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Featured Application: The methodology presented herein is centered around possible use in the 1
fields of Autonomous Driving and Perception Algorithms by serving as a performance evaluator =
and data validator. 3

Abstract: The increased demand and use of autonomous vehicles and advanced driver-assistance 4
systems has been constrained by an incidence of accidents involving errors with the perception layer’s s
functionality. In tandem, recent papers have noted the lack of standardized, independent testing
formats and insufficient methods with which to analyze, verify and qualify LIDAR-based dataand -7
categorization. While camera-based approaches benefit from an ample amount of research, camera s
images can be unreliable in situations with impaired visibility such as dim lighting and fog. This  »
paper aims to introduce a novel method based entirely on LiDAR data with the capability to detect 10
anomalous patterns as well as complementing other performance evaluators using a Copula-based 11
approach. With a promising set of preliminary results, this methodology may be used to evaluate an 1=
algorithm’s confidence score, the impact conditions may have on LiDAR data and detect casesin 13

which LiDAR data may be insufficient or otherwise unusable. 14
Keywords: autonomous driving; perception algorithms; LiDAR; anomaly detection; COPOD. 15
1. Introduction 16

The last five years have seen an exponential increase in embedded systems within the 17
automotive industry, a modernization which has allowed for a deeper and more complex s
integration of electronics, in part fueled by the higher interest in both electric and hybrid 1
vehicles. This phenomenon, in turn, has given way to a wave of demand for advanced 2o
driver-assistance systems and “self-driving vehicles”, shifting automated driving into a par- =
ticularly pertinent field of research. This increased interest has been accompanied by a 22
requirement for better and more accurate machine learning models, in turn necessitating  =s
new performance indicators and metrics, higher quality and diversity of evaluation meth- 2
ods, as well as higher quality and realism of the datasets used to train these models, among =5
others. 26

Nevertheless, accidents involving autonomous vehicles have been reported as result- 27
ing from errors of the perception computing layers [1-3]. One such example involves an  2s
accident between one of Uber’s vehicles and a pedestrian holding a bike while crossing  2¢
a street. Reports suggest that both LIDAR and RADAR systems detected the pedestrian 3o
about six seconds before the registered impact, but a misclassification of the pedestrian as s
an "unknown object" led to the unfortunate crash [3]. Despite development efforts held 2
in the past years, research is still required to prevent these failures. Special notice has to s
be given to ways in which researchers may improve and characterize the performance of s
perception algorithms under diversified driving situations. Notably, there is an acute lack s
of research involving holistic LIDAR data. 36
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In order to obtain robust and accurate perception algorithms, there exists a funda- 7
mental requirement to expand the availability and size of datasets and to improve the s
effectiveness of both testing methods and key performance metrics in other to mitigate 1o
risks and better assess the performance and evolution of these algorithms. There are a few 40
ways to achieve this, one such involving the comparison of the layer’s output againsta  a:
"ground truth" (labeled data) that is part of the dataset. Other such approaches involve the a2
collection of detailed statistics via thorough testing, correlations between different metrics, 4
the detection of anomalies, outliers, and fringe cases, etc. 4

With this in mind, this paper aims to introduce a novel, multi-faceted approach based s
entirely on LiDAR data, capable of both outlining points of concern within a given dataset, 4
as well as complementing other performance evaluators. This approach, using a Copula- «
based Outlier Detection algorithm (COPOD), leverages its unique characteristics to aid in ~ 4s
the training and evaluation of perception algorithms. a9

Its ability to identify possible outliers within a given category allows for the detection  so
and removal of data which may prove unsuitable for a given purpose, facilitating the s
building and use of a dataset. Furthermore, through a similar process, this method is able s
to calculate the probability of a given LiDAR Point Cloud belonging to a certain category. s
This allows it, when combined with other performance evaluators, to serve as a benchmark .
with which to evaluate a Perception Algorithm’s performance. 55

1.1. Mathematical Copulas 56

In probability theory and statistics, a cumulative distribution function (CDF) gives the
probability of a given variable X taking a value less than or equal to x. A Copula C : [0,1]> —
[0,1] is a distribution function whose marginal laws are uniform in [0, 1]. It is a special,
multivariate cumulative distribution function case for which the marginal probability
distribution for each of the variables that define it is uniform on this interval, separating
them from the dependency structure associated with a multivariate distribution [4] and
verifying the following three conditions:

—C(u,0) =C(0,u) =0 forallu, € [0,1],

—C(u,1) =uand C(1,u) = u forallu € [0,1],

— Forall(uy,vq), (up,v3) € [0,1]2 withul < u2and vl <02
we have :

C(v1,02) — C(v1,uz) — C(ur,v2) + Cur,uz) =0

If C is a Copula related to a random vector (Xi, X3 ), then C couples the distribution s
functions, in the sense that 58

Pr(X; < x1,(Xp < xp) = C(Pr(X1 < x1), Pr(X; < x7)) 1)

While, at first glance, Copulas may appear a niche, they can be applied in a wide o
variety of ways via some clever mathematical maneuvering. Firstly, it is known that, by o
leveraging the Central Limit Theorem via the sampling of a given distribution, one can &
transform it into an uniform distribution. Furthermore, any uniform distribution can be 2
transformed into any given function via inverse sampling [4]. With this in mind, Sklar’s e
Theorem can be introduced, stating that any given multivariate, joint distribution can be e
written in terms of a univariate marginal distribution and, in turn, can be described by a  «s
Copula [4]. 66

Due to these properties, Copulas have long since been used to describe the correlation e
between seemingly random variables, finding applications in many fields. Most notably, s
they are widely used in finance to manage and optimize investment risk. Recently, Copulas s
have found new applications within a variety of fields such as, outlier detection [4], software 7o
quality assessment [5], automotive component failure [6], test of analog and mixed-signal 7.
circuits [7], and fault detection in mechanical engineering [8]. 72
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The task of a LIDAR data perception algorithm is to interpret and process the point 7
cloud (PC) information, captured by its sensor, to detect and track objects. Accurately 7
segmenting the captured point cloud into the various objects that compose a scene and lo- 75
cating them in the 3D space is not a trivial task, especially when the relative distance, shape 7
and size of objects are required. The captured PC is usually noisy, sparse and frequently 7~
inconsistent due to, e. g., complex objects’ geometries, different surface reflectiveness, diffi- 7
cult weather conditions, or even LiDAR'’s intrinsic errors. All these are likely to generate 7
scattered point cloud data where many data points can be classified as outliers. 80

The objective of the work presented herein is to resort to a Copula-based Outlier e
Detection algorithm (COPOD) to identify outliers in a given category, facilitating the =
building and use of a dataset containing LiDAR data. Furthermore, the proposed method s
allows, when combined with other performance evaluators, to serve as a benchmark when e
evaluating the performance of perception algorithms. a5

Prior to presenting the preliminary results obtained, the following Section 2 provides es
as a summary revision of some of the methods used to test and evaluate different aspects of &7
the systems responsible for an autonomous vehicle’s functionality, including the perception s
algorithms and associated data. Section 3 presents an in-depth explanation of the proposed e
methodology. Within this section one may find an overview of outlier detection and the s
detector developed in this work, as well as a presentation of the data analyzed and the o
method we wish to outline. Finally, section 4 discusses the preliminary results obtained =
after the application of the proposed methodology making use of the KITTI dataset. 93

2. Overview on Perception Testing Methods 0a

In 2021, a review of the methods used to test Environmental Perception in autonomous s
driving was conducted by Hoss ef al.. During it, the authors found that much of the testing s
and evaluation present at the time, while conforming under ISO 26262 and ISO/PAS 21448, o~
became insufficient once vehicles were given a larger degree of automation. Highlighted o
are several points regarding the interdependence of criteria and the failure of given metrics oo
to account for points of failure which, while not formally regarded as catastrophic failures, 100
may result in accidents regardless. 101

One such highlighted example involves a metric dubbed “statistical safety impact” [9], 102
which depends on a system’s safety impact in individual scenes that, unfortunately, de- 1o
pends on whether the system itself correctly recognized and reported its uncertainty in  os
a scene. If a failure-induced mischaracterization occurs, an uncertainty may never be 105
detected and the abnormality remain undetected. Similarly, there are times in which the 106
perception layer may encounter uncertainty with a false positive, such as cases involving 1o
"ghost pedestrians” which may cause the subsequent layers to behave erratically, leading to 108
performing an emergency and dangerous breaking maneuver, and putting other vehicles 100
and drivers at risk. 110

Most of all, the review highlights that despite the existence of safety criteria and 11
metrics which fulfill them, including those independent from the system itself, there exists 112
a pressing need to produce new and more apt indicators that do not rely on the system 13
itself, consider the impact a missclassification may have on the entirety of the system’s 114
pipeline, and are scalable to higher degrees of autonomy. 115

In 2022, a thorough survey was published by Bogdoll et al. delved into the many forms e
in which anomaly detection has been leveraged to tackle this specific context, outlining an 117
extensive list of previous methodologies developed throughout the years. They identified 11s
five distinct categories: Confidence Score, Reconstruction, Generation, Feature Extraction, 110
and Prediction. For each category, the authors searched extensively for any methods which 120
could be applied to a given context, identifying three main modalities for data capture: iz
Camera, LiDAR, and RADAR. Additionally, an analysis is also conducted regarding the 122
detection of anomalies across multimodal facets and object level data. The former encom- 123
passes data captured with two or more of the previous three modalities, while the latter 12e
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involves abstract abnormalities such as behavioral patterns and other data not bound to 125
any given modality. 126

Within the survey, the authors highlight the differentiation between the quantity and 127
the quality of effective methods, especially when it comes to LIDAR captured data. Out  12s
of all the modalities, LIDAR presents the least technological development when it comes 120
to the identification of anomalous data, comprising four total methods, three within the 130
Confidence Score category and one reconstructive approach. While per-point detectionisa 1s:
well-explored field of Anomaly Detection, object-level and pattern-based approaches are 12
still few and far between. 133

3. Materials and Methods 134

To better contextualize this description, a basic overview of the tools and materials 135
utilized will come before presenting the actual procedures, starting with a brief explanation 136
of the COPOD algorithm. 137

3.1. Outlier Detection 138

Outliers, also regarded as anomalies, are commonly understood as instances, actions 130
or objects which fall outside the norm. In the field of statistics, these refer to unexpected 140
data points or patterns which do not conform to an expected behavior [11]. This definition 1
can be further explored by taking an abstract set of data, describable via a given number  1a2
of functions. In this case, outlier designates any point unable to be fit into, at least, one s
such function, originating instead from an unknown distribution, foreign to the remaining 14
data. Conversely, any points which can be fit into these describing functions are regarded 145
as inliers. 146

Outlier detection refers to any process which may be used to accurately identify any s
such anomalies, separating the inliers and outliers [4]. Depending on the quantity, type, 14
labeling and other such characteristics of a given dataset, the manner in which one may go 14
about identifying said anomalies will vary. With that in mind, it is possible to distinguish s
between three main types of algorithms, fundamentally characterized by the availability of 1s:

labels in the dataset [11]. 152
*  Supervised detection relies on fully labeled data and often benefits from the use of 1ss
classifiers to deal with unbalanced class distribution; 154
*  Semi-Supervised detection is characterized by training data which consists only of s
normal instances, without anomalies. 156
¢ Unsupervised detection is performed on unlabeled data, taking only the intrinsic s
properties of a dataset. 158
3.1.1. Copula-Based Outlier Detection 159

An outlier detection algorithm based upon Copulas was first introduced in Li ef al. 160
[4]. Excelling in both speed and effectiveness, it outperformed most of its competitors 16
where applicable, distinguishing itself from them due to its deterministic approach and 12
complete lack of hyperparameters [4]. These characteristics allow for ease of use, removing  1es
any need for manual tweaking or tinkering which in turn leave little margin for user error. 1es
Furthermore, as it is able to function both with and without learning splits, it may operate 1es
as a supervised, semi-supervised or unsupervised algorithm. It has also been integrated 1es
into the Python Outlier Detection (pyOD) suite, which allows for further accessibility. 167

The algorithm itself is based upon the exploitation of properties intrinsic to empirical 1es
Copulas which can be derived from empirical cumulative distribution functions (eCDFs). 160
A cumulative distribution function (CDF) is a descriptor of the probability of a given 17
variable X taking a value less than or equal to x. The continuous nature of this probability 17
distribution, however, imposes some rather expensive computational requirements which 172
do not scale well in multivariate cases. An eCDF is instead used, defined as a step function 17
which approximates the true CDF via a sampling system with a frequency of 1/n, with 174
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n being the total amount of samples. A Copula is a special case of a multivariate CDF, 17

defined by the uniformity of each variable’s marginal probability in the interval of [0,1]. 7
Empirical CDF for n =25 (Normal Distribution) Empirical CDF for n =100 (Normal Distribution)
10 A 10
2 08 4 z 0.8 4
= =
1] i)
S 06 B 0.6
o &
@ (]
2 =2
FRLE =04
= =
E £
= =
SRR SR
—— Empirical COF —— Empirical CDF
— CDF — CDOF
0.0 4 Confidence Interval 0.0 4 Confidence Interval
T T T T T T T T T T T T T T T T T T
-4 -3 -z -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4
- x - . B - x - . -
Empirical CDF for n =1000 (Normal Distribution) Empirical CDF for n =5000 (Normal Distribution)
10 A 10
z 08 4 z 0.8 4
o o
m m
B 051 B 051
o o
@ [+}]
Z Z
B 04 B 04
= =
E E
=] =
SRR U024
= Empirical CDF = Empirical CDF
— CDF — CDOF
0.0 Confidence Interval 0.0 Confidence Interval
T 5 % a3 0 1 3 5 T 5 % 4 0 1 3 5
X X

Figure 1. Original CDF and derived eCDF with n-samples [12].
The algorithm itself works by attempting to fit a given dataset to a Copula. To do this, 77

it must first create one, or multiple eCDFs which accurately encapsulate the majority of 17
the dataset’s values. These can then be used to derive the empirical Copula. Since outliers 17
can be seen as a Copula’s tail events, calculating an approximation of its tail probabilities  1s0
allows for the evaluation of a given point X. By calculating the likelihood of a point Y being, 1s
at least, as extreme as X, the algorithm is able to assign an anomaly score to that value, with e
lower probabilities resulting in higher scores. 183

While this approach may provide an opening towards bias and inherent skews in the = 1ss
dataset, the algorithm mitigates this via a correction system leveraging the monotonicity of 1es
logarithmic functions [4]. 186

3.2. Data 187

For the purposes of this first introduction to the methodology, we elected to use the 1ss
KITTI dataset [13]. KITTI has been a staple of autonomous driving datasets ever since it 1so
was made available in 2012, providing a stereo camera and LiDAR data via a 360 degrees 10
Velodyne Laserscanner [13]. Using the 2017 version of the 3D Object Detection Evaluation 1
dataset, it provides 7481 training images and 7518 testing images, which correspondstoa e
total of 80,256 labeled objects across multiple categories such as: car, van, truck, pedestrian, 1es
person sitting, cyclist and tram. 108

The data itself is stored in a proprietary format and separated across different .zip files 105
which contain: left color images, right color images (stereo dataset), Velodyne point clouds 196
and the labeling data for the training portion of the dataset [13]. 107

There are a few ways in which one may go about extracting and organizing the LiDAR 108
data available. One of those options is to extract the data pertaining to each point withina 199
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given bounding box, shaping its coordinates into a position relative to the bounding box’s 200
center. This is a necessary step in eliminating inconsistencies in an object’s point cloud 20
that may come from the distance to the scanner itself, allowing each resulting collection 202
to better describe the object’s captured shape. These data can then be stored in individual  zos
NumPy arrays to be processed by the method. 204

3.3. Methodology 208

The peculiarities of COPOD as a multivariate, statistical method render it unable to 206
parse the data we previously acquired. Its input is constrained, accepting only a collection 2o
of one or more features, or variables, that it can relate and process. The associated matrix o8
must strictly be both uniform and either one or two dimensional. 200

To tackle this problem, a new approach had to be found and deliberation upon 210
problem incurred the following hypothesis: if one were to simply turn X, Y and Z into  2u:
the individual features with which to fit the algorithm, the eCDF and subsequent Copula 212
derived from the conjunction of all these points might accurately describe the shape ofa 213
given category. Looking at the granularity present in the KITTI dataset, cars and vans are 214
regarded as different entities, as should be trucks and other vehicles. This means thata =zis
‘car’ is a somewhat defined entity with a shape that, while different individually, can be 216
characterized by telltale characteristics easily picked up by a LiDAR point cloud. 217

With that in mind, it is important to note that this approach dispenses with crucial 2is
information and granularity derived from individual contexts, from the intrinsic prop- 21
erties of distinct cars which may have aided in better identifying outliers or preventing 220
misclassification. 221

The data treatment process can be seen in figure 2 and is as follows: after extracting the 222
data for a single category as outlined above, each individual NumPy array is then gathered  22s
into a singular matrix, collecting every associated point. Using the fit function, a Copula 224
specific to this category can be produced and used to evaluate single points in one of three 225
ways: 226

*  Prediction Method: Predict whether a given point is anomalous or not. The output 227
of this method is a m size list containing 1s and Os with the former denoting outliers zzs
while the latter denotes inliers. 220

*  Probability Method: Predict the probability of a given point being anomalous. The 230
output of this method is a m size list containing the computed probabilities and, if =2a
requested, a confidence value of the prediction. 232

*  Scoring Method: Compute the raw anomaly score of a given point. The output of 233
this method is a m size list containing numbers with higher values denoting more =234
anomalous points. 235

This method however, only provides an analysis on a per-point basis regardless of 236
avenue. As such, a way must be devised to extend these evaluations such that meaningful 2s7
data on a point-cloud level can be extracted from the individual values obtained. For each  23s
method, the following is proposed: 230

*  Prediction: An assessment of the number of outliers present in the cloud is necessary. 240
For this, a simple Outlier Percentage(OutP) is computed by taking the number of 24

outliers present and dividing them by the total number of points in the cloud. 242
*  Probability: An average Anomalous Probability (AAP) can be obtained by adding all ~ 2es
individual probabilities and used to evaluate the whole point cloud. 244
*  Scoring: Similar to the probability method, an average Anomaly Score (AAS) can be 245
produced to evaluate the point cloud. 246

The resulting output, regardless of chosen analysis, can be equated to a perception ez
algorithm’s confidence score, serving as a measure of the likelihood of any given point cloud 245
belonging, or not, to the category used to fit the Copula. Working only with LiDAR data, =24
this method may be implemented alone or supplemented with others and, by comparing =zso
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its results with an algorithm’s confidence score, an evaluation of the latter’s performance is  zs:

provided. 252
“Car” Point Clouds “Car” Point Cloud Collection
[[X,Y,Z,] [[X,.Y,Z,]
[X,Y,Z1
[[X,Y,.Z,]
[X,Y,.Z1 ‘
join nput COPOD
[[X,Y,,Z,]
[X,.Y,.Z 1]
[X,Y,Z,]
[X ,Y.",Z ]] [Xn vf. % ]] input predict
n’ " n’ 2t n?“n "
[[Xo’Yo’Zo] [PrediCtO sum(outliers)/n
XYzl Predict ]
Point Cloud Prediction
for Results
Evaluation

Figure 2. A visual outline of the proposed methodology.

4. Results 253

The results presented herein are preliminary yet show the promising nature of this 2s.
methodology and were obtained using the car and pedestrian categories. First, the point  2ss
clouds for all car and pedestrian bounding boxes present in the 7481 training images were =zse
extracted. The car point clouds are appended to one another, producing a single array that zs
is then used to train the algorithm and produce a fitted Copula. Then, point cloud by point  2ss
cloud, the prediction algorithm is run to determine whether a given point is anomalous =zse
or not. Before moving onto the next cloud, the percentage of anomalous points (OutP) is 260
calculated and stored to produce the graphs shown below. 261

The first case is a proof of concept, obtained by selecting 100 random pedestrian  ze2
samples and comparing them to 42 car samples that were not included in the training split = zes
by calculating their respective OutP. 264
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Figure 3. Scatter plot containing the 42 car point clouds and 100 pedestrian point clouds. Higher
scores represent a higher percentage of anomalous points.
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Figure 4. The associated boxplot for figure 3.
Figure 3 is a unfiltered showcase of the data presented. The topmost scatterplot zes

highlights the 42 car point clouds that were analyzed through the proposed methodology  zes
while the bottom one is in reference to the first 100 point clouds belonging to pedestrians ze-
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that were randomly selected. Within both graphs, we can see the point cloud distribution zes
across Outlier Percentages with the X-axis highlighting individual point clouds and the 26
Y-axis serving as the respective outlier percentages. The same applies to Figure 5, albeit 270
with 3623 pedestrian point clouds. Furthermore, Figure 4 and Figure 6 present the boxplots = 2n
associated with each respective scatterplot, outlining the minimum and maximum value as 272
well as the first, second and third quartiles. 273

As seen within Figure 3 and Figure 4, there is not only a sizable occurrence of outliers 274
within the pedestrian samples, but the difference in outlier percentages between the pedes- 2z
trian and car point clouds is high enough to enable drawing inferences. This was, however, 27
a test done with very few car and pedestrian samples and may not be representative of the 277
whole data. With that in mind, this preliminary test was scaled to include all the pedestrian 27
point clouds available, a total of 3623. The goal was to see whether this trend continued and, 27
if it did, whether the first obtained percentages were indicative of the greater population. 2so
Would that be the case, then it would be a fair assumption that the same would likely be 26
seen in the car samples. 282

This was necessary for time constraints and computing time reasons: the method 2es
is computationally intensive and, as such, validating the results obtained with a lower s
sample-size opens allows for more varied testing. 285

100

o outP
90

80

70

60 ® .

50

40 i

30

Outlier Percentages

20 ° e

10 o o °

0 ® ° s e e e ® e e e e e

100

80

60

40

Outlier Percentages

20

0 500 1000 1500 2000 2500 3000 3500
Pedestrian Point Clouds

Figure 5. Scatter plot depicting the 42 car point clouds and 3623 pedestrian point clouds. Higher
scores represent a higher percentage of anomalous points.
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Figure 6. The associated boxplot for figure 5.
Figure 5 a provides comparison between the results obtained considering the car 2

samples and the entire pedestrian data. The overall distribution of points mirrors the e
smaller sample of 100 point cloud. Not only that, it is easily observed that there are 2s
many more points which fall outside the expected distribution due to their overwhelming zss
presence of outliers than those that seem to lack in outliers altogether. 200

Observing the differences present between the pedestrian and car sample size, itis 2o
safe to say that the algorithm is able to provide a degree of confidence as to whether a 202
given point cloud may or may not be part of the category with which it was fitted and, for 2es
those within the category with high scores, it serves as a marker of the quality of the data 204
obtained. An example of this is given in figure 7, where the reason behind the high OutP  2es
score is made apparent as no real context can be extracted from the point cloud itself. 206
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Figure 7. The worst performing car sample’s point cloud.

5. Discussion 207

Solutions for assisted and automated driving are being developed to improve road 208
safety and driving comfort. These systems resort to LIDAR technology to capture three- 200
dimensional images to interpret and understand vehicles” surroundings. Nevertheless, 300
accidents involving vehicles operating in autonomous modes have been reported as result- o1
ing from Perception layer failures. The driving environments are often uncontrolled and o2
complex, and various factors contribute to corrupt LIDAR data due, namely, to adverse o
weather conditions, dust, and interferences. 304

In order to achieve safe assisted and autonomous driving systems, robust and accurate sos
LiDAR data and Perception algorithms their performance must be thoroughly evaluated. o6
The present work presents a novel method based entirely on LiDAR data capable of o7
detecting anomalous patterns, as well as complementing other performance evaluators. o
This methodology resorts to the Copula-based Outlier Detection algorithm (COPOD) to  s0e
identify outliers in a given object category, and may be used to evaluate an algorithm’s 310
confidence score, the impact the surroundings conditions may have on LiDAR data, and s
detect cases in which LiDAR data may be insufficient or otherwise unusable. 212

The results obtained in this study lay the foundation for a promising technique. s
Through analysis of the data obtained, be it the car category or comparison between both 314
car and pedestrian data, we can conclude the method is suitable for the identification s
of possibly faulty or otherwise unusable point clouds, as well as to evaluate perception sie
algorithms. 317

Further work is being carried out to include other datasets in an effort to better study s1s
the algorithm’s performance with varied LiDAR resolution and point cloud density, and to  s1s
evaluate prediction algorithms. 320
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Abbreviations

The following abbreviations are used in this manuscript:

LiDAR  Laser Imaging, Detection and Ranging
RADAR Radio Detection and Ranging

COPOD  Copula-based Outlier Detector

pyOD Python Outlier Detection Suite

eCDF Empirical Cumulative Distribution Function
CDF Cumulative Distribution Function
OutP Outlier Percentage
AAP Average Anomalous Probability
AAS Average Anomaly Score
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