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Abstract: This review uses the National Cancer Institute (NCI) COMPARE program to establish an 

extensive list of heterocyclic iminoquinones and quinones with similarities in differential growth 

inhibition across the 60-cell line panel of the NCI Developmental Therapeutic Program (DTP). Many 

natural products and synthetic analogues are revealed, as potential NAD(P)H:quinone oxidoreduc-

tase 1 (NQO1) substrates through correlations to dipyridoimidazo[5,4-f]benzimidazoleiminoqui-

none (DPIQ), and as potential thioredoxin reductase (TrxR) inhibitors, through correlations to 

benzo[1,2,4]triazin-7-ones and pleurotin. The strong correlation to NQO1 infers the enzyme has a 

major influence on the amount of active compound with benzo[e]perimidines, phenoxazinones, 

benz[f]pyrido[1,2-a]indole-6,11-quinones, seriniquinones, kalasinamide, indolequinones, and 

furano[2,3-b]naphthoquinones, hypothesized as prodrugs. Compounds with very strong correla-

tions to known TrxR inhibitors had inverse correlations to the expression of both reductase en-

zymes, NQO1 and TrxR, including naphtho[2,3-b][1,4]oxazepane-6,11-diones, benzo[a]carbazole-

1,4-diones, pyranonaphthoquinones (including kalafungin, nanaomycin A, and analogues of 

griseusin A), and discorhabdin C. Quinoline-5,8-dione scaffolds based on streptonigrin and laven-

damycin can correlate to either reductase. Inhibitors of TrxR are not necessarily (imino)quinones, 

e.g., parthenolides, while oxidizing moieties are essential for correlations to NQO1, as with the mi-

tosenes. Herein, an overview of synthetic methods and biological activity of each family of hetero-

cyclic imino(quinone) is provided.  
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1. Introduction 

The National Cancer Institute (NCI, USA) Developmental Therapeutic Program (DTP) has sup-

ported the development of numerous clinical anticancer agents, including synthetic and natural com-

pounds, vaccines, and antibodies [1-4]. The NCI human cancer 60-cell line panel consists of the nine 

major histological tissue types allowing high throughput screening of thousands of compounds and 

natural product extracts each month using the same assay under strictly identical conditions. Com-

pounds showing high toxicity and variable patterns at an initial single dose (10 µM) may be selected 

for five dose in vitro testing. The in vitro mean growth (inhibition) data against each cell line represents 

a pattern or “fingerprint” for the evaluated compound (the seed). The seed is identified using a des-

ignated NCI accession number (the Cancer Chemotherapy National Service Centre number, NSC 

number). Paull et al. transformed numerical cell line response data into the mean graph format of 
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visualizing differential growth inhibition [5]. After five dose testing, differential growth inhibition is 

depicted on log scale by bars (in delta units), which project either side of the mean (e.g., Figures S1-

S82, in Supplementary Materials). The COMPARE algorithm is used to rank, in order of similarity to 

the seed, the activity of compounds in the huge NCI-DTP database, as well as the similarity of activity 

of the seed to expression of key cancer molecular targets in the panel of cell lines [1-3,5]. A molecular 

target is a protein, enzyme, gene, or any other cellular molecule whose presence within the 60-cell 

line panel has been identified and quantified by the NCI. For some test compounds, a single cellular 

component may determine activity, while in most cases cell sensitivity is complex and determined 

by gene expression, cell signaling, and repair pathways. The similarity of anti-cancer activity patterns 

to the seed is expressed quantitatively as a Pearson correlation coefficient (PCC). PCCs are between 

-1 and +1, with -1 indicating a perfect inverse correlation, zero indicating no correlation, and +1 indi-

cating a perfect direct correlation. PCC of 0.3-0.5 is generally accepted as weak to moderate, 0.5-0.7 

as being moderate to strong and above 0.7 as strong to very strong [1,5,6]. The toxicity evaluation 

service and COMPARE is available to the public free of charge from the NCI website (https://dtp.can-

cer.gov/), including as a new technology platform. Herein, we continue to assess similarities using 

the 50% growth inhibition (GI50) parameter. GI50 is defined as the concentration that prevents half the 

proliferation from baseline compared to the maximal value of the untreated cells. Strong correlations 

may indicate similarities in the mechanisms of action of anti-cancer compounds, as well as structure-

activity relationships. Two previous drug discovery investigations are revisited, that established two 

diverse heterocyclic iminoquinone scaffolds as potent anti-cancer agents [7-11]. Among the tools uti-

lized to ascertain molecular targets was the NCI COMPARE program [7,10,11], which now reveals a 

more extensive list of correlated compounds. Other high throughput compound screening programs 

are not utilized in this review [3,4]. 

Aldabbagh and co-workers introduced ring-fused imidazo[5,4-f]benzimidazolequinones, e.g., 2a 

and 2b, with iminoquinones 1a and 1b isolated from the Frémy oxidation of the amine intermediate 

in the presence of KH2PO4 acidic buffer (Scheme 1) [7,9]. 

 

Scheme 1. Iminoquinones via the synthesis of imidazo[5,4-f]benzimidazolequinones [7,9]. 

The dipyrido-fused iminoquinone 1a (DPIQ) was isolated in high yield (91%). DPIQ exhibited 

significant and variable cell growth inhibitory activity against the NCI-60 cell lines and was selected 

for five-dose testing [7]. The seven-membered (azepino) analogue 1b is inactive, and the hydrolyzed 

quinones 2a and 2b were less potent than DPIQ [7]. Notably, the isomeric iminoquinone of DPIQ, the 

imidazo[4,5-f]benzimidazole also exhibited low toxicity at the NCI [12]. COMPARE analysis gave a 

moderate correlation for DPIQ (PCC = 0.51) to NAD(P)H:quinone oxidoreductase 1 (NQO1, formerly 

known as DT-diaphorase) [7], an enzyme with heterogeneity of expression across the NCI-60 panel 

(Figure 1) [13]. COMPARE analysis of DPIQ against the huge library of synthetic compounds in the 

NCI-DTP database gave strong correlations in anti-cancer activity to two other heterocyclic imino-

quinones 3a (PCC = 0.87) and 4 (0.77), indicating the compounds possibly possess similar mechanisms 

of action. Iminoquinone 3a (PCC = 0.64) gave a stronger correlation than DPIQ and 4 (0.47) to NQO1 
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expression in the NCI-DTP 60 cell lines. The higher PCC for 3a was supported by computation dock-

ing at the NQO1 active site, which predicted a higher affinity and a shorter distance for hydride 

reduction from the isoalloxazine ring of FADH2 [7].  

 

Figure 1. 6-Imino-1,2,3,4,8,9,10,11-octahydropyrido[1,2-a]pyrido[1',2':1,2]imidazo[5,4-f]benzimidaz-

ole-13-one (DPIQ), 3a and 4, and PCCs from COMPARE analysis [7]. 

A collaboration between the groups of Aldabbagh and Koutentis led to the discovery of anti-

cancer activity for the benzo[e][1,2,4]triazin-7-ones, e.g., 5a-d, (Figure 2) based on inhibition of the 

growth of cancer cell lines [10,11]. An earlier report demonstrated potency for 6-substituted 1,3-di-

phenylbenzo[1,2,4]triazinones and 5-substituted [1,2,4]triazino[5,6,1-jk]carbazol-6-one derivatives 6, 

as multi-target inhibitors for Alzheimer’s disease (AD) [14].  

 

Figure 2. Benzo[1,2,4]triazin-7-ones 5a-d and PCCs to pleurotin [10,11], and anti-AD [1,2,4]tria-

zino[5,6,1-jk]carbazol-6-one 6 [14]. 

The anti-cancer evaluation studies were stimulated by our interest in the iminoquinone motif, 

which is common to both DPIQ and the benzo[1,2,4]triazinones (Figures 1 and 2). The benzotria-

zinones 5a-d showed sufficient potency for selection by the NCI for five dose testing. The five-dose 

testing gave the GI50 parameter used in COMPARE analysis. For 5a-d, the PCCs of ~0.8 indicates close 

to perfect direct correlations to the naturally occurring saturated benzoquinone, pleurotin [10,11]. 

Pleurotin possesses antibiotic and anti-cancer activity, including inhibiting hypoxia-induced factor 

1α (HIF-1α) [15]. Pleurotin is a potent irreversible inhibitor of thioredoxin reductase (TrxR), and com-

pounds 5a and 5b are reversible inhibitors with Ki values of 3.90 and 0.78 µM, respectively [10]. The 

greater enzyme inhibition by 5b was assumed to be related to the highly electron-withdrawing 3-CF3 

group increasing susceptibility to reductive activation and thereby increasing specificity towards 

cancer cell lines. 

NQO1 and TrxR are obligatory 2-electron reductases, involved in regulating the production of 

toxic reactive oxygen species (ROS), including superoxide (O2●-) (Scheme 2). Although O2●- is used in 

cells of the immune system and provides defense against pathogens, excessive amounts are impli-

cated in many physiological disorders, including cancer [16]. The 2-electron reduction overrides the 

single electron transfer (SET) by detoxifying the quinone, through the formation of a relatively stable 
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aromatic hydroquinone, which is eliminated through conjugation to glutathione, sulfate, or glucose 

[17].  

 

Scheme 2. General mechanism for NQO1 and TrxR-Trx quinone detoxification. 

NQO1 and TrxR, however, are over-expressed in many solid tumors and thus are viable molec-

ular targets for cancer therapy [18,19]. In this context, the heterocyclic (imino)quinone is designed as 

a prodrug to form cytotoxic hydroquinone. For instance, in the case of the archetypical bioreductive 

quinone prodrug, mitomycin C, cytotoxicity occurs through quinone methide formation at C-1 and 

C-10, which react with nucleophilic DNA bases [20] (Figure 3). However, in the case of heterocyclic 

quinones and iminoquinones, such as DPIQ, which lack obvious reactive sites upon reduction, cell 

death is likely attributed to ROS formation with simultaneous reoxidation of the hydroquinone to the 

quinone, as observed in deoxynyboquinone (Fig, 3) [21]. 

Similar to the NQO1 reductive activation mechanism [22], NAD(P)H provides hydride reducing 

equivalents for transfer via a cascade in the TrxR-Trx (thioredoxin protein) system to the (imino)qui-

none [19]. Consequently, inhibition of TrxR leads to the accumulation of Trx protein and the activa-

tion of ROS-induced apoptosis pathways [16]. 

 

Figure 3. Bioreductive anti-cancer agents. 

We now employ NCI COMPARE analysis to examine heterocyclic quinones and iminoquinones, 

specifically focusing on their strong correlations with DPIQ, benzo[1,2,4]triazinone 5a, and pleurotin. 

The objective of this analysis is to determine whether these correlations in anti-cancer activity pat-

terns reflect actual similarities in mechanisms of action and structure-activity relationships. In addi-

tion, to assessing the biological activities, we provide descriptions of selected syntheses utilized to 

obtain each heterocyclic iminoquinone and quinone scaffold. We believe that this review represents 

the first compilation of heterocyclic compounds derived from COMPARE analysis. 

2. Compound Search Methods 

Our previous COMPARE analyses were repeated [6,7,10,11,23], and new analyses were carried 

out under identical conditions to allow comparisons of Pearson correlation coefficients (PCCs). Public 

COMPARE (https://dtp.cancer.gov/public_compare/) was used to access NCI-60 data, which did not 

include one dose experiments. The mean graphs generated are listed along with the PCCs in the 

Supplementary Materials document (Figures S1-S82). Scifindern (https://scifinder-n.cas.org) was used 

to find relevant literature using chemical structure and citation searches with, where applicable, pub-

lication data refinements. 

2.1. COMPARE using DPIQ and 5a as the Seed. 

The seed NSC numbers for DPIQ (NCS753790) and benzo[1,2,4]triazinone 5a (NCS768093) were 

used to search using the COMPARE algorithm screening data limited to GI50 end points. The mean 

graph data was subjected to a standard COMPARE using GI50 of the synthetic compound’s as the 
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target set with compounds ranked according to the magnitude of the PCCs. The process was repeated 

using pleurotin (NSC401005) as the seed to confirm similarities in PCCs with 5a. 

2.2. COMPARE using Molecular Target Expression. 

COMPARE analysis was carried out for selected compound NSC numbers against molecular 

target expression in the NCI-60. NAD(P)H:quinone oxidoreductase 1 (NQO1) used the MT22 MOL-

TID.MT.SERIES and thioredoxin reductase (TrxR) used the MT143 TXNRD1 MOLTID.MT.SERIES. A 

PCC was obtained using a matrix COMPARE by appending the GI50 cell viability profile of a given 

NSC number against an appended molecular target expression across the NCI-60. 

The strongest correlations to NQO1 (MT22 MOLTID.MT.SERIES) were found by submitting the 

molecular target expression data to a standard COMPARE using screening data limited to GI50 end 

points. Compounds were listed according to the magnitude of the PCCs. 

3. Discussion 

3.1. COMPARE Analysis: Strong Correlations to DPIQ as the Seed. 

This section reviews compounds 7-12 with strong to very strong correlations (PCC = 0.72-0.87) 

in anti-cancer activity to DPIQ (Figure 4). COMPARE gave planar fused heterocyclic compounds 

containing the oxidizing quinone or iminoquinone motif, apart from azaanthracenone 11b, which is 

the para-dimethoxybenzene (bio)synthetic precursor (see Section 3.1.5).  

 

Figure 4. The strongest COMPARE correlations to DPIQ, excluding 3a and 4. 

Weak to moderate correlations (PCC = 0.38-0.64) to NQO1 expression across the NCI-60 cell line 

panel were demonstrated, although benzo[e]perimidine-4-carboxylic acid 3a is found to have a 

stronger correlation to NQO1 (PCC = 0.64, Figure 1). The following sub-sections review each hetero-

cyclic scaffold, apart from quinoline-5,8-dione 9a, since quinoline-5,8-diones also have strong corre-

lations to the benzo[1,2,4]triazinone 5a (reviewed in Section 3.3). 

3.1.1. Benzo[e]perimidines 

Commercially available benzo[e]perimidine-4-carboxylic acid 3a displays the greatest similarity 

in anti-cancer activity to DPIQ with a PCC of 0.87 and a moderate to strong PCC of 0.64 to NQO1 

expression across the NCI-60 cell line panel (Figure 1). Recently, iminoquinone 3a was shown to in-

duce apoptosis in NCI cell lines with high nuclear factor erythroid 2-related factor 2 (NRF2) activation 

[24]. NRF2 is a transcription factor over-expressed in pancreatic adenocarcinomas, which regulates 

expression of many redox enzymes, including NQO1 [25]. Compound 3a induced apoptosis in ex vivo 
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cultures of pancreatic cancer xenografts with high NQO1/NRF2 activation, and inhibited the biosyn-

thesis of amino acids, including asparagine and methionine [24]. The benzo[e]perimidine scaffold is 

obtained using the condensation of acetamide with l,4-diamino-9,10-anthracenedione in molten phe-

nol, with transamination providing 6-[(aminoalkyl)amino]-substituted examples 3c and 3d (Scheme 

3) [26]. Substitutions mimic the well-known clinical anti-cancer agent, mitoxantrone, originally used 

to treat leukemia. Borowski and co-workers demonstrated the requirement of the 6-[(aminoal-

kyl)amino]-substituent in antileukemic activity, e.g., 3c, with the synthetic precursor 3b inactive [26], 

and 8,11-dihydroxybenzo[e]perimidin-7-one 3d displaying significant toxicity against NCI leukemic 

and solid tumor cell lines [27]. Compound 3d displayed in vivo toxicity and overcomes multi-drug 

resistance tumor cells and like mitoxantrone induces cell cycle accumulation in the G2/M phase. The 

same group evaluated guanidine condensation adducts, with 3e displaying the greatest in vitro tox-

icity [28]. 

 

Scheme 3. Synthesis and anti-cancer evaluation of benzo[e]perimidines 3b-e [26-28]. 

3.1.2. Phenoxazinones 

DPIQ displays a strong similarity in anti-cancer activity to the extensively studied and abundant 

natural chromophore, 2-aminophenoxazin-3-one 4 (PCC = 0.77, Figure 1), also known as the antibi-

otic, questiomycin A [29-33]. Iminoquinone 4 is isolated from the 6-electron oxidative coupling of two 

molecules of 2-aminophenol [33,34], mediated by the enzyme, phenoxazinone synthase [35]. The an-

tibiotic has a weak to moderate correlation to NQO1 expression (PCC = 0.47) [7]. Anti-cancer activity 

of 4 includes cytotoxicity against a variety of human cancer cells lines with induction of apoptosis 

[31,36,37], and suppression of NO and prostaglandin E2 production leading to anti-inflammatory 

effects [38]. Cancer spread was monitored in vivo in mice, where the number of pulmonary metastasis 

of B6 melanoma cells remained the same [37]. The first reported antibiotic found to have anti-cancer 

activity is actinomycin D [39], containing 2-aminophenoxazin-3-one 4 at its core (Figure 5) [34]. Acti-

nomycin D (also known as dactinomycin) has the trade name Cosmegen and is clinically used to treat 

a variety of solid tumors. 
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Figure 5. Actinomycin D, showing 2-aminophenoxazin-3-one 4 core in bold. 

The phenoxazinone scaffold is contained in heterocyclic iminoquinone 7, which also displays a 

strong PCC of 0.74 to DPIQ activity (Figure 4). Benzo[a]phenoxazin-5-one 7 was assembled by con-

densation of 1-nitroso-2-naphthol with L-tyrosine [40]. The iminoquinone was identified from the 

NCI diversity set of 2,000 compounds as an inhibitor of HIF-1α induced by insulin-like growth factor-

1 [41]. HIF-1α is one of the sub-units of HIF-1, the transcription factor over-expressed in hypoxic 

tumor cells, and responsible for regulating anaerobic metabolism that leads to tumor progression and 

angiogenesis [42]. SET reversible by oxygen, mediated by NADPH-cytochrome (P450) reductase is 

associated with tumor hypoxia [16,43,44], and is prevented by the NQO1-mediated two-electron re-

duction (Scheme 2) [7,18,21,45]. This specificity towards hypoxia provides a rationale for the weak 

correlation of iminoquinone 7 (0.38) to NQO1 expression across the NCI 60 cell lines. 

Increased cell signaling supports cancer proliferation and requires increased phosphorylation. 

Human cytoplasmic protein tyrosine phosphatases (HCPTPs) are overexpressed in hypophosphory-

lated breast cancer cells [46]. Benzo[a]phenoxazin-5-one 7 was identified as the third most potent 

inhibitor of HCPTP isoform B (IC50 = 31 µM), after in silico docking of the compounds of the NCI 

Diversity Set I and enzyme inhibition assays on five selected compounds [47]. 

3.1.3. Benz[f]pyrido[1,2-a]indole-6,11-quinone 

Updating the 2012 COMPARE analysis on DPIQ [7], revealed the carboxylic acid 8a of 

benz[f]pyrido[1,2-a]indole-6,11-quinone (Figure 4), has the second highest PCC of 0.81. Testing 

against the NCI-DTP cell panel revealed the N,N-dimethylethyl carboxamide 8b to be the most potent 

amongst carboxamide derivatives evaluated (Figure 6), with cytotoxicity against the adriamycin-re-

sistant breast tumor cell line (NCI/ADR-RES) at a concentration lower than clinical anticancer agents, 

daunorubicin and mitoxantrone [48]. More recently, methylester 8c was found to inhibit indoleamine 

2,3-dioxygenase 1 (IDO1) [49]. IDO1 depletes tryptophan, with deficiencies in this essential amino 

acid leading to suppression of immune response to tumors [50]. 12-Unsubstituted and carboxylate 

ester derivatives of 8a, including ethylester 8d exhibit anti-fungal activities [51]. Carboxylates 8e-h 

display micromolar anti-bactericidal activity against the Erdman strain of Mycobacterium tuberculosis 

with the molecular target being a membrane-bound, iron−thiol reductase (IspQ) [52]. 

 

Figure 6. Biologically active benz[f]pyrido[1,2-a]indole-6,11-quinones [48,49,51,52]. 
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For the biological evaluation purposes described above, the benz[f]pyrido[1,2-a]indole-6,11-qui-

none scaffold was obtained using adaptations of the traditional three-component one-pot condensa-

tion of 2,3-dichloro-1,4-naphthoquinone, an active methylene dicarbonyl and pyridine [48,49,51,52]. 

Yields are improved when using three-component reactions with 1,4-naphthoquinone and pyridine 

catalyzed by CuCl2 with acyl bromides [53], or cleavage of butynedioates [54] (Scheme 4). 

 

Scheme 4. Synthesis of benz[f]pyrido[1,2-a]indole-6,11-quinones [53,54]. 

3.1.4. Analogues of Seriniquinone 

Dibenzo[b,i]thianthrene-5,7,12,14-tetrone was first synthesized in 1991 [55], and identified in 

2014 as seriniquinone (Figure 7), derived from the marine bacterium, Serinicoccus marinus [56]. 

 

Figure 7. Seriniquinone. 

Synthetic analogues of seriniquinone are required due to its poor water solubility, with 10a and 

10b showing strong PCCs of 0.75 and 0.72 to DPIQ anti-cancer activity, but weak to moderate PCCs 

of 0.47 and 0.48 to NQO1 expression (Figure 4). Phenol 10a and carbamate 10b were prepared on a 

multi-gram scale via naphthalene-1,4-dione coupling, thiophene ring-formation, and Pd-induced 

deprotection (Scheme 5) [57]. Carbamate 10b was shown to hydrolyze at room temperature to 10a 

under phosphate-buffered saline (PBS) at pH 7.2. Analogues 10a and 10b, like DPIQ [7], possess spec-

ificity towards the NCI melanoma cell lines. Cytotoxicity of seriniquinones was demonstrated 

through binding to dermcidin [56,57], a small protein involved in cancer cell proliferation [58] and 

induction of cell death via autophagocytosis [56]. More recently, seriniquinones were shown to in-

duce elevated levels of intracellular ROS, which trigger apoptotic events [59], which support the rel-

atively weak correlations to NQO1. ROS is related to SET radical producing processes (Scheme 2), 

which are not mediated by NQO1. 

 

Scheme 5. Synthesis of seriniquinone analogues [57]. 

3.1.5. Azaanthracenone 

Kalasinamide (11a) is an azaanthracenone first isolated from the tree, Polyalthia suberosa (Figure 

4) [60]. Unreported analogue 11b without the 4-methyl substituent was found by COMPARE analysis 
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to have a strong PCC to DPIQ of 0.73 and a weak to moderate PCC to NQO1 of 0.44. Kalasinamide is 

a photosensitizer thought to prevent the invasion of pathogens by generating singlet oxygen, and/or 

through conversion to the quinone, marcanine A [61]. Kalasinamide is prepared through acid-medi-

ated substitutions onto the activated p-dimethoxybenzene [61,62], including using Knorr cyclization, 

which gives a mixture of 11a and marcanine A, in the presence of oxygen and light (Scheme 6). Mar-

canine A is a plant natural product [61,63], also prepared through photochemical cyclization onto the 

naphthoquinone acrylamide substituent [64]. The potent anti-bacterial marcanine A [63], has cyto-

toxicity comparable to adriamycin using five different solid tumor cell lines [65]. 

 

Scheme 6. Syntheses of kalasinamide and marcaine A with yields [61,64]. 

3.1.6. Furano[2,3-b]naphthoquinone (FNQ) 

The polyketide-isoprenoid 12a was isolated from Streptomyces cinnamonensis (Figure 4) [66]. The 

biosynthesis of furano[2,3-b]naphthoquinone (FNQ) 12a has attracted considerable attention [67], 

however there is no literature on antimicrobial and anti-cancer studies. COMPARE analysis shows 

12a exhibits a strong PCC to DPIQ of 0.72, and a moderate PCC of 0.55 to NQO1 expression across 

the NCI-60, which is comparable with DPIQ (0.51) (Figure 1). Related synthetic structures (FNQ13, 

Figure 8) induce mitochondrial swelling and apoptosis due to induction of ROS including H2O2 [68]. 

Furano[2,3-b]naphtho-4,9-dione 12b isolated from Tabebuia avellanedae shows preference for inhibi-

tion of cancer cell growth over normal cells, with STAT3 inhibitory mechanisms proposed [69], while 

other FNQ natural products inhibit IDO1 (see Section 3.1.3) [70]. Inhibition of STAT3 may be im-

portant because the Janus kinase/signal transducers and activators of transcription (JAK/STAT) path-

way plays a key role in membrane-to-nucleus signaling, which is critical in mediation of cancer and 

inflammation [71]. 

 

Figure 8. Anti-cancer FNQs. 

Most syntheses of FNQ involve forming the furan ring from 2-hydroxy-1,4-naphthoquinone 

[70,72,73], including by an acetyl chloride/Et3N-mediated Wittig reaction (Scheme 7A) [72,73]. The 

product (RJ-LC-07-48) is potent against drug-resistant non-small-cell lung cancer (NSCLC) cells by 

interaction with the minichromosomal maintenance protein MCM2, disrupting the formation of the 

MCM complex that is required for initiation of DNA replication [73]. Similar specificity towards non-

small cell lung cancer cell lines was shown by DPIQ [7]. Wu and co-workers transformed 2-(5-hy-

droxy-1-pentynyl)benzonitriles to FNQ via a NaOMe-mediated ring-closure, followed by Frémy’s 

salt oxidation (Scheme 7B) [74]. 
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Scheme 7. Syntheses of furano[2,3-b]naphtho-4,9-diones [73,74]. 

3.2. COMPARE Analysis: Strong Correlations to Benzo[1,2,4]trazin-7-ones 5a as the Seed. 

NCI COMPARE analysis using benzo[1,2,4]triazin-7-ones 5a and pleurotin, as the seed, revealed 

very strong correlations to synthetic heterocyclic quinone scaffolds 13a-d and 14a-f, as well as to the 

natural products, pyranonaphthoquinones 15, and discorhabdin C (PCC = 0.68-0.90, Figure 9). How-

ever, unlike DPIQ (above), very strong PCC of ~0.85 (to 5a) are also found to non-quinone structures, 

notably synthetic derivatives of the anti-cancer sesquiterpene lactone, melampomagnolide B (MMB), 

isolated from Magnolia grandiflora [75,76]. MMB derivatives show specificity towards leukemic cell 

lines [76,77], with dimeric examples showing nanomolar activity against solid tumor cell lines in the 

NCI-60 panel [77]. Similarly, benzotriazin-7-ones 5a-d also showed potent anti-proliferative effects 

against most NCI leukemic cell lines [10,11]. MMB is an extensively investigated scaffold that is 

thought to target the NFkB pathway through inhibition of the IkBa/p65/p50 kinase complex (IKK) 

[78]. The following section reviews the heterocyclic quinones and iminoquinones having strong to 

very strong correlations to the anti-cancer activity of TrxR inhibitors 5a and pleurotin. Quinoline-5,8-

diones (e.g., 9b) are reviewed separately in section 3.3. 

 

Figure 9. Very strong COMPARE correlations to benzo[1,2,4]triazinone 5a and pleurotin. 

3.2.1. Naphtho[2,3-b][1,4]oxazepine-6,11-dione 

COMPARE gave almost perfect PCC of ~0.90 for the anti-cancer activity of benzo[1,2,4]tria-

zinone 5a to 1,4-benzoxazepine derivatives of 5,8-dihydroxy-1,4-naphthoquinones 13a-d (related to 

Echinamines A and B) (Figure 10). Echinamines A and B are antioxidants isolated from the sea urchin 

Scaphechinus mirabilis [79], which suppress herpes simplex virus type 1 infection in the Vero monkey 

kidney cell line [80]. COMPARE analysis derived 1,4-benzoxazepines 13a-d are unreported, giving 

analogous to 5a-d (Figure 3) very strong correlations to pleurotin anticancer activity (PCC = 0.8-0.9). 
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The almost perfect correlations of 13a-d to pleurotin are perhaps unsurprising given the common 1,4-

naphthoquinone motif. 

 

Figure 10. 1,4-Benzoxazepine derivatives of 1,4-naphthoquinones with PCCs and the related natural 

products Echinamine A and B. 

You et al. synthesis of homomorpholine 17b-fused and morpholine-fused, e.g., 17a, 17c and 17d, 

naphthoquinone adducts used an intramolecular copper-catalyzed hydroxyl displacement of iodides 

(16a-d) with compounds giving moderate inhibition of lung A549 cell growth (Scheme 8) [81]. 

 

Scheme 8. Synthesis (with yields) of naphtho[2,3-b][1,4]-oxazine-1,4-diones 17a-d and IC50 against 

A549 cells [81]. 

3.2.2. Benzo[a]carbazole-1,4-dione 

Benzo[a]carbazole-1,4-dione 14c and others appear in the patent literature as inhibitors for the 

thioredoxin TrxR-Trx system (Figure 11) [82]. This supports the very strong anti-cancer activity cor-

relations with TrxR inhibitors, benzo[e][1,2,4]triazin-7-one 5a (~0.74-0.82) and Pleurotin (0.78-0.87). 

Benzo[a]carbazole-1,4-dione 14a was one of six hits out of 2,000 in the NCI library to inhibit Plasmo-

dium kinesin-5 from both human and malaria vivax [83]. Compounds 14a and 14d-f were amongst 

35 hits out of 1597 compounds in the NCI Diversity SET III screen with >50% inhibitory activity at 

concentrations of 20 µM of the immunosuppressive enzyme, IDO1 [84]. Benzo[a]carbazole-1,4-dione 

14a is effective against vancomycin-resistant Staphylococcus aureus by targeting the cysteine thiol of 

bacterial MarR transcription factors [85]. 
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Figure 11. Benzo[a]carbazole-1,4-dione antibiotics and anti-cancer agents [82-85]. 

The traditional synthesis of the benzo[a]carbazole-1,4-dione scaffold (Figure 11) involves a Diels-

Alder cycloaddition of 3-vinylindole with benzoquinone and oxidative dehydrogenation [86,87]. The 

3-vinylindole can be generated in situ from 3-ethylindole using benzoquinone as the oxidizing agent, 

and the benzoquinone then acts as the dienophile to give the benzo[a]carbazole (Scheme 9) [87]. 

 

Scheme 9. Synthesis of benzo[a]carbazole-1,4-dione [87]. 

3.2.3. Pyranonaphthoquinones 

Pyranonaphthoquinones are natural products possessing the naphtho[2,3-c]pyran-5,10-dione 

ring system (Figure 12) [88,89]. Benzotriazinone 5a and pleurotin show strong to very strong PCCs 

of 0.72-0.83 to the antibiotics kalafungin and nanaomycin A first isolated from Streptomyces ta-

nashiensis strain Kala [90,91]. Nanaomycin D isolated from Streptomyces rosa is enantiomeric to 

kalafungin with nanaomycin A, the cleaved lactone [92]. Kalafungin and nanaomycin analogues 

show specficity towards breast cancer cell lines over-expressing cytochrome P450 oxidoreductase 

with cytotoxicity diminished under anoxia, where reactive oxygen production is inhibited [93]. The 

SET recycling mechanism is also important in antibacterial activity [94]. Conversely, kalafungin and 

analogues were reported inhibitors of the serine-threonine kinase AKT via a proposed two-electron 

reduction to the hydroquinone with alkylation of the quinone methide by a cysteine in the activation 

loop (T-loop) of the kinase domain of AKT [95]. Nanaomycin A was identified in a screening program 

as a DNA methyltransferase inhibitor, with biochemical assays revealing specficity towards 

DNMT3B with docking hypothesizing reduction by the sulfur atom of a cysteine in the catalytic site 

[96]. 
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Figure 12. The pyranonaphthoquinones with COMPARE analysis PCCs. 

Griseusin A, isolated from Streptomyces griseus, is a pyranonaphthoquinone antibiotic [97], that 

bears structural similarity to kalafungin, but possesses a 1,7-dioxaspiro[5,5]-undecane ring system. 

Synthetic griseusin 15a exhibits a strong correlation in anti-cancer activity to benzotriazinone 5a (PCC 

= 0.78) and pleurotin (0.68) (Figure 12). The multi-step synthesis of griseusin 15a involves a ce-

rium(IV) ammonium nitrate-mediated oxidative rearrangement and acid-mediated cyclization to the 

spiroacetal [98-101]. Brimble and co-workers have reported the separation of isomers 15a and 15b 

using flash chromatography (Scheme 10) [99-101]. 

 

Scheme 10. Brimble and co-workers synthesis of the griseusin scaffold [99,100]. 

3.2.4. Discorhabdin C 

The pyrroloiminoquinone alkaloids, discorhabdins are isolated from numerous cold water ma-

rine sponges, with cytotoxic discorhabdin C from the New Zealand sponge, Latrunculia Bocage 

[102,103]. Discorhabdin C exhibits strong to very strong PCCs to benzotriazinone 5a (0.78) and pleu-

rotin (0.84) (Figure 9). Munro and co-workers reported selectivity towards the NCI colon and leuke-

mia subpanels [104], while others reported in vitro anti-hepatitis virus C, antimalarial and antimicro-

brial activities [105]. Figg and co-workers performed high-throughput screens on crude natural prod-

uct extracts and identified 3-dihydro-discorhabdin C as a HIF-1α/p300 inhibitor [106], which inter-

feres with the HIF-1α and p300 protein−protein interaction to decrease HIF-1α-related transcription 

(Figure 13) [43]. 
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Figure 13. 3-Dihydrodiscorhabdin C. 

In the 1990s, many multi-step total syntheses of discorhabdin C were reported, with approaches 

starting from the quinoline with formation of the fused pyrrole [107,108], and from the indole with 

formation of the six-membered imino-ring through condensation with the quinone [109-111]. One 

approach involves oxidation of the tyramine-substituted indoloquinonimine 18 in a nucleophilic ad-

dition onto the iminoquinone (Scheme 11) [111]. Kublak and Confalone had earlier used the para-

phenoxide approach for alkylation of an adjacent naphthoquinone ethylamino-substituent by dis-

placement of a mesylate [112]. 

 

Scheme 11. Aubart and Heathcock synthesis of discorhabdin C [111]. 

3.3. COMPARE Analysis: Strong Correlations to DPIQ and Benzo[1,2,4]trazin-7-one 5a as the Seed: Quin-

oline-5,8-diones 

Synthetic quinoline-5,8-diones scaffolds correlate strongly with the anti-cancer activity of DPIQ, 

benzotriazinone 5a, and pleurotin. 6-Aminoethyl substituted derivative 9a shows one of the strongest 

PCC to DPIQ of 0.80, with a relatively weak PCC to NQO1 expression of 0.42 (Figure 4). 2-Methyl 

substituted derivative 9b shows a very strong PCC to pleurotin of 0.89, and a strong correlation to 

benzotriazinone 5a of 0.71 (Figure 9). There is an abundance of synthetic and anti-cancer studies on 

quinoline-5,8-diones [113], with most stimulated by the broad range of cytotoxicity against solid tu-

mors displayed by streptonigrin, a recognised substrate for NQO1 (Figure 14) [114]. Streptonigrin 

was isolated from Streptomyces flocculus [115], with lavendamycin a biosynthetically related antibiotic 

isolated from Streptomyces lavendulae [116]. Unfortunately, both streptonegrin and lavendamycin 

have proved too toxic for clinical use, although analogues of lavendamycin display potent HIV-re-

verse transcription inhibition [117], and improved specificity for NQO1 [118]. 

 

Figure 14. Popular quinoline-5,8-dione scaffolds for biological activity investigations. 
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N-Alkylamino compounds, analogous to dione 9a also possess antimalarial activity [119], while 

compound 9b is a reported inhibitor of Cdc25B (IC50 = 4.6 µM), a protein phosphatase involved in 

regulating cyclin-dependent kinase activity during the cell cycle [120]. Recent studies have reported 

6-N-arylquinoline-5,8-diones 9c (Figure 14) as inhibitors of Mycobacterium tuberculosis [121], as well 

as of Gram negative and positive bacteria [122]. 6-N-Arylquinoline-5,8-diones 9c are also reported to 

cleave DNA, as an underlying mechanism for apoptosis induction in leukemic cell lines [123]. Nev-

ertheless, the consensus is that there is a strong correlation between NQO1 bioreduction and anti-

cancer activity for many quinoline-5,8-diones [118,124,125], given that NQO1 is strongly over-ex-

pressed in solid tumours [13] relative to normal tissues [126]. 

3.4. COMPARE Analysis using Molecular Target Expression. 

In this section the COMPARE algorithm was used to derive PCCs for the similarity in expression 

of chosen cancer molecular targets, NQO1 and TrxR to compound growth inhibition patterns across 

the NCI-60 cell line panel. Section 3.4.1 deals with NQO1 expression and establishes the strongest 

correlations to compound cytotoxicity. Section 3.4.2 reveals the PCCs of compounds with almost per-

fect direct correlations to the anti-cancer activity of known TrxR inhibitors, benzo[1,2,4]triazinones 

5a-d and pleurotin. 

3.4.1. Compound Correlations to NQO1 expression 

Since most compounds that correlated strongly with DPIQ anti-cancer activity, gave modest 

PCCs of 0.38-0.55 to NQO1 expression, except for benzo[e]perimidine 3a, which was noticeably 

stronger (PCC = 0.64, Figures 1 & 4), we searched for compounds with the strongest PCCs to NQO1 

expression. The strongest compound correlations to NQO1 were of similar magnitude to the PCC for 

benzo[e]perimidine 3a (Figure 15). Phenazine-5,10-dioxide 19, 5-hydroxy-6-methoxy-8-nitroquino-

line 20, and indolequinones 21a and 21b gave PCCs of ~0.6-0.7 to NQO1 and DPIQ. Phenazine-5,10-

dioxide 19 is unreported, and has a marginally lower PCC of 0.51 than the other NQO1 substrates to 

DPIQ. 

 

Figure 15. The three strongest PCCs to NQO1. 

Analogues of phenazine 19 are reported as π-stacking DNA-intercalators with differential tox-

icity through DNA-damaging ●OH release under hypoxic conditions [127,128]. Phenazine-5,10-diox-

ides are designed to model 3-amino-1,2,4-benzotriazine-1,4-dioxide (tirapazamine, TPZ, Figure 16), 

which reached advanced clinical trials as a hypoxia-activated prodrug [129]. However, although 

there are successful Phase I and Phase II trials, Phase III randomized controlled trials showed no 

benefit of TPZ in chemotherapy without using an approach to ensure sustained tumor hypoxia [130]. 

Quinoline 20 is a synthetic precursor for 5-alkoxy derivatives of the clinical anti-malarial primaquine 

[131]. The biological activity of 20 is unreported, and, tentatively, the compound is metabolized to a 

quinoline-5,8-dione antibiotic upon reductive activation-oxidation (Section 3.3). 
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Figure 16. TPZ and primaquine related to 19 and 20, respectively. 

Pyrrolo[1,2-a]indoles are highly pursued synthetic targets [132], because they form the core of 

mitomycins, in particular MMC (Figure 3) [133]. The 7-methoxymitosene skeleton of 21a and 21b was 

accessed via a Pt-promoted cyclization of a β-lactam onto an internal acetylene (Scheme 12) [134]. 

Triphosgene and triethylamine preferentially chlorinate the primary alcohol over the secondary al-

cohol in 22 to give 21a [135], with the substitution reported to be driven by steric demand [136]. 

 

Scheme 12. Cycloisomerization to the 7-methoxymitosene skeleton [134,135]. 

7-Methoxymitosenes 21a and 22b are designed to form an electrophilic spiro-cyclopropane inter-

mediate upon reductive activation, which enables crosslinking possibly within the same DNA mole-

cule (Scheme 13) [135]. Indolequinones 21a and 21b were evaluated using the prostate cancer cell line 

PPC-1 and the normal prostate cell line RWPE-1, with alcohol 21a exhibiting the greater selectivity 

towards the cancer cell line [135]. 

 

Scheme 13. Hypothesis for cytotoxicity of 7-methoxymitosenes [135]. 

Interestingly, known TrxR inhibitors, benzo[1,2,4]triazinones 5a, 5b and pleurotin, as well as 

compounds that correlate very strongly to their anti-cancer activity, benzo[a]carbazole-1,4-dione 14b, 

kalafungin, and discorhabdin C gave negative PCCs to NQO1 expression across the NCI-60 panel 

(PCC = -0.27 to -0.48, Table 1). This suggests that TrxR inhibitors may also act as inhibitors of other 

two-electron reductases over-expressed in solid tumors, namely NQO1 (see discussion below). 
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Table 1. COMPARE analysis derived PCCs to NQO1 and TrxR expression across the NCI-60 panel 

for TrxR inhibitors.1. 

Compound NQO1 TrxR  

5a -0.37 -0.24  

5b -0.30 -0.12  

Pleurotin -0.27 -0.21  

14b -0.48 -0.22  

Kalafungin -0.27 -0.24  

Discorhabdin C -0.29 -0.37  
1 See section 2 for the method [6,7,23]. 

3.4.1. Compound Correlations to TrxR 

The negative correlation to TrxR (TXNRD1) expression by reported TrxR-Trx inhibitory com-

pounds [10,11,15,19,137], as well as by compounds with very strong similarities in anti-cancer activity 

suggests that the cytotoxicity of these compounds is greater when TrxR levels are low (Table 1). In-

creased inhibition may thus prevent the reducing system’s essential role in tumor development, such 

as inhibiting apoptosis, and angiogenesis promotion [19,137]. The TrxR-Trx system modulates cell 

signaling in particular through interactions with the tumor suppressor protein PTEN (protein tyro-

sine phosphatase and tensin homolog). The TrxR-Trx system activates PTEN through reduction [138], 

with oxidation of PTEN leading to inactivation [138,139]. Trx-1–PTEN interactions through disulfide 

bond formation between protein Cys active sites inhibits catalytic activity [140]. The inactivation of 

PTEN leads to activation of tumor propagating PI3K-AKT kinase signaling pathways [138]. The nat-

urally occurring sesquiterpene lactone, parthenolide (structurally similar to MMB, Figure 9) is re-

ported to inhibit TrxR by shifting the enzyme from antioxidant activity to ROS generation leading to 

promotion of apoptosis in HeLa cells (Figure 17) [141]. Cell death through ROS generation seems a 

common mode of action for most classes of compounds inhibiting TrxR [19,93,137,141,142]. Alterna-

tively, the greater potency of compounds as cytotoxins when reductase expression is low, may be 

due to the TrxR-Trx or NQO1 systems detoxifying the heterocyclic (imino)quinones through biore-

duction (Scheme 2). Further, COMPARE reveals a diverse range of chemical structures, including 

many structures without the (imino)quinone moiety, that have strong PCCs to the anti-cancer activity 

of TrxR inhibitors, 5a, 5b and pleurotin. Since benzotriazinones 5a and 5b exhibit reversible mixed 

and uncompetitive inhibition of TrxR respectively [10,137], with binding to positions other than the 

active site likely, it seems that bioreduction may not be directly involved in the inhibition or inacti-

vation of TrxR by many compounds. 

 

Figure 17. Parthenolide. 

Importantly, specificity for NQO1 was demonstrated by DPIQ, benzo[e]perimidine 3a, 2-amino-

phenoxazinone 4 and phenazine 19, which have no correlations to TrxR (TXNRD1: PCC = -0.15 to 

0.12), but moderate to strong correlations to NQO1 expression across the NCI-60 cell line panel (PCC 

= 0.47-0.67, Table 2). This supports the premise that these compounds are specifically substrates for 

cellular NQO1, which facilitates reductively activated cytotoxicity. Further, MMC and other recog-

nized indolequinone NQO1 substrates [7,13,143,144,145], are shown to irreversibly inhibit TrxR 

through formation of covalently bound adducts (Figure 18) [135,143,145]. Comparing mean growth 

(inhibition) graphs of NQO1 substrates, the greatest cytotoxicity is towards solid tumor cell lines, 

including most melanoma, non-small cell lung, and colon cancer cell lines, with negligible toxicity 
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towards leukemic cell lines, in contrast with the strong anti-leukemic activity of TrxR inhibitors (see 

Supplementary Materials). 

Table 2. COMPARE analysis derived PCCs to NQO1 and TrxR expression across the NCI-60 panel 

for NQO1 substrates.1. 

Compound NQO1 TrxR  

DPIQ 0.51  0.12  

3a 0.64  0.11  

4 0.47 -0.15  

19 0.67  0.10  
1 See section 2 for the method [6,7,23], PCC for DPIQ, 3a and 4 with NQO1 previously reported [7]. 

 

Figure 18. Inactivation of TrxR: MMC-TrxR adduct [143]. 

5. Conclusions 

The NCI COMPARE program has enabled the composition of this review on the synthesis and 

biological activity of heterocyclic iminoquinones and quinones, where scaffolds are categorized ac-

cording to similarities in their anti-cancer activity. COMPARE has enabled hypotheses of mecha-

nisms of actions to be made, although it is important to emphasize that all correlations herein need 

to be verified experimentally [2]. We reveal several natural products with strong to very strong cor-

relations in patterns of anti-cancer activity to DPIQ, benzo[1,2,4]triazin-7-one 5a, and pleurotin. Most 

heterocyclic scaffolds exhibit significant biological activity to warrant extensive synthetic investiga-

tions. 

Compounds strongly correlating to DPIQ, and showing specificity to NQO1 expression, have 

no correlation to the alternative two-electron reductase, TrxR. These “NQO1 specific prodrugs” are 

flat aromatic heterocycles with fused oxidizable, e.g., quinone or iminoquinone, moieties. The corre-

lations to NQO1 expression, however, are modest, suggesting that NQO1 is not the sole cellular mo-

lecular component that influences cell sensitivity. NQO1 has a “Janus” effect in cancer biology [18], 

where it behaves as either a tumor suppressor or a tumor promotor, with the former based on the 

prevention of SET processes that lead to an accumulation of harmful ROS. However, the redox ap-

pears interchangeable, and NQO1-activated pathways can lead to ROS-induced apoptosis [18,21]. 

Ultimately, designed prodrugs for NQO1 may also effectively act as inhibitors of redox defensive 

signaling pathways that contribute to carcinogenesis, including the transcriptional regulators Nrf2 

[25], HIF-1α [43], and JAK/STAT [71]. 

There is a diverse range of compounds with almost direct correlations to the anti-cancer activity 

patterns of the TrxR inhibitors, benzotriazinone 5a and pleurotin. These compounds do not always 

possess an oxidizing (iminoquinone or quinone) group, suggesting bioreduction is unnecessary, and 

compounds are more cytotoxic in the absence of the reductase. Among these compounds, there are 

similarities in biological activity, with many possessing antiviral, antimicrobial (including antimalar-

ial), as well as anti-cancer activity. These compounds tend to be cytotoxic towards leukemic as well 

as solid tumor cell lines, unlike NQO1 substrates, which show specificity towards solid tumors over-

expressing NQO1. There are similarities in the mechanism of action, with compounds correlating to 

NQO1 expression or acting as TrxR inhibitors, both showing inhibition of the monomeric oxidase, 

IDO1 [50]. 1,3-Diphenylbenzo[1,2,4]triazinones are inhibitors in AD [14], as well as cancer [10,11,137]. 

Reduced Trx protein binds to apoptosis signal-regulating kinase 1 (ASK1), thus inhibition of TrxR 

leads to oxidized Trx, which cannot bind to ASK1. The outcome is mitochondrial apoptosis through 

activation of ASK1, downstream JNK and mitogen-activated protein kinase (MAPK14) signaling 
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pathways [145], which lead to reduced inflammatory response and tumorigenesis or the initiating of 

neurodegenerative disorders, such as AD [137,142]. 

Supplementary Materials: The following supporting information can be 

downloaded at: www.mdpi.com/xxx/s1, Figures S1-S84. 
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