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Abstract: Most neuromorphic technologies use a point-neuron model, missing the spatiotemporal
nature of neuronal computation performed in dendrites. Dendritic morphology and synaptic
organization are structurally tailored for spatiotemporal information processing, enabling various
computations like visual perception. Here, we report on a neuromorphic computational model
termed ‘dendristor’, which integrates functional synaptic organization with dendritic tree-like
morphology computation. The dendristor presents bioplausible nonlinear integration of excitatory
and inhibitory synaptic inputs with silent synapses and diverse spatial distribution dependency.
We show that the dendristor can emulate direction selectivity, which is the feature to react robustly
to a preferred signal direction on the dendrite. We discover that silent synapses can remarkably
enhance direction selectivity, turning out to be a crucial player in dendritic computation processing.
Finally, we develop neuromorphic dendritic neural circuits that can emulate a cognitive function
such as motion perception in the retina. Using dendritic morphology, we achieve visual perception
of motion in 3D space by various mapping of spatial information on different dendritic branches.
This neuromorphic dendritic computation innovates beyond current neuromorphic computation
and provides solutions to explore new skylines in artificial intelligence, neurocomputation and
brain-inspired computing.

Keywords: neuromorphic engineering; neuromorphic computing; dendritic computation; silent
synapse; motion perception

1. Introduction

Neuromorphic research aims to develop artificial intelligence (AI)! and to analyse neuroscience
using neuromorphic architectures>#. These architectures emulate particular neuroscientific
operations like synaptic plasticity’, or neuronal nonlinearity® (Fig. 1a(i-ii)), and their learning
algorithm is inspired by brain, but mainly driven by artificial neural network (ANN) and spike neural
network (SNN). However, the point neuron model”® used in these architectures is a loose
schematization of a biological neuron. There is still a large gap between the neuromorphic models
and the nervous systems due to the morphological and the computational complexity of neuron’s
subcellular components®!%, such as dendrites and synapses, and their connectivity!-5. Therefore,
researchers included dendritic computation’'¢ in a master plan for neuromorphic research!”'s,
discussing its potential for Al problem-solving
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Figure 1. Neuromorphic dendrite model representation. (a) Schematics of (i) a neuromorphic neuron
model with dendritic operation which is driven by an operational rationale which is typical of
engineering, (ii) a biocomputational neuron model composed of the dendritic trees with synaptic
inputs, and (iii) a proposed neuromorphic neuron model with dendritic spatial morphology, so-called
‘dendristor’, composed of the first layer of the dendritic bunch, which driven by spatial morphology
of the biosystem. (b) Illustration of biological dendrites in a neuron and their functions. (c¢) Schematic
diagram of multi-branch dendristor with multiple gate inputs and the source-drain output. (d) Circuit
modeling of the dendristor with one branch. (e) Output comparison between the neurotransistor
device and dendristor model with single input. (f) Simplified illustration of a dendritic branch with
four inputs with different distances from the dendritic output (Ibs). (g) Schematics of nonlinear signal
integration of four synaptic gate inputs (vcs14) within a dendritic branch. (h) The output current (Ibs,
black, red, blue and green curves) responding to input pulse-train (vcs, dark blue) applying on
synaptic gate inputs (Gj where j:1-4) of the dendristor (vcs pulse period: 500 ms, pulse width: 250ms,
pulse amplitude: 9 V). The inset shows the enlarged Ips response to pulses.

Dendritic computation is a neuronal signal process that occurs in dendrites and involves the
integration of synaptic inputs to control the somatic membrane potential. The morphology of the
dendritic tree'®?! and the distribution of synapses on dendritic branches??? are critical factors in
determining the nonlinearity of the dendritic computation, which enables complicated
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computational tasks by functional segregation and selectivity of branches (Fig. 1b). The dendritic
arborization (tree-like branching out, Fig. 1a(ii)) increases the complexity of the computation in the
neuronal system to enhance learning?* and computational efficiency??. The spatial distribution of
synapses on a dendritic branch drives core features of the dendritic computation such as encoding
the spatiotemporal synaptic input signals#%2% and the direction selectivity 2230, which is particularly
important in the sensory neural circuits to encode spatiotemporal input signals?3-35and implement
memory and learning?. Direction selectivity of a dendrite is the feature to react robustly to a
preferred signal direction on the dendrite (for instance, sequentially arriving synaptic inputs from
distal to proximal to soma) and to react weakly in the opposite direction 2230, Excitatory and
inhibitory integrations within a dendrite have been studied last decade 192241, but the role of a ‘silent
synapse’**, which is dormant and wake up only under certain dendritic (post-synaptic)
circumstances to leverage the dendritic integration, has not yet been fully understood.

Dendritic computation provides essential functionalities in the neurocomputation, and is
intrinsically ideal for spatiotemporal processing's, but it is not widely studied in the neuromorphic
field. There have been attempts to include the dendritic functions in neuromorphic devices and
architectures including memristors*-+ (Fig. 1a(i)). However, those architecture can be considered as
an extension of the point neuron model (c.f. linear summation of weighted synaptic inputs enters into
a neuronal body with nonlinear transfer function) with added nonlinear function of the dendrite to
increase the learning efficiency. For effective modelling of neuromorphic dendritic computation, a
computational framework of dendritic computation (i.e., neuronal unit model) is required to emulate
electrical dynamics and the spatial morphology of dendrites. A ‘neurotransistor’ was recently
reported, which uses a field-effect transistor (FET) coated with an ion-doped sol-gel dielectric film*
to emulate neuronal intrinsic membrane plasticity. This device can perform a new form of the
computation by implementing the nonlinear dynamic signal integration property occurring in the
dendritic branch.

Here, we introduce a novel type of dendritic computation model called a ‘dendristor’ using
neurotransistors* with dendrite-like spatial morphological characteristics and synaptic organization.
The dendristor performs nonlinear integration of various synapses based on their distribution on a
dendritic branch (Fig. 1a(iii)). We investigate the role of the spatial distribution of diverse types of
synapses in dendritic nonlinear integration, including excitatory, inhibitory, and silent synapses. The
direction selectivity of a dendirstor branch is successfully demonstrated, which exhibits a greater
response to a preferred direction of a sequentially incoming input signal. We adopt the modelling of
silent synapses in dendritic computation, which is essential for enhancing the direction selectivity.
We propose a neuromorphic dendritic neural circuit (NDNC) which maps the spatial information
from the receptors on a one-dimensional array to the dendritic branches. Then, combining multiple
NDNCs, we model a network of multiple dendritic neurons for spatiotemporal processing that
allows visual motion perception in 3D space. Our work offers a novel bioplausible neuromorphic
computation and a simulation environment to predict and elucidate the biocomputational
phenomena that are currently challenging to study in in-vitro or in-vivo neuroscientific experiments.

2. Results

Neuromorphic dendritic neuron and its output dynamics

We form the neuromorphic dendritic neuron model (Fig. 1c,d) based on the physics of the
neurotransistor* (Fig. 1e), so we call it ‘“dendristor.” We selected the existing neuromorphic hardware
platform that can stably and closely mimic dendritic properties, and therefore, is able to show various
spatiotemporal performances of the dendritic computation. The Si-based transistor provides stable
current dynamics and good controllability as a device compared to other types of electronic devices.
The connection of the multiple specular transistors (Fig. 1c) provides a summated source-drain
current like the dendritic signal summation at the point where the dendritic branches are combined.
The dendristor model is formed based on the physical phenomena of metal-oxide-semiconductor
field-effect transistors (MOSFETs) covered with ion-doped soft dielectric material, which includes
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mobile ions to mimic the neuronal membrane's ion diffusion in the neuronal membrane®. The
synaptic inputs are applied as gate voltage (vcs;j, where i is the number of dendritic branches and j is
the number of the synaptic inputs) to metal electrodes, Gy (Fig. 1c) on the dendritic branch and
transforms to output current, Ips. The physical design and properties of the device model are
explained in Supplementary Information S1. Fig. 1d illustrates the simplified LT-SPICE circuit model,
which illustrates a single dendristor branch formed with the large-signal MOSFET model and the
sub-circuit of the ion-doped sol-gel dielectric film. The circuit model has three functional parts: (i) a
circuit for the adaptive polarization of ions occurring in the film triggered by each gate, (ii) a
combined RC circuit of the dendritic integration film contacting Si nanowire oxide that provides
effective gate voltage to the transistor channel, and (iii) the MOSFET large-signal circuit (Fig. 1d). The
mathematical model and corresponding phenomena on a neurotransistor*® are explained in
Supplementary Information S2. The description of the circuit elements and their parameters are
summarized in Methods. The current output dynamics of the neurotransistor and the dendristor
model with single gate input in Fig. 1e demonstrates how closely the model simulates the device
physics. Most important element in the dendritic computation is the variable resistance, Ry, which
identifies each synaptic input's location related to the length between the synaptic input and the
dendritic integration center (i.e., the channel of the transistor). Ry is updated by the present gate input
(vesj) and the internal state of the film, which can be defined as an effective gate voltage (vgs, the
voltage between node g and node S) of the transistor, and their relation is described in the following
equation:

Rpj = Ty * |vesj — Vgs|/Vaj (1)

where rj is a constant resistance parameter (unit: Q) of the film between the jth gate input and
the conductive channel output, and Va, is a voltage amplitude of vcs;. As the resistance is relevant to
the length of the ionic migration path, ; is the distance-correlated factor based on the film distance
from the nanowire channel to the gate. Hence, each synaptic input signal is differently weighted by
rvjin a single dendritic branch to map the spatial information. The effective gate voltage, vgs, is another
critical value since it defines Ry and Ips (Fig. 1d). The built-in potential in the film (vgs) evolves
nonlinearly with respect to vcs;. In sum, the dendritic integration of multiple inputs in a dendritic
branch is obtained as a combined process of the time-varying nonlinear vgs change and the nonlinear
vgs-to-Ips transfer function of a MOSFET. All results below are obtained from the LT-SPICE circuit
simulation.

Fig. 1f is a schematic diagram of a dendritic branch that receives four synaptic inputs entering
from different locations. Since a distal input requires a longer film length than a proximal input, 7 of
the distal input is higher than the proximal input, such as rn1 = 1.25 kQ, 2 =1 kQ, rm3= 0.75 kQ and
e = 0.5kQ. The first dendritic integration occurs locally near the interface of the film, which is
strongly affected by the position of the synaptic input and influences to the other synaptic input
integration (the serial connection of nonlinear integration in the dendritic branch layer in Fig. 1g).
Global integration is done by the field-effect of the transistor (the transistor integration in Fig. 1g).
Fig. 1h shows the nonlinear current output dynamics of the dendristor (Ips, by repeated input pulses,
Vas) when the voltage pulsed-train is applied on the gate inputs, and each current dynamics are
depending on the position of the synaptic inputs in a single dendritic branch. The excitatory input
voltage pulse (amplitude, Va: 9V, pulse period: 500 ms, and pulse width: 250 ms) is applied for 300
seconds and stopped. Ips increases along the sigmoidal trajectory by input pulses. The current
increase implies that the device has a short-term memory function as maintaining the electric
potential in the film when the pulse is removed. Relevant memory phenomenon in Ips-Ves curve and
its comparison between the dendirstor model and the neurotransistor measurement are explained in
Supplementary Information S3. The distal input induces stronger Ips increase than the proximal input
does. Under the absence of the input pulses, Ips reduces exponentially.

Comparing the nonlinear integration of biological dendrite and the dendristor

We compared the coincident input signal integration rule of the biological dendrite and the
dendristor (Fig. 2). The important aspect in this result is the different integration rules of coincident
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inputs within a single dendritic branch (Fig. 2a(i)) and between different dendritic branches (Fig.
2a(ii)). Fig. 2b(i) shows in-vivo measurement of excitatory postsynaptic potential (EPSP) of pyramidal
neuron cells®. The EPSP was measured in a soma when two different synaptic inputs are coincidently
applied on a dendritic branch. The arithmetic sum of two individual EPSPs (blue) is different from
the combined EPSP (orange) when two inputs are coincidently applied. The relation between the
expected peak EPSP, which is the arithmetic sum of two individual EPSPs, and the measured peak
EPSP is summarized in Fig. 2c(i)*. The measured peaks between branches (green dots) show an
almost identical trend (i.e., linear) with the expected peak EPSP (black dot line). However, the
measured peaks within a branch (coloured dots) show a supralinear curve regarding the expective
peak EPSP, which is a dominant phenomenon in the dendrite?”. This biological result shows the
different integration rule of the dendrite (within branch condition) and the soma (between branch
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Figure 2. Nonlinear synaptic integration in dendrites and the dendristor. (a) [llustration of synaptic
organizations (i) within a dendritic branch and (ii) between dendritic branches. (synapse position 1:
1 =1.25kQ, 2: 2 =1 k€, 3: r3 = 0.75 kQ, 4: ra = 0.5 kQ) (b) comparison between (i) the neuronal
output response (EPSP) to two excitatory synaptic inputs® and (ii) the dendristor output current,
Ips basetine (the bottom envelop of Ips) with two coincident excitatory synaptic inputs (r of two inputs:
0.75kQ), 1 kQ) within a branch. (c) Plot of the dendritic integration within a branch and between
branches of (i) biological dendrite® and (ii) dendristor. Data in the plot corresponds to the peak
measurement in (b). Plot shows the relationship between measured peak (EPSP or peak current
(Ipspeak at t = 200 s), coloured dots) and expected peak (an arithmetic sum of two individual EPSP
outputs or Ipspeak, dashed line). (b(i), c(i)) are reproduced by courtesy of #. (d-e) Excitatory and
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inhibitory integration of the dendristor. (d) The Ibs responses of the dendristor with various
combinations of excitatory, E, and inhibitory, I, synapses on a dendritic branch. (e) Dendritic
integration of I and E inputs within a dendritic branch and between two different branches. (Synaptic
inputs positioned on 1 and 4 for (d, e).) (f) The inhibitory efficacy (excitatory Ips reduction percentage
by inhibitory signal) under coincident E and I inputs activation depending on I position. (rn1is varied
from 1 to 4) while E position is fixed (E :1 for on-path case, E:4 for off-path case) (Vak is varied from 3
to 12 V for (e) and Vae =9 V for (f), Pulse period: 500 ms, pulse width: 250 ms for (c-f)).

Likewise, the analogous experiments are conducted in a dendristor (Fig. 2b(ii),c(ii)). Two
synaptic inputs on the different locations within a branch (coloured dots) and on separated branches
(green squares) are defined as different rn values, such as 0.5, 0.75, 1, and 1.25 kQ, which are
represented as the location 4, 3, 2 and 1 respectively (Fig. 2a). The bottom envelope of the Ips (IDsbaseline)
was extracted to show the conductivity change in the absence of the input voltage (Fig. 2b(ii)). The
integration of two synaptic inputs within a dendritic branch of the dendristor shows the different
dynamic responses from the arithmetic sum of individual Ipspaseline, depending on the strength of the
input pulses. For example, the medium amplitude of the input pulses (Va =9 V) induces a stronger
Ips increase in a dendritic branch than the arithmetic sum, but the stronger input (Va =20 V) induces
a lower output peak than the arithmetic sum. This nonlinear relation between the integration within
a branch and the expected sum is demonstrated in Fig. 2c(ii). Ipspeak measured within a branch shows
supralinearity to the arithmetic sum of individual current. Ipspeak from two different branches (green
squares) was identical to the arithmetic sum of individual current (dashed line) like in the biological
dendrite. The location of the synaptic inputs on a dendristor branch influences nonlinearity. The
supralinearity of the integrated current is more prominent with distal input (1,2). The contributions
of various synaptic input locations, input voltage intensity, and frequency on the nonlinearity are
summarized in Supplementary Information S4. A biological neuron cell in Fig. 2¢(i) shows the large
degree of nonlinear signal integration within a dendritic branch, compared to the dendristor in Fig.
2c(ii). The lower degree of the nonlinearity of the dendristor is due to the electrical property of the
major component, the FET, of the dendristor model: Ips of the FET increases by vgs after turning on
(ves > Vin) without saturation.

Inhibitory integration in the dendristor

The dendristor can emulate the integration of the excitatory and inhibitory synaptic inputs. We
applied positive and negative voltage pulses as excitatory and inhibitory synaptic inputs,
respectively. Fig. 2d shows the Ips response when the excitatory (E) and inhibitory (I) inputs
coincidentally enter into the distal (D) and proximal (P) gates. While the excitatory synapses-only
inputs (EE, red curve) induce strong Ibs increase, inhibitory synapse-only inputs (II, black line) are
unable to induce the increase. The proximal inhibitory inputs (IE, green curve) are more effective
than the distal (EI, navy curve) to suppress Ips. The inhibitory suppression in dendritic integration as
a function of inhibitory voltage amplitude is shown in Supplementary information S5. The
integration of excitatory and inhibitory synapses within a branch shows sublinearity (Fig. 2e, filled
square and dots), which is relevant to the biological inhibitory integration®. For this analysis, the
same analytical technique as Fig. 2c was used (Expected peak Ipspeak means the arithmetic sum of each
output current from single E and I activation, and measured peak Ips, peak is the integrated current
from both E and I are activated). Noteworthily, the amplitude of inhibitory input signal strongly
affects the nonlinearity (Supplementary information S5). This trend is fascinating since the
nonlinearity of excitatory inputs integration within a branch (EE, Supplementary Information S4e)
shows weak dependency on the input voltage variation, but it depends on the intrinsic dendrite
structure. In contrast, inhibitory synapses can strongly modulate the nonlinearity of dendritic
integration (i.e., non-static nonlinearity), which relies on computational variables like input intensity
and locations. The different features of nonlinearities in EE and IE integration show how the neuronal
system uses different nonlinear integration, which can be used as a theoretical hypothesis for new
biocomputational studies.
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Fig. 2f reports the result of the dendristor experiment where the excitatory input E is fixed at
distal (green) and proximal (navy) positions, and the position of inhibitory input I is shifted over the
dendritic branch, considering both within and between branch settings. The inhibitory efficacy (E
current reduction percentage by I) within a branch is linearly changed by the position of the
inhibitory synapse when the inhibitory input voltage is small, like -3 V. However, when the inhibitory
input signal becomes larger (-4 and -5 V), the inhibitory efficacy of the ‘on-path (IE)’ cases reaches the
saturation and shows nonlinear trend. On the other hand, in the between branch setting, the
inhibitory synapse is unable to regulate the excitatory inputs regardless of its position. This
observation is partially corresponding to the in vivo measurement of local dendritic response?!. Note,
since neurons in a different part of the brain area show different signalling based on their
functionality? and our results agree with this biological study>'.

Dendritic direction selectivity

The direction selectivity of a spatiotemporal input signal is a landmark pattern recognition
process for information pre-processing in sensory neural circuits, and it is one of the most
investigated phenomena in biological studies on dendritic signal integration22330-35. Replication of
direction selectivity in neuromorphic computing is a crucial step toward complex dendritic
computation for visual motion perception. A dendrite of a cortical neuron and the EPSP measured at
the soma with spatiotemporal input sequences are shown in Fig. 3a%. The direction of the input signal
entering from the distal- to proximal relative to the soma is called the IN direction (IN-D, Fig. 3a red
arrow), and the opposite input signal direction is the OUT direction (OUT-D, Fig. 3a blue arrow). The
larger amplitude of EPSP is observed when the input signal moves in IN-D. Similarly, we perform
an experiment where the synaptic inputs of the dendristor is sequentially activated with the
excitatory pulses in IN-D and OUT-D from the dendristor channel (Fig. 3b). The excitatory pulses are
applied on one input gate for 100 seconds and then passed to the following input gate. The direction
of the sequentially arrived input signal is encoded as the dynamics of the Ips. IN-D response shows a
higher current peak amplitude (Ipspeak) and a longer time to reach the peak (tpeax) than the OUT-D
response. This result is comparable to the directional selectivity of the biological dendrite in Fig. 3a.
In the biological dendrite study, tpeak difference between the directions was not clearly observed, but
computational modelling studies of the dendrite showed a similar fpeak difference to our study?1.
The burst level in Fig. 3b is chosen to design a direction-selective neural circuit (Fig. 4a) in which a
neuron with the single dendritic branch bursts when Ips exceeds the burst level like in a biological
neuron, which will be discussed in the following section.
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Figure 3. Direction selectivity of the dendristor and the effect of a silent synapse. (a) Biological
dendrite with synaptic inputs (numbers) and the direction selectivity shown as EPSP induced by
sequentially entering inputs in IN-D (red) and OUT-D (blue) directions (reproduced by courtesy of
%3). (b) Direction selectivity of the dendristor with normal synapses shown as Ibs, the sequential
response of the voltage pulses applied to the synaptic input gates. Numbers on the curve indicate the
activated gate at the corresponding time period. (c) Direction selectivity of dendristors with a silent
synapse (yellow) (IN-D: from Gi to Gs, OUT-D: from Gs to Gi1, where 1 =1.5kQ, r2=1.25kQ, rs=1
kQ, rna = 0.75 kQ and s = 0.5 kQ for (b,c)) (d) Schematics of the synaptic transmission of normal and
silent synapses on a biological dendrite. (e) The circuit modelling of the synaptic transmission of
normal and silent synapses.

Role of a silent synapse in direction selectivity

This section reports the results related to a pivotal innovation introduced in our study. Biological
postsynaptic neurons have AMPA and NMDA receptors which receive glutamates (one type of
neurotransmitters) to modulate cell excitability (Fig. 3d). NMDA receptor-only excitatory synapses
are called ‘silent synapses’ since NMDA receptors alone cannot activate the neuronal membrane
potential®24. Activation of silent synapses (transition from silent to normal synapse) requires
correlated pre-, and postsynaptic activities, which are (i) NMDA activation by pre-synaptic
neurotransmission and (ii) rising ion concentration in postsynaptic neuron®%(red rectangle of Fig.
3d). Activation of silent synapses is critical for the early development of the neuron and brain by
increasing plasticity since the brain selects frequently activated connections by activation of silent
synapses and eliminates unimportant connections; that is one of the reasons the brain can learn so
efficiently®. In this context, we modelled the NMDA receptor-only silent synapse that requires both
pre- and postsynaptic activation conditions and implanted the silent synapse in the dendristor to
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figure out the role of the silent synapse in neuromorphic dendritic computation. In the dendristor,
the silent synapse keeps silent when the pre-synaptic condition (which is the input signal, Va), and
the postsynaptic condition (which is the effective gate voltage, vgs (the dendritic film potential)) are
lower than a certain threshold level and the silent synapse is activated when both conditions exceed
the threshold level (red rectangle of Fig. 3e). The detailed circuit structure of the silent synapse and
the activation mechanism are described in Supplementary Information S6. Since the inhibitory
synapses are mediated by another synaptic receptors (e.g., GABA receptor) and the silent inhibitory
synapse has not been reported in literatures, here we only focus on modelling the silence of excitatory
synapses.

We measure the degree of direction selectivity by the difference between peak current of IN-D
and OUT-D signals (AIps,peak = IDs,peak IN-D - IDspeak,0UT-D). The dendristor with a proximal silent synapse
(Fig. 3¢, yellow synaptic input) shows enhanced direction selectivity since the proximal silent synapse
suppresses OUT-D current (Fig. 3¢, blue curve) by silencing the fifth input signal. However, IN-D
current level (Fig. 3¢, red curve) is equal to that of the dendristor without silent synapse (Fig. 3b, red
curve) since the fifth silent synapse is activated by a high membrane potential induced by serial
activation of previous (1% to 4™) synaptic inputs. Therefore, Alps,peak becomes larger in the dendristor
with a silent synapse, which implies enhanced direction selectivity. The further analysis of the silent
synapse compared with the case of the disabled synapse and its position on a dendritic branch is
shown in Supplementary Information S7.

The result that the most proximal silent synapses induce remarkably higher direction selectivity,
is inspiring since the early brain and young neurons have more silent synapses than mature ones,
and it exploits them to establish new synaptic connection and form specific neuronal assemblies>.
Hence, we speculate that the increase of signal selectivity triggered by silent synapses could make
young neurons react to the stimulations more efficiently.

Neuromorphic dendritic neural circuit for various motion detections

In sensory nerve systems, direction and motion detection is implemented as biocomputation by
functional neural circuits that generate spike outputs (i.e., burst). Although in a dendristor branch,
the signal direction can be classified as the intensity of the Ibs, this is not straightforward as an output
of a biologically plausible system. To achieve easy readout, a circuit with two different and specific
outputs - one that indicates IN-D and the other that indicates OUT-D - is fundamental to designing a
network. Hence, we develop a direction-selective neuromorphic dendritic neural circuit (NDNC) by
connecting together three single-dendritic-branch neurons (Fig. 4a) which includes also silent and
inhibitory synapses. Each neuron performs dendritic computation such as spatiotemporal integration
for the direction selectivity (N1 and N2’) and inhibitory integration (N2). When the directional input
signal is applied simultaneously on N1 and N2’ as if they are connected to receptor cells, the internal
current outputs (Ipsni) of the neurons are shown in the red curves in Fig. 4b. To emulate the neuronal
action potential generation when the internal membrane potential reaches a certain threshold in a
neuron, we connected a burst circuit to each neuronal output (Supplementary Information S8). When
Ipsni exceeds the burst level (Fig. 3b,c), the dendristor neuron generates voltage pulses, so-called
“burst” (Vsniin Fig. 4b). The logic tables of the NDNC outputs (Supplementary Information 59) show
the burst output depending on the directions. N1 bursts only with IN-D signal because of the silent
synapse. N2’ without silent synapse bursts for both directions. N2 bursts only with OUT-D signal,
since IN-D signal activate the inhibitory synapse from N1 and supress the N2 signal. Therefore, the
NDNC generates two independent burst outputs depending on the signal direction and works as
direction indicators. NDNC with the normal synapse or the disabled synapse in N1 failed to detect
the directions (Supplementary Information S9). The selectivity enhancement of the silent synapse
plays a crucial role in NDNC detection. To prove the general dendritic computation capacity of
spatiotemporal signal integration and the effect of the morphology of the dendritic branch, we extend
the one-dimensional receptor to the two-dimensional receptive field of the artificial retina using the
basic principle of the NDNC formation (Fig. 4c). The 5x5 cells are mapped on 4 neurons (Ns, NN’, NE,
Nw’) with five dendritic branches. Each dendritic branch of Ns and Nx maps each column [a to e] and
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the dendritic branch of Nt and Nw maps each row [1-5]. There are two NDNCs that detect North and
South directions and East and West directions. Fig. 4e shows a table of input direction (the first row)
across the 2-dimensional (2D) receptive field versus output voltage of 4 output neurons (Ns, Nx, Nk,
Nw). The neurons respond only to the corresponding directions of the signal movement. Apart from
the directional movement, another important visual process of retina is to recognize the depth
movement of object. There are several principles of depth perception?”, we used the detection of the
size change depending on the movement along the depth. When the object is coming close, the large
area of the receptive cells (all the coloured circles) is activated (dark brown area of Fig. 4d) and when
the object is moving far, the activating area becomes small (only light brown area of Fig. 4d). Based
on the centre area of the receptive field, the radiating cells are mapped on dendritic branches. The
dendritic morphology should be also like the radiating shape to enhance the mapping efficiency.
When object is coming close, the neuron should be more activated, but not be overshoot because of
all-input activation. Therefore, here the mapping is not straightforward; the centre cells (all-time
activating) are mapped on distal synapses and the edge cells (activating when coming close) are
mapped on proximal synapses to strongly enhance the neuronal signal. The topology of the receptive
cells and the synapses on dendrites is opposite based on the centre. Neuronal connection in NDNC
is formed similarly with previous examples, but here three silent synapses are used to make the
asymmetry between Neose and Nrar. Since many synapses are activating together and longer, the more
silent synapses are necessary to make the significant current difference between close and far
direction. Fig. 4f shows the output pulses from Nuose and Nrar which are selectively activated with
corresponding movement. The circuit details of Fig 4.c,d are described in Supplementary Information
S10. This result proves that NDNC is capable to recognize crucial movement using dendritic
computation and shows a neuromorphic circuit design principle using spatial mapping and various
synaptic regulations, which is introduced for the first time in this study.
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Figure 4. Neuromorphic neural circuit for direction selectivity and morphological variation of
dendrites. (a) Direction selective neuromorphic dendritic neural circuit (NDNC) design. (b) The
current and voltage pulse output of N1 and N2 in the neuromorphic neural circuit of (a), depending
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on the input signal directions. Excitatory burst amplitude is 9 V and inhibitive burst amplitude is -3
V. (c) 2-dimensional direction detecting NDNC. The receptive cells (blue circles) are mapped on 4
neurons with 5 dendritic branches. (d) NDNC and dendritic mapping of the receptors that detect the
movement of object which is moving close or far. Based on the center position of the receptor, the
receptive cells (coloured circles) on the radiating line are mapped on a dendritic branch. The same-
coloured receptive cell and the synapse are connected. (e) 2-dimentional direction output pulses of
each neuron of (c). (f) Close and far output pulses of each neuron of (d). The first row is the input
direction and the first column is the output neuron for (e,f).

Neuromorphic visual perception of motion in 3D space

We further investigated neuromorphic motion perception in three-dimensional (3D)
environment. In 3D space, x and y axes represent 2D directions and the z axis is linked to the motion
depth. We designed 2D retina receptors (Fig. 5a) with two functional layers: a receptor layer detecting
2D movement directions (Fig. 5b, which is identical to Fig. 4c) and a receptor layer detecting depth
movement (Fig. 5¢c). A single receptive cell on the 2D direction layer (a yellow dot, Fig. 5b) and a
receptors’ unit of depth layer (the 2D depth receptors in Fig. 4d) are overlapped, so that, in the unit
time period, the 2D retina can detect the location on the 2D x-y plane and the size of object together.
Since a depth NDNC detect the size changes of the object moving along the x (or y) direction, all
depth receptive cells on the x (or y) axis (orange rectangle in Fig 5c) are connected to the mapping
neurons (Nz and N-2') of the NDNC. The detailed connection between the receptors and the NDNCs
is shown in Supplementary Information S11. For the 3D motion perception test, the butterfly’s motion
in 3D space (Fig. 5d) is projected on the 2D retina receptors over time (Fig. 5e). The 2D receptor inputs
activates 3D perceptive-NDNCs that generates six different neuronal output pulses (vy,, vy, and
vy,) (Fig. 5f). We reconstructed the neuronal pulse outputs onto 3D space as the unit directions
(coloured dashed arrows in Fig. 5g) and the order in which the arrows are arranged corresponds to
the order of pulse outputs. Then, we did vector summation when the x/y directional neurons burst
simultaneously with z directional neurons (red dashed rectangle in Fig. 5f and black arrows in Fig
5g). The reconstructed directions with final black arrows on 3D space are identical to the original
movement of butterfly.
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Figure 5. neuromorphic visual perception of motion in 3D environment. (a) The embedded 2D
retina receptor. The receptor layer for the 2D directions and the depth are combined into the
embedded receptor. (b) The receptor layer for 2D directions, which is linked to the NDNC responsible
for detecting 2-dimentional motion. (c) The receptor layer for depth, which is linked to the NDNC
responsible for detecting depth movement. (d) Illustration of a butterfly’s test movement of in 3D
space. (e) The projection of the butterfly’s motion in 3D space onto 2D receptors. (f) The pulses
produced by each directional neuron. Different directional neuronal outputs are represented by

different colors. (g) The visual perception of the motion in 3D environment, which is reconstructed
from the neuronal pulse outputs in (f).

3. Discussion

In this study, we pave the way towards a new direction in neuromorphic research that is
particularly specialized to process spatiotemporal visual patterns using dendritic computation. We
offer engineering rationale in this new direction by designing a neuromorphic computational model,
‘dendristor’ exploiting the intrinsic plasticity of neurotransistor*. The dendristor model mimics the
segmented dendritic branch morphology and its nonlinear signal integration which provides branch-
specific plasticity. The dendirstor exhibits dendritic supralinearity?5 that is commonly observed in
the somatosensory operation of neurons, such as orientation/angular tuning or detection of sensory
stimuli®*®, and therefore, the supralinearity of the dendristor serves as a measure of the neuronal
computation capacity in sensory operation. Also, the dendristor branch encodes spatiotemporal
sequence of the inputs and generates different output based on the direction on signal arrivals on a
branch, so-called direction selectivity. The direction selectivity of the dendristor can be considered as
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intrinsic spatiotemporal adaptation that is not obtainable in a point-neuron model that uses synaptic
adaptation. Interestingly and importantly, our study demonstrates how the silent synapse (NMDA-
only synapse) participates in dendritic computation to enhance the direction selectivity by actively
diminishing insignificant signals. The activation of the silent synapse is a result of the postsynaptic
dendritic integration while in conventional synaptic function without dendrites, presynaptic activity
predominates.

We expand the direction selectivity of a dendristor branch to build neuromorphic sensory neural
circuits that is the first neuromorphic demonstration of morphological neural circuits performing
bioplausible dendritic computation for direction selectivity®. Neuronal units in NDNC do not
process inputs in batches like in a typical ANN, but do computations according to branch-by-branch
mapping and inhibitory integration. The silent synapses contribute to forming the asymmetry in
direction sensitive neurons in the NDNC, which shows critical similarity with the asymmetric
morphology and the inhibition control in retinal direction-selective ganglion cells 3. Various
cognition examples in 2D shows that dendritic morphology plays as a mapping platform of the
spatial inputs, and the tailored mapping optimizes the spatiotemporal process. Also, we use
neuromorphic dendritic engineering to investigate the basis of perception and the representation of
the movement in 3D space. Our study demonstrated a brain-inspired working model of NDNC in
3D, though the mechanism of visual perception of motion in 3D space combining 2D directions and
depth movement has not yet been fully understood in cognitive neuroscience®'.

It was reported that to model the input-output behaviour of a cortical neuron it is necessary a
deep neural network with 5 to 8 hidden layers with up to 256 channels®2. However, when NMDA
receptors are not included in the model the equivalent deep neural network requires only one hidden
layer. This implies that the depth of the neural network arises from the modelling of the interaction
between NMDA receptors and dendritic morphology®2. Our study provides evidence in the same
direction because we can achieve visual motion perception by a neuromorphic system of 36 neurons
leveraging NMDA-only synapses and dendritic morphology. The dendritic visual process is less
computationally intensive because the NDNC perception does not require training and deep layer
process like existing convolutional neural network (CNN)-based motion detection does®. The
visual perception of the NDNC is qualitative representation of movement, which is related to how
the encoded signal is reconstructed and recognized like in the brain and this is distinct from
quantitative detection.

Neuromorphic research and neuroscientific research might share insights about neuro-inspired
computational principles based on the similarity of spatial morphology of the system and that allow
computational neurobiologists to explore and formulate a new hypothesis and neuromorphic
engineers to create intelligent systems. In this study, we provide biocomputational insights regarding
the inhibitory integration role depending on the strength (Supplementary Information S5) and the
enhancement function of the silent synapse in direction selectivity. In general, in vivo study of the
synapses is technically challenging to be realized, for example, most silent synapses naturally
disappear after the critical period. This result may give a hint into why neuronal signalling should
go through the stage of silent synapses in early neural circuit development.

The final remark is that we selected the neurotransistor model* for dendritic computation
among many existing neuromorphic devices such as memristors since the neurotransistor has a
structure that shares a single material layer as a neuronal membrane with multiple input gates and
its electrodynamics are more controllable. This material sharing structure is the core of dendristor
modeling since this single material branch can store accumulated history generated from different
inputs as localized polarization which influences the global branch. We strongly encourage
developing neuromorphic devices with various material types performing the dendritic computation
for spatiotemporal processing.

Methods and Supplementary Information: Methods and Supplementary Information are made available to the

public after the research is accepted.
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