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Abstract: The intracranial pressure (ICP) signal, as monitored on patients in intensive care units, 1

contains pulses of cardiac origin where P1 and P2 sub-peaks can often be observed. When calculable, 2

the ratio of their relative amplitudes is an indicator of the patient’s cerebral compliance. This 3

characterization is particularly informative on the overall state of the cerebrospinal system. 4

We developed a recurrent neural network-based framework for P2/P1 ratio computation that only 5

takes a raw ICP signal as an input. Two tasks are performed, namely pulse selection and subpeak 6

designation. 7

Pulse classification was achieved with an area under the curve of 0.90 on a 4,344-pulse testing dataset, 8

while the peak designation algorithm identified pulses with a P2/P1 ratio >1 with a 97.3% accuracy. 9

Although it still needs to be evaluated on a larger number of labeled recordings, our automated 10

P2/P1 ratio calculation framework appears to be a promising tool for improving bedside monitoring 11

devices. 12

Keywords: Intracranial pressure, Cerebral compliance, Deep neural networks, Recurrent neural 13

networks, Convolutional neural networks 14

1. Introduction 15

Intracranial pressure (ICP) is classically monitored invasively in intensive care units 16

(ICU) in the event of brain injury. One of the main objectives for a clinician is to limit the time 17

the patient remains above a threshold of cerebral hypertension, described by international 18

guidelines [1]. Beyond the analysis of mean ICP, the ICP signal is a combination of different 19

periodic components, affected by cardiac and respiratory frequencies. Thus, the sole mean 20

ICP cannot capture all the information provided by such a complex signal [2]. For instance, 21

this single number does not describe the ability of the cerebrospinal system to compensate 22

the changes in volume caused by blood and cerebrospinal fluid (CSF) displacements, so 23

that the ICP is maintained in an acceptable range. This pressure-volume relationship, 24

generally called "cerebral compliance", requires fastidious manipulations to be measured 25

punctually with CSF infusion tests [3][4][5]. That is why different characterizations of 26

cerebral compliance, based on a mathematical analysis of the ICP waveform, have been 27

proposed in the literature [6][7]. Notably, the shape of heartbeat-induced pulses varies 28

according to cerebral compliance [8]. When the latter is at a normal state, three subpeaks of 29

decreasing amplitudes are generally visible (see Figure 1). Those peaks are called P1, P2 and 30

P3, in accordance with their apparitional order. While it is broadly admitted that P1 is due to 31

the systolic pressure wave, the origins of P2 and P3 remain unclear [9]. MRI measurements 32

tend to associate P2 with a maximum volume in the cerebral arteries [10][11], whereas P3, 33

classicaly described as the dicrotic wave, could be linked to veinous outflow [12]. In any 34
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case, as cerebral compliance decreases, P2 and P3 become increasingly higher compared 35

to P1 [13]. At the same time, their appearance times get closer [14], until the pulse takes a 36

triangular shape centered on P2. Therefore, the ratio of the relative amplitudes of P2 and P1 37

(designated as the P2/P1 ratio) has been used as an indicator of cerebral compliance [15]. 38

This ratio is all the more relevant given that Kazimierska et al. [16] demonstrated its good 39

correlation with cerebral compliance assessed by classic infusion tests. 40

However, P1 and P2 automated detection on an ICP signal faces different issues due 41

to the highly variable pulses morphology. Only a few automated frameworks allowing for 42

P2 and P1 designation have been proposed in the literature [17][18][19]. Most of them rely 43

on clustering algorithms to only analyze one characteristic pulse over a predefined period, 44

as proposed by the authors of the Morphological Clustering and Analysis of Continuous 45

Intracranial Pressure (MOCAIP) algorithm [20]. MOCAIP-based automated frameworks 46

are designed to compute a large number of morphological features of the ICP pulses, 47

including the P2/P1 ratio. However, in addition to the raw ICP signal, their data processing 48

workflows require both eletrocardiogram (ECG) monitoring and an extensive reference 49

library of non-artifact pulses, which can be difficult to implement into an on-board bedside 50

device. To perform real-time P2/P1 ratio calculation, neural network-based algorithms 51

seem to be the tools of choice to circumvent these prerequisites, due to their ability to 52

directly integrate the information provided by previous examples into trained models. For 53

instance, Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) 54

recurrent networks have been used successfully for similar tasks, such as ECG beats 55

detection and classification (respectively [21][22][23] and [24][25]). 56

Under the constraint of only using an ICP signal as an input, we developed a deep 57

learning-based framework to detect the subpeaks P2 and P1, and compute the ratio of 58

their relative amplitudes when possible. Its conception was performed by achieving a 59

comparative study of proposed deep learning network architectures, enhanced with pre- 60

and post-treatments and applied to our dataset provided by the ICU at the University 61

Hospital of Saint-Etienne. Our framework is designed to perform two tasks sequentially. 62

The first one is a classification task, aiming to eliminate all the pulses without the P1 and 63

P2 subpeaks. The second one, only performed on the remaining pulses, aims to identify 64

the subpeaks P1 and P2 to calculate the ratio of their relative amplitudes. As an output, our 65

framework provides a discontinuous signal of P2/P1 ratio values, post-processed to make 66

it as readable as possible for the clinician. In this article, we provide a description of the 67

neural network (NN) architectures we compared for pulse selection (3.2) and for subpeak 68

designation (3.3). The performances obtained for each of the task are respectively reported 69

in sections (4.1) and (4.2), respectively. Lastly, we finally tested our completed automated 70

framework on a dedicated testing dataset (section 4.3). 71
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Figure 1. Two pulses of cardiac origin on an ICP signal. The left one has a P2/P1 ratio < 1, whereas
the right one has a P2/P1 ratio > 1 .

2. Dataset Overview 72

The studied ICP signals came from 10 adult patients suffering from traumatic brain 73

injury, admitted to the ICU of the University Hospital of Saint-Etienne (France), between 74

March 2022 and March 2023. For each of them, ICP was monitored invasively with an 75

intraparenchymal sensor (Pressio, Sophysa, Orsay, France) for a duration of 8.3 ± 5 days 76

(min = 3.8, max = 15) at a sampling frequency of 100Hz. 77

The dataset used in this study to train and select the best performing NN architectures 78

was constituted by randomly sampling 5 one-hour sections for each record. Four of them 79

were allocated to the training dataset, whereas the last one was allocated to the testing 80

dataset. After the pulses were preprocessed and individualized as described in section 3.1, 81

one out of 15 was selected to be part of the final datasets. Those pulses were labeled with the 82

positions of P1 and P2 if both of them were visible, [0, 0] otherwise. In the end, the training 83

dataset was composed of 13,127 pulses, including 12,308 with a calculable P2/P1 ratio. Its 84

testing counterpart was composed of 4,344 pulses, including 3847 with a calculable P2/P1 85

ratio. These proportions are in accordance with Rashidinejad et al. ([19]) who estimated a 86

missing subpeak probability at less than 10% based on their 700-hour dataset. 87

To assess the performances of the final dataset on more realistic conditions, an addi- 88

tional 10-minute segment was sampled randomly from each of the 10 patients. This second 89

testing dataset, hence divided into 10 contiguous segments, was composed of 7,399 pulses, 90

of which 6,815 had a calculable P2/P1 ratio. Whereas the first dataset was designed to 91

capture maximum diversity among the patients, the present one is meant to assess the 92

performances of the full automated framework on continuous recordings. 93

3. Materials and Methods 94

Our data processing pipeline is divided into four parts. After a heartbeat-induced 95

pulses detection step performed on a preprocessed ICP signal, artifacts and pulses without 96

a calculable P2/P1 ratio are eliminated by a first deep learning-based algorithm. The 97

subpeaks are then detected on the remaining pulses. Lastly, a postprocessing step is 98

performed to remove outliers and deal with missing values. 99

3.1. Data Preprocessing 100

A fourth order Butterworth bandpass filter between 0.3 Hz and 20 Hz is first applied 101

to the raw signal. It is meant to isolate cardiac pulses from rapid oscillations of electronic 102
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origin, respiratory waves, and baseline variations. The modified Scholkmann algorithm 103

is then applied to the filtered signal to detect the pulse onsets [26]. As the patients’ pulse 104

rates range between approximately 60 and 80 bpm, the characteristic duration L provided 105

to the algorithm is set at 500 ms. Indeed, this hyperparameter is supposed to represent 106

at least a quarter of the average pulse duration. The amplitude of each single pulse is 107

normalized between 0 and 1, whereas the length is set to 180 points by a third degree 108

polynomial interpolation. This preprocessing step is nearly identical to the one performed 109

by Mataczynski et al.([27]) for pulse shape index calculation, except for the filter applied 110

to the raw signal. As an output, a N × 180 matrix of N pulses is provided to the selection 111

algorithm. 112

3.2. Pulse Selection 113

A major difficulty in monitoring the P2/P1 ratio is that not all subpeaks are system- 114

atically visible on all pulses. Therefore, a selection step is needed so that the detection 115

algorithm is only provided with pulses where P1 and P2 are visible. This selection is 116

performed by a neural network. Three architectures are compared for this task, namely 117

a one-dimensional CNN, a LSTM-based recurrent network and a Long Short-Term Mem- 118

ory Fully Convolutional Network (LSTM-FCN), which is a combination of both. All the 119

models are trained to perform the same binary classification task by minimizing a Binary 120

Cross-Entropy (BCE) loss. Before calculating the loss function, a sigmoid is applied to the 121

neural networks outputs to obtain values between 0 and 1. 122

3.2.1. One-Dimensional CNN Architecture 123

These architectures extract relevant features by applying convolutional filters on the 124

input tensor. CNN have been successfully used for medical images segmentation, but it is 125

also possible to adapt the layers dimensions to process one-dimensional vectors the same 126

way. Our CNN is constituted of three encoding blocks, each one composed of the sequence 127

convolutional layer- batch normalization - ReLU activation, followed by a max pooling 128

layer. The output is postprocessed by two dense layers separated with a ReLU activation 129

layer. To reduce overfitting, a dropout with a probability of 0.2 is applied at the end of the 130

encoder and to the first dense layer. The dimensions of each layer appear in Figure 2. 131

3.2.2. LSTM-Based Recurrent Network 132

Recurrent networks are designed to capture the underlying time dependencies of 133

sequential data. They are generally composed of one or more cells whose outputs are 134

computed based on the current input state and on the outputs of previous states. Past 135

predictions can be taken into account by different ways ; LSTM cells are specifically de- 136

signed to track long-term dependencies [28]. The proposed recurrent network is a single 137

bi-directional LSTM cell, followed by two dense layers separated by a ReLU activation. 138

Hence, the input vector is processed in both reading directions by the LSTM cell, which 139

produces two outputs that are concatenated and post-processed by the two dense layers. A 140

dropout with a probability of 0.2 was applied at the end of the LSTM cell and to the first 141

dense layer. The dimensions of each layer appear in Figure 2. 142

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 June 2023                   doi:10.20944/preprints202306.0454.v1

https://doi.org/10.20944/preprints202306.0454.v1


Version May 31, 2023 submitted to Journal Not Specified 5 of 15

Figure 2. CNN and LSTM-based recurrent network architectures used for pulses selection. In both
cases, dropout was applied with a probability of 0.2. A sigmoid function was used to map the NN
output into the interval [0, 1].

3.2.3. LSTM-FCN Network 143

The two above-mentioned architectures process the input data with different objectives. 144

Whereas CNNs focus on the neighborhood of each point, recurrent neural networks are 145

meant to exploit the causalities inherent to sequential data. LSTM-FCN networks attempt 146

to combine both strategies and were specifically designed for time series classification 147

[29]. Moreover, Mataczynski et al. ([27]) obtained good results with such an architecture 148

for pulse shape index calculation. The LSTM-FCN network we implemented contains a 149

three-block encoder, put in parallel with an LSTM cell. Their respective dimensions are 150

identical to those used for the CNN and for the LSTM-based recurrent network. Both the 151

computations are performed in parallel. The outputs are then concatenated and processed 152

by two dense layers. As above, a dropout with a probability of 0.2 was applied to the first 153

dense layer. 154

3.3. Subpeak Designation 155

Once the pulses with a calculable P2/P1 ratio are selected, subpeaks P1 and P2 can 156

be designated. To do so, we studied different ways of combining the output of a neural 157

network with the pulse curvature, as used by the MOCAIP-based automated frameworks. 158

The curvature function is defined as: 159

κ(x) =
x′′

(1 + x′2)3/2

For a given pulse p, subpeaks P1 and P2 correspond to two local minima of κ(p) located in 160

zones where p′′ is negative or, equivalently, to two local maxima of κ(−p). 161

In parallel to these calculations, neural networks learn a classification task. For a pulse 162

x, the objective is a 180-point vector yx, such that 163

∀t ∈ [[1, 180]], yx(t) = e
1
2 (e

−(x(t)−p1(x))2

2 + e
−(x(t)−p2(x))2

2 )

where p1(x) and p2(x) are the respective positions of P1 and P2. More formally, during the 164

learning process, the neural networks seek a function f ∗ such that 165

f ∗ = argmin f ∑
x∈D

MSE( f (x), yx)

where MSE denotes the Mean Square Error loss function, and D the training set. 166

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 June 2023                   doi:10.20944/preprints202306.0454.v1

https://doi.org/10.20944/preprints202306.0454.v1


Version May 31, 2023 submitted to Journal Not Specified 6 of 15

Two network architectures are compared for the estimation of f ∗ , namely a 1- 167

dimensional U-Net (see subsection 3.3.1) and a LSTM-based recurrent network (see subsec- 168

tion 3.3.2). 169

The detection strategy consists in two steps. Firstly, a candidate subpeaks set is 170

extracted from the pulse. Secondly, P1 and P2 are designated from among the candidates. 171

The candidate subpeaks are identified by a search for local maxima, either on κ(−p) 172

(method 1) or on ˆf ∗(p) (method 2). Having thus obtained a list c of candidates, p1 and 173

p2 are then designated as the two points of c corresponding to the highest value of f̂ ∗. 174

Both strategies are summarized in Figure 3. As a result, four combinations are compared: 175

method 1 with U-Net, method 1 with the LSTM, method 2 with U-Net, and method 2 with 176

the LSTM. 177

Figure 3. Comparison of the two methods of peaks designation algorithm. P1 and P2 are designated
from among a set of candidates either based on the curvature analysis (method 1) or directly on the
NN output (method 2). For sake of lisibility, candidate sets do not appear on the figure.

3.3.1. One-Dimensional U-Net 178

U-Net is a particular architecture of CNN. Its three-level bottleneck structure is com- 179

posed of two symmetric blocks. In addition to the linear information propagations, pairwise 180

connections are set between same-shape components. As it was originally conceived for 181

images segmentation, layers have been modified here to perform one-dimensional convolu- 182

tions. Layer dimensions appear in figure 4. A dropout with a probability of 0.2 was applied 183

at each convolution block. 184

Figure 4. U-Net architecture proposed for subpeaks detection. The NN learns to reconstitue the sum
of two gaussian curves respectively centered on p1 and p2.
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3.3.2. LSTM-Based Recurrent Network 185

We used a bidirectional LSTM-based recurrent network similar to the one trained for 186

peak selection (see Section 3.2.2). Hence, the input 180-sample pulse was processed by a 187

single LSTM cell followed by two consecutive dense layers. As the hidden layer size of the 188

LSTM cell was set to 180, the dimensions of the two consecutive dense layers were set to 189

(360, 360) and to (360, 180), respectively. A dropout with a probability of 0.2 was applied to 190

the first dense layer. 191

3.4. Postprocessing 192

Postprocessing the P2/P1 ratio signal has to address three main issues: 193

• Spurious oscillations, mostly due to the intrinsic variability of the ICP signal. Even if 194

they are not a result of the data processing pipeline itself, they tend to make the record 195

less readable for the clinician. 196

• Missing values, since all the pulses that do not pass the selection cut are recorded as 197

missing. 198

• Punctual outliers. If they are not caused by the ICP signal itself, they can be due to 199

errors in the data processing pipeline. Punctual outliers either occur at the classification 200

step, when false positive pulses are provided to the detection algorithm, or at the 201

detection step, when P1 and P2 are designated at wrong positions. 202

These different problems are alleviated at the post-processing phase, by retrospectively 203

smoothing the ratio monitoring. To do so, a 95% normal confidence interval is estimated 204

on a 100-pulse sliding window. A mean ratio is then calculated over the window if at least 205

50 values are non missing ; otherwise, the value corresponding to this window is reported 206

as missing. Therefore, each displayed value is calculated on the basis of the 100 last pulses, 207

which corresponds to about one minute. In addition to overcoming the three issues listed 208

above, smoothing the output signal in such a way highly enhances its readability. Indeed, 209

far too much factors can influence a single pulse P2/P1 ratio to draw any conclusion on the 210

basis of a pulse-wise evolution. 211

4. Results 212

Experiments were performed separately on the pulse selection and on the peaks 213

detection tasks, in order to select a single neural network for each of them. The same 214

training and testing datasets of labelled pre-processed pulses were used for both tasks, with 215

10% of the training set used for validation. After having our framework completed with 216

two trained neural networks, we fully processed 10-minute labelled segments randomly 217

sampled from each of the recordings. To ensure the reproducibility of our experiments, 218

each of the three steps were performed using a dedicated processing pipeline designed 219

with Snakemake 7.25 [30]. All the associated scripts were coded in Python 3.11. Neural 220

networks were implemented with Pytorch 2.0 [31]. All the experiments described below 221

were performed on a Windows 10 machine powered by WSL2 Ubuntu 20.04.5, equipped 222

with a 12th Gen Intel(R) Core(TM) i7-12850HX 2.10 GHz 16 CPU, a Nvidia RTX A3000 223

12GB Laptop GPU, and 16 GB of RAM. Pipelines used for comparing neural network 224

performances are available at the following address: https://github.com/donatien-lege/ 225

P1_P2_detection_ratio. 226

4.1. Pulse Selection 227

The three models (i.e., CNN, LSTM recurrent network, and LSTM-FCN) were trained 228

on 150 epochs with the Adam optimizer, an initial learning rate of 0.001, and a batch size 229

of 256. For each of them, the area under the receiver operating characteristic (ROC) curve 230

was calculated by plotting the true positive rate (TPR) against the false positive rate (FPR), 231

defined as: 232

TPR =
True Positive

True Positive + False Negative
, FPR =

False Positive
False Positive + True Negative
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The three ROC curves are displayed in Figure 5. For the final framework, the optimal 233

decision threshold was chosen to maximize the difference TPR − FPR. 234

Figure 5. Areas under the ROC curve (AUC) of the three neural network architectures used for pulses
selection. Positive class corresponds to pulses with a calculable P2/P1 ratio.

Our LSTM-based recurrent network architecture outperformed the convolution-based 235

ones, with an area under the curve of 0.905. The confusion matrices corresponding to the 236

respective optimal decision thresholds of each NN architecture are presented in Table 1. 237

Table 1. Confusion matrices of the 3 NN architectures compared for pulses selection. Positive class
corresponds to pulses with a calculable P2/P1 ratio.

NN architecture CNN LSTM LSTM-FCN
Prediction - + - + - +

True - 399 98 421 76 397 100
True + 1865 1982 847 3000 1005 2842

True Positive Rate (%) 51.5 78.0 11.2
False Positive Rate (%) 19.7 8.52 26.1

The number of false-positive pulses and false-negative pulses correspond to 1.8% and 238

9.7%, respectively, of the total testing data set when using the LSTM-based architecture for 239

classification. In contrast, these percentages amount to 2.3% and 42.9%, respectively, when 240

using the convolutive network. 241

4.2. Peak Designation 242

The experimental pipeline was designed to compare the four possible combinations 243

between the peak designation method (i.e., by using the curvature function or not) and 244

the neural network architecture (i.e., 1-D convolutional U-Net or LSTM-based recurrent 245

network). In addition, a designation only using the first two local maxima of curvature 246

was performed as a baseline. Both models were trained on 150 epochs with the Adam 247

optimizer, an initial learning rate of 0.001 and a batch size of 256. A mean absolute peak 248

appearance time error and a mean absolute P2/P1 ratio error were calculated. The mean 249

absolute time appearance error was expressed as a percentage of the whole pulse duration. 250

The results are reported in Table 2. In addition, as it is the most interpretable information 251

for the clinician, we assessed the ability of our models to detect pulses where P2 is higher 252

than P1. To do so, we calculated a confusion matrix for classes “+”: “ P2/P1 ratio > 1” and 253
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“-”: “P2/P1 ratio < 1” and the associated accuracy, defined as the proportion of correct 254

predictions over the whole testing dataset. 255

Table 2. Performances of five methods for P1 and P2 detection. P1 and P2 are designated as the
two candidate subpeaks corresponding to the two highest NN output value. Local maxima of either
curvature or NN output are selected as candidate subpeaks. As a baseline, the algorithm “Curvature”
corresponds to the designation of the two first local maxima of pulse curvature as P1 and P2. Mean
absolute errors (MAE) on the appearance time of P1 and P2 are expressed in percentage of the total
pulse duration..

Algorithm Candidate peaks
selection P1 MAE (%) P2 MAE (%) Ratio MAE Accuracy(%)

1d-Unet NN output 1.2±0.1 2.1±0.2 0.08±0.03 93.2
Curvature 0.6±0.05 2.2±0.2 0.05 ±0.02 96.6

LSTM NN output 0.70 ±0.05 1.3±0.07 0.03±0.003 96.9
Curvature 0.70±0.06 1.3±0.2 0.05±0.02 97.3

Curvature - 2.4±0.2 4.0±0.2 0.1±0.01 89.3

As for the pulse selection task, the recurrent architecture outperformed the convo- 256

lutional one. Without the curvature-based candidate peak selection step, the LSTM-RE 257

architecture performed the classification task with a 3% higher accuracy than our 1D-U-Net. 258

Moreover, it achieved the most accurate estimation of the P2/P1 ratio, with a mean average 259

error of 0.03. Achieving the candidate peaks selection step with the means of the curvature 260

function tends to improve the algorithm’s ability to discriminate pulses with a P2/P1 ratio 261

> 1, at the cost of a slightly less accurate ratio estimation. 262

4.3. Final Automated Framework 263

On the basis of previous experiments, we finally chose a LSTM-based recurrent net- 264

work both for pulse selection and for subpeak designation. For the latter step, P1 and 265

P2 designation was performed by selecting the two best LSTM-scored local maxima of 266

curvature. For each of the ten patients, the complete workflow was used to process a 267

randomly chosen labelled 10-minute section. An example of such an output is presented 268

Figure 6. 269

Figure 6. Example output for a 10-minute ICP signal segment processed with the final automated
framework.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 June 2023                   doi:10.20944/preprints202306.0454.v1

https://doi.org/10.20944/preprints202306.0454.v1


Version May 31, 2023 submitted to Journal Not Specified 10 of 15

The performances were assessed for each individual 10-minute segment. We used the 270

same respective metrics as above for pulse selection and subpeak designation. In addition, 271

we calculated the percentage of pulses that were assigned a ratio value, and the percentage 272

of non-missing values in the final post-processed ratio signal. Table 3 contains values 273

calculated over the total 100-min dataset, but 10-min individualized segmentmetrics are 274

available Table A1. 275

Table 3. Performances of the final automated P2/P1 ratio computation framework. Metrics associated
with P2/P1 ratio values (i.e., P2/P1 ratio MAE and Accuracy on ratio > 1 detection) are calculated
pulses with a labellized P2/P1 ratio value that passed the selection step.

True positive rate
(%)

False positive rate
(%) P2/P1 Ratio MAE Accuracy on ratio

> 1 detection(%)
Ratio-associated

pulses (%)
Displayed-ratio

time(%)

87.3* 14.6* 0.044 ± 0.002 99.7* 85.8 88.3

* Significatively higher than the same metric calculated on the testing set during NN selection (p-value < 0.05)

The false positive rate and true positive rate are both about seven points higher 276

than their respective equivalents calculated when selecting the NN architecture. How- 277

ever, subpeak designation performances are consistent with previous experiments.Table 4 278

corresponds to the overall confusion matrix calculated for pulses selection. As above, 279

individualized confusion matrices are available in Table A2. 280

It is noticeable that only the 2nd segment sample contains 91% of the negatively 281

labeled pulses. In this segment, pulse selection algorithm performed with a 13.5% false 282

positive rate (table A2). 283

Table 4. Confusion matrix obtained for the final pulses selection step. Positive class corresponds to
pulses with a calculable P2/P1 ratio.

Predicted - Predicted +

True - 499 85
True + 554 6261

False-positive pulses and false-negative pulses amount to respectively 1.14% and 284

7.49% of the total testing dataset. This proportions are consistent with those previously 285

calculated on the 4344-pulse testing dataset. 286

5. Discussion 287

Our deep learning-based framework is designed to perform P1 and P2 detection and 288

P2/P1 ratio computation directly on a bedside device. For convenience concerns, we 289

designed it under the constraint of only using the ICP signal, which was made possible 290

by a well-established efficient preprocessing step. Hence, we were able to focus our deep 291

learning-based analysis on short time series corresponding to single pulses of cardiac origin. 292

This strategy enabled us to use network architectures that are not too deep. Moreover, 293

working at the cardiac cycle scale allowed us to alleviate another real-life difficulty: at 294

bedside monitoring, ICP signals are very often contaminated with artifacts either due to 295

patient movements (coughing, reactions to drug administration, nursing manipulations, 296

etc.), or to electronic perturbations. Therefore, it can be complicated at a macroscopic scale 297

to determine whether an acute rise in ICP corresponds to a real physiological measurement 298

or to artifacts. By only focusing on modified Scholkmann algorithm-extracted candidates 299

pulses, we were able to perform this artifact removal step on the basis of the local waveform 300

alone, at the pulse selection step. In addition, as changes in cerebral compliance generally 301

occur in a progressive way, a continuous pulse-wise compliance score is the tool of choice 302

to describe the current patient state as faithfully as possible. 303
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When labeling the pulses, only using the ICP signal could sometimes cause difficulties 304

for interpreting isolated single pulse waveforms: without other elements of context, pulses 305

with only two visible subpeaks systematically fell into the “non-calculable P2/P1 ratio“ 306

category since it was not possible to know whether of P1, P2, or P3 was missing. In 307

some of these cases, ABP or ECG signals may have helped to distinguish subpeaks, and 308

thus, to compute a P2/P1 ratio. In that sense, the training dataset was labelled in a quite 309

restrictive way to limit, as much as possible, the number of pulses without a calculable 310

P2/P1 ratio provided to the peak designation step. However, this decision has inevitable 311

consequences on the amount of time during which a P2/P1 ratio can be displayed. In 312

any case, recurrent architectures clearly outperformed the convolutional-based ones for 313

pulse selection, even if it is probably possible to reduce the observed gap by fine-tuning 314

the proposed convolutional architecture. As the full succession of subpeaks is necessary 315

to understand the pulse waveform, recurrent networks seem to be more appropriate than 316

CNNs to perform such a classification task. In that sense, these results may contrast 317

with similar studies performed on ECG signals, where events such as QRS complexes 318

have more recognizable shapes and thus make CNN more relevant for classification or 319

detection tasks. Concerning the consequences of misclassified pulses, it is noticeable that 320

false-negative pulses only cause spurious missing values at the end of the data processing 321

workflow. In contrast, false-positive pulses are provided to a peak designation algorithm 322

that systematically outputs the two positions of estimated P1 and P2. Therefore, false- 323

positive pulses can do much more damage to the output P2/P1 ratio signal. While we 324

simply chose an optimal threshold that minimizes the difference TPR − FPR, it could be 325

relevant to optimize the decision threshold to make the algorithm more restrictive. 326

Peak detection was performed by computing a density function by the means of 327

neural networks, as it is often the case for image segmentation tasks. We chose to stick 328

to the underlying philosophy of MOCAIP-based automated frameworks, which include 329

a candidate selection step before subpeak designation. It would have been possible to 330

turn our algorithm into a regression task to output the estimated positions directly, as 331

it is sometimes done for ECG peaks detection [22]. This simpler strategy led to lighter 332

computations. However, our method offers two advantages. Firstly, it is more robust and 333

explainable in itself, as a score is assigned to each point of the input tensor. Secondly, it 334

is easier to combine the output tensor with another function such as the pulse curvature. 335

Designating two peaks from among a set of candidates selected with this simple and 336

explainable criterion offers guarantees for the generalization abilities of the algorithm. This 337

is all the more relevant given that we could only train our deep learning-based models 338

on a relatively small set of patients, whereas there is a large inter-patient morphological 339

variability in the ICP waveform. In the case of our testing dataset, a preselection of 340

candidate peaks with a search for local maxima of the curvature function improved the 341

algorithm’s ability to discriminate pulses with a P2/P1 ratio superior to one. The observed 342

improvements in accuracy amounted to 1% for the recurrent network and 3% for our U-Net, 343

respectively. 344

The biggest limitation of our study is that only 10 patient recordings contributed 345

to the pulse database. Because of this small number, we chose to include samples from 346

each of the ten patients both in the training and in datasets, in order to train our neural 347

networks with as much diversity as possible. By doing this, we made the assumption that 348

a single patient ICP signal variability over eight days (that is to say, the average monitoring 349

duration) was enough to neglect the effects of a commune underlying distribution. How- 350

ever, generalization abilities of our automated framework still have to be improved by 351

expanding our datasets with further inclusions. This is all the more important since we 352

obtained quite different false-positive rates during the model selection (8.52%) than during 353

the final automated framework evaluation (14.6%). 354

While designing the data processing pipeline, we considered taking into account the 355

neighborhood of each single pulse better. For instance, the pulse selection process could 356

have integrated all the pulses occuring over the last minute before the one to be classified, 357
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thus helping the interpretation of the pulse waveform. However, it would have required a 358

much more computation-intensive training step, since the recurrent networks would have 359

had to capture more long-term dependencies. In addition, the database would have had to 360

be composed of contiguously labeled samples, which would have had drawbacks on the 361

diversity covered this way. We faced the exact same issue when sampling the final testing 362

dataset, which was particularly disbalanced with 90% of its false-negative pulses occurring 363

in the same segment. 364

This observation leads us to discuss the main drawbacks of monitoring the P2/P1 ratio. 365

As mentioned earlier, this information is not always available and depends on biological 366

mechanisms still not fully understood [9]. A more complete picture of cerebral compliance 367

could be obtained by combining the P2/P1 ratio with other indicators such as the mean ICP, 368

pulse amplitude [32], or pulse shape index[33]. More generally, cerebral compliance has 369

to be considered as part of a bundle of information available on patients. Characterizing 370

it is especially helpful when ICP is close to the hypertension threshold, as a simple mean 371

calculation is not informative enough on the current state of the cerebrospinal system. 372

Cerebral compliance may also provide information for specific decisions, for instance when 373

it comes to adjusting or putting sedation to an end. 374

6. Conclusion 375

Our automated detection framework allows for P2/P1 ratio monitoring on ICP ratio 376

signals without needing any other input data. Its conception was made under this constraint 377

to facilitate its implementation into onboard bedside devices. Pulse selection and subpeak 378

designation are done using LSTM-based recurrent networks, which outperformed CNN 379

networks for both tasks. Although a larger testing database would be needed to assess 380

the performances of the full data analysis pipeline more accurately, experiments on a 381

10-patient dataset produced promising results. Monitoring the P2/P1 ratio, when possible, 382

contributes to make a more precise picture of the cerebrospinal system, alongside with 383

other indices such as the mean ICP or the pulse amplitude. 384
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End-to-end automatic morphological classification of intracranial pressure pulse waveforms 480

using deep learning. IEEE Journal of Biomedical and Health Informatics 2021, 26, 494–504. 481

28. Sak, H.; Senior, A.; Beaufays, F. Long short-term memory based recurrent neural network 482

architectures for large vocabulary speech recognition. arXiv preprint arXiv:1402.1128 2014. 483

29. Karim, F.; Majumdar, S.; Darabi, H.; Chen, S. LSTM fully convolutional networks for time series 484

classification. IEEE access 2017, 6, 1662–1669. 485

30. Mölder, F.; Jablonski, K.P.; Letcher, B.; Hall, M.B.; Tomkins-Tinch, C.H.; Sochat, V.; Forster, J.; Lee, 486

S.; Twardziok, S.O.; Kanitz, A.; et al. Sustainable data analysis with Snakemake. F1000Research 487

2021, 10. 488

31. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, 489

N.; Antiga, L.; et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. 490

CoRR 2019, abs/1912.01703, [1912.01703]. 491

32. D’Antona, L.; Craven, C.L.; Bremner, F.; Matharu, M.S.; Thorne, L.; Watkins, L.D.; Toma, A.K. 492

Effect of position on intracranial pressure and compliance: a cross-sectional study including 101 493

patients. Journal of Neurosurgery 2021, 136, 1781–1789. 494

33. Nucci, C.G.; De Bonis, P.; Mangiola, A.; Santini, P.; Sciandrone, M.; Risi, A.; Anile, C. Intracranial 495

pressure wave morphological classification: automated analysis and clinical validation. Acta 496

neurochirurgica 2016, 158, 581–588. 497

Appendix A 498

Table A1. Performances of the final automated P2/P1 ratio computation framework. Metrics
associated with P2/P1 ratio values (i.e., P2/P1 ratio MAE and Accuracy on ratio > 1 detection) are
calculated pulses with a labellized P2/P1 ratio value that passed the selection step.

Segment True positive
rate (%)

False positive
rate (%)

P2/P1 Ratio
MAE

Accuracy on
ratio > 1

detection(%)

Ratio-
associated
pulses (%)

Displayed-
ratio time(%)

1 98.0 66.7 < 10−5 1 97.7 94.0

2 17.1 13.4 0.006 ± 0.005 1 14.4 4.4

3 - - 0.25 ± 0.1 1 100 93.6

4 88.9 - 0.015 ± 0.005 99.8 88.9 88.2

5 92.7 28.6 0.005 ± 0.001 98 92.2 90.1

6 99.8 - <10−5 1 99.9 92.9

7 99.8 - <10−5 1 99.9 91.2

8 87.8 20.6 0.07 ± 0.02 99.7 83.7 71.4

9 69.8 - <10−5 1 69.9 87.3

10 96.2 0 0.008 ± 0.002 0.998 95.7 89.6
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Table A2. Confusion matrices obtained for each of the ten contiguous segments used as a testing
dataset for the complete automated framework.

Segment Predicted - Predicted +

1 True - 2 4
True + 20 1003

2 True - 462 72
True + 126 26

3 True - 0 0
True + 0 916

4 True - 0 0
True + 66 526

5 True - 5 2
True + 62 787

6 True - 0 0
True + 1 832

7 True - 0 0
True + 1 669

8 True - 27 7
True + 64 461

9 True - 0 0
True + 190 441

10 True - 3 0
True + 24 600

1 Tables may have a footer.
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