + 0.066107 %% |z, _1 — 0.0943| — 0.3445{z; 1 — 0.0943})" %8 + 0.92360/
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4. Discussion and Summarised Conclusion

In conclusion, it is observed that using the uGARCHSsim approach for the MCS illustration, the
GHYP and skew-Student’s t evolve as the most suitable assumed error distributions to reckon with
and use with the f{GARCH model for volatility estimation of the SA bond returns when the underlying
error distribution is unknown. These outcomes are verified empirically. The persistence of volatility
under these most suitable error distributions are 0.9795 for the GHYP and 0.9792 for skew-Student’s
t. Hence, this indicates that the volatility of the SA bond market’s returns is considerably (highly)
persistent.

The conclusion under this section continues by providing answers to the four research questions.
In this study, consistency is termed "strong" when the estimator’s RMSE/SE value decreases as N
increases without distortion. Otherwise, it is weak. Now, answering the questions: first, the GHYP
and the skew-Student’s ¢ distributions are the most appropriate among the stated assumed error
distributions from the f{GARCH process simulation for the volatility estimation. Second, the volatility
estimator & + f3 for each of the most suitable assumed error distributions GHYP and skew-Student’s ¢
is strongly /N consistent for both RMSE and SE under departures from the Normal assumption as
revealed in Panels G and D of Table 2. Third, there are strong VN consistency for the RMSE and SE
of the fGARCH estimator & + ,3 under all, but one, of the ten assumed error distributions as shown
in Table 2. The lone exception however is the weak consistency in the SE of the Normal assumption.
Fourth, as a proxy for the coverage of the MCS experiment, the MCS estimator & + 3 performed well
in recovering the true parameter a + 3 through the TPR measure for the 95% nominal recovery level as
revealed in Table 2 and Figure 7. The results show that the TPR outcomes are suitably close to the 95%
nominal recovery level under the ten error assumptions.

5. Conclusions

This study showcases a robust step-by-step framework for a comprehensive simulation by
presenting the functionalities of the rugarch package in R for simulating and estimating time-varying
parameters through the family GARCH observation-driven model. The framework hands out an
organised approach to Monte Carlo simulation (MCS) study that involves "background (optional),
defining the aim, research questions, method of implementation, and summarised conclusion". The
method of implementation is a workflow that includes writing the code, setting the seed, setting the
true parameters a priori, data generation process, and performance assessment through meta-statistics.

This novel, easy-to-understand framework is illustrated using financial return data; hence, users
can easily use it for effective MCS studies. With the uGARCHSsim simulation approach involved in the
modelling, the implementation method is clearly explained with relevant details. Key observations are
identified, and novel findings brought to light. The framework also outlays clear guidelines for data
generation using the package, since data generation is without a doubt an integral part of MCS studies.
The key observations and novel findings in this study include first, it is shown in the experiment that
as the sample size N becomes larger, the consistency and efficiency properties of an estimator in a
Monte Carlo process are generally not affected by the pattern or arrangement of the seed values, but
this may depend on the quality of the model used. Hence, regardless of the arrangement of the seed
values, the efficiency and consistency of an estimator generally remain the same as N tends to infinity.

Second, it is investigated and revealed in this study that the outcomes of the GARCH MCS
experiments are the same regardless of whether the simulation or data generating process is run once
or replicated multiple times. Third, this study derived a "true parameter recovery (TPR)" measure
as a proxy for the coverage of MCS experiment. This new (original) novel measure is flexible to
apply and can henceforth be used by upcoming researchers to determine the level of recovery of
the true parameter value by the MCS estimates. It is also observed that the volatility estimator of
the used fGARCH model displays considerably strong /N consistency. Lastly, the outcomes of the
illustrative study show that the GHYP and skew-Student’s f errors are the most suitable among the
ten assumed innovations to describe the SA bond returns for volatility estimation. The fit of these
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two error assumptions with the {GARCH model revealed considerably high volatility persistence
in the returns. On a wider scale, since volatility is a practical measure of risk, the fit of the GHYP
and skew-Student’s t errors with a specification of the {GARCH (or, apARCH) model for a robust
volatility estimation may benefit financial institutions and markets by enhancing the accuracy of their
risk estimations. This could potentially lead to a significant reduction in asset losses. It is anticipated
that researchers will leverage this study’s novel findings and robust design for improved simulation
studies. It is also anticipated that the outcomes of this study will be broadly applicable in finance and
other sectors.

5.1. Limitations in the Study

Three limitations or challenges are noticed in this study. The first is on how to obtain a sufficient
sample size that can generate accurate outcomes. To tackle this using the illustrative example, the
process involves testing a selected number of sample sizes, with each used in turn, until a pattern
of efficiency and/or consistency starts to evolve under the stated error distributions. The error
distribution with the most efficient in terms of the given performance measure under a particular
sample size is carefully noticed. If a set of sample sizes yields the same efficiency outcomes, the
outcome with the best consistency among the set can be used for a final decision on sample size
determination. This is a guide to obtaining the required sample size/s.

The second is running time. It is observed that a large simulated dataset may sometimes be
needed to obtain accurate computations and this may be done at the cost of a large computational (or
running) time, depending on the model used. This can be very demanding, especially when dealing
with different stages of large sample sizes. Third, since the rugarch package does not make provision
for calculating the coverage probability, this study derived a proxy for the coverage using the TPR
measure, and it is observed that the MCS estimates considerably recover the true parameters.

5.2. Future Research Interest

The authors intend to further use the ugarchpath function of the rugarch package through any of
the models that support its use for the framework illustration. The authors also intend extending the
simulation framework ideas to other volatility estimating models, like the Generalised Autoregressive
Score (GAS) model, and to modelling and estimating multivariate processes. The future extension also
includes a framework for volatility forecasting and portfolio management.
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ARIMA
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MLE
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fGARCH
sGARCH
AVGARCH
GJR GARCH
TGARCH
NGARCH
NAGARCH
EGARCH
apARCH
CGARCH
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P
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GHYP
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EDA
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WLB
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SIC
AP-GoF
p-value
GAS

Univariate GARCH Path Simulation
Autoregressive Conditional Heteroscedasticity
True Parameter Recovery

Standard & Poor

Autoregressive Moving Average
Autoregressive Integrated Moving Average
Independent and identically distributed
Maximum likelihood estimation
Quasi-maximum likelihood estimation
family GARCH

simple GARCH

Absolute Value GARCH
Glosten-Jagannathan-Runkle GARCH
Threshold GARCH

Nonlinear ARCH

Nonlinear Asymmetric GARCH
Exponential GARCH

Asymmetric Power ARCH
Component GARCH

Multiplicative Component GARCH
Persistence

Data generation process

Root mean square error

Standard error

Generalised Error Distribution
Generalised Hyperbolic

Normal Inverse Gaussian

Generalised Hyperbolic Skew-Student’s ¢
Johnson’s reparametrised SU
log-likelihood

Exploratory Data Analysis
Quantile-Quantile

Lagrange Multiplier

Portmanteau-Q

Weighted Ljung-Box

Akaike information criterion

Bayesian information criterion
Hannan-Quinn information criterion
Shibata information criterion

Adjusted Pearson Goodness-of-Fit
Probability value

Generalised Autoregressive Score
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Appendix A. Outcomes of different patterns of seed values for sets S; and S;

Table A1. Outcomes of different patterns of seed values, with true parameter « + 8 = 0.9990.

Panel A (Sq) [ Seed: 12345 Seed: 54321 Seed: 15243
N | &+ RMSE,; SE,; TPRO5%) | @+ RMSE,; SE;,; TPR(O5%) | a+p RMSE,; SE;; TPR(95%)
Normal 1000 | 09990  0.0862 00862  95.00% | 09563  0.0757 00625  90.94% | 09909 ~ 0.0801 0079  94.23%
2000 | 09771  0.0934  0.0908  9291% | 09903  0.0419 00410  9417% | 09839  0.0490 00466  9356%
3000 | 09727 00756 00709  9250% | 09850  0.0373 00345  93.67% | 09791  0.0591 00557  93.11%
4000 | 09700  0.0693  0.0629  92.24% | 09846 00412 00387  93.64% | 09972  0.0304  0.0303  94.83%
Student'st | 1000 | 09990 00525 00525  9500% | 09833 00441 00412  9350% | 09990 00768  0.0768  95.00%
2000 | 09902  0.0500  0.0492  9416% | 09990  0.0349  0.0349  9500% | 09958  0.0388  0.0386  94.69%
3000 | 09973 00327 00327  9483% | 09977 00308 00308  9487% | 09956  0.0318 00316  94.68%
4000 | 09918 0.0277  0.0267  9431% | 09974  0.0258  0.0258  9485% | 09963  0.0247  0.0246  9474%
GED 1000 | 09875 00719 00710  93.90% | 09688 00499 00397  92.13% | 09899 00630 00624  94.13%
2000 | 09663  0.0608  0.0512  91.89% | 09908  0.033  0.0326  9422% | 09847  0.0387  0.0360  93.64%
3000 | 09684  0.0441 00317  9209% | 09846 00347 00315  93.63% | 09795 00385 00333  93.15%
4000 | 09692 00410 00282  9216% | 09833 00328 00288  9351% | 09839 00300 00259  9357%
GHYP 1000 | 0.9940 00557 00555  9452% | 09785 00437 00386  93.05% | 09897 00657 00650  94.12%
2000 | 09748 00507  0.0446  9270% | 09979  0.0328  0.0328  94.89% | 09871 00364 00344  93.87%
3000 | 09780  0.0353 00284  93.00% | 09901 00305 00292  9415% | 09849 00325 00293  93.66%
4000 | 09776 0.0322  0.0241  92.97% | 09898  0.0263  0.0247  9412% | 09892  0.0247  0.0226  94.07%
Panel B (5p) | Seed: 34567 Seed: 76543 Seed: 36547
| N | a+p RMSE,; SE,; TPR(%% | a+p RMSE,; SE;,; TPR(95%) | &+p RMSE,; SE.; TPR(95%)
Normal 1000 | 09856 00583 00568  9372% | 09942 00424 00421  9454% | 09823 03888  0.3884  93.41%
2000 | 09814 00396 00354  9333% | 09891 00370 00357  94.06% | 09806 01419 01407  9325%
3000 | 09845 00708 00693  93.62% | 09809  0.0334 00281  9328% | 09822  0.0805 00787  93.40%
4000 | 09990 00397 00397  9500% | 09778 00326 00248  9298% | 09779 00575 00535  9299%
Student'st | 1000 | 09971  0.0474 00474  94.82% | 09990 00422 00422  95.00% | 09990  0.0329 00329  95.00%
2000 | 09789 00364 00303  93.08% | 09990 00281 00281  9500% | 09990 00315 00315  95.00%
3000 | 09781 0.0326  0.0249  93.01% | 09975  0.0237 00236  94.86% | 09990  0.0234 00234  95.00%
4000 | 09871 00253 00223  9387% | 09955 00218 00215  9467% | 09946 00238 00234  9458%
GED 1000 | 09802  0.0463 00423  9321% | 09899 00389 00378  9413% | 09986  0.0490  0.0490  94.96%
2000 | 09726  0.0386 00282  9249% | 09898  0.0280 00265 ~ 9413% | 09879 00388 00371  93.94%
3000 | 09710 00398 00282  92.33% | 09820  0.0276  0.0218  9338% | 09808  0.0303 00243  9327%
4000 | 09800  0.0285  0.0213  93.19% | 09782  0.0284 00194  93.02% | 09752  0.0321 00215 = 92.73%
GHYP 1000 | 09863  0.0436 00417  93.80% | 09928 00383 00378  9441% | 09990 00370  0.0370  95.00%
2000 | 09744 00377  0.0285  92.66% | 09952  0.0265  0.0262  9464% | 09990  0.0358  0.0358  95.00%
3000 | 09737 00351 00242  9259% | 09872  0.0243 00213  9388% | 09894 00256 00237  94.09%
4000 | 09810  0.0278  0.0212  9329% | 09835 00246 00192  9353% | 09816  0.0275  0.0213  93.35%
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Appendix B. Further Visual Illustrations of S; and S; TPR Outcomes

(B) SL True parameter recovery outook (the coverage) (B) S2 True parameter recovery outlook (he coverage)
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Figure A1l. The TPR outcomes of S and S; in Panels A and B respectively, where the dotted lines are
the 95% (i.e., 0.95) nominal recovery levels.
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