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Abstract: This paper proposes an approach for image data extraction and driving behavior analysis
using geographic information and driving data. Information derived from geographic and global
positioning systems was used for image data extraction. In addition, we used an onboard diagnostic
II and a controller area network bus logger to record driving data for driving behavior analysis.
Driving behavior was analyzed using sparse automatic encoders and data exploration to detect ab-
normal and aggressive behavior. A regression analysis was used to derive the relationship between
aggressive driving behavior and road facilities. Several traffic improvements were proposed for
specific intersections and roads. The results indicate that lane ratios without lane markings and with
straight lane markings are important features that affect aggressive driving behaviors.
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1. Introduction

Considerable research has been conducted on autonomous vehicle systems for self-
driving cars. One key component of self-driving cars is the understanding of human driv-
ing behavior to avoid human-machine conflict [1-3]. With recent advances in machine
learning techniques, data-driven approaches for complicated human behavior modeling
have become more increasingly feasible. In particularly, several studies have made signif-
icant progress using deep-learning techniques [4].

In recent learning approaches, in addition to the design of network structures, an-
other critical issue is the collection of large amounts of training data. Autonomous vehicle
systems typically collect data from onboard sensors and extract information for specific
analyses. These may encompass images captured by in-car cameras and proprioceptive
driving data recorded by onboard diagnostic systems. The extraction of adequate data
segments for neural network training and testing is critical. For instance, learning road
sign recognition uses certain traffic scene images or modeling a driver’s acceleration be-
havior using selected gas pedal information. Large training datasets are typically used in
deep neural networks to achieve better performance.

In early related research, data annotation or labeling was mainly completed manu-
ally and sometimes through crowdsourcing. For driving data, the dataset collected ac-
cording to different tasks contained various scenes and features. The selection and filter-
ing of adequate data require significant time and human labor. The development of tech-
nologies for searching specific traffic scenes within a large number of image sequences
has become important.
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In this paper, we propose an image data extraction system based on geographic in-
formation and driving behavior analysis using various types of driving data. We used
information derived from a geographic information system (GIS) and a global positioning
system (GPS) with recorded driving videos to identify road scenes with static objects such
as traffic lights, traffic signs, bridges, and tunnels. Additionally, we utilized an onboard
diagnostic II (OBD-II) and a controller area network bus (CANbus) logger to collect driv-
ing data [5]. By measuring several parameters at a high sampling rate, we can completely
observe the driving behaviors and understand the influences of traffic and road infra-
structure.

To analyze the relationship between driving behavior and transportation infrastruc-
ture, visualization on a map provides a way for better observation and investigation. We
used machine learning methods to extract unique features from the driving data and then
mapped these features to the RGB color space to visualize the driving behavior. Data min-
ing algorithms were utilized for data analysis and to classify driving behavior into four
categories, from normal to aggressive. A regression analysis was then conducted on the
relationship between aggressive driving behavior and road features at intersections.

The contributions of this paper are as follows. a) We present a road scene extraction
approach for specific landmarks and transportation infrastructure indicators. b) To per-
form a more comprehensive analysis, we present visual driving behavior, aggressive driv-
ing behavior, and traffic light information on a map to associate driving behavior with
roads. c) Based on the results of the driving behavior analysis, suggestions and verifica-
tions for traffic improvement at intersections are presented to prevent accidents.

2. Related Works

As learning-based algorithms become popular, the acquisition of training and testing
data has become crucial. Current data extraction approaches are primarily divided into
two categories: information and image-based approaches. Hornauer et al. and Wu et al.
[6-7] proposed unsupervised image classification methods for extracting images similar
to those provided by general users [8]. In supervised classification, the data were manu-
ally labeled. People need a similar understanding to annotate the same scene. The network
of this approach is based on the feature similarity for a first-person driving image query.
However, this may not fully meet the needs of the users.

In addition to image extraction and classification, Naito et al. [9] proposed a browsing
and retrieval approach for analyzing driving data. Their approach provides a multidata
browser, a retrieval function based on queries and similarities, and a quick browsing func-
tion to skip extra scenes. The top-N images that were highly similar to the current driving
scenario were retrieved from a database for scene retrieval. While an image sequence is
processed, this approach calculates the similarity between the input scene and the scenes
stored in the database. A predefined threshold was used to identify similarities between
the images. Because the approach mainly searched for the driving video itself, it could not
be determined whether the images contained objects or information that was interesting
to the users for precise extraction.

The key technologies for automotive driving-assistance systems have matured [10].
However, autonomous vehicles can still not be employed without human drivers. Owing
to the current limitations of driving assistance systems, researchers and developers are
seeking solutions to improve human driving capabilities. Because changing driving habits
is challenging, developing a human-centered driving environment to avoid dangerous
situations is crucial. By understanding the relationship between traffic lights, road infra-
structure, and driving behavior, suggestions for transportation improvement can be pro-
vided. In addition, knowing human reactions is also a crucial issue for mixed human driv-
ers and self-driving cars.

For driving behavior analysis, Liu et al. [11-12] proposed a method that uses various
types of sensors connected to a control area network. A deep sparse autoencoder (SAE)
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was then used to extract hidden features from the driving data to visualize driving behav-
ior. Constantinescu et al. [13] used both the principal component analysis (PCA) and hi-
erarchical cluster analysis (HCA) techniques to analyze driving data. The performance of
their techniques was verified by classifying the driving behavior into six categories based
on aggressiveness. In the approach proposed by Kharrazi et al. [14], driving behavior was
classified into three categories, calm, normal, and aggressive, using quartiles and K-means
clustering. Their results demonstrated that K-means clustering can provide good classifi-
cation results for driving behaviors.

Tay et al. [15] used a regression model to associate driving accidents with environ-
mental factors. Wong et al. [16] utilized a negative binomial regression to analyze the
number of driving accidents and road features at intersections. Road intersections can also
be improved by simulations based on the analysis results. Schorr et al. [17] presented an
approach for recording the driving data in one- and two-way lanes. Based on analysis of
variance (ANOVA), a conclusion regarding the impact of lane width on driving behavior
was drawn. Abojaradeh et al. [18] proposed a method to identify driving behaviors and
driver mistakes based on questionnaires and highlighted their effects on traffic safety.
They used regression analysis to derive the correlation between the number of accidents
and types of dangerous driving behaviors.

Regarding the improvement of transportation infrastructure, various suggestions
have been proposed for different road and intersection designs. Chunhui et al. [19] pro-
posed an approach to optimize signal lights at intersections to make pedestrian crossing
easier [20]. The efficiency of intersections was improved by reducing the conflicts between
turning vehicles and pedestrians. Ma et al. [21] proposed a technique for adding a dedi-
cated left-turn lane and waiting area based on the average daily traffic volume at an inter-
section. The proposed method can supply more vehicles waiting for a left-turn. They also
analyzed three common left-turn operation scenarios at intersections and compared their
differences. In addition to suggestions for road infrastructure, several traffic improve-
ments have been suggested based on traffic-light analysis. Anjana et al. [22] presented a
method based on different traffic volumes at intersections to evaluate the safety of green
traffic lights.

3. Dataset Extraction

For image data extraction, we first collected information regarding traffic lights, traf-
fic signs, and road information from OpenStreetMap (OSM) [12] and the government’s
GIS-T transportation geographic information storage platform. Traffic and road infor-
mation were used to identify locations of interest using GPS coordinates. We compared
the GPS information obtained from the driving data to the locations of interest. The asso-
ciated images were then extracted and stored in video sequences for specific applications,
such as training and testing data for traffic light detection. Figure 1 illustrates a flowchart
of image data extraction.

The driving recorder contained images with resolutions of 1280 x 720 and a 110° field-
of-view (FOV) in the horizontal direction. To extract suitable image data, users must con-
sider the geographic range of the target. For example, in road scene extraction with traffic
lights, the size of the traffic signal in an image may be larger than 25 x 25 pixels for specific
tasks. This corresponds to approximately 50 m away from the vehicle; thus, the video
should be pushed back for 5 s to start image data extraction.

We established an interface for user operations. The interface structure is divided
into two parts: image extraction and video filtering. The items included in the image data
extraction were traffic lights and traffic signs, whereas the video filtering included high-
ways and tunnels. A program interface was created for users to easily operate the data
and assign parameters. It consists of a folder for selection, an item menu for extraction, an
OSM map display, and a driving image screen. The user first selects the folder where the
driving record video and driving GPS information are located, and the folder where the
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extracted image will be stored. The user then selects traffic infrastructure or road infor-
mation for extraction. At the interface, the vehicle’s GPS trajectory and user-selected traf-
fic infrastructure simultaneously overlay the OSM window, and a synchronized driving
video is displayed on the right for inspection.

[Traffic and road information ] [ Driving GPS information ]

Compared with
GPS

Extracted GPS

Compared with

timestamp
Y

[ Extracted images ]

Figure 1. A flowchart of image data extraction.

4. Driving Behavior Analysis

In the proposed approach, we analyzed driving behavior and its correlation with
traffic and road features. Driving behavior was classified as normal or aggressive and an-
alyzed through data visualization and a regression model of the number of aggressive
driving behaviors and road features.

A flowchart of the driving behavior analysis is presented in Figure 2. First, we used
the ODB-II and CANbus loggers for collection of driver data. We then utilized a SAE to
extract features from the driving data and compress the high-dimensional features into
three dimensions. Subsequently, we mapped the three-dimensional features to the RGB
space for display on the OSM. Moreover, we used the K-means clustering algorithm to
further classify the driving behavior based on aggressiveness. Finally, we used a negative
binomial regression model to analyze the road features at intersections and interchanges.

[ Driving data ]

{ R { )

Feature extraction K-means
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\
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v

Figure 2. A flowchart of driving behavior analysis.
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4.1 Data Collection

In addition to exteroceptive sensors (such as LiDAR, GPS, and cameras), the infor-
mation collected from the proprioceptive sensors of the vehicle can also be used to analyze
driving behavior [23]. Sensor data derived directly from vehicle operations can provide
more comprehensive driving information.

We used ODB-II and CANbus loggers for driver data collection. Unlike most previ-
ous studies that only used the information obtained from GPS receivers (with GPS mes-
sages, vehicle speed, and acceleration), OBD-II and CANbus loggers can collect various
types of driving data for analysis. The specific data types used for the proposed driving
behavior analysis are as follows.
®  OBD-IL: engine rotation speed, engine load, throttle pedal position, acceleration

XYZ, and vehicle speed.
®  CANbus logger: engine rotation speed, throttle pedal position, braking pedal posi-

tion, steering angle, wheel speed, and vehicle speed.
®  GPS receiver: GPS and coordinated universal time (UTC).

In addition, we used two public datasets: the DDD17 dataset [24] and UAH DriveSet
[25]. These two datasets are acquired by the driving monitoring application DriveSafe and
are mainly used to verify the classification and analysis methods [26].

4.2 Visualization of Driving Behavior

The relationship between driving behavior and traffic infrastructure can be observed
through the data visualization on a map. We used the SAE to extract features from the
driving data, compress the high-dimensional features into three dimensions, and map the
3D features to RGB space for display on the OSM. The loss function with sparse con-
straints is given as follows:

]Sparse(W: b) :](W: b) +ﬁZjZ=1KL(p||p\]) (1)
where (W, b) is the cost function with parameters W and b and S controls the weight of
the sparsity penalty term. The term p is a sparsity parameter, and p; is the average acti-

vation of hidden unit j. Moreover, sz is the number of neurons in the hidden layer, and
KL(pl|p j) is Kullback—Leibler divergence between p and pj-

The difference between the SAE and autoencoder (AE) is that a penalty term is added
to the loss function. Thus, the activation of hidden nodes decreases to the required value.
Using this property, the relative entropy is added to the loss function to penalize the value
of the average activation degree far away from the level p. The parameters maintain the
average degree of activation of the hidden nodes at this level. Thus, the loss function only
requires the addition of a penalty term for relative entropy without sparse constraints.

Figure 3 illustrates the flowchart and network structure used to visualize driving be-
havior. The network contained nine hidden layers, and the dimensionality reduction of
each layer was half the number of nodes in the previous layer. The data collected by OBD-
IT contained seven types and 70 dimensions after the windowing process. Thus, the di-
mension reduction in the network is 70 - 35 - 17 - 8§ - 3 — 8 — 17 — 35 —
70, and the features are extracted by the last five layers. The data collected by the CANbus
logger contained six types and 60 dimensions after the windowing process. Likewise, the
input to the network comprises 60 nodes, and the dimension reduction is given as follows:
60— 30— 15 -7 - 3 - 7 — 15 — 30 — 60. Finally, driving behavior was vis-
ualized using the OSM. Figure 4 shows an example of the driving behavior visualized on
the OSM for the network structure 70 — 35 - 17 - 8 - 3 — 8 — 17 — 35 — 70.
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Figure 3. A flowchart and network structure for driving behavior analysis.
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Figure 4. An example of driving behavior visualized on the OSM for the network structure 70 —
35 —>17 >8 >3 > 8 — 17 = 35 — 70.

In addition, we used the K-means clustering algorithm to further classify the driving
behavior. The elbow method was used to determine the most appropriate k value to clas-
sify driving behavior according to aggressiveness [27]. Driving behavior is classified into

four levels, from normal to aggressive, and the most aggressive driving behavior is
marked on the OSM.

4.3 Negative Binomial Regression

Referring to [16], we used a negative binomial regression model to analyze the road
features at intersections and interchanges. It is an extended version of the Poisson regres-
sion to process the data overdispersion problem. The negative binomial regression model
is used to predict the number of aggressive driving behavior u;, defined by

i = exp (B1xy; + Paxy; + +Bixp + &) ()
where fi is the correlation term associated with each road feature parameter and ¢; is an
error term. Pearson’s chi-squared test was performed [28] to verify whether the data were
overdispersed. When the ratio was greater than 1, the data were considered overdispersed

To evaluate whether Poisson or negative binomial regression could better fit our
data, the Akaike information criterion (AIC) was computed for these two models [29]. The
AIC is an effective measure of data fitting in regression models and is defined as

AIC = 2k — 2In (L) 3)
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where k is the number of features, and In(L) is the maximum likelihood. A smaller AIC
value implies a better-fitting model.

After classifying driving behavior using K-means clustering, aggressive driving be-
havior was found to occur more frequently at interchanges and intersections. Negative
binomial regression analysis was performed for these two specific driving scenarios. We
adopted the road features proposed by Wong [16] and those commonly appearing in Tai-
wanese road scenes.
® Interchanges: (1) section length, (2) lane width, (3) speed limit, and (4) traffic flow.
®  Four-arm intersection: (1) without lane markings, (2) straight-lane markings, (3) left-

lane markings, (4) right-lane markings, (5) shared-lane markings, (6) shared-lane

markings at the roadside, (7) motorcycle priority, and (8) branch road.

®  Three-arm intersection: (1) without lane markings, (2) straight-lane markings, (3)
shared-lane markings at the roadside, (4) lane ratio, (5) motorcycle priority, and (6)
branch road.

5. Experimental Results

We divided the experiments into two parts: image data extraction of training and
testing datasets and the driving behavior analysis based on the driving and road features.

5.1 Extraction of Training and Testing Data

We demonstrate the image data extraction for road scenes with traffic lights. Figure
5(a) shows the driving trajectory (marked by the red curve) and traffic light positions
(marked by blue circles) on the OSM. The driving videos were filtered through an extrac-
tion system to contain traffic lights from far to near. The extracted images in Figures 5(b)
and 5(c) correspond to orange dots (a) and (b) in Figure 5(a), respectively.

(b)

Figure 5. Image data extraction for road scenes with traffic lights. (a) Driving trajectory (marked in
red curve) and traffic-light positions (marked in blue circles) on the OSM. (b) Extracted image con-
taining traffic lights (long-range image). (c) Extracted image containing traffic lights (short-range
image).
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5.2 Driving Behavior Analysis

For the driving behavior analysis, we first presented the visualization and K-means
classification and then performed an analysis of the driving behavior and road features.

5.2.1 Visualization and K-means Classification

We used five segments of driving data in the UAH DriveSet, and the drivers showed
normal and aggressive behaviors separately. In each data segment, 50 samples were used
for classification. The results are presented in Table 1 with the percentage of correct clas-
sifications, where D1-D5 represent the five drivers. N and A denote normal and aggres-
sive driving, respectively. The table shows that K-means classification can provide satis-
factory classification results for normal and aggressive driving behaviors.

Table 1. K-means classification performance on the UAH DriveSet.

D1 D2 D3 D4 D5
N A N A N A N A N A
100% 80% 100% 100% 100% 96% 98% 100% 98% 98%

Figure 6 shows the visualized driving behavior and the corresponding driving data
chart. Figure 6(a) shows the visualized driving behavior (including aggressive driving)
using the driving data in the UAH DriveSet visualized on the OSM with traffic light loca-
tion information. Red circles A and B in Figure 6(a) correspond to the driving data chart
enclosed by red rectangles A and B, respectively, in Figure 6(b). The driving images cor-
responding to the red circles A and B in Figure 6(a) are shown in Figures 7(a) and 7(b),
respectively. In this example, the aggressive driving behavior at the location indicated by
red circle A in Figure 6(a) was due to the sudden braking caused by the car in front of the
intersection (Figure 7(a)), and that at the location indicated by red circle B in Figure 6(b)
was due to the change in lanes (Figure 7(b)).

W / NI\
W i 21
I A | Wl
T\

\ b‘&m
(VA B )1 \

data

Figure 6. The visualized driving behavior and driving data chart. (a) The aggressive driving data
and traffic lights are marked on the OSM. The locations A and B (red circles) in Figure 6(a) corre-
sponded to the data enclosed by red rectangles A and B in Figure 6(b), respectively. (b) The red
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rectangles A and B in Figure 6(b) correspond to the locations indicated by the red circles A and B in
Figure 6(a), respectively.

Figure 7. Driving images. (a) The image acquired at the location corresponding to red circle A in
Figure 6(a). (b) The image acquired at the location corresponding to red circle B in Figure 6(a).

By visualizing the driving behavior and displaying aggressive driving behaviors on
OSM with reference to the driving video, we can observe a correlation between driving
behavior and traffic infrastructure. The three situations were analyzed as follows:

a. Influence of two-way lanes on driving behavior: The vehicle speed in a two-way lane
was higher than that in a one-way lane. Thus, aggressive driving behaviors with fast
driving and emergency braking are more likely to occur in two-way lanes.

b. Influence of traffic lights on driving behavior: The most aggressive driving behavior
occurs at intersections. There may be many reasons for this, such as fast-changing
signals and poor road design. This generally causes more conflicts between drivers
and other vehicles.

c. Influence of interchanges on driving behavior: In highway traffic, the most aggressive
driving behaviors occur at interchanges. A vehicle entering an interchange entrance
tends to drive in the inner lane. This generally causes the other drivers to change lanes
or slow down.

5.2.2 Negative binomial regression

Because aggressive driving behaviors frequently occur near intersections and inter-
changes, we further investigated these driving scenarios using negative binomial regres-
sion analysis of the correlation between the number of aggressive behaviors and road fea-
tures.

The P-value can be used to evaluate the statistical significance of the features of ag-
gressive driving behaviors [30]. The following two driving scenarios were examined.
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Four-Arm Intersection: Eight different road features were defined at the intersections.
The regression analysis is shown in Figure 8(a), where Intercept is the error term of the
regression model, LEFT is the left-turn lane mark, STRA is the straight lane mark, RIGHT
is the right-turn lane mark, TWO is the shared lane mark, SHARE is the shared lane mark
on the side of the road, NO is no lane mark, MOTOR is the number of priority locomotive
lanes, CROSS is the number of branch roads, and the coefficient term is the parameter of
the regression model. The features that have considerable impacts on aggressive driving
behaviors included “straight lane marking,” “shared lane marking at roadside,” and
“without lane marking.” The influences of these features on the driving behavior were
positive, negative, and positive correlations, respectively. When “P > [z1” <0.05 held, the
feature significantly affected aggressive behavior.

Highway Interchange: Four different road features were defined for highways. The re-
gression analysis results are shown in Figure 8(b), where LONG is the length of the inter-
change, LANE is the lane width, LIMIT is the ramp speed limit, and FLOW is the average
daily traffic volume. The features that had a considerable impact on aggressive driving
behaviors were “speed limit” and “average daily traffic volume.” The influences of these
features on driving behavior showed positive and negative correlations, respectively.

Generalized Linear Model Regression Results

Dep. Variable: AGGRE No. Observations: 21
Model: GLM Df Residuals: 13
Model Family: NegativeBinomial Df Model: 7
Link Function: log Scale: 1.0000
Method: IRLS Log-Likelihood: -43.927
Date: Sat, @2 May 2020 Deviance: 1.1128
Time: 07:55:51 Pearson chi2: 1.12
No. Iterations: 5
Covariance Type: nonrobust

coef std err z P>|z| [e.825 0.975]
Intercept 1.9725 0.367 5.379 0.000 1.254 2.691
LEFT -0.0342 8.099 -0.344 9.731 -0.229 0.160
|STRA 8.0521 0.020 2.632 2.008 8.013 0.091)
RIGHT -0.0156 8.279 -0.056 9.955 -0.562 8.531
TWO 9.0114 0.102 0.111 9.912 -9.189 0.212
SHARE -0.1328 0.062 -2.130 8.e33 -8.255 -8.011
NO 8.0521 8.020 2.632 0.008 0.013 0.091
MOTOR 0.0826 0.197 9.419 8.675 -0.304 9.469
CROSS -0.1153 8.144 -0.802 0.423 -0.397 08.167

(a)

Generalized Linear Model Regression Results

Dep. Variable: AGGRE  No. Observations: 8
Model: GLM  Df Residuals: 3
Model Family: NegativeBinomial Df Model: -
Link Function: log Scale: 1.0000
Method: IRLS  Log-Likelihood: -23.381
Date: Mon, 20 Apr 2020 Deviance: 9.0832
Time: 06:59:31  Pearson chi2: 8.88
No. Iterations: 5
Covariance Type: nonrobust

coef  std err z P>|z| [0.025 0.975]
Intercept 18.9674 9.660 1.963 0.050 0.033 37.902
LONG 0.0010 0.000 2.487 0.013 0.000 0.002
LANE -5,8833 2.390 -2.462 0.014 -10.567 -1,200
LIMIT 0.0967 0.034 2.818 0.005 0.029 0.164
FLOW -0.0002  6.06e-05 -2.567 0.010 -0.000 -3.68e-05

(b)

Figure 8. Negative binomial regression analysis results. (a) at a four-arm intersection. (b) at a high-
way interchange.
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6. Conclusions

We present an image data extraction system based on geographic information, and a
driving behavior analysis approach that uses various types of driving data. The experi-
mental results show that lane ratios without lane markings and with straight lane mark-
ings are important features that affect aggressive driving behaviors. Finally, traffic im-
provements are proposed based on the analysis of a case study at an intersection. In the
future, we will add more driving data for a more accurate analysis of driving behavior.
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