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Abstract: This paper proposes an approach for image data extraction and driving behavior analysis 

using geographic information and driving data. Information derived from geographic and global 

positioning systems was used for image data extraction. In addition, we used an onboard diagnostic 

II and a controller area network bus logger to record driving data for driving behavior analysis. 

Driving behavior was analyzed using sparse automatic encoders and data exploration to detect ab-

normal and aggressive behavior. A regression analysis was used to derive the relationship between 

aggressive driving behavior and road facilities. Several traffic improvements were proposed for 

specific intersections and roads. The results indicate that lane ratios without lane markings and with 

straight lane markings are important features that affect aggressive driving behaviors. 

Keywords: image data extraction; driving behavior analysis; geographic information system; global 

position system 

 

1. Introduction 

Considerable research has been conducted on autonomous vehicle systems for self-

driving cars. One key component of self-driving cars is the understanding of human driv-

ing behavior to avoid human-machine conflict [1-3]. With recent advances in machine 

learning techniques, data-driven approaches for complicated human behavior modeling 

have become more increasingly feasible. In particularly, several studies have made signif-

icant progress using deep-learning techniques [4]. 

In recent learning approaches, in addition to the design of network structures, an-

other critical issue is the collection of large amounts of training data. Autonomous vehicle 

systems typically collect data from onboard sensors and extract information for specific 

analyses. These may encompass images captured by in-car cameras and proprioceptive 

driving data recorded by onboard diagnostic systems. The extraction of adequate data 

segments for neural network training and testing is critical. For instance, learning road 

sign recognition uses certain traffic scene images or modeling a driver’s acceleration be-

havior using selected gas pedal information. Large training datasets are typically used in 

deep neural networks to achieve better performance. 

In early related research, data annotation or labeling was mainly completed manu-

ally and sometimes through crowdsourcing. For driving data, the dataset collected ac-

cording to different tasks contained various scenes and features. The selection and filter-

ing of adequate data require significant time and human labor. The development of tech-

nologies for searching specific traffic scenes within a large number of image sequences 

has become important.  
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In this paper, we propose an image data extraction system based on geographic in-

formation and driving behavior analysis using various types of driving data. We used 

information derived from a geographic information system (GIS) and a global positioning 

system (GPS) with recorded driving videos to identify road scenes with static objects such 

as traffic lights, traffic signs, bridges, and tunnels. Additionally, we utilized an onboard 

diagnostic II (OBD-II) and a controller area network bus (CANbus) logger to collect driv-

ing data [5]. By measuring several parameters at a high sampling rate, we can completely 

observe the driving behaviors and understand the influences of traffic and road infra-

structure. 

To analyze the relationship between driving behavior and transportation infrastruc-

ture, visualization on a map provides a way for better observation and investigation. We 

used machine learning methods to extract unique features from the driving data and then 

mapped these features to the RGB color space to visualize the driving behavior. Data min-

ing algorithms were utilized for data analysis and to classify driving behavior into four 

categories, from normal to aggressive. A regression analysis was then conducted on the 

relationship between aggressive driving behavior and road features at intersections. 

The contributions of this paper are as follows. a) We present a road scene extraction 

approach for specific landmarks and transportation infrastructure indicators. b) To per-

form a more comprehensive analysis, we present visual driving behavior, aggressive driv-

ing behavior, and traffic light information on a map to associate driving behavior with 

roads. c) Based on the results of the driving behavior analysis, suggestions and verifica-

tions for traffic improvement at intersections are presented to prevent accidents. 

2. Related Works 

As learning-based algorithms become popular, the acquisition of training and testing 

data has become crucial. Current data extraction approaches are primarily divided into 

two categories: information and image-based approaches. Hornauer et al. and Wu et al. 

[6-7] proposed unsupervised image classification methods for extracting images similar 

to those provided by general users [8]. In supervised classification, the data were manu-

ally labeled. People need a similar understanding to annotate the same scene. The network 

of this approach is based on the feature similarity for a first-person driving image query. 

However, this may not fully meet the needs of the users. 

In addition to image extraction and classification, Naito et al. [9] proposed a browsing 

and retrieval approach for analyzing driving data. Their approach provides a multidata 

browser, a retrieval function based on queries and similarities, and a quick browsing func-

tion to skip extra scenes. The top-N images that were highly similar to the current driving 

scenario were retrieved from a database for scene retrieval. While an image sequence is 

processed, this approach calculates the similarity between the input scene and the scenes 

stored in the database. A predefined threshold was used to identify similarities between 

the images. Because the approach mainly searched for the driving video itself, it could not 

be determined whether the images contained objects or information that was interesting 

to the users for precise extraction. 

The key technologies for automotive driving-assistance systems have matured [10]. 

However, autonomous vehicles can still not be employed without human drivers. Owing 

to the current limitations of driving assistance systems, researchers and developers are 

seeking solutions to improve human driving capabilities. Because changing driving habits 

is challenging, developing a human-centered driving environment to avoid dangerous 

situations is crucial. By understanding the relationship between traffic lights, road infra-

structure, and driving behavior, suggestions for transportation improvement can be pro-

vided. In addition, knowing human reactions is also a crucial issue for mixed human driv-

ers and self-driving cars. 

For driving behavior analysis, Liu et al. [11-12] proposed a method that uses various 

types of sensors connected to a control area network. A deep sparse autoencoder (SAE) 
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was then used to extract hidden features from the driving data to visualize driving behav-

ior. Constantinescu et al. [13] used both the principal component analysis (PCA) and hi-

erarchical cluster analysis (HCA) techniques to analyze driving data. The performance of 

their techniques was verified by classifying the driving behavior into six categories based 

on aggressiveness. In the approach proposed by Kharrazi et al. [14], driving behavior was 

classified into three categories, calm, normal, and aggressive, using quartiles and K-means 

clustering. Their results demonstrated that K-means clustering can provide good classifi-

cation results for driving behaviors. 

Tay et al. [15] used a regression model to associate driving accidents with environ-

mental factors. Wong et al. [16] utilized a negative binomial regression to analyze the 

number of driving accidents and road features at intersections. Road intersections can also 

be improved by simulations based on the analysis results. Schorr et al. [17] presented an 

approach for recording the driving data in one- and two-way lanes. Based on analysis of 

variance (ANOVA), a conclusion regarding the impact of lane width on driving behavior 

was drawn. Abojaradeh et al. [18] proposed a method to identify driving behaviors and 

driver mistakes based on questionnaires and highlighted their effects on traffic safety. 

They used regression analysis to derive the correlation between the number of accidents 

and types of dangerous driving behaviors. 

Regarding the improvement of transportation infrastructure, various suggestions 

have been proposed for different road and intersection designs. Chunhui et al. [19] pro-

posed an approach to optimize signal lights at intersections to make pedestrian crossing 

easier [20]. The efficiency of intersections was improved by reducing the conflicts between 

turning vehicles and pedestrians. Ma et al. [21] proposed a technique for adding a dedi-

cated left-turn lane and waiting area based on the average daily traffic volume at an inter-

section. The proposed method can supply more vehicles waiting for a left-turn. They also 

analyzed three common left-turn operation scenarios at intersections and compared their 

differences. In addition to suggestions for road infrastructure, several traffic improve-

ments have been suggested based on traffic-light analysis. Anjana et al. [22] presented a 

method based on different traffic volumes at intersections to evaluate the safety of green 

traffic lights. 

3. Dataset Extraction 

For image data extraction, we first collected information regarding traffic lights, traf-

fic signs, and road information from OpenStreetMap (OSM) [12] and the government’s 

GIS-T transportation geographic information storage platform. Traffic and road infor-

mation were used to identify locations of interest using GPS coordinates. We compared 

the GPS information obtained from the driving data to the locations of interest. The asso-

ciated images were then extracted and stored in video sequences for specific applications, 

such as training and testing data for traffic light detection. Figure 1 illustrates a flowchart 

of image data extraction.  

The driving recorder contained images with resolutions of 1280 × 720 and a 110 field-

of-view (FOV) in the horizontal direction. To extract suitable image data, users must con-

sider the geographic range of the target. For example, in road scene extraction with traffic 

lights, the size of the traffic signal in an image may be larger than 25 × 25 pixels for specific 

tasks. This corresponds to approximately 50 m away from the vehicle; thus, the video 

should be pushed back for 5 s to start image data extraction. 

We established an interface for user operations. The interface structure is divided 

into two parts: image extraction and video filtering. The items included in the image data 

extraction were traffic lights and traffic signs, whereas the video filtering included high-

ways and tunnels. A program interface was created for users to easily operate the data 

and assign parameters. It consists of a folder for selection, an item menu for extraction, an 

OSM map display, and a driving image screen. The user first selects the folder where the 

driving record video and driving GPS information are located, and the folder where the 
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extracted image will be stored. The user then selects traffic infrastructure or road infor-

mation for extraction. At the interface, the vehicle’s GPS trajectory and user-selected traf-

fic infrastructure simultaneously overlay the OSM window, and a synchronized driving 

video is displayed on the right for inspection. 

 

 

Figure 1. A flowchart of image data extraction. 

4. Driving Behavior Analysis 

In the proposed approach, we analyzed driving behavior and its correlation with 

traffic and road features. Driving behavior was classified as normal or aggressive and an-

alyzed through data visualization and a regression model of the number of aggressive 

driving behaviors and road features.  

A flowchart of the driving behavior analysis is presented in Figure 2. First, we used 

the ODB-II and CANbus loggers for collection of driver data. We then utilized a SAE to 

extract features from the driving data and compress the high-dimensional features into 

three dimensions. Subsequently, we mapped the three-dimensional features to the RGB 

space for display on the OSM. Moreover, we used the K-means clustering algorithm to 

further classify the driving behavior based on aggressiveness. Finally, we used a negative 

binomial regression model to analyze the road features at intersections and interchanges. 

 

Figure 2. A flowchart of driving behavior analysis. 
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4.1 Data Collection 

In addition to exteroceptive sensors (such as LiDAR, GPS, and cameras), the infor-

mation collected from the proprioceptive sensors of the vehicle can also be used to analyze 

driving behavior [23]. Sensor data derived directly from vehicle operations can provide 

more comprehensive driving information.  

We used ODB-II and CANbus loggers for driver data collection. Unlike most previ-

ous studies that only used the information obtained from GPS receivers (with GPS mes-

sages, vehicle speed, and acceleration), OBD-II and CANbus loggers can collect various 

types of driving data for analysis. The specific data types used for the proposed driving 

behavior analysis are as follows. 

⚫ OBD-II: engine rotation speed, engine load, throttle pedal position, acceleration 

XYZ, and vehicle speed. 

⚫ CANbus logger: engine rotation speed, throttle pedal position, braking pedal posi-

tion, steering angle, wheel speed, and vehicle speed. 

⚫ GPS receiver: GPS and coordinated universal time (UTC). 

In addition, we used two public datasets: the DDD17 dataset [24] and UAH DriveSet 

[25]. These two datasets are acquired by the driving monitoring application DriveSafe and 

are mainly used to verify the classification and analysis methods [26]. 
 

4.2 Visualization of Driving Behavior 

The relationship between driving behavior and traffic infrastructure can be observed 

through the data visualization on a map. We used the SAE to extract features from the 

driving data, compress the high-dimensional features into three dimensions, and map the 

3D features to RGB space for display on the OSM. The loss function with sparse con-

straints is given as follows: 

𝐽𝑠𝑝𝑎𝑟𝑠𝑒(𝑊, 𝑏) = 𝐽(𝑊, 𝑏) + 𝛽 ∑ 𝐾𝐿(𝜌||𝜌̂𝑗)
𝑠2
𝑗=1                      (1) 

where J(W, b) is the cost function with parameters W and b and  controls the weight of 

the sparsity penalty term. The term  is a sparsity parameter, and ̂
𝑗
 is the average acti-

vation of hidden unit j. Moreover, s2 is the number of neurons in the hidden layer, and 

𝐾𝐿(𝜌||𝜌̂𝑗) is Kullback–Leibler divergence between  and ̂
𝑗
. 

The difference between the SAE and autoencoder (AE) is that a penalty term is added 

to the loss function. Thus, the activation of hidden nodes decreases to the required value. 

Using this property, the relative entropy is added to the loss function to penalize the value 

of the average activation degree far away from the level ρ. The parameters maintain the 

average degree of activation of the hidden nodes at this level. Thus, the loss function only 

requires the addition of a penalty term for relative entropy without sparse constraints. 

Figure 3 illustrates the flowchart and network structure used to visualize driving be-

havior. The network contained nine hidden layers, and the dimensionality reduction of 

each layer was half the number of nodes in the previous layer. The data collected by OBD-

II contained seven types and 70 dimensions after the windowing process. Thus, the di-

mension reduction in the network is 70 → 35 → 17 → 8 → 3 → 8 → 17 → 35 → 

70, and the features are extracted by the last five layers. The data collected by the CANbus 

logger contained six types and 60 dimensions after the windowing process. Likewise, the 

input to the network comprises 60 nodes, and the dimension reduction is given as follows: 

60 → 30 → 15 → 7 → 3 → 7 → 15 → 30 → 60. Finally, driving behavior was vis-

ualized using the OSM. Figure 4 shows an example of the driving behavior visualized on 

the OSM for the network structure 70 → 35 → 17 → 8 → 3 → 8 → 17 → 35 → 70. 
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Figure 3. A flowchart and network structure for driving behavior analysis. 

 

Figure 4. An example of driving behavior visualized on the OSM for the network structure 70 → 

35 → 17 → 8 → 3 → 8 → 17 → 35 → 70. 

In addition, we used the K-means clustering algorithm to further classify the driving 

behavior. The elbow method was used to determine the most appropriate k value to clas-

sify driving behavior according to aggressiveness [27]. Driving behavior is classified into 

four levels, from normal to aggressive, and the most aggressive driving behavior is 

marked on the OSM. 
 

4.3 Negative Binomial Regression 

Referring to [16], we used a negative binomial regression model to analyze the road 

features at intersections and interchanges. It is an extended version of the Poisson regres-

sion to process the data overdispersion problem. The negative binomial regression model 

is used to predict the number of aggressive driving behavior 𝜇𝑖, defined by 

𝜇𝑖 = exp⁡(𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 +∙∙∙ +𝛽𝑘𝑥𝑘𝑖 + 𝜀𝑖)                     (2) 

where βi is the correlation term associated with each road feature parameter and 𝜀𝑖 is an 

error term. Pearson’s chi-squared test was performed [28] to verify whether the data were 

overdispersed. When the ratio was greater than 1, the data were considered overdispersed 

To evaluate whether Poisson or negative binomial regression could better fit our 

data, the Akaike information criterion (AIC) was computed for these two models [29]. The 

AIC is an effective measure of data fitting in regression models and is defined as 

                                                𝐴𝐼𝐶 = 2𝑘 − 2ln⁡(𝐿)                              (3) 
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where k is the number of features, and ln(L) is the maximum likelihood. A smaller AIC 

value implies a better-fitting model.  

After classifying driving behavior using K-means clustering, aggressive driving be-

havior was found to occur more frequently at interchanges and intersections. Negative 

binomial regression analysis was performed for these two specific driving scenarios. We 

adopted the road features proposed by Wong [16] and those commonly appearing in Tai-

wanese road scenes. 

⚫ Interchanges: (1) section length, (2) lane width, (3) speed limit, and (4) traffic flow. 

⚫ Four-arm intersection: (1) without lane markings, (2) straight-lane markings, (3) left-

lane markings, (4) right-lane markings, (5) shared-lane markings, (6) shared-lane 

markings at the roadside, (7) motorcycle priority, and (8) branch road. 

⚫ Three-arm intersection: (1) without lane markings, (2) straight-lane markings, (3) 

shared-lane markings at the roadside, (4) lane ratio, (5) motorcycle priority, and (6) 

branch road. 

5. Experimental Results 

We divided the experiments into two parts: image data extraction of training and 

testing datasets and the driving behavior analysis based on the driving and road features. 
 

5.1 Extraction of Training and Testing Data 

We demonstrate the image data extraction for road scenes with traffic lights. Figure 

5(a) shows the driving trajectory (marked by the red curve) and traffic light positions 

(marked by blue circles) on the OSM. The driving videos were filtered through an extrac-

tion system to contain traffic lights from far to near. The extracted images in Figures 5(b) 

and 5(c) correspond to orange dots (a) and (b) in Figure 5(a), respectively. 

 

Figure 5. Image data extraction for road scenes with traffic lights. (a) Driving trajectory (marked in 

red curve) and traffic-light positions (marked in blue circles) on the OSM. (b) Extracted image con-

taining traffic lights (long-range image). (c) Extracted image containing traffic lights (short-range 

image). 
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5.2 Driving Behavior Analysis 

For the driving behavior analysis, we first presented the visualization and K-means 

classification and then performed an analysis of the driving behavior and road features. 

 

5.2.1 Visualization and K-means Classification 

We used five segments of driving data in the UAH DriveSet, and the drivers showed 

normal and aggressive behaviors separately. In each data segment, 50 samples were used 

for classification. The results are presented in Table 1 with the percentage of correct clas-

sifications, where D1–D5 represent the five drivers. N and A denote normal and aggres-

sive driving, respectively. The table shows that K-means classification can provide satis-

factory classification results for normal and aggressive driving behaviors. 

Table 1. K-means classification performance on the UAH DriveSet. 

D1 D2 D3 D4 D5 

N A N A N A N A N A 

100% 80% 100% 100% 100% 96% 98% 100% 98% 98% 

 

Figure 6 shows the visualized driving behavior and the corresponding driving data 

chart. Figure 6(a) shows the visualized driving behavior (including aggressive driving) 

using the driving data in the UAH DriveSet visualized on the OSM with traffic light loca-

tion information. Red circles A and B in Figure 6(a) correspond to the driving data chart 

enclosed by red rectangles A and B, respectively, in Figure 6(b). The driving images cor-

responding to the red circles A and B in Figure 6(a) are shown in Figures 7(a) and 7(b), 

respectively. In this example, the aggressive driving behavior at the location indicated by 

red circle A in Figure 6(a) was due to the sudden braking caused by the car in front of the 

intersection (Figure 7(a)), and that at the location indicated by red circle B in Figure 6(b) 

was due to the change in lanes (Figure 7(b)).   

 

Figure 6. The visualized driving behavior and driving data chart. (a) The aggressive driving data 

and traffic lights are marked on the OSM. The locations A and B (red circles) in Figure 6(a) corre-

sponded to the data enclosed by red rectangles A and B in Figure 6(b), respectively. (b) The red 
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rectangles A and B in Figure 6(b) correspond to the locations indicated by the red circles A and B in 

Figure 6(a), respectively.  

 

Figure 7. Driving images. (a) The image acquired at the location corresponding to red circle A in 

Figure 6(a). (b) The image acquired at the location corresponding to red circle B in Figure 6(a). 

 

By visualizing the driving behavior and displaying aggressive driving behaviors on 

OSM with reference to the driving video, we can observe a correlation between driving 

behavior and traffic infrastructure. The three situations were analyzed as follows: 

a. Influence of two-way lanes on driving behavior: The vehicle speed in a two-way lane 

was higher than that in a one-way lane. Thus, aggressive driving behaviors with fast 

driving and emergency braking are more likely to occur in two-way lanes. 

b. Influence of traffic lights on driving behavior: The most aggressive driving behavior 

occurs at intersections. There may be many reasons for this, such as fast-changing 

signals and poor road design. This generally causes more conflicts between drivers 

and other vehicles. 

c. Influence of interchanges on driving behavior: In highway traffic, the most aggressive 

driving behaviors occur at interchanges. A vehicle entering an interchange entrance 

tends to drive in the inner lane. This generally causes the other drivers to change lanes 

or slow down. 

 

5.2.2 Negative binomial regression 

Because aggressive driving behaviors frequently occur near intersections and inter-

changes, we further investigated these driving scenarios using negative binomial regres-

sion analysis of the correlation between the number of aggressive behaviors and road fea-

tures. 

The P-value can be used to evaluate the statistical significance of the features of ag-

gressive driving behaviors [30]. The following two driving scenarios were examined.  
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Four-Arm Intersection: Eight different road features were defined at the intersections. 

The regression analysis is shown in Figure 8(a), where Intercept is the error term of the 

regression model, LEFT is the left-turn lane mark, STRA is the straight lane mark, RIGHT 

is the right-turn lane mark, TWO is the shared lane mark, SHARE is the shared lane mark 

on the side of the road, NO is no lane mark, MOTOR is the number of priority locomotive 

lanes, CROSS is the number of branch roads, and the coefficient term is the parameter of 

the regression model. The features that have considerable impacts on aggressive driving 

behaviors included “straight lane marking,” “shared lane marking at roadside,” and 

“without lane marking.” The influences of these features on the driving behavior were 

positive, negative, and positive correlations, respectively. When “P > |z|” < 0.05 held, the 

feature significantly affected aggressive behavior. 

Highway Interchange: Four different road features were defined for highways. The re-

gression analysis results are shown in Figure 8(b), where LONG is the length of the inter-

change, LANE is the lane width, LIMIT is the ramp speed limit, and FLOW is the average 

daily traffic volume. The features that had a considerable impact on aggressive driving 

behaviors were “speed limit” and “average daily traffic volume.” The influences of these 

features on driving behavior showed positive and negative correlations, respectively. 

 

 

Figure 8. Negative binomial regression analysis results. (a) at a four-arm intersection. (b) at a high-

way interchange. 
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6. Conclusions 

We present an image data extraction system based on geographic information, and a 

driving behavior analysis approach that uses various types of driving data. The experi-

mental results show that lane ratios without lane markings and with straight lane mark-

ings are important features that affect aggressive driving behaviors. Finally, traffic im-

provements are proposed based on the analysis of a case study at an intersection. In the 

future, we will add more driving data for a more accurate analysis of driving behavior. 
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