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Featured Application: The methodology presented herein is centered around possible use in the 1

fields of Autonomous Driving and Perception Algorithms by serving as a performance evaluator 2

and data validator. 3

Abstract: The increased demand and use of autonomous vehicles and advanced driver-assistance 4

systems has been constrained by an incidence of accidents involving errors with the perception layer’s 5

functionality. In tandem, recent papers have noted the lack of standardized, independent testing 6

formats and insufficient methods with which to analyze, verify and qualify LiDAR-based data and 7

categorization. While camera-based approaches benefit from an ample amount of research, camera 8

images can be unreliable in situations with impaired visibility such as dim lighting and fog. This 9

paper aims to introduce a novel method based entirely on LiDAR data with the capability to detect 10

anomalous patterns as well as complementing other performance evaluators using a Copula-based 11

approach. With a promising set of preliminary results, this methodology may be used to evaluate an 12

algorithm’s confidence score, the impact conditions may have on LiDAR data and detect cases in 13

which LiDAR data may be insufficient or otherwise unusable. 14

Keywords: autonomous driving; perception algorithms; LiDAR; anomaly detection; COPOD. 15

1. Introduction 16

The last five years have seen an exponential increase in embedded systems within the 17

automotive industry, a modernization which has allowed for a deeper and more complex 18

integration of electronics, in part fueled by the higher interest in both electric and hybrid 19

vehicles. This phenomenon, in turn, has given way to a wave of demand for advanced 20

driver-assistance systems and “self-driving vehicles”, shifting automated driving into a par- 21

ticularly pertinent field of research. This increased interest has been accompanied by a 22

requirement for better and more accurate machine learning models, in turn necessitating 23

new performance indicators and metrics, higher quality and diversity of evaluation meth- 24

ods, as well as higher quality and realism of the datasets used to train these models, among 25

others. 26

Nevertheless, accidents involving autonomous vehicles have been reported as result- 27

ing from errors of the perception computing layers [1–3]. One such example involves an 28

accident between one of Uber’s vehicles and a pedestrian holding a bike while crossing 29

a street. Reports suggest that both LiDAR and RADAR systems detected the pedestrian 30

about six seconds before the registered impact, but a misclassification of the pedestrian as 31

an "unknown object" led to the unfortunate crash [3]. Despite development efforts held 32

in the past years, research is still required to prevent these failures. Special notice has to 33

be given to ways in which researchers may improve and characterize the performance of 34

perception algorithms under diversified driving situations. Notably, there is an acute lack 35

of research involving holistic LiDAR data. 36

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 June 2023                   doi:10.20944/preprints202306.0499.v1

©  2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://www.mdpi.com
https://orcid.org/0000-0002-1671-2884
https://orcid.org/0000-0002-9160-9158
https://orcid.org/0000-0001-6065-9358
https://doi.org/10.20944/preprints202306.0499.v1
http://creativecommons.org/licenses/by/4.0/


2 of 13

In order to obtain robust and accurate perception algorithms, there exists a funda- 37

mental requirement to expand the availability and size of datasets and to improve the 38

effectiveness of both testing methods and key performance metrics in other to mitigate 39

risks and better assess the performance and evolution of these algorithms. There are a few 40

ways to achieve this, one such involving the comparison of the layer’s output against a 41

"ground truth" (labeled data) that is part of the dataset. Other such approaches involve the 42

collection of detailed statistics via thorough testing, correlations between different metrics, 43

the detection of anomalies, outliers, and fringe cases, etc. 44

With this in mind, this paper aims to introduce a novel, multi-faceted approach based 45

entirely on LiDAR data, capable of both outlining points of concern within a given dataset, 46

as well as complementing other performance evaluators. This approach, using a Copula- 47

based Outlier Detection algorithm (COPOD), leverages its unique characteristics to aid in 48

the training and evaluation of perception algorithms. 49

Its ability to identify possible outliers within a given category allows for the detection 50

and removal of data which may prove unsuitable for a given purpose, facilitating the 51

building and use of a dataset. Furthermore, through a similar process, this method is able 52

to calculate the probability of a given LiDAR Point Cloud belonging to a certain category. 53

This allows it, when combined with other performance evaluators, to serve as a benchmark 54

with which to evaluate a Perception Algorithm’s performance. 55

1.1. Mathematical Copulas 56

In probability theory and statistics, a cumulative distribution function (CDF) gives the
probability of a given variable X taking a value less than or equal to x. A Copula C : [0, 1]2 →
[0, 1] is a distribution function whose marginal laws are uniform in [0, 1]. It is a special,
multivariate cumulative distribution function case for which the marginal probability
distribution for each of the variables that define it is uniform on this interval, separating
them from the dependency structure associated with a multivariate distribution [4] and
verifying the following three conditions:

− C(u, 0) = C(0, u) = 0 f or all u,∈ [0, 1],

− C(u, 1) = u and C(1, u) = u f or all u ∈ [0, 1],

− For all(u1, v1), (u2, v2) ∈ [0, 1]2 with u1 ≤ u2 and v1 ≤ v2

we have :

C(v1, v2)− C(v1, u2)− C(u1, v2) + C(u1, u2) ≥ 0.

If C is a Copula related to a random vector (X1, X2), then C couples the distribution 57

functions, in the sense that 58

Pr(X1 ≤ x1, (X2 ≤ x2) = C(Pr(X1 ≤ x1), Pr(X1 ≤ x1)) (1)

While, at first glance, Copulas may appear a niche, they can be applied in a wide 59

variety of ways via some clever mathematical maneuvering. Firstly, it is known that, by 60

leveraging the Central Limit Theorem via the sampling of a given distribution, one can 61

transform it into an uniform distribution. Furthermore, any uniform distribution can be 62

transformed into any given function via inverse sampling [4]. With this in mind, Sklar’s 63

Theorem can be introduced, stating that any given multivariate, joint distribution can be 64

written in terms of a univariate marginal distribution and, in turn, can be described by a 65

Copula [4]. 66

Due to these properties, Copulas have long since been used to describe the correlation 67

between seemingly random variables, finding applications in many fields. Most notably, 68

they are widely used in finance to manage and optimize investment risk. Recently, Copulas 69

have found new applications within a variety of fields such as, outlier detection [4], software 70

quality assessment [5], automotive component failure [6], test of analog and mixed-signal 71

circuits [7], and fault detection in mechanical engineering [8]. 72
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The task of a LiDAR data perception algorithm is to interpret and process the point 73

cloud (PC) information, captured by its sensor, to detect and track objects. Accurately 74

segmenting the captured point cloud into the various objects that compose a scene and lo- 75

cating them in the 3D space is not a trivial task, especially when the relative distance, shape 76

and size of objects are required. The captured PC is usually noisy, sparse and frequently 77

inconsistent due to, e. g., complex objects’ geometries, different surface reflectiveness, diffi- 78

cult weather conditions, or even LiDAR’s intrinsic errors. All these are likely to generate 79

scattered point cloud data where many data points can be classified as outliers. 80

The objective of the work presented herein is to resort to a Copula-based Outlier 81

Detection algorithm (COPOD) to identify outliers in a given category, facilitating the 82

building and use of a dataset containing LiDAR data. Furthermore, the proposed method 83

allows, when combined with other performance evaluators, to serve as a benchmark when 84

evaluating the performance of perception algorithms. 85

Prior to presenting the preliminary results obtained, the following Section 2 provides 86

as a summary revision of some of the methods used to test and evaluate different aspects of 87

the systems responsible for an autonomous vehicle’s functionality, including the perception 88

algorithms and associated data. Section 3 presents an in-depth explanation of the proposed 89

methodology. Within this section one may find an overview of outlier detection and the 90

detector developed in this work, as well as a presentation of the data analyzed and the 91

method we wish to outline. Finally, section 4 discusses the preliminary results obtained 92

after the application of the proposed methodology making use of the KITTI dataset. 93

2. Overview on Perception Testing Methods 94

In 2021, a review of the methods used to test Environmental Perception in autonomous 95

driving was conducted by Hoss et al.. During it, the authors found that much of the testing 96

and evaluation present at the time, while conforming under ISO 26262 and ISO/PAS 21448, 97

became insufficient once vehicles were given a larger degree of automation. Highlighted 98

are several points regarding the interdependence of criteria and the failure of given metrics 99

to account for points of failure which, while not formally regarded as catastrophic failures, 100

may result in accidents regardless. 101

One such highlighted example involves a metric dubbed "statistical safety impact" [9], 102

which depends on a system’s safety impact in individual scenes that, unfortunately, de- 103

pends on whether the system itself correctly recognized and reported its uncertainty in 104

a scene. If a failure-induced mischaracterization occurs, an uncertainty may never be 105

detected and the abnormality remain undetected. Similarly, there are times in which the 106

perception layer may encounter uncertainty with a false positive, such as cases involving 107

’ghost pedestrians’ which may cause the subsequent layers to behave erratically, leading to 108

performing an emergency and dangerous breaking maneuver, and putting other vehicles 109

and drivers at risk. 110

Most of all, the review highlights that despite the existence of safety criteria and 111

metrics which fulfill them, including those independent from the system itself, there exists 112

a pressing need to produce new and more apt indicators that do not rely on the system 113

itself, consider the impact a missclassification may have on the entirety of the system’s 114

pipeline, and are scalable to higher degrees of autonomy. 115

In 2022, a thorough survey was published by Bogdoll et al. delved into the many forms 116

in which anomaly detection has been leveraged to tackle this specific context, outlining an 117

extensive list of previous methodologies developed throughout the years. They identified 118

five distinct categories: Confidence Score, Reconstruction, Generation, Feature Extraction, 119

and Prediction. For each category, the authors searched extensively for any methods which 120

could be applied to a given context, identifying three main modalities for data capture: 121

Camera, LiDAR, and RADAR. Additionally, an analysis is also conducted regarding the 122

detection of anomalies across multimodal facets and object level data. The former encom- 123

passes data captured with two or more of the previous three modalities, while the latter 124
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involves abstract abnormalities such as behavioral patterns and other data not bound to 125

any given modality. 126

Within the survey, the authors highlight the differentiation between the quantity and 127

the quality of effective methods, especially when it comes to LiDAR captured data. Out 128

of all the modalities, LiDAR presents the least technological development when it comes 129

to the identification of anomalous data, comprising four total methods, three within the 130

Confidence Score category and one reconstructive approach. While per-point detection is a 131

well-explored field of Anomaly Detection, object-level and pattern-based approaches are 132

still few and far between. 133

3. Materials and Methods 134

To better contextualize this description, a basic overview of the tools and materials 135

utilized will come before presenting the actual procedures, starting with a brief explanation 136

of the COPOD algorithm. 137

3.1. Outlier Detection 138

Outliers, also regarded as anomalies, are commonly understood as instances, actions 139

or objects which fall outside the norm. In the field of statistics, these refer to unexpected 140

data points or patterns which do not conform to an expected behavior [11]. This definition 141

can be further explored by taking an abstract set of data, describable via a given number 142

of functions. In this case, outlier designates any point unable to be fit into, at least, one 143

such function, originating instead from an unknown distribution, foreign to the remaining 144

data. Conversely, any points which can be fit into these describing functions are regarded 145

as inliers. 146

Outlier detection refers to any process which may be used to accurately identify any 147

such anomalies, separating the inliers and outliers [4]. Depending on the quantity, type, 148

labeling and other such characteristics of a given dataset, the manner in which one may go 149

about identifying said anomalies will vary. With that in mind, it is possible to distinguish 150

between three main types of algorithms, fundamentally characterized by the availability of 151

labels in the dataset [11]. 152

• Supervised detection relies on fully labeled data and often benefits from the use of 153

classifiers to deal with unbalanced class distribution; 154

• Semi-Supervised detection is characterized by training data which consists only of 155

normal instances, without anomalies. 156

• Unsupervised detection is performed on unlabeled data, taking only the intrinsic 157

properties of a dataset. 158

3.1.1. Copula-Based Outlier Detection 159

An outlier detection algorithm based upon Copulas was first introduced in Li et al. 160

[4]. Excelling in both speed and effectiveness, it outperformed most of its competitors 161

where applicable, distinguishing itself from them due to its deterministic approach and 162

complete lack of hyperparameters [4]. These characteristics allow for ease of use, removing 163

any need for manual tweaking or tinkering which in turn leave little margin for user error. 164

Furthermore, as it is able to function both with and without learning splits, it may operate 165

as a supervised, semi-supervised or unsupervised algorithm. It has also been integrated 166

into the Python Outlier Detection (pyOD) suite, which allows for further accessibility. 167

The algorithm itself is based upon the exploitation of properties intrinsic to empirical 168

Copulas which can be derived from empirical cumulative distribution functions (eCDFs). 169

A cumulative distribution function (CDF) is a descriptor of the probability of a given 170

variable X taking a value less than or equal to x. The continuous nature of this probability 171

distribution, however, imposes some rather expensive computational requirements which 172

do not scale well in multivariate cases. An eCDF is instead used, defined as a step function 173

which approximates the true CDF via a sampling system with a frequency of 1/n, with 174
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n being the total amount of samples. A Copula is a special case of a multivariate CDF, 175

defined by the uniformity of each variable’s marginal probability in the interval of [0, 1]. 176

Figure 1. Original CDF and derived eCDF with n-samples [12].
The algorithm itself works by attempting to fit a given dataset to a Copula. To do this, 177

it must first create one, or multiple eCDFs which accurately encapsulate the majority of 178

the dataset’s values. These can then be used to derive the empirical Copula. Since outliers 179

can be seen as a Copula’s tail events, calculating an approximation of its tail probabilities 180

allows for the evaluation of a given point X. By calculating the likelihood of a point Y being, 181

at least, as extreme as X, the algorithm is able to assign an anomaly score to that value, with 182

lower probabilities resulting in higher scores. 183

While this approach may provide an opening towards bias and inherent skews in the 184

dataset, the algorithm mitigates this via a correction system leveraging the monotonicity of 185

logarithmic functions [4]. 186

3.2. Data 187

For the purposes of this first introduction to the methodology, we elected to use the 188

KITTI dataset [13]. KITTI has been a staple of autonomous driving datasets ever since it 189

was made available in 2012, providing a stereo camera and LiDAR data via a 360 degrees 190

Velodyne Laserscanner [13]. Using the 2017 version of the 3D Object Detection Evaluation 191

dataset, it provides 7481 training images and 7518 testing images, which corresponds to a 192

total of 80,256 labeled objects across multiple categories such as: car, van, truck, pedestrian, 193

person sitting, cyclist and tram. 194

The data itself is stored in a proprietary format and separated across different .zip files 195

which contain: left color images, right color images (stereo dataset), Velodyne point clouds 196

and the labeling data for the training portion of the dataset [13]. 197

There are a few ways in which one may go about extracting and organizing the LiDAR 198

data available. One of those options is to extract the data pertaining to each point within a 199
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given bounding box, shaping its coordinates into a position relative to the bounding box’s 200

center. This is a necessary step in eliminating inconsistencies in an object’s point cloud 201

that may come from the distance to the scanner itself, allowing each resulting collection 202

to better describe the object’s captured shape. These data can then be stored in individual 203

NumPy arrays to be processed by the method. 204

3.3. Methodology 205

The peculiarities of COPOD as a multivariate, statistical method render it unable to 206

parse the data we previously acquired. Its input is constrained, accepting only a collection 207

of one or more features, or variables, that it can relate and process. The associated matrix 208

must strictly be both uniform and either one or two dimensional. 209

To tackle this problem, a new approach had to be found and deliberation upon 210

problem incurred the following hypothesis: if one were to simply turn X, Y and Z into 211

the individual features with which to fit the algorithm, the eCDF and subsequent Copula 212

derived from the conjunction of all these points might accurately describe the shape of a 213

given category. Looking at the granularity present in the KITTI dataset, cars and vans are 214

regarded as different entities, as should be trucks and other vehicles. This means that a 215

‘car’ is a somewhat defined entity with a shape that, while different individually, can be 216

characterized by telltale characteristics easily picked up by a LiDAR point cloud. 217

With that in mind, it is important to note that this approach dispenses with crucial 218

information and granularity derived from individual contexts, from the intrinsic prop- 219

erties of distinct cars which may have aided in better identifying outliers or preventing 220

misclassification. 221

The data treatment process can be seen in figure 2 and is as follows: after extracting the 222

data for a single category as outlined above, each individual NumPy array is then gathered 223

into a singular matrix, collecting every associated point. Using the fit function, a Copula 224

specific to this category can be produced and used to evaluate single points in one of three 225

ways: 226

• Prediction Method: Predict whether a given point is anomalous or not. The output 227

of this method is a m size list containing 1s and 0s with the former denoting outliers 228

while the latter denotes inliers. 229

• Probability Method: Predict the probability of a given point being anomalous. The 230

output of this method is a m size list containing the computed probabilities and, if 231

requested, a confidence value of the prediction. 232

• Scoring Method: Compute the raw anomaly score of a given point. The output of 233

this method is a m size list containing numbers with higher values denoting more 234

anomalous points. 235

This method however, only provides an analysis on a per-point basis regardless of 236

avenue. As such, a way must be devised to extend these evaluations such that meaningful 237

data on a point-cloud level can be extracted from the individual values obtained. For each 238

method, the following is proposed: 239

• Prediction: An assessment of the number of outliers present in the cloud is necessary. 240

For this, a simple Outlier Percentage(OutP) is computed by taking the number of 241

outliers present and dividing them by the total number of points in the cloud. 242

• Probability: An average Anomalous Probability (AAP) can be obtained by adding all 243

individual probabilities and used to evaluate the whole point cloud. 244

• Scoring: Similar to the probability method, an average Anomaly Score (AAS) can be 245

produced to evaluate the point cloud. 246

The resulting output, regardless of chosen analysis, can be equated to a perception 247

algorithm’s confidence score, serving as a measure of the likelihood of any given point cloud 248

belonging, or not, to the category used to fit the Copula. Working only with LiDAR data, 249

this method may be implemented alone or supplemented with others and, by comparing 250

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 June 2023                   doi:10.20944/preprints202306.0499.v1

https://doi.org/10.20944/preprints202306.0499.v1


7 of 13

its results with an algorithm’s confidence score, an evaluation of the latter’s performance is 251

provided. 252

Figure 2. A visual outline of the proposed methodology.

4. Results 253

The results presented herein are preliminary yet show the promising nature of this 254

methodology and were obtained using the car and pedestrian categories. First, the point 255

clouds for all car and pedestrian bounding boxes present in the 7481 training images were 256

extracted. The car point clouds are appended to one another, producing a single array that 257

is then used to train the algorithm and produce a fitted Copula. Then, point cloud by point 258

cloud, the prediction algorithm is run to determine whether a given point is anomalous 259

or not. Before moving onto the next cloud, the percentage of anomalous points (OutP) is 260

calculated and stored to produce the graphs shown below. 261

The first case is a proof of concept, obtained by selecting 100 random pedestrian 262

samples and comparing them to 42 car samples that were not included in the training split 263

by calculating their respective OutP. 264
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Figure 3. Scatter plot containing the 42 car point clouds and 100 pedestrian point clouds. Higher
scores represent a higher percentage of anomalous points.

Figure 4. The associated boxplot for figure 3.
Figure 3 is a unfiltered showcase of the data presented. The topmost scatterplot 265

highlights the 42 car point clouds that were analyzed through the proposed methodology 266

while the bottom one is in reference to the first 100 point clouds belonging to pedestrians 267
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that were randomly selected. Within both graphs, we can see the point cloud distribution 268

across Outlier Percentages with the X-axis highlighting individual point clouds and the 269

Y-axis serving as the respective outlier percentages. The same applies to Figure 5, albeit 270

with 3623 pedestrian point clouds. Furthermore, Figure 4 and Figure 6 present the boxplots 271

associated with each respective scatterplot, outlining the minimum and maximum value as 272

well as the first, second and third quartiles. 273

As seen within Figure 3 and Figure 4, there is not only a sizable occurrence of outliers 274

within the pedestrian samples, but the difference in outlier percentages between the pedes- 275

trian and car point clouds is high enough to enable drawing inferences. This was, however, 276

a test done with very few car and pedestrian samples and may not be representative of the 277

whole data. With that in mind, this preliminary test was scaled to include all the pedestrian 278

point clouds available, a total of 3623. The goal was to see whether this trend continued and, 279

if it did, whether the first obtained percentages were indicative of the greater population. 280

Would that be the case, then it would be a fair assumption that the same would likely be 281

seen in the car samples. 282

This was necessary for time constraints and computing time reasons: the method 283

is computationally intensive and, as such, validating the results obtained with a lower 284

sample-size opens allows for more varied testing. 285

Figure 5. Scatter plot depicting the 42 car point clouds and 3623 pedestrian point clouds. Higher
scores represent a higher percentage of anomalous points.
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Figure 6. The associated boxplot for figure 5.
Figure 5 a provides comparison between the results obtained considering the car 286

samples and the entire pedestrian data. The overall distribution of points mirrors the 287

smaller sample of 100 point cloud. Not only that, it is easily observed that there are 288

many more points which fall outside the expected distribution due to their overwhelming 289

presence of outliers than those that seem to lack in outliers altogether. 290

Observing the differences present between the pedestrian and car sample size, it is 291

safe to say that the algorithm is able to provide a degree of confidence as to whether a 292

given point cloud may or may not be part of the category with which it was fitted and, for 293

those within the category with high scores, it serves as a marker of the quality of the data 294

obtained. An example of this is given in figure 7, where the reason behind the high OutP 295

score is made apparent as no real context can be extracted from the point cloud itself. 296
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Figure 7. The worst performing car sample’s point cloud.

5. Discussion 297

Solutions for assisted and automated driving are being developed to improve road 298

safety and driving comfort. These systems resort to LiDAR technology to capture three- 299

dimensional images to interpret and understand vehicles’ surroundings. Nevertheless, 300

accidents involving vehicles operating in autonomous modes have been reported as result- 301

ing from Perception layer failures. The driving environments are often uncontrolled and 302

complex, and various factors contribute to corrupt LiDAR data due, namely, to adverse 303

weather conditions, dust, and interferences. 304

In order to achieve safe assisted and autonomous driving systems, robust and accurate 305

LiDAR data and Perception algorithms their performance must be thoroughly evaluated. 306

The present work presents a novel method based entirely on LiDAR data capable of 307

detecting anomalous patterns, as well as complementing other performance evaluators. 308

This methodology resorts to the Copula-based Outlier Detection algorithm (COPOD) to 309

identify outliers in a given object category, and may be used to evaluate an algorithm’s 310

confidence score, the impact the surroundings conditions may have on LiDAR data, and 311

detect cases in which LiDAR data may be insufficient or otherwise unusable. 312

The results obtained in this study lay the foundation for a promising technique. 313

Through analysis of the data obtained, be it the car category or comparison between both 314

car and pedestrian data, we can conclude the method is suitable for the identification 315

of possibly faulty or otherwise unusable point clouds, as well as to evaluate perception 316

algorithms. 317

Further work is being carried out to include other datasets in an effort to better study 318

the algorithm’s performance with varied LiDAR resolution and point cloud density, and to 319

evaluate prediction algorithms. 320
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The following abbreviations are used in this manuscript: 336

337

LiDAR Laser Imaging, Detection and Ranging
RADAR Radio Detection and Ranging
COPOD Copula-based Outlier Detector
pyOD Python Outlier Detection Suite
eCDF Empirical Cumulative Distribution Function
CDF Cumulative Distribution Function
OutP Outlier Percentage
AAP Average Anomalous Probability
AAS Average Anomaly Score
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