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Abstract: The intracranial pressure (ICP) signal, as monitored on patients in intensive care units,
contains pulses of cardiac origin where P1 and P2 sub-peaks can often be observed. When calculable,
the ratio of their relative amplitudes is an indicator of the patient’s cerebral compliance. This
characterization is particularly informative on the overall state of the cerebrospinal system.

We developed a recurrent neural network-based framework for P2/P1 ratio computation that only
takes a raw ICP signal as an input. Two tasks are performed, namely pulse selection and subpeak
designation.

Pulse classification was achieved with an area under the curve of 0.90 on a 4,344-pulse testing dataset,
while the peak designation algorithm identified pulses with a P2/P1 ratio >1 with a 97.3% accuracy.
Although it still needs to be evaluated on a larger number of labeled recordings, our automated
P2/P1 ratio calculation framework appears to be a promising tool for improving bedside monitoring
devices.

Keywords: Intracranial pressure, Cerebral compliance, Deep neural networks, Recurrent neural
networks, Convolutional neural networks

1. Introduction

Intracranial pressure (ICP) is classically monitored invasively in intensive care units
(ICU) in the event of brain injury. One of the main objectives for a clinician is to limit the time
the patient remains above a threshold of cerebral hypertension, described by international
guidelines [1]. Beyond the analysis of mean ICP, the ICP signal is a combination of different
periodic components, affected by cardiac and respiratory frequencies. Thus, the sole mean
ICP cannot capture all the information provided by such a complex signal [2]. For instance,
this single number does not describe the ability of the cerebrospinal system to compensate
the changes in volume caused by blood and cerebrospinal fluid (CSF) displacements, so
that the ICP is maintained in an acceptable range. This pressure-volume relationship,
generally called "cerebral compliance”, requires fastidious manipulations to be measured
punctually with CSF infusion tests [3][4][5]. That is why different characterizations of
cerebral compliance, based on a mathematical analysis of the ICP waveform, have been
proposed in the literature [6][7]. Notably, the shape of heartbeat-induced pulses varies
according to cerebral compliance [8]. When the latter is at a normal state, three subpeaks of
decreasing amplitudes are generally visible (see Figure 1). Those peaks are called P1, P2 and
P3, in accordance with their apparitional order. While it is broadly admitted that P1 is due to
the systolic pressure wave, the origins of P2 and P3 remain unclear [9]. MRI measurements
tend to associate P2 with a maximum volume in the cerebral arteries [10][11], whereas P3,
classicaly described as the dicrotic wave, could be linked to veinous outflow [12]. In any

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202306.0454.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 June 2023 d0i:10.20944/preprints202306.0454.v1

2 of 15

case, as cerebral compliance decreases, P2 and P3 become increasingly higher compared
to P1 [13]. At the same time, their appearance times get closer [14], until the pulse takes a
triangular shape centered on P2. Therefore, the ratio of the relative amplitudes of P2 and P1
(designated as the P2/P1 ratio) has been used as an indicator of cerebral compliance [15].
This ratio is all the more relevant given that Kazimierska et al. [16] demonstrated its good
correlation with cerebral compliance assessed by classic infusion tests.

However, P1 and P2 automated detection on an ICP signal faces different issues due
to the highly variable pulses morphology. Only a few automated frameworks allowing for
P2 and P1 designation have been proposed in the literature [17][18][19]. Most of them rely
on clustering algorithms to only analyze one characteristic pulse over a predefined period,
as proposed by the authors of the Morphological Clustering and Analysis of Continuous
Intracranial Pressure (MOCAIP) algorithm [20]. MOCAIP-based automated frameworks
are designed to compute a large number of morphological features of the ICP pulses,
including the P2/P1 ratio. However, in addition to the raw ICP signal, their data processing
workflows require both eletrocardiogram (ECG) monitoring and an extensive reference
library of non-artifact pulses, which can be difficult to implement into an on-board bedside
device. To perform real-time P2/P1 ratio calculation, neural network-based algorithms
seem to be the tools of choice to circumvent these prerequisites, due to their ability to
directly integrate the information provided by previous examples into trained models. For
instance, Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM)
recurrent networks have been used successfully for similar tasks, such as ECG beats
detection and classification (respectively [21][22][23] and [24][25]).

Under the constraint of only using an ICP signal as an input, we developed a deep
learning-based framework to detect the subpeaks P2 and P1, and compute the ratio of
their relative amplitudes when possible. Its conception was performed by achieving a
comparative study of proposed deep learning network architectures, enhanced with pre-
and post-treatments and applied to our dataset provided by the ICU at the University
Hospital of Saint-Etienne. Our framework is designed to perform two tasks sequentially.
The first one is a classification task, aiming to eliminate all the pulses without the P1 and
P2 subpeaks. The second one, only performed on the remaining pulses, aims to identify
the subpeaks P1 and P2 to calculate the ratio of their relative amplitudes. As an output, our
framework provides a discontinuous signal of P2/P1 ratio values, post-processed to make
it as readable as possible for the clinician. In this article, we provide a description of the
neural network (NN) architectures we compared for pulse selection (3.2) and for subpeak
designation (3.3). The performances obtained for each of the task are respectively reported
in sections (4.1) and (4.2), respectively. Lastly, we finally tested our completed automated
framework on a dedicated testing dataset (section 4.3).
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Figure 1. Two pulses of cardiac origin on an ICP signal. The left one has a P2/P1 ratio < 1, whereas
the right one has a P2/P1 ratio> 1.

2. Dataset Overview

The studied ICP signals came from 10 adult patients suffering from traumatic brain
injury, admitted to the ICU of the University Hospital of Saint-Etienne (France), between
March 2022 and March 2023. For each of them, ICP was monitored invasively with an
intraparenchymal sensor (Pressio, Sophysa, Orsay, France) for a duration of 8.3 £ 5 days
(min = 3.8, max = 15) at a sampling frequency of 100Hz.

The dataset used in this study to train and select the best performing NN architectures
was constituted by randomly sampling 5 one-hour sections for each record. Four of them
were allocated to the training dataset, whereas the last one was allocated to the testing
dataset. After the pulses were preprocessed and individualized as described in section 3.1,
one out of 15 was selected to be part of the final datasets. Those pulses were labeled with the
positions of P1 and P2 if both of them were visible, [0, 0] otherwise. In the end, the training
dataset was composed of 13,127 pulses, including 12,308 with a calculable P2/P1 ratio. Its
testing counterpart was composed of 4,344 pulses, including 3847 with a calculable P2/P1
ratio. These proportions are in accordance with Rashidinejad et al. ([19]) who estimated a
missing subpeak probability at less than 10% based on their 700-hour dataset.

To assess the performances of the final dataset on more realistic conditions, an addi-
tional 10-minute segment was sampled randomly from each of the 10 patients. This second
testing dataset, hence divided into 10 contiguous segments, was composed of 7,399 pulses,
of which 6,815 had a calculable P2/P1 ratio. Whereas the first dataset was designed to
capture maximum diversity among the patients, the present one is meant to assess the
performances of the full automated framework on continuous recordings.

3. Materials and Methods

Our data processing pipeline is divided into four parts. After a heartbeat-induced
pulses detection step performed on a preprocessed ICP signal, artifacts and pulses without
a calculable P2/P1 ratio are eliminated by a first deep learning-based algorithm. The
subpeaks are then detected on the remaining pulses. Lastly, a postprocessing step is
performed to remove outliers and deal with missing values.

3.1. Data Preprocessing

A fourth order Butterworth bandpass filter between 0.3 Hz and 20 Hz is first applied
to the raw signal. It is meant to isolate cardiac pulses from rapid oscillations of electronic
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origin, respiratory waves, and baseline variations. The modified Scholkmann algorithm
is then applied to the filtered signal to detect the pulse onsets [26]. As the patients’ pulse
rates range between approximately 60 and 80 bpm, the characteristic duration L provided
to the algorithm is set at 500 ms. Indeed, this hyperparameter is supposed to represent
at least a quarter of the average pulse duration. The amplitude of each single pulse is
normalized between 0 and 1, whereas the length is set to 180 points by a third degree
polynomial interpolation. This preprocessing step is nearly identical to the one performed
by Mataczynski et al.([27]) for pulse shape index calculation, except for the filter applied
to the raw signal. As an output, a N x 180 matrix of N pulses is provided to the selection
algorithm.

3.2. Pulse Selection

A major difficulty in monitoring the P2/P1 ratio is that not all subpeaks are system-
atically visible on all pulses. Therefore, a selection step is needed so that the detection
algorithm is only provided with pulses where P1 and P2 are visible. This selection is
performed by a neural network. Three architectures are compared for this task, namely
a one-dimensional CNN, a LSTM-based recurrent network and a Long Short-Term Mem-
ory Fully Convolutional Network (LSTM-FCN), which is a combination of both. All the
models are trained to perform the same binary classification task by minimizing a Binary
Cross-Entropy (BCE) loss. Before calculating the loss function, a sigmoid is applied to the
neural networks outputs to obtain values between 0 and 1.

3.2.1. One-Dimensional CNN Architecture

These architectures extract relevant features by applying convolutional filters on the
input tensor. CNN have been successfully used for medical images segmentation, but it is
also possible to adapt the layers dimensions to process one-dimensional vectors the same
way. Our CNN is constituted of three encoding blocks, each one composed of the sequence
convolutional layer- batch normalization - ReLU activation, followed by a max pooling
layer. The output is postprocessed by two dense layers separated with a ReLU activation
layer. To reduce overfitting, a dropout with a probability of 0.2 is applied at the end of the
encoder and to the first dense layer. The dimensions of each layer appear in Figure 2.

3.2.2. LSTM-Based Recurrent Network

Recurrent networks are designed to capture the underlying time dependencies of
sequential data. They are generally composed of one or more cells whose outputs are
computed based on the current input state and on the outputs of previous states. Past
predictions can be taken into account by different ways ; LSTM cells are specifically de-
signed to track long-term dependencies [28]. The proposed recurrent network is a single
bi-directional LSTM cell, followed by two dense layers separated by a ReLU activation.
Hence, the input vector is processed in both reading directions by the LSTM cell, which
produces two outputs that are concatenated and post-processed by the two dense layers. A
dropout with a probability of 0.2 was applied at the end of the LSTM cell and to the first
dense layer. The dimensions of each layer appear in Figure 2.
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Figure 2. CNN and LSTM-based recurrent network architectures used for pulses selection. In both
cases, dropout was applied with a probability of 0.2. A sigmoid function was used to map the NN
output into the interval [0, 1].

3.2.3. LSTM-FCN Network

The two above-mentioned architectures process the input data with different objectives.
Whereas CNNs focus on the neighborhood of each point, recurrent neural networks are
meant to exploit the causalities inherent to sequential data. LSTM-FCN networks attempt
to combine both strategies and were specifically designed for time series classification
[29]. Moreover, Mataczynski et al. ([27]) obtained good results with such an architecture
for pulse shape index calculation. The LSTM-FCN network we implemented contains a
three-block encoder, put in parallel with an LSTM cell. Their respective dimensions are
identical to those used for the CNN and for the LSTM-based recurrent network. Both the
computations are performed in parallel. The outputs are then concatenated and processed
by two dense layers. As above, a dropout with a probability of 0.2 was applied to the first
dense layer.

3.3. Subpeak Designation

Once the pulses with a calculable P2/P1 ratio are selected, subpeaks P1 and P2 can
be designated. To do so, we studied different ways of combining the output of a neural
network with the pulse curvature, as used by the MOCAIP-based automated frameworks.
The curvature function is defined as:

x//

)= Ty

For a given pulse p, subpeaks P1 and P2 correspond to two local minima of «(p) located in
zones where p” is negative or, equivalently, to two local maxima of x(—p).

In parallel to these calculations, neural networks learn a classification task. For a pulse
x, the objective is a 180-point vector yy, such that

Vi e [1,180], y(t) = e%(ewt I ; )

where p1(x) and py(x) are the respective positions of P1 and P2. More formally, during the
learning process, the neural networks seek a function f* such that

fr= argmin Z MSE(f(x),yx)

xeD

where MSE denotes the Mean Square Error loss function, and D the training set.
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Two network architectures are compared for the estimation of f* , namely a 1-
dimensional U-Net (see subsection 3.3.1) and a LSTM-based recurrent network (see subsec-
tion 3.3.2).

The detection strategy consists in two steps. Firstly, a candidate subpeaks set is
extracted from the pulse. Secondly, P1 and P2 are designated from among the candidates.
The candidate subpeaks are identified by a search for local maxima, either on x(—p)
(method 1) or on f *{ p) (method 2). Having thus obtained a list ¢ of candidates, p; and
p> are then designated as the two points of ¢ corresponding to the highest value of f*.
Both strategies are summarized in Figure 3. As a result, four combinations are compared:
method 1 with U-Net, method 1 with the LSTM, method 2 with U-Net, and method 2 with
the LSTM.
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Figure 3. Comparison of the two methods of peaks designation algorithm. P1 and P2 are designated
from among a set of candidates either based on the curvature analysis (method 1) or directly on the
NN output (method 2). For sake of lisibility, candidate sets do not appear on the figure.

3.3.1. One-Dimensional U-Net

U-Net is a particular architecture of CNN. Its three-level bottleneck structure is com-
posed of two symmetric blocks. In addition to the linear information propagations, pairwise
connections are set between same-shape components. As it was originally conceived for
images segmentation, layers have been modified here to perform one-dimensional convolu-
tions. Layer dimensions appear in figure 4. A dropout with a probability of 0.2 was applied
at each convolution block.
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Figure 4. U-Net architecture proposed for subpeaks detection. The NN learns to reconstitue the sum
of two gaussian curves respectively centered on p; and p;.
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3.3.2. LSTM-Based Recurrent Network

We used a bidirectional LSTM-based recurrent network similar to the one trained for
peak selection (see Section 3.2.2). Hence, the input 180-sample pulse was processed by a
single LSTM cell followed by two consecutive dense layers. As the hidden layer size of the
LSTM cell was set to 180, the dimensions of the two consecutive dense layers were set to
(360, 360) and to (360, 180), respectively. A dropout with a probability of 0.2 was applied to
the first dense layer.

3.4. Postprocessing
Postprocessing the P2/P1 ratio signal has to address three main issues:

*  Spurious oscillations, mostly due to the intrinsic variability of the ICP signal. Even if
they are not a result of the data processing pipeline itself, they tend to make the record
less readable for the clinician.

*  Missing values, since all the pulses that do not pass the selection cut are recorded as
missing.

e Punctual outliers. If they are not caused by the ICP signal itself, they can be due to
errors in the data processing pipeline. Punctual outliers either occur at the classification
step, when false positive pulses are provided to the detection algorithm, or at the
detection step, when P1 and P2 are designated at wrong positions.

These different problems are alleviated at the post-processing phase, by retrospectively
smoothing the ratio monitoring. To do so, a 95% normal confidence interval is estimated
on a 100-pulse sliding window. A mean ratio is then calculated over the window if at least
50 values are non missing ; otherwise, the value corresponding to this window is reported
as missing. Therefore, each displayed value is calculated on the basis of the 100 last pulses,
which corresponds to about one minute. In addition to overcoming the three issues listed
above, smoothing the output signal in such a way highly enhances its readability. Indeed,
far too much factors can influence a single pulse P2/P1 ratio to draw any conclusion on the
basis of a pulse-wise evolution.

4. Results

Experiments were performed separately on the pulse selection and on the peaks
detection tasks, in order to select a single neural network for each of them. The same
training and testing datasets of labelled pre-processed pulses were used for both tasks, with
10% of the training set used for validation. After having our framework completed with
two trained neural networks, we fully processed 10-minute labelled segments randomly
sampled from each of the recordings. To ensure the reproducibility of our experiments,
each of the three steps were performed using a dedicated processing pipeline designed
with Snakemake 7.25 [30]. All the associated scripts were coded in Python 3.11. Neural
networks were implemented with Pytorch 2.0 [31]. All the experiments described below
were performed on a Windows 10 machine powered by WSL2 Ubuntu 20.04.5, equipped
with a 12th Gen Intel(R) Core(TM) i7-12850HX 2.10 GHz 16 CPU, a Nvidia RTX A3000
12GB Laptop GPU, and 16 GB of RAM. Pipelines used for comparing neural network
performances are available at the following address: https://github.com/donatien-lege/
P1_P2_detection_ratio.

4.1. Pulse Selection

The three models (i.e., CNN, LSTM recurrent network, and LSTM-FCN) were trained
on 150 epochs with the Adam optimizer, an initial learning rate of 0.001, and a batch size
of 256. For each of them, the area under the receiver operating characteristic (ROC) curve
was calculated by plotting the true positive rate (TPR) against the false positive rate (FPR),
defined as:

TPR True Positive False Positive

= , FPR = — .
True Positive + False Negative False Positive + True Negative
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The three ROC curves are displayed in Figure 5. For the final framework, the optimal
decision threshold was chosen to maximize the difference TPR — FPR.
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Figure 5. Areas under the ROC curve (AUC) of the three neural network architectures used for pulses

selection. Positive class corresponds to pulses with a calculable P2/P1 ratio.
Our LSTM-based recurrent network architecture outperformed the convolution-based

ones, with an area under the curve of 0.905. The confusion matrices corresponding to the
respective optimal decision thresholds of each NN architecture are presented in Table 1.

Table 1. Confusion matrices of the 3 NN architectures compared for pulses selection. Positive class
corresponds to pulses with a calculable P2/P1 ratio.

NN architecture CNN LSTM LSTM-FCN
Prediction - + - + - +
True - 399 98 421 | 76 397 | 100
True + 1865 | 1982 || 847 | 3000 || 1005 | 2842
True Positive Rate (%) 51.5 78.0 11.2
False Positive Rate (%) 19.7 8.52 26.1

The number of false-positive pulses and false-negative pulses correspond to 1.8% and
9.7%, respectively, of the total testing data set when using the LSTM-based architecture for
classification. In contrast, these percentages amount to 2.3% and 42.9%, respectively, when
using the convolutive network.

4.2. Peak Designation

The experimental pipeline was designed to compare the four possible combinations
between the peak designation method (i.e., by using the curvature function or not) and
the neural network architecture (i.e., 1-D convolutional U-Net or LSTM-based recurrent
network). In addition, a designation only using the first two local maxima of curvature
was performed as a baseline. Both models were trained on 150 epochs with the Adam
optimizer, an initial learning rate of 0.001 and a batch size of 256. A mean absolute peak
appearance time error and a mean absolute P2/P1 ratio error were calculated. The mean
absolute time appearance error was expressed as a percentage of the whole pulse duration.
The results are reported in Table 2. In addition, as it is the most interpretable information
for the clinician, we assessed the ability of our models to detect pulses where P2 is higher
than P1. To do so, we calculated a confusion matrix for classes “+”: “ P2/P1 ratio > 1” and
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“-7: “P2/P1 ratio < 1” and the associated accuracy, defined as the proportion of correct
predictions over the whole testing dataset.

Table 2. Performances of five methods for P1 and P2 detection. P1 and P2 are designated as the
two candidate subpeaks corresponding to the two highest NN output value. Local maxima of either
curvature or NN output are selected as candidate subpeaks. As a baseline, the algorithm “Curvature”
corresponds to the designation of the two first local maxima of pulse curvature as P1 and P2. Mean
absolute errors (MAE) on the appearance time of P1 and P2 are expressed in percentage of the total
pulse duration..

Algorithm Candidate peaks P1 MAE (%) P2 MAE (%) Ratio MAE Accuracy(%)
selection
1d-Unet NN output 1.2+0.1 2.14+0.2 0.08+0.03 93.2
Curvature 0.6£0.05 2.240.2 0.05 £0.02 96.6
LSTM NN output 0.70 +0.05 1.34+0.07 0.03+0.003 96.9
Curvature 0.70+0.06 1.3+0.2 0.05+0.02 97.3
Curvature - 2.4+40.2 4.04+0.2 0.14+0.01 89.3

As for the pulse selection task, the recurrent architecture outperformed the convo-
lutional one. Without the curvature-based candidate peak selection step, the LSTM-RE
architecture performed the classification task with a 3% higher accuracy than our 1D-U-Net.
Moreover, it achieved the most accurate estimation of the P2/P1 ratio, with a mean average
error of 0.03. Achieving the candidate peaks selection step with the means of the curvature
function tends to improve the algorithm'’s ability to discriminate pulses with a P2/P1 ratio
> 1, at the cost of a slightly less accurate ratio estimation.

4.3. Final Automated Framework

On the basis of previous experiments, we finally chose a LSTM-based recurrent net-
work both for pulse selection and for subpeak designation. For the latter step, P1 and
P2 designation was performed by selecting the two best LSTM-scored local maxima of
curvature. For each of the ten patients, the complete workflow was used to process a
randomly chosen labelled 10-minute section. An example of such an output is presented
Figure 6.

—— raw P2/P1 ratio

164 — postprocessed P2/P1 ratio
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1.4 A

1.3 A

"

| ! i .'U
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Figure 6. Example output for a 10-minute ICP signal segment processed with the final automated
framework.
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The performances were assessed for each individual 10-minute segment. We used the
same respective metrics as above for pulse selection and subpeak designation. In addition,
we calculated the percentage of pulses that were assigned a ratio value, and the percentage
of non-missing values in the final post-processed ratio signal. Table 3 contains values
calculated over the total 100-min dataset, but 10-min individualized segmentmetrics are
available Table Al.

Table 3. Performances of the final automated P2/P1 ratio computation framework. Metrics associated
with P2/P1 ratio values (i.e., P2/P1 ratio MAE and Accuracy on ratio > 1 detection) are calculated
pulses with a labellized P2/P1 ratio value that passed the selection step.

True positive rate  False positive rate . Accuracy on ratio Ratio-associated Displayed-ratio
%) (%) P2/P1Ratio MAE "4 4etection(%) pulses (%) time(%)
87.3" 146 0.044 + 0.002 99.7° 85.8 88.3

* Significatively higher than the same metric calculated on the testing set during NN selection (p-value < 0.05)

The false positive rate and true positive rate are both about seven points higher
than their respective equivalents calculated when selecting the NN architecture. How-
ever, subpeak designation performances are consistent with previous experiments.Table 4
corresponds to the overall confusion matrix calculated for pulses selection. As above,
individualized confusion matrices are available in Table A2.

It is noticeable that only the 2nd segment sample contains 91% of the negatively
labeled pulses. In this segment, pulse selection algorithm performed with a 13.5% false
positive rate (table A2).

Table 4. Confusion matrix obtained for the final pulses selection step. Positive class corresponds to
pulses with a calculable P2/P1 ratio.

Predicted - Predicted +
True - 499 85
True + 554 6261

False-positive pulses and false-negative pulses amount to respectively 1.14% and
7.49% of the total testing dataset. This proportions are consistent with those previously
calculated on the 4344-pulse testing dataset.

5. Discussion

Our deep learning-based framework is designed to perform P1 and P2 detection and
P2/P1 ratio computation directly on a bedside device. For convenience concerns, we
designed it under the constraint of only using the ICP signal, which was made possible
by a well-established efficient preprocessing step. Hence, we were able to focus our deep
learning-based analysis on short time series corresponding to single pulses of cardiac origin.
This strategy enabled us to use network architectures that are not too deep. Moreover,
working at the cardiac cycle scale allowed us to alleviate another real-life difficulty: at
bedside monitoring, ICP signals are very often contaminated with artifacts either due to
patient movements (coughing, reactions to drug administration, nursing manipulations,
etc.), or to electronic perturbations. Therefore, it can be complicated at a macroscopic scale
to determine whether an acute rise in ICP corresponds to a real physiological measurement
or to artifacts. By only focusing on modified Scholkmann algorithm-extracted candidates
pulses, we were able to perform this artifact removal step on the basis of the local waveform
alone, at the pulse selection step. In addition, as changes in cerebral compliance generally
occur in a progressive way, a continuous pulse-wise compliance score is the tool of choice
to describe the current patient state as faithfully as possible.
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When labeling the pulses, only using the ICP signal could sometimes cause difficulties
for interpreting isolated single pulse waveforms: without other elements of context, pulses
with only two visible subpeaks systematically fell into the “non-calculable P2/P1 ratio”
category since it was not possible to know whether of P1, P2, or P3 was missing. In
some of these cases, ABP or ECG signals may have helped to distinguish subpeaks, and
thus, to compute a P2/P1 ratio. In that sense, the training dataset was labelled in a quite
restrictive way to limit, as much as possible, the number of pulses without a calculable
P2/P1 ratio provided to the peak designation step. However, this decision has inevitable
consequences on the amount of time during which a P2/P1 ratio can be displayed. In
any case, recurrent architectures clearly outperformed the convolutional-based ones for
pulse selection, even if it is probably possible to reduce the observed gap by fine-tuning
the proposed convolutional architecture. As the full succession of subpeaks is necessary
to understand the pulse waveform, recurrent networks seem to be more appropriate than
CNN s to perform such a classification task. In that sense, these results may contrast
with similar studies performed on ECG signals, where events such as QRS complexes
have more recognizable shapes and thus make CNN more relevant for classification or
detection tasks. Concerning the consequences of misclassified pulses, it is noticeable that
false-negative pulses only cause spurious missing values at the end of the data processing
workflow. In contrast, false-positive pulses are provided to a peak designation algorithm
that systematically outputs the two positions of estimated P1 and P2. Therefore, false-
positive pulses can do much more damage to the output P2/P1 ratio signal. While we
simply chose an optimal threshold that minimizes the difference TPR — FPR, it could be
relevant to optimize the decision threshold to make the algorithm more restrictive.

Peak detection was performed by computing a density function by the means of
neural networks, as it is often the case for image segmentation tasks. We chose to stick
to the underlying philosophy of MOCAIP-based automated frameworks, which include
a candidate selection step before subpeak designation. It would have been possible to
turn our algorithm into a regression task to output the estimated positions directly, as
it is sometimes done for ECG peaks detection [22]. This simpler strategy led to lighter
computations. However, our method offers two advantages. Firstly, it is more robust and
explainable in itself, as a score is assigned to each point of the input tensor. Secondly, it
is easier to combine the output tensor with another function such as the pulse curvature.
Designating two peaks from among a set of candidates selected with this simple and
explainable criterion offers guarantees for the generalization abilities of the algorithm. This
is all the more relevant given that we could only train our deep learning-based models
on a relatively small set of patients, whereas there is a large inter-patient morphological
variability in the ICP waveform. In the case of our testing dataset, a preselection of
candidate peaks with a search for local maxima of the curvature function improved the
algorithm’s ability to discriminate pulses with a P2/P1 ratio superior to one. The observed
improvements in accuracy amounted to 1% for the recurrent network and 3% for our U-Net,
respectively.

The biggest limitation of our study is that only 10 patient recordings contributed
to the pulse database. Because of this small number, we chose to include samples from
each of the ten patients both in the training and in datasets, in order to train our neural
networks with as much diversity as possible. By doing this, we made the assumption that
a single patient ICP signal variability over eight days (that is to say, the average monitoring
duration) was enough to neglect the effects of a commune underlying distribution. How-
ever, generalization abilities of our automated framework still have to be improved by
expanding our datasets with further inclusions. This is all the more important since we
obtained quite different false-positive rates during the model selection (8.52%) than during
the final automated framework evaluation (14.6%).

While designing the data processing pipeline, we considered taking into account the
neighborhood of each single pulse better. For instance, the pulse selection process could
have integrated all the pulses occuring over the last minute before the one to be classified,


https://doi.org/10.20944/preprints202306.0454.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 June 2023 d0i:10.20944/preprints202306.0454.v1

12 of 15

thus helping the interpretation of the pulse waveform. However, it would have required a
much more computation-intensive training step, since the recurrent networks would have
had to capture more long-term dependencies. In addition, the database would have had to
be composed of contiguously labeled samples, which would have had drawbacks on the
diversity covered this way. We faced the exact same issue when sampling the final testing
dataset, which was particularly disbalanced with 90% of its false-negative pulses occurring
in the same segment.

This observation leads us to discuss the main drawbacks of monitoring the P2/P1 ratio.
As mentioned earlier, this information is not always available and depends on biological
mechanisms still not fully understood [9]. A more complete picture of cerebral compliance
could be obtained by combining the P2/P1 ratio with other indicators such as the mean ICP,
pulse amplitude [32], or pulse shape index[33]. More generally, cerebral compliance has
to be considered as part of a bundle of information available on patients. Characterizing
it is especially helpful when ICP is close to the hypertension threshold, as a simple mean
calculation is not informative enough on the current state of the cerebrospinal system.
Cerebral compliance may also provide information for specific decisions, for instance when
it comes to adjusting or putting sedation to an end.

6. Conclusion

Our automated detection framework allows for P2/P1 ratio monitoring on ICP ratio
signals without needing any other input data. Its conception was made under this constraint
to facilitate its implementation into onboard bedside devices. Pulse selection and subpeak
designation are done using LSTM-based recurrent networks, which outperformed CNN
networks for both tasks. Although a larger testing database would be needed to assess
the performances of the full data analysis pipeline more accurately, experiments on a
10-patient dataset produced promising results. Monitoring the P2/P1 ratio, when possible,
contributes to make a more precise picture of the cerebrospinal system, alongside with
other indices such as the mean ICP or the pulse amplitude.
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Appendix A

Table Al. Performances of the final automated P2/P1 ratio computation framework. Metrics

associated with P2/P1 ratio values (i.e., P2/P1 ratio MAE and Accuracy on ratio > 1 detection) are

calculated pulses with a labellized P2/P1 ratio value that passed the selection step.

Segment True poiitive False positive P2/P1 Ratio Aii‘:;jcgllon asslt)itii:t-e d D'isp'layeil-

rate (%) rate (%) MAE detection(%) pulses (%) ratio time(%)
1 98.0 66.7 <10° 1 97.7 94.0
2 17.1 134 0.006 £ 0.005 1 14.4 44
3 - - 0.25£0.1 1 100 93.6
4 88.9 - 0.015 £ 0.005 99.8 88.9 88.2
5 92.7 28.6 0.005 £ 0.001 98 92.2 90.1
6 99.8 - <107 1 99.9 92.9
7 99.8 - <107 1 99.9 91.2
8 87.8 20.6 0.07 £ 0.02 99.7 83.7 714
9 69.8 - <107° 1 69.9 87.3
10 96.2 0 0.008 £ 0.002 0.998 95.7 89.6
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Table A2. Confusion matrices obtained for each of the ten contiguous segments used as a testing
dataset for the complete automated framework.

Segment Predicted - Predicted +
1 True - 2 4
True + 20 1003
5 True - 462 72
True + 126 26
3 True - 0 0
True + 0 916
4 True - 0 0
True + 66 526
5 True - 5 2
True + 62 787
6 True - 0 0
True + 1 832
7 True - 0 0
True + 1 669
8 True - 27 7
True + 64 461
9 True - 0 0
True + 190 441
10 True - 3 0
True + 24 600

! Tables may have a footer.
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