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Abstract: Most neuromorphic technologies use a point-neuron model, missing the spatiotemporal 

nature of neuronal computation performed in dendrites. Dendritic morphology and synaptic 

organization are structurally tailored for spatiotemporal information processing, enabling various 

computations like visual perception. Here, we report on a neuromorphic computational model 

termed ‘dendristor’, which integrates functional synaptic organization with dendritic tree-like 

morphology computation. The dendristor presents bioplausible nonlinear integration of excitatory 

and inhibitory synaptic inputs with silent synapses and diverse spatial distribution dependency. 

We show that the dendristor can emulate direction selectivity, which is the feature to react robustly 

to a preferred signal direction on the dendrite. We discover that silent synapses can remarkably 

enhance direction selectivity, turning out to be a crucial player in dendritic computation processing. 

Finally, we develop neuromorphic dendritic neural circuits that can emulate a cognitive function 

such as motion perception in the retina. Using dendritic morphology, we achieve visual perception 

of motion in 3D space by various mapping of spatial information on different dendritic branches. 

This neuromorphic dendritic computation innovates beyond current neuromorphic computation 

and provides solutions to explore new skylines in artificial intelligence, neurocomputation and 

brain-inspired computing. 

Keywords: neuromorphic engineering; neuromorphic computing; dendritic computation; silent 

synapse; motion perception  

 

1. Introduction  

Neuromorphic research aims to develop artificial intelligence (AI) 1 and to analyse neuroscience 

using neuromorphic architectures2–4. These architectures emulate particular neuroscientific 

operations like synaptic plasticity5, or neuronal nonlinearity6 (Fig. 1a(i-ii)), and their learning 

algorithm is inspired by brain, but mainly driven by artificial neural network (ANN) and spike neural 

network (SNN). However, the point neuron model7,8 used in these architectures is a loose 

schematization of a biological neuron. There is still a large gap between the neuromorphic models 

and the nervous systems due to the morphological and the computational complexity of neuron’s 

subcellular components9,10, such as dendrites and synapses, and their connectivity11–15. Therefore, 

researchers included dendritic computation7,16 in a master plan for neuromorphic research17,18, 

discussing its potential for AI problem-solving  

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 June 2023                   doi:10.20944/preprints202306.0438.v1

©  2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202306.0438.v1
http://creativecommons.org/licenses/by/4.0/


 

 

Figure 1. Neuromorphic dendrite model representation. (a) Schematics of (i) a neuromorphic neuron 

model with dendritic operation which is driven by an operational rationale which is typical of 

engineering, (ii) a biocomputational neuron model composed of the dendritic trees with synaptic 

inputs, and (iii) a proposed neuromorphic neuron model with dendritic spatial morphology, so-called 

‘dendristor’, composed of the first layer of the dendritic bunch, which driven by spatial morphology 

of the biosystem. (b) Illustration of biological dendrites in a neuron and their functions. (c) Schematic 

diagram of multi-branch dendristor with multiple gate inputs and the source-drain output. (d) Circuit 

modeling of the dendristor with one branch. (e) Output comparison between the neurotransistor 

device and dendristor model with single input. (f) Simplified illustration of a dendritic branch with 

four inputs with different distances from the dendritic output (IDS). (g) Schematics of nonlinear signal 

integration of four synaptic gate inputs (vGS,1-4) within a dendritic branch. (h) The output current (IDS, 

black, red, blue and green curves) responding to input pulse-train (vGS, dark blue) applying on 

synaptic gate inputs (Gj, where j:1-4) of the dendristor (vGS pulse period: 500 ms, pulse width: 250ms, 

pulse amplitude: 9 V). The inset shows the enlarged IDS response to pulses. 

Dendritic computation is a neuronal signal process that occurs in dendrites and involves the 

integration of synaptic inputs to control the somatic membrane potential. The morphology of the 

dendritic tree19–21 and the distribution of synapses on dendritic branches22,23 are critical factors in 

determining the nonlinearity of the dendritic computation, which enables complicated 
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computational tasks by functional segregation and selectivity of branches (Fig. 1b). The dendritic 

arborization (tree-like branching out, Fig. 1a(ii)) increases the complexity of the computation in the 

neuronal system to enhance learning24 and computational efficiency25,26. The spatial distribution of 

synapses on a dendritic branch drives core features of the dendritic computation such as encoding 

the spatiotemporal synaptic input signals 8,27,28 and the direction selectivity 21,29,30, which is particularly 

important in the sensory neural circuits to encode spatiotemporal input signals21,30–35 and implement 

memory and learning36–40. Direction selectivity of a dendrite is the feature to react robustly to a 

preferred signal direction on the dendrite (for instance, sequentially arriving synaptic inputs from 

distal to proximal to soma) and to react weakly in the opposite direction 21,29,30. Excitatory and 

inhibitory integrations within a dendrite have been studied last decade 8,19,22,41, but the role of a ‘silent 

synapse’42–44, which is dormant and wake up only under certain dendritic (post-synaptic) 

circumstances to leverage the dendritic integration, has not yet been fully understood.  

Dendritic computation provides essential functionalities in the neurocomputation, and is 

intrinsically ideal for spatiotemporal processing18, but it is not widely studied in the neuromorphic 

field. There have been attempts to include the dendritic functions in neuromorphic devices and 

architectures including memristors45–47 (Fig. 1a(i)). However, those architecture can be considered as 

an extension of the point neuron model (c.f. linear summation of weighted synaptic inputs enters into 

a neuronal body with nonlinear transfer function) with added nonlinear function of the dendrite to 

increase the learning efficiency. For effective modelling of neuromorphic dendritic computation, a 

computational framework of dendritic computation (i.e., neuronal unit model) is required to emulate 

electrical dynamics and the spatial morphology of dendrites. A ‘neurotransistor’ was recently 

reported, which uses a field-effect transistor (FET) coated with an ion-doped sol-gel dielectric film48 

to emulate neuronal intrinsic membrane plasticity. This device can perform a new form of the 

computation by implementing the nonlinear dynamic signal integration property occurring in the 

dendritic branch.  

Here, we introduce a novel type of dendritic computation model called a ‘dendristor’ using 

neurotransistors48 with dendrite-like spatial morphological characteristics and synaptic organization. 

The dendristor performs nonlinear integration of various synapses based on their distribution on a 

dendritic branch (Fig. 1a(iii)). We investigate the role of the spatial distribution of diverse types of 

synapses in dendritic nonlinear integration, including excitatory, inhibitory, and silent synapses. The 

direction selectivity of a dendirstor branch is successfully demonstrated, which exhibits a greater 

response to a preferred direction of a sequentially incoming input signal. We adopt the modelling of 

silent synapses in dendritic computation, which is essential for enhancing the direction selectivity. 

We propose a neuromorphic dendritic neural circuit (NDNC) which maps the spatial information 

from the receptors on a one-dimensional array to the dendritic branches. Then, combining multiple 

NDNCs, we model a network of multiple dendritic neurons for spatiotemporal processing that 

allows visual motion perception in 3D space. Our work offers a novel bioplausible neuromorphic 

computation and a simulation environment to predict and elucidate the biocomputational 

phenomena that are currently challenging to study in in-vitro or in-vivo neuroscientific experiments.  

2. Results  

Neuromorphic dendritic neuron and its output dynamics 

We form the neuromorphic dendritic neuron model (Fig. 1c,d) based on the physics of the 

neurotransistor48 (Fig. 1e), so we call it ‘dendristor.’ We selected the existing neuromorphic hardware 

platform that can stably and closely mimic dendritic properties, and therefore, is able to show various 

spatiotemporal performances of the dendritic computation. The Si-based transistor provides stable 

current dynamics and good controllability as a device compared to other types of electronic devices. 

The connection of the multiple specular transistors (Fig. 1c) provides a summated source-drain 

current like the dendritic signal summation at the point where the dendritic branches are combined. 

The dendristor model is formed based on the physical phenomena of metal-oxide-semiconductor 

field-effect transistors (MOSFETs) covered with ion-doped soft dielectric material, which includes 
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mobile ions to mimic the neuronal membrane's ion diffusion in the neuronal membrane48. The 

synaptic inputs are applied as gate voltage (vGS,ij, where i is the number of dendritic branches and j is 

the number of the synaptic inputs) to metal electrodes, Gij (Fig. 1c) on the dendritic branch and 

transforms to output current, IDS. The physical design and properties of the device model are 

explained in Supplementary Information S1. Fig. 1d illustrates the simplified LT-SPICE circuit model, 

which illustrates a single dendristor branch formed with the large-signal MOSFET model and the 

sub-circuit of the ion-doped sol-gel dielectric film. The circuit model has three functional parts: (i) a 

circuit for the adaptive polarization of ions occurring in the film triggered by each gate, (ii) a 

combined RC circuit of the dendritic integration film contacting Si nanowire oxide that provides 

effective gate voltage to the transistor channel, and (iii) the MOSFET large-signal circuit (Fig. 1d). The 

mathematical model and corresponding phenomena on a neurotransistor48 are explained in 

Supplementary Information S2. The description of the circuit elements and their parameters are 

summarized in Methods. The current output dynamics of the neurotransistor and the dendristor 

model with single gate input in Fig. 1e demonstrates how closely the model simulates the device 

physics. Most important element in the dendritic computation is the variable resistance, Rhj, which 

identifies each synaptic input's location related to the length between the synaptic input and the 

dendritic integration center (i.e., the channel of the transistor). Rhj is updated by the present gate input 

(vGS,j) and the internal state of the film, which can be defined as an effective gate voltage (vgS, the 

voltage between node g and node S) of the transistor, and their relation is described in the following 

equation:  

��� =  ��� ∙ ����,� − ����/��,�                                                          (1) 

where rhj is a constant resistance parameter (unit: Ω) of the film between the jth gate input and 

the conductive channel output, and VA,j is a voltage amplitude of vGS,j. As the resistance is relevant to 

the length of the ionic migration path, rhj is the distance-correlated factor based on the film distance 

from the nanowire channel to the gate. Hence, each synaptic input signal is differently weighted by 

rhj in a single dendritic branch to map the spatial information. The effective gate voltage, vgS, is another 

critical value since it defines Rhj and IDS (Fig. 1d). The built-in potential in the film (vgS) evolves 

nonlinearly with respect to vGS,j. In sum, the dendritic integration of multiple inputs in a dendritic 

branch is obtained as a combined process of the time-varying nonlinear vgS change and the nonlinear 

vgS-to-IDS transfer function of a MOSFET. All results below are obtained from the LT-SPICE circuit 

simulation. 

Fig. 1f is a schematic diagram of a dendritic branch that receives four synaptic inputs entering 

from different locations. Since a distal input requires a longer film length than a proximal input, rh of 

the distal input is higher than the proximal input, such as rh1 = 1.25 kΩ, rh2 = 1 kΩ, rh3 = 0.75 kΩ and 

rh4 = 0.5kΩ. The first dendritic integration occurs locally near the interface of the film, which is 

strongly affected by the position of the synaptic input and influences to the other synaptic input 

integration (the serial connection of nonlinear integration in the dendritic branch layer in Fig. 1g). 

Global integration is done by the field-effect of the transistor (the transistor integration in Fig. 1g). 

Fig. 1h shows the nonlinear current output dynamics of the dendristor (IDS, by repeated input pulses, 

VGS) when the voltage pulsed-train is applied on the gate inputs, and each current dynamics are 

depending on the position of the synaptic inputs in a single dendritic branch. The excitatory input 

voltage pulse (amplitude, VA: 9V, pulse period: 500 ms, and pulse width: 250 ms) is applied for 300 

seconds and stopped. IDS increases along the sigmoidal trajectory by input pulses. The current 

increase implies that the device has a short-term memory function as maintaining the electric 

potential in the film when the pulse is removed. Relevant memory phenomenon in IDS-VGS curve and 

its comparison between the dendirstor model and the neurotransistor measurement are explained in 

Supplementary Information S3. The distal input induces stronger IDS increase than the proximal input 

does. Under the absence of the input pulses, IDS reduces exponentially.  

Comparing the nonlinear integration of biological dendrite and the dendristor  

We compared the coincident input signal integration rule of the biological dendrite and the 

dendristor (Fig. 2). The important aspect in this result is the different integration rules of coincident 
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inputs within a single dendritic branch (Fig. 2a(i)) and between different dendritic branches (Fig. 

2a(ii)). Fig. 2b(i) shows in-vivo measurement of excitatory postsynaptic potential (EPSP) of pyramidal 

neuron cells49. The EPSP was measured in a soma when two different synaptic inputs are coincidently 

applied on a dendritic branch. The arithmetic sum of two individual EPSPs (blue) is different from 

the combined EPSP (orange) when two inputs are coincidently applied. The relation between the 

expected peak EPSP, which is the arithmetic sum of two individual EPSPs, and the measured peak 

EPSP is summarized in Fig. 2c(i)49. The measured peaks between branches (green dots) show an 

almost identical trend (i.e., linear) with the expected peak EPSP (black dot line). However, the 

measured peaks within a branch (coloured dots) show a supralinear curve regarding the expective 

peak EPSP, which is a dominant phenomenon in the dendrite27. This biological result shows the 

different integration rule of the dendrite (within branch condition) and the soma (between branch 

condition).  

 

Figure 2. Nonlinear synaptic integration in dendrites and the dendristor. (a) Illustration of synaptic 

organizations (i) within a dendritic branch and (ii) between dendritic branches. (synapse position 1: 

rh1 = 1.25 kΩ, 2: rh2 = 1 kΩ, 3: rh3 = 0.75 kΩ, 4: rh4 = 0.5 kΩ) (b) comparison between (i) the neuronal 

output response (EPSP) to two excitatory synaptic inputs49 and (ii) the dendristor output current, 

IDS,baseline (the bottom envelop of IDS) with two coincident excitatory synaptic inputs (rh of two inputs: 

0.75kΩ, 1 kΩ) within a branch. (c) Plot of the dendritic integration within a branch and between 

branches of (i) biological dendrite49 and (ii) dendristor. Data in the plot corresponds to the peak 

measurement in (b). Plot shows the relationship between measured peak (EPSP or peak current 

(IDS,peak at t = 200 s), coloured dots) and expected peak (an arithmetic sum of two individual EPSP 

outputs or IDS,peak, dashed line). (b(i), c(i)) are reproduced by courtesy of 49. (d-e) Excitatory and 
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inhibitory integration of the dendristor. (d) The IDS responses of the dendristor with various 

combinations of excitatory, E, and inhibitory, I, synapses on a dendritic branch. (e) Dendritic 

integration of I and E inputs within a dendritic branch and between two different branches. (Synaptic 

inputs positioned on 1 and 4 for (d, e).) (f) The inhibitory efficacy (excitatory IDS reduction percentage 

by inhibitory signal) under coincident E and I inputs activation depending on I position. (rh,I is varied 

from 1 to 4) while E position is fixed (E :1 for on-path case, E:4 for off-path case) (VA,E is varied from 3 

to 12 V for (e) and VA,E = 9 V for (f), Pulse period: 500 ms, pulse width: 250 ms for (c-f)). 

Likewise, the analogous experiments are conducted in a dendristor (Fig. 2b(ii),c(ii)). Two 

synaptic inputs on the different locations within a branch (coloured dots) and on separated branches 

(green squares) are defined as different rh values, such as 0.5, 0.75, 1, and 1.25 kΩ, which are 

represented as the location 4, 3, 2 and 1 respectively (Fig. 2a). The bottom envelope of the IDS (IDS,baseline) 

was extracted to show the conductivity change in the absence of the input voltage (Fig. 2b(ii)). The 

integration of two synaptic inputs within a dendritic branch of the dendristor shows the different 

dynamic responses from the arithmetic sum of individual IDS,baseline, depending on the strength of the 

input pulses. For example, the medium amplitude of the input pulses (VA = 9 V) induces a stronger 

IDS increase in a dendritic branch than the arithmetic sum, but the stronger input (VA = 20 V) induces 

a lower output peak than the arithmetic sum. This nonlinear relation between the integration within 

a branch and the expected sum is demonstrated in Fig. 2c(ii). IDS,peak measured within a branch shows 

supralinearity to the arithmetic sum of individual current.  IDS,peak from two different branches (green 

squares) was identical to the arithmetic sum of individual current (dashed line) like in the biological 

dendrite. The location of the synaptic inputs on a dendristor branch influences nonlinearity. The 

supralinearity of the integrated current is more prominent with distal input (1,2). The contributions 

of various synaptic input locations, input voltage intensity, and frequency on the nonlinearity are 

summarized in Supplementary Information S4. A biological neuron cell in Fig. 2c(i) shows the large 

degree of nonlinear signal integration within a dendritic branch, compared to the dendristor in Fig. 

2c(ii). The lower degree of the nonlinearity of the dendristor is due to the electrical property of the 

major component, the FET, of the dendristor model: IDS of the FET increases by vgS after turning on 

(vgS > Vth) without saturation. 

Inhibitory integration in the dendristor 

The dendristor can emulate the integration of the excitatory and inhibitory synaptic inputs. We 

applied positive and negative voltage pulses as excitatory and inhibitory synaptic inputs, 

respectively. Fig. 2d shows the IDS response when the excitatory (E) and inhibitory (I) inputs 

coincidentally enter into the distal (D) and proximal (P) gates. While the excitatory synapses-only 

inputs (EE, red curve) induce strong IDS increase, inhibitory synapse-only inputs (II, black line) are 

unable to induce the increase. The proximal inhibitory inputs (IE, green curve) are more effective 

than the distal (EI, navy curve) to suppress IDS. The inhibitory suppression in dendritic integration as 

a function of inhibitory voltage amplitude is shown in Supplementary information S5. The 

integration of excitatory and inhibitory synapses within a branch shows sublinearity (Fig. 2e, filled 

square and dots), which is relevant to the biological inhibitory integration50. For this analysis, the 

same analytical technique as Fig. 2c was used (Expected peak IDS,peak means the arithmetic sum of each 

output current from single E and I activation, and measured peak IDS, peak is the integrated current 

from both E and I are activated). Noteworthily, the amplitude of inhibitory input signal strongly 

affects the nonlinearity (Supplementary information S5). This trend is fascinating since the 

nonlinearity of excitatory inputs integration within a branch (EE, Supplementary Information S4e) 

shows weak dependency on the input voltage variation, but it depends on the intrinsic dendrite 

structure. In contrast, inhibitory synapses can strongly modulate the nonlinearity of dendritic 

integration (i.e., non-static nonlinearity), which relies on computational variables like input intensity 

and locations. The different features of nonlinearities in EE and IE integration show how the neuronal 

system uses different nonlinear integration, which can be used as a theoretical hypothesis for new 

biocomputational studies. 
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Fig. 2f reports the result of the dendristor experiment where the excitatory input E is fixed at 

distal (green) and proximal (navy) positions, and the position of inhibitory input I is shifted over the 

dendritic branch, considering both within and between branch settings. The inhibitory efficacy (E 

current reduction percentage by I) within a branch is linearly changed by the position of the 

inhibitory synapse when the inhibitory input voltage is small, like -3 V. However, when the inhibitory 

input signal becomes larger (-4 and -5 V), the inhibitory efficacy of the ‘on-path (IE)’ cases reaches the 

saturation and shows nonlinear trend. On the other hand, in the between branch setting, the 

inhibitory synapse is unable to regulate the excitatory inputs regardless of its position. This 

observation is partially corresponding to the in vivo measurement of local dendritic response51. Note, 

since neurons in a different part of the brain area show different signalling based on their 

functionality52 and our results agree with this biological study51. 

Dendritic direction selectivity 

The direction selectivity of a spatiotemporal input signal is a landmark pattern recognition 

process for information pre-processing in sensory neural circuits, and it is one of the most 

investigated phenomena in biological studies on dendritic signal integration21,23,30–35. Replication of 

direction selectivity in neuromorphic computing is a crucial step toward complex dendritic 

computation for visual motion perception. A dendrite of a cortical neuron and the EPSP measured at 

the soma with spatiotemporal input sequences are shown in Fig. 3a53. The direction of the input signal 

entering from the distal- to proximal relative to the soma is called the IN direction (IN-D, Fig. 3a red 

arrow), and the opposite input signal direction is the OUT direction (OUT-D, Fig. 3a blue arrow). The 

larger amplitude of EPSP is observed when the input signal moves in IN-D. Similarly, we perform 

an experiment where the synaptic inputs of the dendristor is sequentially activated with the 

excitatory pulses in IN-D and OUT-D from the dendristor channel (Fig. 3b). The excitatory pulses are 

applied on one input gate for 100 seconds and then passed to the following input gate. The direction 

of the sequentially arrived input signal is encoded as the dynamics of the IDS. IN-D response shows a 

higher current peak amplitude (IDS,peak) and a longer time to reach the peak (tpeak) than the OUT-D 

response. This result is comparable to the directional selectivity of the biological dendrite in Fig. 3a. 

In the biological dendrite study, tpeak difference between the directions was not clearly observed, but 

computational modelling studies of the dendrite showed a similar tpeak difference to our study21,29. 

The burst level in Fig. 3b is chosen to design a direction-selective neural circuit (Fig. 4a) in which a 

neuron with the single dendritic branch bursts when IDS exceeds the burst level like in a biological 

neuron, which will be discussed in the following section.  
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Figure 3. Direction selectivity of the dendristor and the effect of a silent synapse. (a) Biological 

dendrite with synaptic inputs (numbers) and the direction selectivity shown as EPSP induced by 

sequentially entering inputs in IN-D (red) and OUT-D (blue) directions (reproduced by courtesy of 
53). (b) Direction selectivity of the dendristor with normal synapses shown as IDS, the sequential 

response of the voltage pulses applied to the synaptic input gates. Numbers on the curve indicate the 

activated gate at the corresponding time period. (c) Direction selectivity of dendristors with a silent 

synapse (yellow) (IN-D: from G1 to G5, OUT-D: from G5 to G1, where rh1 = 1.5 kΩ, rh2 = 1.25 kΩ, rh3 = 1 

kΩ, rh4 = 0.75 kΩ and rh5 = 0.5 kΩ for (b,c)) (d) Schematics of the synaptic transmission of normal and 

silent synapses on a biological dendrite. (e) The circuit modelling of the synaptic transmission of 

normal and silent synapses. 

Role of a silent synapse in direction selectivity  

This section reports the results related to a pivotal innovation introduced in our study. Biological 

postsynaptic neurons have AMPA and NMDA receptors which receive glutamates (one type of 

neurotransmitters) to modulate cell excitability (Fig. 3d). NMDA receptor-only excitatory synapses 

are called ‘silent synapses’ since NMDA receptors alone cannot activate the neuronal membrane 

potential42,43. Activation of silent synapses (transition from silent to normal synapse) requires 

correlated pre-, and postsynaptic activities, which are (i) NMDA activation by pre-synaptic 

neurotransmission and (ii) rising ion concentration in postsynaptic neuron54,55(red rectangle of Fig. 

3d). Activation of silent synapses is critical for the early development of the neuron and brain by 

increasing plasticity since the brain selects frequently activated connections by activation of silent 

synapses and eliminates unimportant connections; that is one of the reasons the brain can learn so 

efficiently55. In this context, we modelled the NMDA receptor-only silent synapse that requires both 

pre- and postsynaptic activation conditions and implanted the silent synapse in the dendristor to 
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figure out the role of the silent synapse in neuromorphic dendritic computation. In the dendristor, 

the silent synapse keeps silent when the pre-synaptic condition (which is the input signal, VA), and 

the postsynaptic condition (which is the effective gate voltage, vgS (the dendritic film potential)) are 

lower than a certain threshold level and the silent synapse is activated when both conditions exceed 

the threshold level (red rectangle of Fig. 3e). The detailed circuit structure of the silent synapse and 

the activation mechanism are described in Supplementary Information S6. Since the inhibitory 

synapses are mediated by another synaptic receptors (e.g., GABA receptor) and the silent inhibitory 

synapse has not been reported in literatures, here we only focus on modelling the silence of excitatory 

synapses.  

We measure the degree of direction selectivity by the difference between peak current of IN-D 

and OUT-D signals (ΔIDS,peak = IDS,peak,IN-D - IDS,peak,OUT-D). The dendristor with a proximal silent synapse 

(Fig. 3c, yellow synaptic input) shows enhanced direction selectivity since the proximal silent synapse 

suppresses OUT-D current (Fig. 3c, blue curve) by silencing the fifth input signal. However, IN-D 

current level (Fig. 3c, red curve) is equal to that of the dendristor without silent synapse (Fig. 3b, red 

curve) since the fifth silent synapse is activated by a high membrane potential induced by serial 

activation of previous (1st to 4th) synaptic inputs. Therefore, ΔIDS,peak becomes larger in the dendristor 

with a silent synapse, which implies enhanced direction selectivity. The further analysis of the silent 

synapse compared with the case of the disabled synapse and its position on a dendritic branch is 

shown in Supplementary Information S7.    

The result that the most proximal silent synapses induce remarkably higher direction selectivity, 

is inspiring since the early brain and young neurons have more silent synapses than mature ones, 

and it exploits them to establish new synaptic connection and form specific neuronal assemblies54,56. 

Hence, we speculate that the increase of signal selectivity triggered by silent synapses could make 

young neurons react to the stimulations more efficiently.  

Neuromorphic dendritic neural circuit for various motion detections 

In sensory nerve systems, direction and motion detection is implemented as biocomputation by 

functional neural circuits that generate spike outputs (i.e., burst). Although in a dendristor branch, 

the signal direction can be classified as the intensity of the IDS, this is not straightforward as an output 

of a biologically plausible system. To achieve easy readout, a circuit with two different and specific 

outputs - one that indicates IN-D and the other that indicates OUT-D - is fundamental to designing a 

network. Hence, we develop a direction-selective neuromorphic dendritic neural circuit (NDNC) by 

connecting together three single-dendritic-branch neurons (Fig. 4a) which includes also silent and 

inhibitory synapses. Each neuron performs dendritic computation such as spatiotemporal integration 

for the direction selectivity (N1 and N2’) and inhibitory integration (N2). When the directional input 

signal is applied simultaneously on N1 and N2’ as if they are connected to receptor cells, the internal 

current outputs (IDS,Ni) of the neurons are shown in the red curves in Fig. 4b. To emulate the neuronal 

action potential generation when the internal membrane potential reaches a certain threshold in a 

neuron, we connected a burst circuit to each neuronal output (Supplementary Information S8). When 

IDS,Ni exceeds the burst level (Fig. 3b,c), the dendristor neuron generates voltage pulses, so-called 

“burst” (VB,Ni in Fig. 4b). The logic tables of the NDNC outputs (Supplementary Information S9) show 

the burst output depending on the directions. N1 bursts only with IN-D signal because of the silent 

synapse. N2’ without silent synapse bursts for both directions. N2 bursts only with OUT-D signal, 

since IN-D signal activate the inhibitory synapse from N1 and supress the N2 signal. Therefore, the 

NDNC generates two independent burst outputs depending on the signal direction and works as 

direction indicators. NDNC with the normal synapse or the disabled synapse in N1 failed to detect 

the directions (Supplementary Information S9). The selectivity enhancement of the silent synapse 

plays a crucial role in NDNC detection. To prove the general dendritic computation capacity of 

spatiotemporal signal integration and the effect of the morphology of the dendritic branch, we extend 

the one-dimensional receptor to the two-dimensional receptive field of the artificial retina using the 

basic principle of the NDNC formation (Fig. 4c). The 5x5 cells are mapped on 4 neurons (NS, NN’, NE, 

NW’) with five dendritic branches. Each dendritic branch of NS and NN maps each column [a to e] and 
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the dendritic branch of NE and NW maps each row [1-5]. There are two NDNCs that detect North and 

South directions and East and West directions. Fig. 4e shows a table of input direction (the first row) 

across the 2-dimensional (2D) receptive field versus output voltage of 4 output neurons (NS, NN, NE, 

NW). The neurons respond only to the corresponding directions of the signal movement. Apart from 

the directional movement, another important visual process of retina is to recognize the depth 

movement of object. There are several principles of depth perception57, we used the detection of the 

size change depending on the movement along the depth. When the object is coming close, the large 

area of the receptive cells (all the coloured circles) is activated (dark brown area of Fig. 4d) and when 

the object is moving far, the activating area becomes small (only light brown area of Fig. 4d). Based 

on the centre area of the receptive field, the radiating cells are mapped on dendritic branches. The 

dendritic morphology should be also like the radiating shape to enhance the mapping efficiency. 

When object is coming close, the neuron should be more activated, but not be overshoot because of 

all-input activation. Therefore, here the mapping is not straightforward; the centre cells (all-time 

activating) are mapped on distal synapses and the edge cells (activating when coming close) are 

mapped on proximal synapses to strongly enhance the neuronal signal. The topology of the receptive 

cells and the synapses on dendrites is opposite based on the centre. Neuronal connection in NDNC 

is formed similarly with previous examples, but here three silent synapses are used to make the 

asymmetry between Nclose and Nfar. Since many synapses are activating together and longer, the more 

silent synapses are necessary to make the significant current difference between close and far 

direction. Fig. 4f shows the output pulses from Nclose and Nfar which are selectively activated with 

corresponding movement. The circuit details of Fig 4.c,d are described in Supplementary Information 

S10. This result proves that NDNC is capable to recognize crucial movement using dendritic 

computation and shows a neuromorphic circuit design principle using spatial mapping and various 

synaptic regulations, which is introduced for the first time in this study.    

 

Figure 4. Neuromorphic neural circuit for direction selectivity and morphological variation of 

dendrites. (a) Direction selective neuromorphic dendritic neural circuit (NDNC) design. (b) The 

current and voltage pulse output of N1 and N2 in the neuromorphic neural circuit of (a), depending 
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on the input signal directions. Excitatory burst amplitude is 9 V and inhibitive burst amplitude is -3 

V. (c) 2-dimensional direction detecting NDNC. The receptive cells (blue circles) are mapped on 4 

neurons with 5 dendritic branches. (d) NDNC and dendritic mapping of the receptors that detect the 

movement of object which is moving close or far. Based on the center position of the receptor, the 

receptive cells (coloured circles) on the radiating line are mapped on a dendritic branch. The same-

coloured receptive cell and the synapse are connected. (e) 2-dimentional direction output pulses of 

each neuron of (c). (f) Close and far output pulses of each neuron of (d). The first row is the input 

direction and the first column is the output neuron for (e,f). 

Neuromorphic visual perception of motion in 3D space 

We further investigated neuromorphic motion perception in three-dimensional (3D) 

environment. In 3D space, x and y axes represent 2D directions and the z axis is linked to the motion 

depth. We designed 2D retina receptors (Fig. 5a) with two functional layers: a receptor layer detecting 

2D movement directions (Fig. 5b, which is identical to Fig. 4c) and a receptor layer detecting depth 

movement (Fig. 5c). A single receptive cell on the 2D direction layer (a yellow dot, Fig. 5b) and a 

receptors’ unit of depth layer (the 2D depth receptors in Fig. 4d) are overlapped, so that, in the unit 

time period, the 2D retina can detect the location on the 2D x-y plane and the size of object together. 

Since a depth NDNC detect the size changes of the object moving along the x (or y) direction, all 

depth receptive cells on the x (or y) axis (orange rectangle in Fig 5c) are connected to the mapping 

neurons (Nz and N-z’) of the NDNC. The detailed connection between the receptors and the NDNCs 

is shown in Supplementary Information S11. For the 3D motion perception test, the butterfly’s motion 

in 3D space (Fig. 5d) is projected on the 2D retina receptors over time (Fig. 5e). The 2D receptor inputs 

activates 3D perceptive-NDNCs that generates six different neuronal output pulses (�±�, �±�, and 

�±� ) (Fig. 5f). We reconstructed the neuronal pulse outputs onto 3D space as the unit directions 

(coloured dashed arrows in Fig. 5g) and the order in which the arrows are arranged corresponds to 

the order of pulse outputs. Then, we did vector summation when the x/y directional neurons burst 

simultaneously with z directional neurons (red dashed rectangle in Fig. 5f and black arrows in Fig 

5g). The reconstructed directions with final black arrows on 3D space are identical to the original 

movement of butterfly.   
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Figure 5. neuromorphic visual perception of motion in 3D environment. (a) The embedded 2D 

retina receptor. The receptor layer for the 2D directions and the depth are combined into the 

embedded receptor. (b) The receptor layer for 2D directions, which is linked to the NDNC responsible 

for detecting 2-dimentional motion. (c) The receptor layer for depth, which is linked to the NDNC 

responsible for detecting depth movement. (d) Illustration of a butterfly’s test movement of in 3D 

space. (e) The projection of the butterfly’s motion in 3D space onto 2D receptors. (f) The pulses 

produced by each directional neuron. Different directional neuronal outputs are represented by 

different colors. (g) The visual perception of the motion in 3D environment, which is reconstructed 

from the neuronal pulse outputs in (f). 

3. Discussion 

In this study, we pave the way towards a new direction in neuromorphic research that is 

particularly specialized to process spatiotemporal visual patterns using dendritic computation. We 

offer engineering rationale in this new direction by designing a neuromorphic computational model, 

‘dendristor’ exploiting the intrinsic plasticity of neurotransistor48. The dendristor model mimics the 

segmented dendritic branch morphology and its nonlinear signal integration which provides branch-

specific plasticity. The dendirstor exhibits dendritic supralinearity27,58 that is commonly observed in 

the somatosensory operation of neurons, such as orientation/angular tuning or detection of sensory 

stimuli59,60, and therefore, the supralinearity of the dendristor serves as a measure of the neuronal 

computation capacity in sensory operation. Also, the dendristor branch encodes spatiotemporal 

sequence of the inputs and generates different output based on the direction on signal arrivals on a 

branch, so-called direction selectivity. The direction selectivity of the dendristor can be considered as 
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intrinsic spatiotemporal adaptation that is not obtainable in a point-neuron model that uses synaptic 

adaptation. Interestingly and importantly, our study demonstrates how the silent synapse (NMDA-

only synapse) participates in dendritic computation to enhance the direction selectivity by actively 

diminishing insignificant signals. The activation of the silent synapse is a result of the postsynaptic 

dendritic integration while in conventional synaptic function without dendrites, presynaptic activity 

predominates.  

We expand the direction selectivity of a dendristor branch to build neuromorphic sensory neural 

circuits that is the first neuromorphic demonstration of morphological neural circuits performing 

bioplausible dendritic computation for direction selectivity35. Neuronal units in NDNC do not 

process inputs in batches like in a typical ANN, but do computations according to branch-by-branch 

mapping and inhibitory integration. The silent synapses contribute to forming the asymmetry in 

direction sensitive neurons in the NDNC, which shows critical similarity with the asymmetric 

morphology and the inhibition control in retinal direction-selective ganglion cells 32. Various 

cognition examples in 2D shows that dendritic morphology plays as a mapping platform of the 

spatial inputs, and the tailored mapping optimizes the spatiotemporal process. Also, we use 

neuromorphic dendritic engineering to investigate the basis of perception and the representation of 

the movement in 3D space. Our study demonstrated a brain-inspired working model of NDNC in 

3D, though the mechanism of visual perception of motion in 3D space combining 2D directions and 

depth movement has not yet been fully understood in cognitive neuroscience61.  

It was reported that to model the input-output behaviour of a cortical neuron it is necessary a 

deep neural network with 5 to 8 hidden layers with up to 256 channels62. However, when NMDA 

receptors are not included in the model the equivalent deep neural network requires only one hidden 

layer. This implies that the depth of the neural network arises from the modelling of the interaction 

between NMDA receptors and dendritic morphology62. Our study provides evidence in the same 

direction because we can achieve visual motion perception by a neuromorphic system of 36 neurons 

leveraging NMDA-only synapses and dendritic morphology. The dendritic visual process is less 

computationally intensive because the NDNC perception does not require training and deep layer 

process like existing convolutional neural network (CNN)-based motion detection does63.  The 

visual perception of the NDNC is qualitative representation of movement, which is related to how 

the encoded signal is reconstructed and recognized like in the brain and this is distinct from 

quantitative detection. 

Neuromorphic research and neuroscientific research might share insights about neuro-inspired 

computational principles based on the similarity of spatial morphology of the system and that allow 

computational neurobiologists to explore and formulate a new hypothesis and neuromorphic 

engineers to create intelligent systems. In this study, we provide biocomputational insights regarding 

the inhibitory integration role depending on the strength (Supplementary Information S5) and the 

enhancement function of the silent synapse in direction selectivity. In general, in vivo study of the 

synapses is technically challenging to be realized, for example, most silent synapses naturally 

disappear after the critical period. This result may give a hint into why neuronal signalling should 

go through the stage of silent synapses in early neural circuit development.   

The final remark is that we selected the neurotransistor model48 for dendritic computation 

among many existing neuromorphic devices such as memristors since the neurotransistor has a 

structure that shares a single material layer as a neuronal membrane with multiple input gates and 

its electrodynamics are more controllable. This material sharing structure is the core of dendristor 

modeling since this single material branch can store accumulated history generated from different 

inputs as localized polarization which influences the global branch. We strongly encourage 

developing neuromorphic devices with various material types performing the dendritic computation 

for spatiotemporal processing.      

 

Methods and Supplementary Information: Methods and Supplementary Information are made available to the 

public after the research is accepted.  
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