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Abstract: In IP networks, packet forwarding is destination-based and hop-by-hop, and routes are
built as needed. Kwong et al. introduced a protection routing in which packet delivery to the
destination node can proceed uninterrupted in the event of any single node or link failure. He then
shows that “whether there is a protection routing to the destination” is NP-complete. Tapolcai find
that two completely independent spanning trees, abbreviated as CISTs, can be used to configure the
protection routing. In this paper, we propose dual protection routing trees, denoted as dual-PRTs
to replace CISTs, which are less restrictive than CISTs. Next, we propose a transformation algorithm
that uses dual-PRTs to configure the protection routing. Taking complete graphs K., complete
bipartite graphs Ku, hypercubes Qn, locally twisted cubes LTQ. as examples, we provide a recursive
method to construct dual-PRTs on them. This article will show that there are no two CISTs on Ks3,
(3, and LTQs, but there exist dual-PRTs that can be used to configure the protection routing. As
shown in the performance evaluation of simulation results, for both Q» and LTQ», we get the average
path length of protection routing configured by dual-PRTs is shorter than that by two CISTs.

Keywords: protection routing; completely independent spanning trees; dual protection routing
trees; complete graphs; complete bipartite graphs; hypercubes; locally twisted cubes
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1. Introduction

In IP networks, Intra-domain routing has traditionally relied on distributed computing among
routers. Packet forwarding is destination-based and hop-by-hop, and routes are created when needed
by a centralized unit. Kwong et al. [1] introduced a reactive routing scheme called protection routing,
which employs the multi-paths technique for packet forwarding. If the routing is a protection routing,
packet delivery to the destination node can proceed uninterrupted in the presence of any single node
or link failure. All routers have an alternate path they can use in case of failure to forward packets.

An undirected simple graph G = (V(G), E(G)), where the vertex set V(G) and the edge set £G)
represent the set of nodes and the set of communication links between nodes, respectively. Let k > 2
be an integer and T1, T, ..., Tk be spanning trees of a graph G. A vertex in a tree T is a leaf if its degree
is one, and an inner vertex otherwise. Two paths from u to v are internally vertex-disjoint if they have
no common vertices other than u and v. Next, two spanning trees Ti and Tj are edge-disjoint if they
share no common edge. Then, The spanning trees Ti, T, ..., Tk are completely independent spanning
trees, abbreviated as CISTs, if they are pairwise edge-disjoint and internally vertex-disjoint. The k-
CISTs problem was first posed in 2001 by Hasunuma [2]. Then, Tapolcai [3] provided sufficient
conditions for protection routing in IP networks according to two CISTs. He gave a deterministic
polynomial construction, which builds up a protection routing for an arbitrary destination node by
two CISTs.

Previous related works are described below. Hasunuma first worked on the theoretical study of
CISTs and showed that the underlying graph of any k-connected line-directed graph recognizes k
CISTs [2], and there exist two CISTs in a 4-connected maximal planar graph [4] and the Cartesian
product of two 2-connected graphs [5]. Cheng et al. construct two CISTs in crossed cubes [6]. Darties
et al. determine three CISTs in some Cartesian products of three cycles [7]. Pai et al. proposed several
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known CISTs, such as complete graphs, complete bipartite and complete tripartite graphs [8], chord
rings with specific conditions [9], and variants of hypercubes [10-13]. In the past ten years, data center
networks have received much attention. Qin et al. constructing dual-CISTs of DCell data center
networks [14]. Li et al. provide multi-CISTs on data center Networks [15], BCCC data center networks
[16], and data center networks with heterogeneous edge-core servers [17].

Tapolcai [3] showed that two CISTs have an application on configuring a protection routing.
According to this, Pai et al. construct protection routings via CISTs on some Cayley networks [18],
crossed cubes [13], mobius cubes [12], pancake graphs [19], and dense Gaussian on-chip networks
[20]. Li et al. involve multi-CISTs in the protection routing scheme on data center Networks [15],
BCCC data center networks [16], and data center networks with heterogeneous edge-core servers
[17].

Recently, we found that the protection routing can still be constructed by reducing some of the
edge-disjoint requirements of two CISTs. Therefore, in this paper, we will define new trees called
dual protection routing trees (abbreviated as dual-PRTs) and propose an algorithm that configures a
protection routing via them. Taking complete graphs, complete bipartite graphs, hypercubes, locally
twisted cubes as examples, we provide a recursive algorithm to find dual-PRTs on them and
configure protection routings. Furthermore, we supplement some analysis on simulation to evaluate
the corresponding performance. The performance evaluation shows that dual-PRTs are better than
two CISTs.

The rest of the paper is organized as follows: Section 2 introduces the necessary definitions and
theorems for protection routing and CISTs. In section 3, we first propose definitions of dual-PRTs,
and a transformation algorithm that uses dual-PRTs to configure the protection routing. Taking
complete graphs, complete bipartite graphs, hypercubes Qn, locally twisted cubes as examples, we
provide a recursive method to construct dual-PRTs on them. Next, in order to compare with previous
related research, we make the performance assessment of protection routings on hypercubes and
locally twisted cubes in section 4. Finally, section 5 is the conclusion of this paper.

2. Preliminaries

The topology of a network is usually modeled as an undirected graph G = (V(G), E(G)). The
neighborhood of a vertex v in a graph G, denoted by N¢(v), is the set of vertices adjacent to v in G. In
a tree, an edge is called a leaf edge (respectively, a stem) if it is adjacent to at least one leaf
(respectively, two inner vertices). For convenience, the terms "networks" and "graphs"”, "nodes" and
"vertices", "links" and "edges" are often used interchangeably in this paper. For a destination node d
€ V(G), the route of traffic destined for 4 is a directed acyclic graph Rs = (V(G), E«(G)), where the
underlying graph of Ru is the spanning subgraph of G and each node u € V(G) \ {d} has at least one
outgoing link in Ri«. We use <u, v> to denote a directed link from u to v. If <u, v> € E«(G), node v is
called the primary next-hop of node u, or PNH for short, and the link <u, v> is called a primary link
of u. Furthermore, node u is called upstream of node v if there exists a directed path from u to v in Ru.
In contrast, node v is downstream of node u. Except for the destination node d, when a single
component fails f € V(G) UEa(G) \ {d}, let G — fand Ra - fbe the residual network and routing obtained
from G and Ry, respectively. Kwong et al. [1] gave the following two definitions.

Definition 1. (/7]) A node u € V(G) \ {d} in a routing Ra is said to be protected with respect to d if after any
single component failure f € V(G) U E«(G) \ {d} that affects node u’s PNH, then there exists a node x € Nc(u)
— flu) such that the following two conditions (1) x is not upstream of u in Ra— f; (2) x and all its downstream
nodes, except d, have at least one PNH in Rd - f.

Definition 2. ([1]) A routing Ra is a protection routing if every node u € V(G) \ {d} is protected in Ra. A
network G is protectable if there exists a protection routing Ra for all d € V(G), otherwise, G is unprotectable.

In fact, x is called the second next-hop of node 1, SNH for short, and is denoted by SNH(u). We
notice that when a failure occurs, the candidate SNHs of node u are not unique. However, the first
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condition is to avoid forwarding loops in case of failure, and the second condition guarantees that
packets are delivered to d through node x and its downstream nodes in R« — f. For example, Figure 1
shows a protection routing in hypercube Qs (we will formally introduce it in Section 3.3) for the
destination node 0, and Table 1 gives a candidate SNH of node u € V(Qs) \ {0}.

Figure 1. (a) Hypercube Qs and (b) a protection routing for destination node 0 in Qs, where thick arcs
indicate primary links and thin arcs indicate alternative links.

Table 1. Candidate SNHs of node u € V(Q3) \ {0}

Component failureSecond Next-Hop

<1, 0> SNH(1) =3
<2,0> SNH(2) =6
<4, 0> SNH4) =5
<3,2>or?2 SNH(3)=7
<5,1>orl SNH(5)=4
<6, 7> or 7 SNH(6) =2
<7,5>or5 SNH(7) =3

Then, Tapolcai provided sufficient conditions for protection routing in IP networks according to
two CISTs. The following definitions are about CISTs.

Definition 3. Two spanning trees T1 and T2 are inner-vertex-disjoint if any vertex can only be an inner node
in T1or T2

Definition 4. Two spanning trees T1 and T2 are edge-disjoint if they share no common edge.

Definition 5. ([2]) The spanning trees T1 and T2 are two completely independent spanning trees if they follow
definitions 3 and 4.

3. Main Results

In [3], Tapolcai uses two CISTs to configure a protection routing for a destination node d. Then
we find another way to construct routing through two spanning trees T: and T2 in which most of the
leaf edges can be shared. We first give the following two definitions:

Definition 6. Two spanning trees T1 and T2 are stem-disjoint if they share no common stem.

Definition 7. The spanning trees T1 and T2 are dual protection routing trees based on destination node d,

which are denoted as dual-PRT?, if Definitions 3, 6 and the following condition are met:

o Without loss of generality, we assume that node d is an inner vertex in T1. There exists an inner node d’
in T2 such that (d, d’) is a leaf edge in T2 and d’ is adjacent to another inner node w (# d) in T1.

For example, Figure 2 shows dual-PRT%. The inner nodes of T are vertices 0, 2, 3, 4, and the
inner nodes of T2 are vertices 1, 5, 6, 7. T1 and T follow Definition 3. Then the stem sets of T1 and T2
are {(0, 2), (0, 4), (2, 3)} and {(1, 5), (5, 7), (6, 7)} respectively, and them follow Definition 6. Finally, let
d’, w be vertices 1 and 3 respectively. Since (0, 1) is a leaf edge in T2 and vertex 1 is adjacent to inner
node 3 in Ti, according to Definition 7, T1 and T2 are dual-PRT%. In fact, Figure 1(b) shows the
protection routing configured by T1 and T2. We will propose a formal construction algorithm later.
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(@) T (d) T

Figure 2. (a) T1 and (b) Tz are dual-PRT% where thick lines indicate stems and thin lines indicate leaf
edges.

Lemma 1. There are no two CISTs in hypercube Qs.

Proof of Lemma 1. As shown in Figure 1(a), hypercube Qs has eight nodes and twelve edges. A tree
with eight nodes has seven edges. By Definition 4, we need fourteen edges to find two edge-disjoint
spanning trees, but Qs has only twelve edges. O

According to Lemma 1, if there are no two CISTs in Qs the protection routing cannot be
configured by Tapolcai’s method [3]. That is why we propose dual-PRT?%. Now we present the
construction method in which the protecting routing is configured by dual-PRT%s, as follows.

Algorithm 1: Configuring a protection routing via dual-PRT%
Input: Dual-PRT T}, T of a network G where d is the destination node.
Output: A protection routing R; = (V(G), PL, AL) where PL is the primary links set and AL is the alternative
links set
Step 1 T’ <« T\ which takes all links directed to root d;
Step2 T»’ < T» which takes all links directed to root d;
Step3 PL<«allstemsin 71" U all stemsin 75" U {<d’, d>};
Step4 AL < all leafedgesin 77" U all leaf edges in 7> except <d’, d>;
Step 5 If a vertex is a leaf in both 77 and 7>, then add its 7} leaf edge to PL and add its 75 leaf edge to AL;
Step 6 Return R, = (V(G), PL, AL)

For example, taking Figure 2 (a) and (b) as input, according to steps 1, 2 of Algorithm 1, we have
T’ and T2’, as shown in Figure 3 (a) and (b). Next, classify the stems and leaf edges of the two trees
into primary links or alternative links according to steps 3 and 4, then a protection routing Ro can be
obtained, as shown in Figure 3 (c).

b 7

Figure 3. (a) T1" and (b) T2’ are all links directed to root 0 from T1 and T2 respectively, (c) a protection
routing Ro, where thick arcs indicate primary links and thin arcs indicate alternative links.

Theorem 1. The routing constructed by Algorithm 1 is a protection routing with respect to node d.

Proof of Theorem 1. According to steps 1 and 2 in Algorithm 1, all edges of T1 and T2 are directed to
destination node d. Obviously, stems of T1 and stems of T2 respectively form 2 primary routes by step
3. Then <d’, d> connect the second route to destination d. Figure 3 can be used as an illustration. By
Definition 6, stem-disjoint can ensure that two primary routes will not overlap. Also according to
Definition 3, each vertex can only be an inner node in T1 or T2, which ensures that each vertex has a
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primary link and an alternative link. If a vertex is a leaf in both T1 or T, it still has both links at step
5. Since <d’, d> is a primary link, d’ needs another link <d’, w> as an alternative link. Now, let us
consider a component failure, it could be a node or a link. If it is a node (respectively, a link), we
assume it is the node z (respectively, <u, z>) and z = PNH(u). Regardless of whether the failure is z or
<u, z>, the link <u, z> is unavailable. If <u, z> is in T:1 (respectively, T2), then node u’s alternative link
is in T2 (respectively, T1), so it forwards the packet to the primary routes of T2 (respectively, T1) to the
destination node d. Therefore, the routing constructed by Algorithm 1 is a protection routing with
respect to node d. O

In [8], we construct CISTs on complete graph K» where n > 4, complete bipartite graph Ku» where
m 2 n > 4. Therefore, we will construct dual-PRT? on them, and make some comparisons.

3.1. Dual-PRT¥s on complete graphs

A complete graph with 7 vertices denoted as Ky, is a graph in which every pair of distinct vertices
is connected by a unique edge.

Theorem 2. There exist dual-PRT% in K. where d is any vertex of Kn and n > 4.

Proof of Theorem 2. If n is even (respectively, odd), let the vertices of K« be labeled 1, 2, 3, ..., n
(respectively, 0, 1, 2, 3, ..., n). For the case that n is even, let all odd vertices be inner nodes in T1 and
all even vertices be inner nodes in T2. Stems are (1, 3), (1, 5), ..., (1, n — 1) (respectively, (2, 4), (2, 6), ...,
(2, n)) and leaf edges are (3, 2), (3, 4), (5, 6), ..., (n —1, n) (respectively, (1, 2), (3, 4), ..., (n—1,n))in T
(respectively, T2). Clearly, T1 and T2 obey Definitions 3 and 6. Let d =1, 4’ =2, w = 3, then Definitions
7 holds. T1 and T2 are dual-PRT's in Ku. For the case that # is odd, the trees are similar to the ones in
the case that n is even. We let additional vertex 0 be adjacent to vertex 1 and 2 in T1 and T2 respectively.
Clearly, T1 and Tz still obey Definitions 7, and they are dual-PRT's in Kx. It is widely known that Ku is
vertex-symmetric, so there exist dual-PRT? where d can be any vertex in K». O

Figure 4 (a) and (b) illustrate the proof of Theorem 2. The tree diameter is the length of the
shortest path between the most distanced nodes, which affects the length of the routing in practice.
In [8], the diameters of CISTs in K are all 3, and the diameters of our dual-PRT%s in K are 4, which is
slightly worse than the former.

(c) aroute R,

Figure 4. (a) T1 and (b) T2 are dual-PRT's, (c) protection routing Ri, where thick arcs indicate primary
links and thin arcs indicate alternative links.

Theorem 3. K is protectable for n >4.

Proof of Theorem 3. According to Theorem 2, there exist dual-PRT% in K» for n > 4. Then, by
Algorithm 1, we can use dual-PRT% to configure the protection routing as shown in Figure 4 (c).
According to Definition 2, this theorem holds. o

3.2. Dual-PRT% on Complete bipartite graphs

A complete bipartite graph, denoted by Ku is a graph whose vertices can be partitioned into
two subsets Vi and V2 such that | Vil=m, |V2l=n and two vertices u and v are adjacent if and only if
u€Viand v € V2
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Theorem 4. There exist dual-PRT? in Kmn where d is any vertex in Vi (or Vz2) and m >n > 3.

Proof of Theorem 4. Without loss of generality, we assume that | Vil=m > | V21=n. Let the vertices of
Vi (respectively, V2) be labeled a1, a2, as, ..., am (respectively, b1, bz, bs, ..., bn). For the case that d € V4,
let vertices a2, as, ..., an1, bn be inner nodes in T1 and vertices b, bz, ..., bx1 be inner nodes in T2. Stem
edges are (a2, by), (a3, by), ..., (an1, bn) (respectively, (by, au), (b2, an), ..., (bn1, ax)) and leaf edges are (b,
a2), (b, az), (bs, as), ..., (an, bu), (a1, bn), (an+, bn), (ans2, bn), ..., (am, bu) (respectively, (a1, b1), (a2, b2), ..., (bn,
an), (an1, bua), (@2, bua), ..., (@m, bua)) in T1 (respectively, T2). Clearly, T1 and T obey Definitions 3 and
6. Let d =1, d’ = b1, w = a2, then Definitions 7 holds. Since a1 can be replaced by any vertex in V1, T1 and
T2 are dual-PRT% in Kiu» where d € V1. For the case that d € V2, we can swap V1 and V2, and prove it
in a similar way. m

Figure 5 is used to illustrate the proof of Theorem 4. In [8], there are no 2 CISTs in Ks3, because
two edge-disjoint spanning trees require a total of 10 edges while K33 only has 9 edges. But K33 has
dual-PRT%, which can be used to configure a protection routing. Next, when m > n > 4 the diameter
of CISTs in K, are all 5 in [8], and the diameters of our dual-PRT% in Kwx are 4, which is slightly
better than the former.

According to Theorem 4, there exist dual-PRT“s in Ku» where d € Vi1 (or V2). Then they can be
used to configure the protection routing via Algorithm 1. Finally, by Definition 2, we have the
following theorem.

Theorem 5. Kmn is protectable where m >n > 3.

Theorem 5 improves the known result that Ki is protectable where m > n > 4.

(c) aroute Ry

Figure 5. (a) T1 and (b) T2 are dual-PRT"s, (c) a protection routing R4, where thick arcs indicate primary
links and thin arcs indicate alternative links.

3.3. Dual-PRT%s on hypercubes

The n-dimensional hypercube, denoted by Q», is a graph with 2" vertices such that each vertex
corresponds to an n-tuple (b, bu-y, ..., b1) on the set {0, 1}” and two vertices are adjacent by an edge if
and only if they differ in exactly one coordinate [21]. For example, Qs is shown in Figure 1(a). For
conciseness, the labels of vertices are changed to their decimal. The hypercube is one of the most
popular interconnection networks because of its attractive properties, including regularity, vertex
symmetric, edge symmetric, small diameter, strong connectivity, recursive construction, partition
capability, and small link complexity.

Lemma 2. Qs has dual-PRT? with a diameter is 5 where d is any vertex in Qs.

Proof of Lemma 2. Let destination node d be vertex 0. dual-PRT% are shown in Figure 2. Clearly,
diameters of two trees are both 5. Vertices 0, 2, 3, 4 are inner nodes in T1 and vertices 1, 5, 6, 7 are
inner nodes in T2. Stems are (0, 2), (0, 4),(2, 3) (respectively, (1, 5), (5, 7), (6, 7)) and leaf edges are (1,
3), (3, 7), (2, 6), (4, 5) (respectively, (0, 1), (2, 6), (3, 7), (4, 5)) in T1 (respectively, T2). Clearly, T1 and T2
obey Definitions 3 and 6. Let d” be vertex 1 and w be vertex 3, then Definitions 7 is met. Since Q» is
vertex symmetric and there exists an automorphism of Q», vertex 0 can be replaced by any vertex in
Qs. This lemma holds. o
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In [10], we provide and prove a simple unified approach to construct two CISTs in the n-
dimensional hypercubes variants (abbreviated as QV») using two CISTs in QVu1. This approach is
also applicable for dual-PRT“. For QV4, it is constructed recursively from two QVuis. Then (n-1)-
dimensional dual-PRT%s also exist in each QV»-1. We can select a pair of port vertices and add an edge
to connect two trees, where port vertices obey (1) removing the leftmost bit, their labels will be the
same; (2) there exists an edge between them in QVu. For example, Figure 6 shows dual-PRT% of Qs
which are constructed from dual-PRT? of Qs. Clearly, port vertices of T1 (respectively, T2) are vertices
0 and 8 (respectively, 5 and 13).

Using the unified approach, if we choose vertices near the center of the trees as their port
vertices, then we can get a better result of the diameter of dual-PRT"s for the construction. Suppose
that T1 and T2 are dual-PRT4s of QV-1 and let T'1 and T"2 be dual-PRT4s of QVn. If a vertex u is a center
vertex of T1 and v is a center vertex of Tz, then the choice of a pair (1, u+2*1) in T"1 and a pair (v, v+2
1) in T2 as port vertices can build two dual-PRT? of QVx by induction on n. Since we can always
choose the center vertices of T1 and T2 as port vertices, it follows that D(T"j) =2 - [ D(T;)/2 1+1 where
j € {1, 2} and D(T) denotes the diameter of the tree T. For example, as shown in Figures 2 and 6, the
diameters of dual-PRT% of Qs are both 5 and the diameters of dual-PRT“s of Qs are both 7. Then, by
the unified approach and Lemma 2, we have the following theorem.

Figure 6. (a) T1 and (b) T2 are dual-PRT" of Qu.
Theorem 6. Qx has dual-PRT%s with a diameter is 2n - 1 where d € V(Qu) and n > 3.

By Theorem 6, there exist dual-PRT% in Q. where d € V(Q»). According to Algorithm 1, two trees
can be used to configure the protection routing. Then, by Definition 2, we have the following theorem.

Theorem 7. Qu is protectable where n = 3.

As stated in Lemma 1, Theorem 7 improves on the known result that Qu is protectable when n >
4. As far as I know, the diameters of two CISTs of Qs are both 8 [5]. The diameters of dual-PRT¢4s of
Qn are one less than the diameters of two CISTs of Q. while n > 4.

3.4. Dual-PRT% on LTQs

The n-dimensional locally twisted cube, denoted by LTQx is defined recursively as follows (see
[22]):
(1) LTQn is the complete graph on two vertices labeled by 0 and 1. LTQ: is a graph consisting of four
vertices with labels 00, 01, 10, 11 together with four edges (00, 01), (00, 10), (01, 11), and (10, 11).
(2)For n = 3, LTQn is composed of two subcubes LTQ%-1 and LTQ"1 such that each vertex x = 0bu-1b»-
2+b1 € V(LTQO%1) is connected with the vertex 1(bu-1®b1)bu2--b1 € V(LTQ'w1) by an edge where ©
represents exclusive or.
LTQu is a variant of Qs and one advantage of LTQ» is that the diameter is only about half of the
diameter of Qx. For example, LTQs is shown in Figure 7(a), its diameter is 2, while the value of Qs is
3. In [23], LTQ is vertex-transitive if and only if n < 3.

Lemma 3. LTQs has dual-PRT¢s with a diameter is 5 where d is any vertex in LTQs.

doi:10.20944/preprints202306.0396.v1
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Proof of Lemma 3. Let destination node d be vertex 0. dual-PRT% are shown in Figure 7 (b) and (c).
Clearly, the tree diameters are both 5. Vertices 0, 4, 5, 7 are inner nodes in T1 and vertices 1, 2, 3, 6 are
inner nodes in T2. Stems are (0, 4), (4, 5), (5, 7) (respectively, (1, 3), (2, 3), (2, 6)) and leaf edges are (0,
2),(1,7), (3, 5), (4 6) (respectively, (0, 1), (1, 7), (3, 5), (4, 6)) in T1 (respectively, T2). Clearly, T1 and T2
obey Definitions 3 and 6. Let d” be vertex 1 and w be vertex 7, then Definitions 7 holds. Since LTQs is
vertex symmetric and there exists an automorphism of LTQs, vertex 0 can be replaced by any vertex
in LTQs. This lemma holds. o

In [23], the full automorphism group of LTQ. with 1 > 4 has exactly two orbits, and the odd and
even vertices belong to the same group. Then, we will present dual-PRT*s for d belonging to odd and
even vertices respectively.

(a) LTQO; b)) Ty (c) I (d) a route R,

Figure 7. (a) LTQs3 (b) T1 and (c) T2 are dual-PRT of LTQs, (d) a protection routing R4, where thick
arcs indicate primary links and thin arcs indicate alternative links.

Lemma 4. LTQq has dual-PRT¢s with diameters 6 and 8 where d is any even vertex in LTQu.

Proof of Lemma 4. Let destination node d be vertex 0. dual-PRT? are shown in Figure 8. Clearly, the
diameters of the two trees are 8 and 6 respectively. Vertices 0, 3, 4, 5, 8, 9, 12, 15 are inner nodes in T1
and vertices 1, 2, 6, 7, 10, 11, 13, 14 are inner nodes in T2. Stems are (0, 4), (0, 8), (3, 5), (4, 5), (4, 12), (8,
9), (9, 15) (respectively, (1, 7), (1, 13), (2, 6), (6, 7), (6, 14), (7, 11), (10, 11)) and leaf edges are (0, 2), (1,
3), (4,6),(5,7),(8,10), (9, 11), (12, 14), (13, 15) (respectively, (0, 1), (2, 3), (4, 6), (5,7), (8, 10), (9, 11), (12,
14), (13, 15)) in Ti (respectively, T2). Clearly, T1 and T2 obey Definitions 3 and 6. Let d” be vertex 1 and
w be vertex 3, then Definitions 7 holds. Since all even vertices belong to the same automorphism
group in LTQs, this lemma holds. O

Figure 8. (a) T1 and (b) T2 are dual-PRT of LTQa.

Lemma 5. LTQ4 has dual-PRT%s with diameters 6 and 8 where d is any odd vertex in LTQu.

Proof of Lemma 5. Let destination node d be vertex 1. Dual-PRT's are shown in Figure 9. Clearly,
the diameters of the two trees are 6 and 8 respectively. Vertices 1, 2, 6, 7, 10, 11, 13, 14 are inner nodes
in Th and vertices 0, 3, 4, 5, 8, 9, 12, 15 are inner nodes in T2. Stems are (1, 7), (1, 13), (2, 6), (6, 7), (6,
14), (7, 11), (10, 11) (respectively, (0, 4), (0, 8), (3, 5), (4, 5), (4, 12), (8, 9), (9, 15)) and leaf edges are (0,
2), (1, 3), (4, 6), (5,7), (8 10), (9, 11), (12, 14), (13, 15) (respectively, (0, 1), (2, 3), (4, 6), (5, 7), (8, 10), (9,

doi:10.20944/preprints202306.0396.v1
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11), (12, 14), (13, 15)) in T1 (respectively, T2). Clearly, T1 and T2 obey Definitions 3 and 6. Let d” be
vertex 0 and w be vertex 2, then Definitions 7 holds. Since all odd vertices belong to the same
automorphism group in LTQs, this lemma holds.
o

By using the unified approach [10] to configure dual-PRT“s of LTQ» from dual-PRT%s of LTQu1.
It is better to choose vertices near the center of the tree as port vertices. According to the edge adjacent
rules of LTQn, it is necessary to select an even vertex x to ensure that (x, x+2"1) exists. As a
counterexample, (1, 1+24) does not exist in LTQs. Then, we deal with the following theorem.

Figure 9. (a) T1 and (b) T2 are dual-PRT"s of LTQa.

Theorem 8. LTQx has dual-PRT? with the diameter 2n — 1 (respectively, 6 or 8) while n >3 and n # 4
(respectively, n =4) where d € LTQn.

Proof of Theorem 8. First, according to lemmas 3, 4, 5, this theorem holds when #n = 3 or 4. Then we
use the unified approach [10] to recursively construct dual-PRT% of LTQn+ from dual-PRT“s of LTQx
while n > 5. We consider the following two cases.

Case 1. Destination node d is any even vertex in LTQ. while n > 5.

We prove by induction, based on n = 4. Since LTQw consists of two LTQn, there are n-
dimensional dual-PRT in each LTQ.. We adopt the dual-PRT¢s shown in Figure 8 as the induction
base, by using the unified approach, we shoose vertex 0 of T1 and vertex 6 of T2 as port vertices. For
LTQn+1, we connect a pair of port vertices (0, 0+27) (respectively, (6, 6+27))to link two Tis (respectively,
T2s) in each subcube LTQn1, then we have dual-PRTds T"1 (respectively, T2) in LTQn. Because the
length from vertex 0 (respectively, vertex 6) to the farthest leaf in T1 (respectively, T2) is 4, the diameter
of recursively constructed dual-PRT9s is both 21 — 1 while n > 5.

Case 2. Destination node d is any even odd in LTQ» while n > 5.

The proof is similar to that of Case 1. In this case, we adopt the dual-PRTd9s shown in Figure 9 as
the induction base, and select vertex 6 of T1 and vertex 0 of T2 as port vertices. Other parts are the
same as in case 1. O

For example, Figure 10 shows dual-PRT’ on LTQs, which can be used to illustrate the proof of
Theorem 8. According to Theorem 8, there exist dual-PRT% in LTQx where d € V(LTQx) while n > 5.
Then two trees can be used to configure the protection routing via Algorithm 1. By Definition 2, we
have the following theorem.

Theorem 9. LTOn is protectable where n > 3.

Theorem 9 improves the known result that LTQx is protectable when n > 4. As far as I know, the
diameters of two CISTs of LTQs are both 7 [10]. In each dimension of LTQ», the diameter of dual-
PRT4s is about the same as that of two CISTs.

4. Performance Evaluation

In this section, we present simulation results for evaluating the performance of the protection
routings on Qr and LTQx. The protection routings can be configured by dual-PRT¢“s or two CISTs. For
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On (respectively, LTQx), we use C programs to implement the routing algorithms by dual-PRT%s in
the previous section and two CISTs in [5] (respectively, [10]). To speed up the evaluation, we have
carried out the simulation separately for each of Q. and LTQx by using a 5.10 GHz Intel® Core™ i9-
12900 CPU and 32GB RAM under the Linux operating system.

(b) T 2
Figure 10. (a) T1 and (b) T2 are dual-PRT of LTQs.

For each dimension 3, 4, 5, ..., 9, we randomly generate 1,000,000 instances of vertex-list (s, d, f)
with s # d # f for the two kinds of networks, where s, d and f are source, destination, failure node of
traffic, respectively. The protection routing R« is constructed by dual-PRT¢s (respectively, two CISTs)
using Algorithm 1 (respectively, Tapolcai’s method [3]). We are interested in computing the path
length from s to 4 under two scenarios: (i) no failure and (ii) a single node failure. For each instance,
if no failure occurs, we compute the path length by tracking the primary links and PHNs alternately
from s to d in Ra. For convenience, we call this specific routing is the default path Ps.. Then, the length
of Psa is defined by the number of links from s to d in Ra. Likewise, we are also concerned with
computing path lengths in case of node failures in Ri. We assume that the appearance of node failure
is uniformly distributed throughout the network. If failure node f= PNH(u) and f is contained in Ry,
we calculate the path length of an alternate path Psu U PusNHu U PsnHea. We then compute three
statistical quantities related to path length: (a) average path length, (b) standard deviation of path
length, and (c) maximum path length and the number of its occurrences. More descriptions and
examples of the simulation process are available on the website [24].

Tables 2 and 3 show some simulation results of the two scenarios (no failure and a single node
failure) on Qu and LTQx. Due to save space, four additional tables are available on the website [24].
In these tables, three quantities mentioned above are calculated by the usual way in statistics. They
present simulation results for Q. and LTQ» when the routing is with two scenarios. Also, the ratio of
invoking SNH under a single node failure is calculated (see the footer * in Tables 2 and 3). It is obvious
that the ratio tends to decrease gradually as the network’s dimension increases, and eventually, its
effect on length becomes less pronounced. According to Lemma 1, there are no 2 CISTs in Qs, so there
are 2 missing values in Table 2. For the same reason, there are also 2 missing values in Table 3.

Table 2. Simulation results: the average path length on Q» when the routing is with two scenarios: (1)
no failure; and (2) a single node failure.

no failure a single node failure
n2 CISTsDual-PRT¢s 2 CISTs Dual-PRT4s
3 2.000 2.000 (* 16.69%)

4 3.233 2.533  3.394 (* 15.94%)2.580 (* 10.98%)
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4272 3.031  4.445(* 10.92%) 3.081 (* 6.77%)
5278 3523 5.417(*6.91%) 3.562 (* 4.08%)
6271 4016 6369 (* 4.17%) 4.042 (* 2.40%)
7264 4510 7327 (* 2.46%) 4.527 (* 1.37%)
8257  5.008  8.296 (* 1.42%) 5.018 (* 0.77%)

O 0 3 O\ W

* The ratio of invoking SNH.

Table 3. Simulation results: the average path length on 770 when the routing is with two scenarios:
(1) no failure; and (2) a single node failure.

no failure a single node failure
n2 CISTsDual-PRT%s 2 CISTs Dual-PRT¢s
2.285 2.237 (* 21.41%)

2932 2.600  3.027 (* 13.83%)2.637 (* 11.44%)
3.869 3290  3.983 (*9.53%) 3.325 (* 7.64%)
4826 3870  4.914 (* 6.16%) 3.902 (* 4.59%)
5794 4411  5.853 (* 3.78%) 4.434 (* 2.67%)
6.774  4.926  6.811 (*2.26%) 4.941 (* 1.55%)
7766 5432 7.788 (* 1.34%) 5.442 (* 0.85%)

O 03O LN b W

* The ratio of invoking SNH.

According to Tables 2 and 3, we have Figures 11 and 12. Obviously, the average path lengths of
protection routing by dual-PRT¢ are smaller than the ones by two CISTs, no matter in which scenario.

The average path length on Q,

10

=== CISTs
8 mdr== Duial-PRTs
6
4
2
0
3 4 5 6 7 8 9
(a) no filure h
The average path length on Q,
10

e=g==? CISTs

8  ——=Dual-PRTs
6

4
2

0

3 4 5 6 7 8 9
(b) a single node failure n

Figure 11. the average path lengths of protection routing on Q» while 3 <n <9.

5. Conclusions

In our previous research on using CISTs to construct the protection routing, we found that it is
not easy to find k-CISTs on some graph classes even when k is equal to 2. We try to find trees that are
less restrictive, but can still be used to configure the protection routing. Then we propose dual-PRT4s
in this paper. As mentioned earlier, there are no two CISTs on K33, Qs, and LTQs. But there are dual-
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PRT4 on them, which can be used to construct the protection routing. These results improve on
previous research. Also, as shown in the performance evaluation of protection routing through
simulation results, the average path length of protection routing configured by dual-PRT%s is shorter
than that by two CISTs. For future research, it would be an interesting question to determine the
existence of dual-PRT" in other graph classes.

The average path length on LTQ,

10
=e=2 CISTs

8
e=gr==Dual-PRTs
6
4
2
0
3 4 5 6 7 8 9 .
(a) no filure
The average path length on LTQ,
10
e=g==? CISTs
8
e Dual-PRTs
6
4
2
0

3 4 5 6 7 8 9
(b) a single node failure

Figure 12. the average path lengths of protection routing on LTQ» while 3<n <9.
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