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Abstract: This review examines the evidence supporting the role of dysbiosis in the development of obsessive-
compulsive disorders (OCD). We review the molecular mechanisms and role of the microbiota in the 
microbiota-gut-brain axis, focusing on the endocrine, nervous, and immune pathways. We then propose a 
model that positions dysbiosis as the central unifying element in the neurochemical, immunological, genetic, 
and environmental factors leading to OCD. Based on this, we review the animal and human clinical evidence 
for the use of microbial reprogramming strategies such as probiotic or fecal microbiota transplants to treat 
OCD. Finally, we discuss the unique challenges that must be addressed in future clinical interventions. 

Keywords: OCD; obsessive-compulsive disorder; microbiota; gut; gut-brain axis; probiotics;  
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1. Introduction 

Obsessive-Compulsive Disorder (OCD) is a chronic mental health disorder characterized by the 
presence of the intrusive and persistent thoughts that cause distress called obsessions; these are 
followed by compulsions, which are repetitive behaviors or mental acts that individuals feel driven 
to perform to calm their obsessions [1]. OCD affects approximately 2-3% of the global population, 
and greatly interferes with quality of life, disturbing the daily functioning of an individual, from 
eating to bathing to walking or even breathing. For example, an individual with OCD can spend 
thirty minutes closing a door and verifying it is closed, with the hope that the anxiety might be calmed 
after a certain number of repetitions. Decision-making of individuals with OCD is greatly affected, 
as every decision may be felt as a threat leading to maximum indecisiveness [2–4]. It is a very 
debilitating disorder that often hides behind another disease or disorder. Indeed, although OCD is 
now recognized as an independent disorder category, it often occurs with another disorder such as 
autism, attention deficit hyperactivity disorder (ADHD), depression, general anxiety disorder, eating 
disorder, hoarding disorder, Tourette syndrome, panic disorder, or schizophrenia [5]. This category 
includes other disorders such as hoarding disorder, hair-pulling disorder, and skin-picking disorder 
[6]. 

The exact mechanisms underlying OCD are not yet fully understood. Research has highlighted 
several associations, leading to the conclusion that a combination of genetic, neurobiological, 
immunological, and environmental factors may contribute to its development. Indeed, studies have 
identified heritability of OCD through multiple genes such as the serotonin transporter gene 
(SLC6A4) and the gene encoding the dopamine D2 receptor (DRD2) [7,8]. Also, OCD has been 
associated with neurobiological changes such as the dysregulation of the cortico-striato-thalamo-
cortical (CSTC) circuit. Brain regions involved include the orbitofrontal cortex, anterior cingulate 
cortex, and basal ganglia, as well as the dysregulation in neurotransmitters like serotonin, dopamine, 
and glutamate [6,9–11]. In addition, environmental factors, such as childhood trauma including 
physical and/or sexual abuse, have been associated with an increased risk of developing OCD. 
Finally, stressful life events, such as significant life changes or trauma, have been found to precede 
the onset or exacerbation of OCD symptoms [6,12]. 
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To date, cognitive-behavioral therapy (CBT) and pharmacotherapy are the primary treatments 
for OCD [13,14]. CBT typically involves exposure and response prevention, where individuals are 
gradually encouraged to face their obsessions while refraining from engaging in their compulsive 
behaviors. This helps to reduce the anxiety associated with the obsessions and weaken the link 
between the obsession and compulsion. CBT has been shown to be effective in reducing OCD 
symptoms and improving overall functioning [14]. On the other hand, selective serotonin re-uptake 
inhibitors (SSRIs), such as fluoxetine, sertraline, and fluvoxamine, are the first-line medications for 
OCD treatment [13,15]. These medications increase serotonin levels in the brain and help to alleviate 
symptoms. Additionally, combining SSRIs with antipsychotics or glutamate modulators is 
sometimes used for individuals who do not respond adequately to SSRIs alone [16]. Despite the 
availability of treatment options for OCD, there are significant limitations that warrant the 
exploration of novel therapeutic approaches. While these interventions can be effective for some 
individuals, many patients experience only partial response to treatment, lingering symptoms, and 
high rates of relapse [16,17]. CBT is efficient but each treatment plan is specific to an obsession and 
does not avoid the appearance of another obsession and compulsion later, which would require 
another course of CBT. Additionally, there are side effects associated with the use of medication, such 
as gastrointestinal disturbances and sexual dysfunction, which can further impact treatment 
adherence and quality of life [18]. 

The limitations of current treatment options emphasize the need for innovative and therapeutic 
approaches that target the etiology of OCD. To date, several factors have been proposed to contribute 
to the development of OCD, and it is difficult to point at one single cause. Nevertheless, there is one 
emerging avenue of investigation that presents itself as promising and key for the understanding and 
treatment of OCD: the gut microbiota. The gut microbiota comprises trillions of microorganisms 
residing in the gastrointestinal tract, from bacteria to fungi to viruses, archea or protozoa. These 
microbes actually outnumber human cells by a factor of 10, and the genes they express form the 
microbiome [19]. These are usually classified into three categories according to their interaction with 
their human hosts: beneficial, pathogens and commensal microbes. Because they control each other’s 
growth, eubiosis (the undefined but balanced composition of the gut microbiota) is essential to 
prevent the overgrowth of pathogens or lack of growth of certain beneficial microbes from lacking. 
In contrast, dysbiosis refers to an imbalance in the composition or function of the gut microbiome. It 
can occur when there are changes in the relative abundance of certain microbial species or alterations 
in the overall diversity, resulting in alteration of the metabolites produced by the microbiota. 
Dysbiosis has been associated with various health conditions, including metabolic disorders, mental 
health disorders, autoimmune diseases and inflammatory bowel diseases [20–33]. Interestingly, 
dysbiosis has been associated with all disorders where OCD has been found as a comorbidity such 
as Autism, Tourette Syndrome, Anxiety Disorders, Panic Disorder, Eating Disorders, Depression and 
hording disorder but also gastrointestinal diseases such as ulcerative colitis or Crohn’s disease[34–
36]. 

While we acknowledge that no study has pointed at the prevalence of the co-occurrence of 
dysbiosis and OCD in anxiety disorders, latest advances in the understanding of the bidirectional 
communication between the gut and the brain strongly implicate the gut microbiome as a key 
component for future investigations. In this review, we examine the growing evidence that supports 
the possible causal role of dysbiosis in these anxiety disorders. We also discuss the emerging clinical 
studies that aim to modulate the gut microbial composition to increase its diversity and inhibit the 
growth of pathogens.  

We will first review the molecular mechanisms involved in the microbiota-gut-brain axis 
(MGBA). Then, we will gather the latest evidence that supports our rationale; the latest evidence that 
shows dysbiosis in OCD and how dysbiosis fits into a model explaining the neurochemical, the 
genetic, and the immunological and the environmental basis of OCD. Finally, we review recent 
clinical interventions that support the promising potential of two microbial reprogramming 
strategies: dietary interventions using prebiotics and probiotics and fecal microbiota transplantation 
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(FMT). We will discuss the challenges of studying such clinical interventions in OCD and identify 
important considerations for future clinical studies. 

2. Mechanisms of the Microbiota-Gut-Brain Axis (MGBA) 

The MGBA refers to the bidirectional communication between the gut microbiota, the 
gastrointestinal tract, and the central nervous system (CNS). From brain to gut, endocrine systems 
such as the hypothalamic-pituitary-adrenal and hypothalamic-pituitary-gonadal axes regulate the 
gut microbiota [37–40]. From gut to brain, the gut microbiome, consisting of the microbes, their 
genomes and their products, can influence brain function through a variety of mechanisms, 
summarized in Figure 1. We will describe these below as: 1. the endocrine pathway; 2. the nervous 
pathway; and 3. the immune pathway.  

 

Figure 1. Mechanisms of the MGBA. 
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2.1. The Endocrine Pathway 

The endocrine pathway consists of the release into the systemic circulation of microbiota-derived 
products issued from the metabolic activity of microbes including short chain fatty acids (SCFAs) 
and neurotransmitters, hormones and inflammatory factors that directly or indirectly regulate the 
function of central nervous system (CNS).  

The production of short chain fatty acids (SCFAs) by gut bacteria, after anaerobic fermentation 
of indigestible polysaccharides such as dietary fibers and resistant starch, play a crucial role in 
modulating the metabolic activity of the gut and are pivotal to microbiota-gut-brain crosstalk [41–
43]. A variety of SCFAs are produced, depending on the nature of the dietary fibers being digested: 
the most abundant are butyrate, acetate, and propionate [44,45]. 

Following their production, SCFAs can cross the enterocyte layer and be absorbed by 
colonocytes. This happens mainly via H+-dependent or Na+-dependent monocarboxylate trans-
porters [46]. They can regulate gut barrier integrity and mucosal immunity through various 
molecular mechanisms involving G protein-coupled receptors such as free fatty acid receptors 2 and 
3 or hydrocarboxylic acid receptors [47]. Butyrate has been shown to promote the upregulation of 
proteins constituting tight junctions such as zonula occludens-1, claudin-5, and occulin, and also 
promote the inhibition of zonulin to reduce intestinal permeability and maintain the gut barrier 
integrity [48–54]. The decrease in abundance of butyrate can lead to a leaky gut syndrome, thereby 
influencing the immune response, as well as the integrity of both the gut and the blood-brain barrier 
(BBB) [55–59]. Indeed, expression of claudin and occludin have also been shown to be reduced in the 
BBB of germ-free mice, leading to increased permeability of the BBB from intrauterine life to 
adulthood [60]. Brain uptake of SCFAs has previously been shown in rats [61], and studies have 
shown detectable levels of acetate, propionate and butyrate in the cerebrospinal fluid [62]. In another 
study, brains of mice supplemented with live Clostridium butyricum had significantly higher 
concentrations of butyrate than did peripheral blood [63,64]. The recolonization of these adult mice 
with a complex microbiota, or monocolonization with SCFA-producing bacterial strains, recovered 
the integrity of the BBB [58,60]. Similarly, treatment of an in vitro model of cerebrovascular 
endothelial cells with propionate attenuated the permeabilizing effects of exposure to 
lipopolysaccharide (LPS) [65]. 

Sometimes, protein fermentation in the distal portion of the intestine can lead to the production 
of potentially toxic metabolites, such as ammonia, phenols, and sulfides, as well as unique branched-
chain fatty acids [66–69]. By controlling the BBB integrity, SCFAs play a pivotal role in the passage of 
these and other molecules and nutrients from the circulation to the brain, playing a central role in 
brain development and the preservation of CNS homeostasis [59,70–72]. 

2.2. The Nervous Pathway 

Various gut bacteria have been shown to also produce neurotransmitter precursors and 
hormones, such as dopamine, acetylcholine, γ-aminobutyric acid, noradrenaline, serotonin, 
corticotrophin-releasing hormone [73]. In addition to producing peripheral serotonin, gut microbes 
can affect transmission of central serotonin by modulating the production of tryptophan in the 
plasma. This has been demonstrated for Bifidobacterium infantis [74]. The enterochromaffin cells can 
bind several microbial products and secrete serotonin into the lamina propria, increasing colonic and 
blood concentrations of 5-HT [75,76]. SCFAs regulate the expression levels of tryptophan 5-
hydroxylase 1, the enzyme involved in synthesis of serotonin, and tyrosine hydroxylase, which is 
involved in a rate-limiting step in the biosynthesis of dopamine, noradrenaline and adrenaline. 
SCFAs thereby exert an effect on brain neurochemistry [75–81]. The neural pathway involves the 
bidirectional communication between the gut and the brain via the autonomic nervous system or the 
vagus nerve[82–85]. The vagus nerve serves as a major conduit for transmitting signals between the 
gut and the CNS. When gut bacteria modulate the production of neurotransmitters such as GABA, 
5-HT, DA, NE, Glu, and ACh, these can bind to primary afferents of the enteric nervous system and 
the vagus nerve to influence brain function and behavior. Retrograde transport also plays an 
important role in gut to brain communication. It is now recognized that the onset of Parkinson’s 
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disease probably starts in the gut, with α-synuclein aggregation upon LPS binding, and retrograde 
transport of aggregates through the vagus nerve to the brain. There is accumulating evidence that 
SCFAs may also modulate key neuro-pathological processes underlying Alzheimer’s disease by 
interfering with the assembly of amyloid-β peptides into the neurotoxic oligomers[86–88]. In 
addition, the metabolites of gut microbes, by controlling the secretion of gut hormones such as 
glucagon-like peptide 1 and peptide YY, can influence food intake, which will in return influence 
bacterial fermentation, thereby reinforcing the close relationship between diet and gut microbiome 
[89]. 

2.3. The Immune Pathway 

2.3.1. From Gut to Host Immune System 

Changes in the gut microbiota composition can affect the production and availability of SCFAs, 
thus impacting the metabolic activity of the gut [90–94]. Dysbiosis, by leading to reduced SCFA 
production, impaired gut barrier function, and increased intestinal permeability, is a starting point 
for systemic inflammation and potential neuroinflammation [95,96]. Byproducts of microbiota 
metabolism can activate immune cells in the gut, leading to the production of pro-inflammatory or 
anti-inflammatory cytokines [97–101]. These immune signals can then communicate with the brain 
and affect neural function, as neuroinflammation is an important process shaping brain function. 

A good example of this are bacterial lipopolysaccharides (LPS) also known as endotoxins, which 
are components of the outer membrane of gram-negative bacteria. They are typically produced as 
part of the bacterial growth and replication process[102]. These endotoxins trigger a pro-
inflammatory cascade in the mucosa, mediated by toll-like receptor 4 and cytokines such as tumor 
necrosis factor α (TNF-α) and interleukin 6 (IL-6). The LPS-induced pro-inflammatory cascades have 
been shown to be inhibited by butyrate inhibition of histone deacetylase (HDAC) [103]. This 
intracellular signaling has been found not only in the gut and associated immune tissue, but also in 
the peripheral nervous system and CNS [53,104–107]. Perturbations of the gut microbiota by 
antibiotics in experimental animal models systemically produced altered immune responses with 
pro-inflammatory profiles [108]. In early life, if the microbiota is depleted using antibiotics, this 
results in an inflammatory response in the CNS with pro-inflammatory cytokine secretion and altered 
microglial morphology, which could be reversed by butyrate treatment [109–115]. Indeed, butyrate 
has been shown to control the maturation of mucosa-associated lymphoid tissue, and the 
differentiation of lymphocytes, characterized by the presence of macrophages, B and T cells. 
Similarly, acetate treatment of microglia primary culture in vitro has been shown to reduce 
inflammatory signaling by downregulating the expression of IL-1β, IL-6, and TNF-α and the 
phosphorylation of p38 MAPK, JNK, and NF-κB [116]. The precise signaling involved in the effects 
of SCFAs on microglia remain unclear, and the histone acetylation or the epigenetically regulated 
gene expression is considered the main mechanism [117]. 

2.3.2. From Host Immune System to Gut Microbiota 

Several studies investigating the relationship between immunoglobulin A (IgA) and the gut 
microbiome have concluded that an adequate production of IgA is essential for the colonization of 
certain “good” bacteria such as Bifidobacterium and Bacteroides [118–126] On the other hand, 
microbial acetate produced by gut microbes is also able to regulate IgA reactivity to commensal 
bacteria, thus highlighting a bidirectional relationship between gut microbes and the immune system 
[72,127–130]. 

IL-22 and IL-17 have been shown to stimulate gut intraepithelial cells to produce antimicrobial 
peptides such as α-defensins and β-defensin 1, which can quickly inactivate microorganisms entering 
the host through a leaky gut [131,132]. Furthermore, mice transgenic for defensins, exhibited an 
altered microbiota composition [133–136]. Thus, the antimicrobial peptides affect the microbial 
composition.  
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3. Dysbiosis and the Neurobiology Basis of OCD 

3.1. Dysbiosis in OCD 

The potential role of the gut-brain axis in the pathophysiology of OCD has been highlighted by 
several studies and suggests that alterations in gut microbiota composition may impact brain 
function and behaviour, including obsessive-compulsive symptoms. Studies have found significant 
differences in the relative abundance of certain bacterial taxa between individuals with OCD as 
compared to healthy individuals, suggesting a potential association between gut microbiota 
dysbiosis and OCD[137–143]. It is important to note that these studies have limitations, including 
small sample sizes and the presence of confounding factors. Overall, while there is emerging evidence 
suggesting a correlation between gut microbiota dysbiosis and OCD, more research is needed to 
clearly establish a causal relationship and determine the clinical implications. Although clinical 
interventions targeting dysbiosis and focusing specifically on OCD are scarce, a few studies are worth 
mentioning. A recent scientific report by Domenech et al. (2022) reported dysbiosis in the gut and 
oropharyngeal microbiomes of OCD patients [140]. They noted an increase of bacteria from 
the Rikenellaceae family, associated with gut inflammation, and a decrease of bacteria from 
the Coprococcus genus.  A lower bacterial diversity in the gut of OCD patients has been observed, 
consistent with the lower gut α-diversity in PANS/PANDAS patients reported by Quagliariello, et al. 
[144], and in OCD by Turna, et al. [143]. The latter observed a decrease in species richness/eveness 
and a lower relative abundance of three butyrate producing genera 
(Oscillospira, Odoribacter and Anaerostipes) in OCD patients [143]. Furtrhermore, lower α-diversity has 
also been reported in subjects with ADHD [145–147], and in studies of ASD individuals [28,29,148–
151].  

We propose a model where gut dysbiosis is at the center of all factors previously associated with 
OCD and may be implicated in the neurochemical, immune, genetic, and environmental bases of 
OCD (Figure 2). Below, we will detail evidence in support of this model. 

 
Figure 2. Model of the microbiological basis of OCD. 

3.2. Dysbiosis and Hyperactivity in the Cortico-Striato-Thalamo-Cortical Circuit (CSTC) 

The CSTC projects from the orbito-frontal-cortical region (OFC) to the striatum, and then 
onward to thalamic sites, before looping back to the cortex. It is responsible for reward- and 
motivational-related processes, executive function, motor and response inhibition, and habit-based 
behaviour [152]. Two pathways within this circuit, direct and indirect, should respectively have 
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opposing net effects on the thalamus, and this balance is critical for initiation and suppression of 
behaviour [152]. Any imbalance is thought to contribute to OCD pathology. Indeed, an overactivity 
in the direct pathway results in a hyperactivity in the feedback loop creating an overall hyperactivity 
within the circuit. Several studies have noted an increased activation of the OFC and striatum and 
caudate regions [6,152–154]. This hyperactivity is believed to involve the neurotransmitters serotonin, 
glutamate and dopamine [153,155,156]. 

3.2.1. Serotonin 

Adams et al. (2005) pointed at an increased binding of 5-HT2AR, the receptor to serotonin, in 
the caudate nuclei of unmedicated OCD patients, possibly due to the compensatory effects of low 
levels of serotonin within the CSTC circuit [157]. Simpson et al. (2021) showed that an earlier onset of 
OCD was associated with increased 5-HT2AR availability in the circuit [158]. This is supported by 
the successful treatment using serotonin receptor inhibitors (SRI). Nevertheless, mechanisms 
whereby SRIs ameliorate symptoms are still not well understood, and only 40–60% of patients 
improve following SRI intervention [159,160]. 

The gut microbiota plays a crucial role in the production of serotonin. Specific gut bacteria, such 
as Lactobacillus and Bifidobacterium species, have been found to produce serotonin in the gut [161]. 
Changes in the composition of the gut microbiota can disrupt this serotonin production process, 
leading to imbalances in serotonin levels. Certainly, several gut bacteria (such as Clostridium, 
Burkholderia, Streptomyces, Pseudomonas, and Bacillus) play a role in the metabolism of tryptophan 
[155,162,165]. Although in normal conditions peripheral serotonin cannot freely cross the BBB, its 
precursor, tryptophan, can cross the BBB through specialized transport mechanisms, to then be 
converted into serotonin by local neurons. Furthermore, dysbiosis can both influence the availability 
of tryptophan and disrupt the BBB allowing other molecules inside the brain. Certain gut bacteria 
can metabolize tryptophan, affecting its availability for serotonin production [155,162–165]. Changes 
in gut microbial composition can alter tryptophan metabolism, potentially impacting serotonin levels 
in the brain. As a result, dysbiosis-induced alterations in the gut microbiota could result in reduced 
serotonin synthesis in the brain, potentially contributing to mood disorders and behavioural changes.  

Gut dysbiosis can also influence the serotoninergic system in the brain through other 
mechanisms. For instance, the gut microbiota can affect serotonin signaling by influencing the 
expression and activity of serotonin receptors in the brain.  Dysbiosis-related changes in the gut 
microbial composition have been associated with alterations in serotonin receptor expression and 
function. A study by Hsiao et al. (2013) [166] explored the impact of gut dysbiosis on serotonin 
signaling. They investigated mice with gut microbiota imbalances and observed abnormal serotonin 
receptor expression patterns in specific brain regions. These changes were associated with behavioral 
abnormalities, including altered social interactions and increased anxiety-like behavior. This suggests 
that dysbiosis-induced disruptions in the gut microbiota can influence serotonin receptor function, 
potentially contributing to mood disorders and behavioral dysregulation. 

3.2.2. Glutamate 

The glutamate system is the major excitatory neurotransmitter system in the brain. Studies have 
shown that untreated OCD patients have elevated glutamate concentrations in the caudate region as 
compared to healthy individuals; these normalized after 12 weeks of SRI treatment,  suggesting that 
availability of serotonin at the frontal region of the circuit might modulate the concentration of 
glutamate in the caudate part [167].  Because there are important glutamatergic projections between 
the frontal cortical part to the striatum, it was proposed that the SRI treatment allowed the increase 
of serotonin levels that in turn inhibited the glutamate levels in the caudate. In contrast, with low 
levels of available serotonin, the inhibitory effects within the circuit are reduced, which would allow 
for an elevated glutamate activity in the circuit [167,168]. Increased glutamate concentrations have 
also been observed in the cerebrospinal fluid (CSF) of untreated OCD patients [169]. Unsurprisingly, 
the modulation of glutamate via n-acetyl cysteine showed improvements in double-blind placebo-
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controlled studies for the obsessive compulsive-related disorders trichotillomania and skin-picking 
disorder [170,171].  

The gut microbiota has been shown to influence the glutamate system through two main 
mechanisms. Firstly, certain gut bacteria, such as Lactobacillus and Bifidobacterium species, are 
capable of producing and metabolizing glutamate, thereby influencing its levels in the body. 
Dysbiosis-induced changes in the composition of the gut microbiota can lead to alterations in 
glutamate production and metabolism, potentially impacting glutamate signaling in the brain. A 
study by Strandwitz et al. (2019) demonstrated the significance of gut bacteria in glutamate 
metabolism [172,173]. They identified specific bacterial enzymes involved in glutamate production 
and observed that germ-free mice lacking these bacteria had lower levels of brain glutamate 
compared to control mice, indicating the influence of specific gut bacteria on brain glutamate levels. 

Secondly, dysbiosis can affect the expression and function of glutamate receptors and 
transporters in the brain. Changes in the gut microbiota can lead to modifications in the expression 
of glutamate receptors, such as N-methyl-D-aspartate (NMDA) receptors, and glutamate 
transporters, such as EAAT3. In their investigation of the impact of gut dysbiosis on glutamate-
related pathways, Sharon et al. (2019) found that mice with disrupted gut microbiota exhibited 
altered expression of NMDA receptors and EAAT3 transporters in the brain, along with 
neurobehavioral abnormalities [115]. These findings suggest that dysbiosis-induced changes in the 
gut microbiota can influence the function of glutamate receptors and transporters, potentially 
influencing glutamate neurotransmission in the brain. 

3.2.3. Dopamine 

Imaging studies reveal increased dopamine levels in the basal ganglia of OCD patients as well 
as enhanced binding to the dopamine transporter [174] Another study found increased density of the 
dopamine transporter in the left caudate and left putamen of untreated OCD patients [175]. The 
antipsychotic drugs that are sometimes offered to OCD patients who resist SRI treatments block 
subcortical dopamine receptor activity and are proposed to target the habit system and compulsive 
behaviors.  

The gut microbiota can also influence the dopamine system. Some gut bacteria, including certain 
strains of Enterococcus and Lactobacillus, are capable of producing and metabolizing dopamine. 
Dysbiosis-induced changes in the gut microbial composition can impact dopamine production and 
metabolism. The influence of dysbiosis on the expression and function of dopamine receptors and 
transporters in the brain has been an area of growing research interest. Several studies have 
demonstrated that changes in the gut microbiota composition can indeed lead to alterations in 
dopamine receptor expression and dopamine transporter activity. One study conducted by Bercik et 
al. (2011) explored the effects of the gut microbiota on central levels of brain-derived neurotrophic 
factor (BDNF) and behavior in mice [176]. They found that germ-free mice, lacking gut microbiota, 
displayed altered dopamine receptor expression in specific brain regions compared to control mice 
with normal gut microbiota. In another study, Dinan et al. (2013) investigated the role of 
psychobiotics, a novel class of bacteria with potential mental health benefits, on neurotransmitter 
systems including dopamine [177]. They found that certain psychobiotics, such as Lactobacillus and 
Bifidobacterium strains, had the ability to modulate dopamine receptor expression and dopamine 
transporter activity, highlighting the impact of specific gut bacteria on the dopaminergic system [178–
180]. 

3.3. Dysbiosis and the Immune Basis of OCD 

Inflammation and immune dysregulation have been implicated in the pathogenesis of OCD. 
Preliminary studies have noted abnormal concentrations of IgA in children with OCD. IgA mediates 
microbial composition and homeostasis at the mucosal level, via prevention and promotion of 
bacterial growth, which influence bacterial gene expression [120]. 

There is also evidence for the role of immunological processes in the pathophysiology of OCD 
[9,142,181–183]. Commonly known as the “autoimmune OCD subtype”, the Pediatric Autoimmune 
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Neuropsychiatric Disorders Associated with Streptococcal Infections or PANDAS is characterized by 
OCD that appears after a streptococcal infection, such as scarlet fever or strep throat [181]. The 
dramatic surge of symptoms which happens overnight includes motor obsessions and compulsions. 
In addition, children experience mood issues and anxiety attacks. In this context, the streptococcus A 
infection is clearly a manifestation of dysbiosis, which activates these immunological processes.  
Through molecular mimicry, the streptococcal bacteria are believed to induce an autoimmune 
response that attacks the brain via neuroinflammation. Indeed, several studies have found cross-
reactive antibodies targeting the brain in children with PANDAS, as well as microglial activation 
[9,181,184–186]. 

3.4. Dysbiosis and the Genetic Basis of OCD 

The neurobiological basis of overactivity involving serotonin, glutamate and dopamine is 
thought to be mainly rooted in genetic factors on one hand, with a heritability of 27–65%, and 
environmental factors on the other [187]. Twin studies have shown that OCD can run in families 
[188,189]. Epigenetic alterations have been suggested to be particularly relevant in OCD. 
Investigations into the peripheral DNA methylation signatures of OCD are scarce but DNA 
methylation patterns have been described [190]. 

Among the genes under investigation, notable examples include serotonergic genes (HTR2A, 
5HTTLPR, SLC6A4), glutamatergic genes (SLC1A1, DLGAP3, SAPAP3), and dopaminergic genes 
(SLC6A3, DRD4)[10,11,189,191–193]. Recently, there has been a growing focus on the role of 
epigenetic mechanisms such as gene methylation, histone deacetylation (HDAC), and histone 
acetylation (HAT) in psychiatric disorders. Efforts have been made to develop treatment strategies 
targeting these mechanisms. Studies comparing DNA methylation patterns in OCD [194] patients 
and control groups have revealed distinct methylation profiles in the promoter regions of genes such 
as MAOA, GABA, MOG, BDNF, LEPR, OXTR, SLC6A4, and SLC6A3. In a recent study, a statistically 
significant correlation was observed between certain obsessions/compulsions and polymorphisms in 
HDAC2, HDAC3, and HDAC4 in the OCD group (p < 0.05) [195]. Indeed, gut microbes have been 
found to inhibit the histone desacetylase, an enzyme that facilitates transcription of genes by 
removing the acetyl group from histone proteins on DNA [196].  

Other genes have been found to be associated to OCD in some studies, such as the oxytocin 
receptor (OXTR) gene [190,197–200] , the monoamine oxidase A (MAOA) gene [201], the brain-
derived neurotrophic factor (BDNF) gene [202], the gamma-aminobutyric acid B receptor 1 
(GABBR1), the estrogen receptor 1 (ESR1), myelin oligodendrocyte glycoprotein (MOG) genes and 
again the brain-derived neurotrophic factor (BDNF) gene [203]. 

The growing body of evidence implicating gut microbes in epigenetics places dysbiosis at the 
center of our model. However, not all clinical observations can be explained by the genetic hypothesis 
alone. For example, several studies failed to find significant associations between the dopamine 
transporter gene (SLC6A3) and OCD [204–207], the Dopamine receptor 2 (DRD2), or the dopamine 
receptor 3 (DRD3) [206,208,209]. This suggests that other mechanisms are involved in the observed 
increase of dopamine in the CSTC circuit. 

3.5. Dysbiosis and the Environmental Basis of OCD 

In this proposed model, childhood trauma and stressful life events can modulate the gut 
microbiota composition and thus trigger dysbiosis. This has been proposed to happen via the 
hypothalamo-pituitary axis [37–39,210,211]. Lifestyle changes, particularly diet, as well as the 
recurrent use of antibiotics at early stages of life can be determinants in the early development of the 
gut microbiota and the development of neurodevelopmental disorders [211–214]. Indeed, gut 
microbiota and brain maturation, including myelination, occur synchronically between birth and 
three years of age, and the gut microbiota has been found to play a critical role in myelination 
[215,216]. The gut microbiota includes bacteria that can synthesize various neurotransmitters besides 
serotonin. For instance, Lactobacillus and Bifidobacterium produce GABA, Escherichia, Bacillus, and 
Saccharomyces spp generate norepinephrine, Bacillus synthesizes dopamine, and Lactobacillus 
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produces acetylcholine [217–220]. Thus, disruption of the microbiota in early years can impact the 
normal functioning of the gastrointestinal tract and affect the overall health of the individual and is 
likely to elevate the occurrence of diverse mental disorders [27,148,221,222]. 

4. Microbial Reprogramming Strategies 

4.1. Prebiotics, Probiotics and Postbiotics 

If dysbiosis is a central element in the development of OCD, then it would be expected that 
manipulation of the gut microbiota might influence its occurrence, and offer potential options for its 
treatment. This does in fact appear to be the case, and in this section, we gather clinical evidence of 
the use of probiotics and fecal microbiota transplants in the treatment of OCD.  

A probiotic is a live organism that, when ingested in adequate amounts, exerts a health benefit 
for the host [223].  Probiotics use dietary fibers or resistant starch as nutrient sources (or prebiotics) 
to produce beneficial metabolites (postbiotics).  The term synbiotic is used to refer to the mixture of 
both prebiotics and probiotics [224]. Dietary fibers and resistant starch therefore play an essential role 
in fermentation and postbiotic production [225–227]. Westernized diets are characterized by a 
relatively low intake in dietary fiber, which could explain the presence of dysbiosis in most modern 
diseases and disorders. Dietary fibers also include plant-based carbohydrates, such as polyphenols, 
and non-carbohydrate compounds such as lignin. Probiotics such as Lactobacillus and 
Bifidobacterium or Akkermansia can use these compounds to produce SCFA, which in turn promote 
various beneficial effects for the host [228–234].  

Over the last decade, a number of studies have shown promising results for the use of probiotics 
in the treatment of OCD. However, while a growing number of studies have investigated the 
potential value of probiotics in treating Autism or ADHD, investigations of probiotic interventions 
for OCD are still at their very early stages, with most studies being performed in animal models.  

Kantak et al. (2014) found that two-week pretreatment with Lactobacillus rhamnosus GG had the 
ability to reduce obsessive-compulsive disorder (OCD) in mice. Results were comparable to 
treatment with fluoxetine [236]. 

In 2018, Tabouy et al. [244], using Shank3 KO mice (a model used to study neurodevelopmental 
disorders such as autism), found Lactobacillus reuteri to be in a decreased relative abundance in the 
Shank3 KO. The treatment of Shank3 KO mice with Lactobacillus reuteri induced a significant decrease 
in repetitive behaviors in both male and female Shank3 KO mice [244]. 

In a study conducted by Szklany et al. (2020), male mice receiving – from the day of birth 
onwards - a prebiotic mixture composed of short-chain galactooligosaccharides (scGOS) and long-
chain fructo-oligosaccharide (lcFOS), exhibited changes in the serotonergic system [243]. These 
neurological modulations were associated with behavioral changes such as a reduction in anxiety 
and repetitive behavior during development and increased social interest in adulthood compared to 
mice fed a control diet. Brains of the treated group exhibited altered mRNA expression of astrocytic 
glial fibrillary acidic protein and microglial integrin alpha M. There was also enhanced mRNA 
expression of BDNF in the prefrontal cortex. Additionally, analysis of the cecal content of treated 
animals revealed relatively increased levels of SCFA such as butyric acid, and decreased levels of 
valeric, isobutyric, and isovaleric acid [243].  

Another animal study conducted by Sanikhani et al. (2020) demonstrated the effectiveness of 
Lactobacillus casei Shirota in treating OCD in a rat model. After daily administration of L. casei Shirota 
(10^9 CFU/mL for four weeks), the probiotic showed beneficial effects, possibly effected through the 
modulation of genes related to serotonin. Following concurrent treatment with L. casei Shirota and 
fluoxetine, the expression level of Bdnf significantly increased, while the expression of Htr2a 
(serotonin receptor 2A) decreased in the orbitofrontal cortex tissues of all rats involved in the study 
[237]. 

In 2021, Sunand et al. [242], found that selected probiotic strains and complex treatment with 
probiotic significantly ameliorated microbial diversity, repetitive behaviour, and the concentrations 
of NF-a, BDNF, and 5-HT.  
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Alghamdi et al. in 2022 [235], using an animal model of Autism induced by propionic acid, found 
that subjects with cognitive dysfunction had altered levels of neurotransmitters in their brains. 
However, in the group of animals treated with probiotic, neurotransmitter levels were 1.2-fold higher 
compared to the control group. In the same study, the alpha-melanocyte-stimulating hormone (α-
MSH) was monitored. α-MSH acts on melanocortin type 4 receptors (MC4R), a receptor that interacts 
with neurochemical systems that regulate socioemotional behaviors, including oxytocin and 
dopamine. Oxytocin can influence social cognition by modulating various neurochemical systems, 
including serotonin, glutamate, dopamine, and GABA neurotransmitters in specific brain regions 
such as the hypothalamus, amygdala, and hippocampus. The study observed significantly lower 
levels of α-MSH in animals treated with propionic acid compared to controls. However, this effect 
was reversed by the administration of bee pollen and a mixed probiotic bacteria preparation called 
ProtexinR, which contains beneficial bacteria such as Bifidobacterium infantis, Bifidobacterium breve, 
Lactobacillus acidophilus, Lactobacillus bulgaricus, Lactobacillus casei, Lactobacillus rhamnosus, and 
Streptococcus thermophiles. The concentration of the mixed probiotic bacteria in ProtexinR was 1 billion 
CFU per gram [235]. 

Pochakom (2022) investigated supplementation with Lacticaseibacillus rhamnosus HA-11 (Lr) and 
Ligilactobacillus salivarius HA-118 (Ls) in the BTGR mouse model for autism (109 CFU/mL in drinking 
water for 4 weeks) [239]. Supplementation with Lr, but not Ls, increased the microbial richness and 
diversity, and increased the concentrations of beneficial neuroactive compounds, such as 5-
aminovaleric acid and choline. Both Lr and Ls treatment reduced behavioural deficits in social 
novelty preference, but no changes in hyperactivity or repetitive behaviour were observed [239].  
This suggests that not all probiotic microbes result in the same outcomes and a more complex mix of 
microbes might actually be required to target various behaviours. 

Sen et al. 2022 [240] found that daily oral administration of Blautia stercoris MRx0006 attenuated 
social and repetitive behavior in a mouse model of autism. The study showed that MRx0006 increases 
the expression of oxytocin and its receptor in hypothalamic cells in vitro, and hypothalamic oxytocin 
mRNA in mice, while altering the metabolome profile. It was proposed that biotherapy using Blautia 
stercoris would be a viable treatment option for autism. 

Studies in human subjects are rarer but encouraging. A double blind randomized controlled trial 
focused on the effect of a synbiotic called Synbiotic 2000, composed of three anti-inflammatory lactic 
acid bacteria and four anti-inflammatory fibers on patients with ADHD [241]. One of the measured 
outcomes was repetitive behavior. Synbiotic 2000 reduced both the total score of autism symptoms, 
and the restricted, repetitive and stereotyped behaviors, as compared to placebo [241]. Similarly, in a 
case report of a child with Autism, Sacharomyces boulardii was shown to reduce OCD behavior [238]. 

4.2. Fecal Microbiota Transplants 

Fecal microbiota transplantation (FMT), or the transfer of a fecal matter from a healthy donor to 
a patient, has emerged as another promising therapeutic approach for restoring a healthy gut 
microbiome and achieving beneficial effects in various diseases [245]. Currently, there are no FMT 
studies that have been performed specifically to treat OCD. However, several studies have noted the 
significant changes in microbial ecology, metabolism and behavior observed in patients after FMT, 
most of them providing strong support for FMT as a therapeutic method to treat OCD [246–251]. 

Kang et al. (2017) published an important follow up after the publication of the first clinical trial 
results using FMT on autistic children [252]. Spectacular improvements were observed in GI 
symptoms, autism-related symptoms, and gut microbiota diversity with a higher abundance of 
Bifidobacteria and Prevotella, and these were sustained after two years [246]. The autism-related 
symptoms even exhibited further improvement, suggesting that the fecal transplants might have 
initiated further changes during the two-year period. These findings underscore the long-term safety 
and effectiveness of FMT as a potential therapy for gut dysbiosis-associated disorders. Although the 
focus of the study wasn’t OCD behavior, it is particularly relevant considering the close relationship 
between gut dysbiosis and brain dysfunction.  For example, Kilinsarcslan et al. (2020) found that the 
severity of several factors, including obsession, decreased after FMT in patients with inflammatory 
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bowel disease [253]. This suggests that the restoration of a healthy gut microbial community through 
FMT can have positive effects on psychological symptoms associated with certain diseases. Alghamdi 
et al. (2022) conducted a study in a rodent model of Autism and included the use of FMT from healthy 
donor rats, which resulted in a significant increase in α-MSH levels by 2.7-fold (compared with 1.2 
fold for probiotics) and an increase in brain levels of neurotransmitters (1.6 fold) and subtance P (2.2 
fold) to above that of the controls [235]. These results suggest that FMT might be superior to probiotics 
in initiating metabolic changes, however further clinical studies are needed to compare both the 
efficacy and safety of FMT and probiotics. 

Although not focusing on OCD but on Autism, a very interesting and recent study by Wang et 
al. (2023) highlights important changes after fecal transplants [254]. Fecal microbiota samples from 
ASD children and healthy donors were transplanted into a mouse model of ASD. The researchers 
conducted 16S rRNA gene sequencing of fecal samples and untargeted metabolomic analysis of 
samples to identify differences in gut microbial communities and metabolic pathways related to ASD 
behaviors. mRNA sequencing analysis was also performed on colon and brain tissues after sacrificing 
the animals, to identify enriched signaling pathways and potential molecular mechanisms. The study 
revealed metabolite changes related to serotonergic and glutamatergic synapse pathways. They also 
demonstrated that these were associated with behavioral changes in ASD: there was an increase in 
ASD-like behaviours in mice that received FMT from ASD donors but a decrease in such behaviours 
in mice that received FMT from health donors. Indeed, the colonization of certain bacterial genera, 
such as Bacteroides, Odoribacter, Turicibacter, and Alistipes, was correlated with the improvement 
in behavior after FMT, but did not specifically point at OCD behavior. However, the changes in 
serotoninergic and glutamatergic pathways might also predict positive outcomes for future OCD 
studies.  

The close link between gut dysbiosis and brain function underscores the importance of targeting 
the gut microbiota for therapeutic interventions. FMT offers a unique opportunity to restore a healthy 
gut microbial community and potentially alleviate symptoms associated with various disorders. 
These findings highlight the potential benefits of FMT in improving mental health conditions and 
support further exploration of this therapeutic approach. 

5. Discussion 

The correlation between gut dysbiosis and the vast majority of modern diseases is now firmly 
established [139,147,255–262]. The gut microbiome might actually play a significant role in the 
development and manifestation of OCD, providing a comprehensive explanation for the multiple 
factors previously associated with the disorder. The gut microbiome can influence genetic, 
neurobiological, and environmental factors indirectly, thereby impacting the pathophysiology of 
OCD. 

We have seen that SCFAs can improve gut-brain health via a number of pathways, including: 
maintening the gut barrier integrity; producing mucus and protecting against inflammation; and 
communicating with the brain via the vagus nerve and neurohormones[34,263–265]. However, the 
gut bacterial composition is determined by multiple factors, including genetics, immune status, drugs 
(e.g., metformin), antibiotic courses, diet, pollutants, etc.[211]. Thus, studies investigating the gut 
microbiota composition  must consider multiple variables. Furthermore, the various methods for 
collection, storage and handling of microbiological materials add even more variability to the studies 
[266,267]. Microbial reprogramming strategies, using either probiotics or FMT, may also encounter 
significant challenges arising from inter-individual variations and even temporal variations within a 
single individual. 

The host’s genetic background can modulate bacterial colonization, particularly the genetic 
variants such as single nucleotide polymorphisms, which could explain the interpersonal variability 
in circulating levels of SCFA observed after fiber intake. Variations in genes coding the receptors of 
SCFAs such as GPR41, GPR43 or GPR109A have been proposed to have a significant impact on 
metabolism in general [101,268,269]. Additionally, genes responsible for transportation, such as the 
SLC16A family of monocarbohydrate transporters, effector genes like MUC2 involved in colon 
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mucus production, and regulatory genes like NRF2, which regulate the expression of proteins related 
to antioxidant defense mechanisms, may have significant implications for health outcomes. These 
effects could arise from compromised absorption of short-chain fatty acids (SCFA) or their 
intracellular functions  [270]. 

The impact of probiotics on human health has been studied through clinical trials and resulted 
in numerous suggested health indications and claims [271–276]. Nevertheless, there are also studies 
with contradictory findings, resulting in conflicting, ambiguous conclusions regarding the efficacy of 
probiotics [277,278]. One of the main reasons for these conflicting results – and also the main 
challenge for future studies – is that, in contrast to animal models, humans exhibit significant 
heterogeneity in terms of diet, age range, genetic background, and gut microbiome composition 
[279,280]. As a result, they may respond differently to the same probiotic intervention. In fact, several 
studies on probiotics have emphasized the importance of precision in considering host-related 
factors, microbiome characteristics, and dietary influences, as these factors play a crucial role in 
determining the varied outcomes observed [281,282]. More specifically, the extent of gut colonization 
by probiotics can vary significantly among individuals. This variability in colonization levels can 
contribute to the diverse effects of probiotics on both the hosts themselves and their gut 
microbiomes[283]. This is understandable since pre-existing microbes can inluence each other’s 
growth as well as that of the newly ingested microbes. If dysbiosis is already present, such as in atopic 
dermatitis or milk hypersensitivity, dysbiosis can alter the effects of the probiotic intervention on the 
host [284,285]. These permissive microbiomes are also more susceptible to compositional and 
functional changes in response to probiotics, resulting in distinct enrichment of pathways in the gut 
[286]. Microbiomes that facilitate the colonization of probiotic bacteria are associated with improved 
clinical responses in various models of colitis and depression [287–289].  

Therefore, differences in the initial conditions of the host and their gut microbiome, as well as 
variations in environmental exposures, can lead to contrasting outcomes among individuals who 
receive the same probiotic supplement [290,291]. In addition, for in vitro studies, the characteristics 
of probiotic bacteria, such as adhesion, hydrophobicity, and autoaggregation, may vary depending 
on the source from which they were isolated [292,293].  

Environmental factors, as described in our model, influence the gut microbiome and thus the 
response to probiotics. Dietary polyunsaturated fatty acids, for instance, have been found to 
modulate the adhesion of probiotics in laboratory settings[290]. Similarly, diet can impact clinical 
outcomes, as preterm infants fed with human milk demonstrate a reduced risk of late-onset sepsis 
and a shorter time to achieve full enteral feeding compared to formula-fed infants [294] 

Consequently, we consider FMT interventions to be an option with less variability in terms of 
results. This is because, with FMT, an entire community of microbes, including fungi, is transplanted. 
However, the downside of this is that we do not currently have enough data to predict, manage and 
control the eventual risks patients are exposed to when transplanted with the gut microbiome of 
another healthy individual. Indeed, FMT  has shown promise with positive outcomes for various 
diseases [246,249,295–297]. However, the escalating problem of antibiotic resistance poses a threat to 
the use of FMT. Samples screening must follow rigorous guidelines as antibiotic resistance becomes 
a criterion for donor stool selection. For FMT to become a successful approach in disease treatment 
and management, advances are necessary in defining the composition of fecal samples and method 
of administration. There must also be a shift towards personalized fecal sample selection. The future 
of a safe FMT probably resides in our ability to further elucidate what a “healthy microbiome” is. 
New analytical techniques, such as machine learning, might become necessary tools to integrate into 
omics studies, in order to find the best FMT for OCD [298]. 

6. Conclusions 

We presented a model where dysbiosis plays a pivotal role in the pathogenesis of OCD. To 
validate this model, more clinical studies are needed, and to shed more light on the potential role of 
gut microbes in the pathogenesis and treatment of OCD. Exploring the gut microbiome as a target 
for intervention in OCD holds promise for several reasons. Indeed, this is an opportunity to address 
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the limitations of current treatments and potentially improve treatment outcomes for individuals 
who experience resistance to current approaches. In addition, the gut microbiome represents a 
modifiable factor that can be influenced in various ways including dietary interventions, 
probiotics/prebiotics, or even fecal microbiota transplantation. 

Although the use of probiotics and FMT in medicine has been used empirically for centuries, it 
was only once research acknowledged the importance of the role of the gut microbiota in health and 
diseases that clinical studies started developing its use. Most studies have used Bifidobacterium such 
as B. longum, B. breve or B. infantis, and Lactobacillus (L. helveticus and L. rhamnosus), with doses 
between 10⁸ and 10¹⁰ colony-forming units for about 4 weeks. These probiotics have shown efficacy 
in improving psychiatric disorder-related behaviors including anxiety, depression, ASD, ADHD, and 
OCD. 

However, research in this area is still in its early stages, and more studies are needed to optimize 
the methods, and assess the efficacy and safety of microbial reprogramming in OCD. Further 
investigation and clinical trials will pave the way for more personalized and effective interventions 
for individuals with OCD, perhaps through the development of disorder-specific probiotic mixtures, 
making microbiome therapeutics a significant part of the precision medicine field. 
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