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Article 

Dual Protection Routing Trees on Graphs 

Kung-Jui Pai 

Department of Industrial Engineering and Management, Ming Chi University of Technology, New Taipei 

City 24301, Taiwan; poter@mail.mcut.edu.tw 

Abstract: In IP networks, packet forwarding is destination-based and hop-by-hop, and routes are 

built as needed. Kwong et al. introduced a protection routing in which packet delivery to the 

destination node can proceed uninterrupted in the event of any single node or link failure. He then 

shows that “whether there is a protection routing to the destination” is NP-complete. Tapolcai find 

that two completely independent spanning trees, abbreviated as CISTs, can be used to configure the 

protection routing. In this paper, we propose dual protection routing trees, denoted as dual-PRTs 

to replace CISTs, which are less restrictive than CISTs. Next, we propose a transformation algorithm 

that uses dual-PRTs to configure the protection routing. Taking complete graphs Kn, complete 

bipartite graphs Km,n, hypercubes Qn, locally twisted cubes LTQn as examples, we provide a recursive 

method to construct dual-PRTs on them. This article will show that there are no two CISTs on K3,3, 

Q3, and LTQ3, but there exist dual-PRTs that can be used to configure the protection routing. As 

shown in the performance evaluation of simulation results, for both Qn and LTQn, we get the average 

path length of protection routing configured by dual-PRTs is shorter than that by two CISTs. 

Keywords: protection routing; completely independent spanning trees; dual protection routing 

trees; complete graphs; complete bipartite graphs; hypercubes; locally twisted cubes 

MSC: 05C90; 68R10 

 

1. Introduction 

In IP networks, Intra-domain routing has traditionally relied on distributed computing among 

routers. Packet forwarding is destination-based and hop-by-hop, and routes are created when needed 

by a centralized unit. Kwong et al. [1] introduced a reactive routing scheme called protection routing, 

which employs the multi-paths technique for packet forwarding. If the routing is a protection routing, 

packet delivery to the destination node can proceed uninterrupted in the presence of any single node 

or link failure. All routers have an alternate path they can use in case of failure to forward packets. 

An undirected simple graph G = (V(G), E(G)), where the vertex set V(G) and the edge set E(G) 

represent the set of nodes and the set of communication links between nodes, respectively. Let k ≥ 2 

be an integer and T1, T2, ..., Tk be spanning trees of a graph G. A vertex in a tree Ti is a leaf if its degree 

is one, and an inner vertex otherwise. Two paths from u to v are internally vertex-disjoint if they have 

no common vertices other than u and v. Next, two spanning trees Ti and Tj are edge-disjoint if they 

share no common edge. Then, The spanning trees T1, T2, ..., Tk are completely independent spanning 

trees, abbreviated as CISTs, if they are pairwise edge-disjoint and internally vertex-disjoint. The k-

CISTs problem was first posed in 2001 by Hasunuma [2]. Then, Tapolcai [3] provided sufficient 

conditions for protection routing in IP networks according to two CISTs. He gave a deterministic 

polynomial construction, which builds up a protection routing for an arbitrary destination node by 

two CISTs. 

Previous related works are described below. Hasunuma first worked on the theoretical study of 

CISTs and showed that the underlying graph of any k-connected line-directed graph recognizes k 

CISTs [2], and there exist two CISTs in a 4-connected maximal planar graph [4] and the Cartesian 

product of two 2-connected graphs [5]. Cheng et al. construct two CISTs in crossed cubes [6]. Darties 

et al. determine three CISTs in some Cartesian products of three cycles [7]. Pai et al. proposed several 
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known CISTs, such as complete graphs, complete bipartite and complete tripartite graphs [8], chord 

rings with specific conditions [9], and variants of hypercubes [10–13]. In the past ten years, data center 

networks have received much attention. Qin et al. constructing dual-CISTs of DCell data center 

networks [14]. Li et al. provide multi-CISTs on data center Networks [15], BCCC data center networks 

[16], and data center networks with heterogeneous edge-core servers [17]. 

Tapolcai [3] showed that two CISTs have an application on configuring a protection routing. 

According to this, Pai et al. construct protection routings via CISTs on some Cayley networks [18], 

crossed cubes [13], möbius cubes [12], pancake graphs [19], and dense Gaussian on-chip networks 

[20]. Li et al. involve multi-CISTs in the protection routing scheme on data center Networks [15], 

BCCC data center networks [16], and data center networks with heterogeneous edge-core servers 

[17]. 

Recently, we found that the protection routing can still be constructed by reducing some of the 

edge-disjoint requirements of two CISTs. Therefore, in this paper, we will define new trees called 

dual protection routing trees (abbreviated as dual-PRTs) and propose an algorithm that configures a 

protection routing via them. Taking complete graphs, complete bipartite graphs, hypercubes, locally 

twisted cubes as examples, we provide a recursive algorithm to find dual-PRTs on them and 

configure protection routings. Furthermore, we supplement some analysis on simulation to evaluate 

the corresponding performance. The performance evaluation shows that dual-PRTs are better than 

two CISTs. 

The rest of the paper is organized as follows: Section 2 introduces the necessary definitions and 

theorems for protection routing and CISTs. In section 3, we first propose definitions of dual-PRTs, 

and a transformation algorithm that uses dual-PRTs to configure the protection routing. Taking 

complete graphs, complete bipartite graphs, hypercubes Qn, locally twisted cubes as examples, we 

provide a recursive method to construct dual-PRTs on them. Next, in order to compare with previous 

related research, we make the performance assessment of protection routings on hypercubes and 

locally twisted cubes in section 4. Finally, section 5 is the conclusion of this paper. 

2. Preliminaries 

The topology of a network is usually modeled as an undirected graph G = (V(G), E(G)). The 

neighborhood of a vertex v in a graph G, denoted by NG(v), is the set of vertices adjacent to v in G. In 

a tree, an edge is called a leaf edge (respectively, a stem) if it is adjacent to at least one leaf 

(respectively, two inner vertices). For convenience, the terms "networks" and "graphs", "nodes" and 

"vertices", "links" and "edges" are often used interchangeably in this paper. For a destination node d ∈ V(G), the route of traffic destined for d is a directed acyclic graph Rd = (V(G), Ed(G)), where the 

underlying graph of Rd is the spanning subgraph of G and each node u ∈ V(G) \ {d} has at least one 

outgoing link in Rd. We use <u, v> to denote a directed link from u to v. If <u, v> ∈ Ed(G), node v is 

called the primary next-hop of node u, or PNH for short, and the link <u, v> is called a primary link 

of u. Furthermore, node u is called upstream of node v if there exists a directed path from u to v in Rd. 

In contrast, node v is downstream of node u. Except for the destination node d, when a single 

component fails f ∈ V(G) ∪ Ed(G) \ {d}, let G – f and Rd – f be the residual network and routing obtained 

from G and Rd, respectively. Kwong et al. [1] gave the following two definitions. 

Definition 1. ([1]) A node u ∈ V(G) \ {d} in a routing Rd is said to be protected with respect to d if after any 

single component failure f ∈ V(G) ∪ Ed(G) \ {d} that affects node u’s PNH, then there exists a node x ∈ NG(u) 

− f(u) such that the following two conditions (1) x is not upstream of u in Rd – f; (2) x and all its downstream 

nodes, except d, have at least one PNH in Rd − f. 

Definition 2. ([1]) A routing Rd is a protection routing if every node u ∈ V(G) \ {d} is protected in Rd. A 
network G is protectable if there exists a protection routing Rd for all d ∈ V(G), otherwise, G is unprotectable. 

In fact, x is called the second next-hop of node u, SNH for short, and is denoted by SNH(u). We 

notice that when a failure occurs, the candidate SNHs of node u are not unique. However, the first 
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condition is to avoid forwarding loops in case of failure, and the second condition guarantees that 

packets are delivered to d through node x and its downstream nodes in Rd – f. For example, Figure 1 

shows a protection routing in hypercube Q3 (we will formally introduce it in Section 3.3) for the 

destination node 0, and Table 1 gives a candidate SNH of node u ∈ V(Q3) \ {0}. 

4 5

6 7

0 1

2 3

d 

0 1

2 3

4 5

6 7

(a)                                                (b)
 

Figure 1. (a) Hypercube Q3 and (b) a protection routing for destination node 0 in Q3, where thick arcs 

indicate primary links and thin arcs indicate alternative links. 

Table 1. Candidate SNHs of node u ∈ V(Q3) \ {0} 

Component  failure Second Next-Hop 

<1, 0> SNH(1) = 3 

<2, 0> SNH(2) = 6 

<4, 0> SNH(4) = 5 

<3, 2> or 2 

<5, 1> or 1 

<6, 7> or 7 

<7, 5> or 5 

SNH(3) = 7 

SNH(5) = 4 

SNH(6) = 2 

SNH(7) = 3 

Then, Tapolcai provided sufficient conditions for protection routing in IP networks according to 

two CISTs. The following definitions are about CISTs. 

Definition 3. Two spanning trees T1 and T2 are inner-vertex-disjoint if any vertex can only be an inner node 

in T1 or T2. 

Definition 4. Two spanning trees T1 and T2 are edge-disjoint if they share no common edge. 

Definition 5. ([2]) The spanning trees T1 and T2 are two completely independent spanning trees if they follow 

definitions 3 and 4. 

3. Main Results 

In [3], Tapolcai uses two CISTs to configure a protection routing for a destination node d. Then 

we find another way to construct routing through two spanning trees T1 and T2 in which most of the 

leaf edges can be shared. We first give the following two definitions: 

Definition 6. Two spanning trees T1 and T2 are stem-disjoint if they share no common stem. 

Definition 7. The spanning trees T1 and T2 are dual protection routing trees based on destination node d, 

which are denoted as dual-PRTds, if Definitions 3, 6 and the following condition are met: 

• Without loss of generality, we assume that node d is an inner vertex in T1. There exists an inner node d’ 

in T2 such that (d, d’) is a leaf edge in T2 and d’ is adjacent to another inner node w (≠ d) in T1.  

For example, Figure 2 shows dual-PRT0s. The inner nodes of T1 are vertices 0, 2, 3, 4, and the 

inner nodes of T2 are vertices 1, 5, 6, 7. T1 and T2 follow Definition 3. Then the stem sets of T1 and T2 

are {(0, 2), (0, 4), (2, 3)} and {(1, 5), (5, 7), (6, 7)} respectively, and them follow Definition 6. Finally, let 

d’, w be vertices 1 and 3 respectively. Since (0, 1) is a leaf edge in T2 and vertex 1 is adjacent to inner 

node 3 in T1, according to Definition 7, T1 and T2 are dual-PRT0s. In fact, Figure 1(b) shows the 

protection routing configured by T1 and T2. We will propose a formal construction algorithm later. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 June 2023                   doi:10.20944/preprints202306.0396.v1

https://doi.org/10.20944/preprints202306.0396.v1


 4 

 

(a) T1                                            (b) T2
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Figure 2. (a) T1 and (b) T2 are dual-PRT0s where thick lines indicate stems and thin lines indicate leaf 

edges. 

Lemma 1. There are no two CISTs in hypercube Q3. 

Proof of Lemma 1. As shown in Figure 1(a), hypercube Q3 has eight nodes and twelve edges. A tree 

with eight nodes has seven edges. By Definition 4, we need fourteen edges to find two edge-disjoint 

spanning trees, but Q3 has only twelve edges.              □ 

According to Lemma 1, if there are no two CISTs in Q3, the protection routing cannot be 

configured by Tapolcai’s method [3]. That is why we propose dual-PRTds. Now we present the 

construction method in which the protecting routing is configured by dual-PRTds, as follows. 

Algorithm 1: Configuring a protection routing via dual-PRTds 

Input: Dual-PRTds T1, T2 of a network G where d is the destination node. 

Output: A protection routing Rd = (V(G), PL, AL) where PL is the primary links set and AL is the alternative 

links set 

Step 1  T1’ ← T1 which takes all links directed to root d; 

Step 2  T2’ ← T2 which takes all links directed to root d; 

Step 3  PL ← all stems in T1’ ∪ all stems in T2’ ∪ {<d’, d>}; 

Step 4  AL ← all leaf edges in T1’ ∪ all leaf edges in T2’ except <d’, d>; 

Step 5  If a vertex is a leaf in both T1 and T2, then add its T1 leaf edge to PL and add its T2 leaf edge to AL; 

Step 6  Return Rd = (V(G), PL, AL) 

For example, taking Figure 2 (a) and (b) as input, according to steps 1, 2 of Algorithm 1, we have 

T1’ and T2’, as shown in Figure 3 (a) and (b). Next, classify the stems and leaf edges of the two trees 

into primary links or alternative links according to steps 3 and 4, then a protection routing R0 can be 

obtained, as shown in Figure 3 (c). 
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Figure 3. (a) T1’ and (b) T2’ are all links directed to root 0 from T1 and T2 respectively, (c) a protection 

routing R0, where thick arcs indicate primary links and thin arcs indicate alternative links. 

Theorem 1. The routing constructed by Algorithm 1 is a protection routing with respect to node d. 

Proof of Theorem 1. According to steps 1 and 2 in Algorithm 1, all edges of T1 and T2 are directed to 

destination node d. Obviously, stems of T1 and stems of T2 respectively form 2 primary routes by step 

3. Then <d’, d> connect the second route to destination d. Figure 3 can be used as an illustration. By 

Definition 6, stem-disjoint can ensure that two primary routes will not overlap. Also according to 

Definition 3, each vertex can only be an inner node in T1 or T2, which ensures that each vertex has a 
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primary link and an alternative link. If a vertex is a leaf in both T1 or T2, it still has both links at step 

5. Since <d’, d> is a primary link, d’ needs another link <d’, w> as an alternative link. Now, let us 

consider a component failure, it could be a node or a link. If it is a node (respectively, a link), we 

assume it is the node z (respectively, <u, z>) and z = PNH(u). Regardless of whether the failure is z or 

<u, z>, the link <u, z> is unavailable. If <u, z> is in T1 (respectively, T2), then node u’s alternative link 

is in T2 (respectively, T1), so it forwards the packet to the primary routes of T2 (respectively, T1) to the 

destination node d. Therefore, the routing constructed by Algorithm 1 is a protection routing with 

respect to node d.                                      □ 

In [8], we construct CISTs on complete graph Kn where n ≥ 4, complete bipartite graph Kn,m where 

m ≥ n ≥ 4. Therefore, we will construct dual-PRTds on them, and make some comparisons. 

3.1. Dual-PRTds on complete graphs 

A complete graph with n vertices denoted as Kn, is a graph in which every pair of distinct vertices 

is connected by a unique edge. 

Theorem 2. There exist dual-PRTds in Kn where d is any vertex of Kn and n ≥ 4. 

Proof of Theorem 2. If n is even (respectively, odd), let the vertices of Kn be labeled 1, 2, 3, …, n 

(respectively, 0, 1, 2, 3, …, n). For the case that n is even, let all odd vertices be inner nodes in T1 and 

all even vertices be inner nodes in T2. Stems are (1, 3), (1, 5), …, (1, n – 1) (respectively, (2, 4), (2, 6), …, 

(2, n)) and leaf edges are (3, 2), (3, 4), (5, 6), …, (n – 1, n) (respectively, (1, 2), (3, 4), …, (n – 1, n)) in T1 

(respectively, T2). Clearly, T1 and T2 obey Definitions 3 and 6. Let d = 1, d’ = 2, w = 3, then Definitions 

7 holds. T1 and T2 are dual-PRT1s in Kn. For the case that n is odd, the trees are similar to the ones in 

the case that n is even. We let additional vertex 0 be adjacent to vertex 1 and 2 in T1 and T2 respectively. 

Clearly, T1 and T2 still obey Definitions 7, and they are dual-PRT1s in Kn. It is widely known that Kn is 

vertex-symmetric, so there exist dual-PRTds where d can be any vertex in Kn.  □ 

Figure 4 (a) and (b) illustrate the proof of Theorem 2. The tree diameter is the length of the 

shortest path between the most distanced nodes, which affects the length of the routing in practice. 

In [8], the diameters of CISTs in Kn are all 3, and the diameters of our dual-PRTds in Kn are 4, which is 

slightly worse than the former. 

d
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0

1 3 5

2 4 6

d

d’

0

…

… n

w n-1 1 3 5

2 4 6

d

d’

…

… n

0

w
n-1

  (a) T1                                                                   (b) T2                                                                (c) a route R1  

Figure 4. (a) T1 and (b) T2 are dual-PRT1s, (c) protection routing R1, where thick arcs indicate primary 

links and thin arcs indicate alternative links. 

Theorem 3. Kn is protectable for n ≥ 4. 

Proof of Theorem 3. According to Theorem 2, there exist dual-PRTds in Kn for n ≥ 4. Then, by 

Algorithm 1, we can use dual-PRTds to configure the protection routing as shown in Figure 4 (c). 

According to Definition 2, this theorem holds.                         □ 

3.2. Dual-PRTds on Complete bipartite graphs 

A complete bipartite graph, denoted by Km,n is a graph whose vertices can be partitioned into 

two subsets V1 and V2 such that |V1|= m, |V2|= n and two vertices u and v are adjacent if and only if 

u ∈ V1 and v ∈ V2. 
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Theorem 4. There exist dual-PRTds in Km,n where d is any vertex in V1 (or V2) and m ≥ n ≥ 3. 

Proof of Theorem 4. Without loss of generality, we assume that |V1|= m ≥ |V2|= n. Let the vertices of 

V1 (respectively, V2) be labeled a1, a2, a3, …, am (respectively, b1, b2, b3, …, bn). For the case that d ∈ V1, 

let vertices a2, a3, …, an-1, bn be inner nodes in T1 and vertices b1, b2, …, bn-1 be inner nodes in T2. Stem 

edges are (a2, bn), (a3, bn), …, (an-1, bn) (respectively, (b1, an), (b2, an), …, (bn-1, an)) and leaf edges are (b1, 

a2), (b2, a2), (b3, a3), …, (an, bn), (a1, bn), (an+1, bn), (an+2, bn), …, (am, bn) (respectively, (a1, b1), (a2, b2), …, (bn, 

an), (an+1, bn-1), (an+2, bn-1), …, (am, bn-1)) in T1 (respectively, T2). Clearly, T1 and T2 obey Definitions 3 and 

6. Let d = a1, d’ = b1, w = a2, then Definitions 7 holds. Since a1 can be replaced by any vertex in V1, T1 and 

T2 are dual-PRTds in Km,n where d ∈ V1. For the case that d ∈ V2, we can swap V1 and V2, and prove it 

in a similar way.                                                                □ 

Figure 5 is used to illustrate the proof of Theorem 4. In [8], there are no 2 CISTs in K3,3, because 

two edge-disjoint spanning trees require a total of 10 edges while K3,3 only has 9 edges. But K3,3 has 

dual-PRTds, which can be used to configure a protection routing. Next, when m ≥ n ≥ 4 the diameter 

of CISTs in Km,n are all 5 in [8], and the diameters of our dual-PRTds in Km,n are 4, which is slightly 

better than the former.  

According to Theorem 4, there exist dual-PRTds in Km,n where d ∈ V1 (or V2). Then they can be 

used to configure the protection routing via Algorithm 1. Finally, by Definition 2, we have the 

following theorem. 

Theorem 5. Km,n is protectable where m ≥ n ≥ 3. 

Theorem 5 improves the known result that Km,n is protectable where m ≥ n ≥ 4. 
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Figure 5. (a) T1 and (b) T2 are dual-PRTds, (c) a protection routing Rd, where thick arcs indicate primary 

links and thin arcs indicate alternative links. 

3.3. Dual-PRTds on hypercubes 

The n-dimensional hypercube, denoted by Qn, is a graph with 2n vertices such that each vertex 

corresponds to an n-tuple (bn, bn−1, …, b1) on the set {0, 1}n and two vertices are adjacent by an edge if 

and only if they differ in exactly one coordinate [21]. For example, Q3 is shown in Figure 1(a). For 

conciseness, the labels of vertices are changed to their decimal. The hypercube is one of the most 

popular interconnection networks because of its attractive properties, including regularity, vertex 

symmetric, edge symmetric, small diameter, strong connectivity, recursive construction, partition 

capability, and small link complexity. 

Lemma 2. Q3 has dual-PRTds with a diameter is 5 where d is any vertex in Q3. 

Proof of Lemma 2. Let destination node d be vertex 0. dual-PRT0s are shown in Figure 2. Clearly, 

diameters of two trees are both 5. Vertices 0, 2, 3, 4 are inner nodes in T1 and vertices 1, 5, 6, 7 are 

inner nodes in T2. Stems are (0, 2), (0, 4),(2, 3) (respectively, (1, 5), (5, 7), (6, 7)) and leaf edges are (1, 

3), (3, 7), (2, 6), (4, 5) (respectively, (0, 1), (2, 6), (3, 7), (4, 5)) in T1 (respectively, T2). Clearly, T1 and T2 

obey Definitions 3 and 6. Let d’ be vertex 1 and w be vertex 3, then Definitions 7 is met. Since Qn is 

vertex symmetric and there exists an automorphism of Qn, vertex 0 can be replaced by any vertex in 

Q3. This lemma holds.   □ 
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In [10], we provide and prove a simple unified approach to construct two CISTs in the n-

dimensional hypercubes variants (abbreviated as QVn) using two CISTs in QVn-1. This approach is 

also applicable for dual-PRTds. For QVn, it is constructed recursively from two QVn-1s. Then (n-1)-

dimensional dual-PRTds also exist in each QVn-1. We can select a pair of port vertices and add an edge 

to connect two trees, where port vertices obey (1) removing the leftmost bit, their labels will be the 

same; (2) there exists an edge between them in QVn. For example, Figure 6 shows dual-PRT0s of Q4 

which are constructed from dual-PRT0s of Q3. Clearly, port vertices of T1 (respectively, T2) are vertices 

0 and 8 (respectively, 5 and 13).  

Using the unified approach, if we choose vertices near the center of the trees as their port 

vertices, then we can get a better result of the diameter of dual-PRTds for the construction. Suppose 

that T1 and T2 are dual-PRTds of QVn-1 and let T’1 and T’2 be dual-PRTds of QVn. If a vertex u is a center 

vertex of T1 and v is a center vertex of T2, then the choice of a pair (u, u+2n-1) in T’1 and a pair (v, v+2n-

1) in T’2 as port vertices can build two dual-PRTds of QVn by induction on n. Since we can always 

choose the center vertices of T1 and T2 as port vertices, it follows that D(T’j ) = 2 ∙  D(Tj ) / 2  + 1 where 

j ∈ {1, 2} and D(T) denotes the diameter of the tree T. For example, as shown in Figures 2 and 6, the 

diameters of dual-PRTds of Q3 are both 5 and the diameters of dual-PRTds of Q4 are both 7. Then, by 

the unified approach and Lemma 2, we have the following theorem. 
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Figure 6. (a) T1 and (b) T2 are dual-PRT0s of Q4. 

Theorem 6. Qn has dual-PRTds with a diameter is 2n - 1 where d ∈ V(Qn) and n ≥ 3. 

By Theorem 6, there exist dual-PRTds in Qn where d ∈ V(Qn). According to Algorithm 1, two trees 

can be used to configure the protection routing. Then, by Definition 2, we have the following theorem. 

Theorem 7. Qn is protectable where n ≥ 3. 

As stated in Lemma 1, Theorem 7 improves on the known result that Qn is protectable when n ≥ 

4. As far as I know, the diameters of two CISTs of Q4 are both 8 [5]. The diameters of dual-PRTds of 

Qn are one less than the diameters of two CISTs of Qn while n ≥ 4. 

3.4. Dual-PRTds on LTQs 

The n-dimensional locally twisted cube, denoted by LTQn is defined recursively as follows (see 

[22]): 

(1) LTQ1 is the complete graph on two vertices labeled by 0 and 1. LTQ2 is a graph consisting of four 

vertices with labels 00, 01, 10, 11 together with four edges (00, 01), (00, 10), (01, 11), and (10, 11). 

(2)For n ≥ 3, LTQn is composed of two subcubes LTQ0n−1 and LTQ1n−1 such that each vertex x = 0bn-1bn-

2∙∙∙b1 ∈ V(LTQ0n−1) is connected with the vertex 1(bn-1⊕b1)bn-2∙∙∙b1 ∈ V(LTQ1n−1) by an edge where ⊕ 

represents exclusive or. 

LTQn is a variant of Qn, and one advantage of LTQn is that the diameter is only about half of the 

diameter of Qn. For example, LTQ3 is shown in Figure 7(a), its diameter is 2, while the value of Q3 is 

3. In [23], LTQn is vertex-transitive if and only if n ≤ 3. 

Lemma 3. LTQ3 has dual-PRTds with a diameter is 5 where d is any vertex in LTQ3. 
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Proof of Lemma 3. Let destination node d be vertex 0. dual-PRT0s are shown in Figure 7 (b) and (c). 

Clearly, the tree diameters are both 5. Vertices 0, 4, 5, 7 are inner nodes in T1 and vertices 1, 2, 3, 6 are 

inner nodes in T2. Stems are (0, 4), (4, 5), (5, 7) (respectively, (1, 3), (2, 3), (2, 6)) and leaf edges are (0, 

2), (1, 7), (3, 5), (4, 6) (respectively, (0, 1), (1, 7), (3, 5), (4, 6)) in T1 (respectively, T2). Clearly, T1 and T2 

obey Definitions 3 and 6. Let d’ be vertex 1 and w be vertex 7, then Definitions 7 holds. Since LTQ3 is 

vertex symmetric and there exists an automorphism of LTQ3, vertex 0 can be replaced by any vertex 

in LTQ3. This lemma holds.                                                               □ 

In [23], the full automorphism group of LTQn with n ≥ 4 has exactly two orbits, and the odd and 

even vertices belong to the same group. Then, we will present dual-PRTds for d belonging to odd and 

even vertices respectively. 

4 5

6 7

0 1

2 3

0 1

2 3

4 5

6 7

(a) LTQ3                                       (b) T1                                            (c) T2                                     (d) a route Rd

4 5

6 7

0 1

2 3

d d’

w

4 5

6 7

0 1

2 3

d d’ d

 

Figure 7. (a) LTQ3 (b) T1 and (c) T2 are dual-PRT0s of LTQ3, (d) a protection routing Rd, where thick 

arcs indicate primary links and thin arcs indicate alternative links. 

Lemma 4. LTQ4 has dual-PRTds with diameters 6 and 8 where d is any even vertex in LTQ4. 

Proof of Lemma 4. Let destination node d be vertex 0. dual-PRT0s are shown in Figure 8. Clearly, the 

diameters of the two trees are 8 and 6 respectively. Vertices 0, 3, 4, 5, 8, 9, 12, 15 are inner nodes in T1 

and vertices 1, 2, 6, 7, 10, 11, 13, 14 are inner nodes in T2. Stems are (0, 4), (0, 8), (3, 5), (4, 5), (4, 12), (8, 

9), (9, 15) (respectively, (1, 7), (1, 13), (2, 6), (6, 7), (6, 14), (7, 11), (10, 11)) and leaf edges are (0, 2), (1, 

3), (4, 6), (5, 7), (8, 10), (9, 11), (12, 14), (13, 15) (respectively, (0, 1), (2, 3), (4, 6), (5, 7), (8, 10), (9, 11), (12, 

14), (13, 15)) in T1 (respectively, T2). Clearly, T1 and T2 obey Definitions 3 and 6. Let d’ be vertex 1 and 

w be vertex 3, then Definitions 7 holds. Since all even vertices belong to the same automorphism 

group in LTQ4, this lemma holds.                                                      □ 

(a)  T1                                                                                       (b) T2

4 5

6 7

0 1

2 3

d d’

w

12 13

14 15

8 9

10 11

4 5

6 7

0 1

2 3

d d’
12 13

14 15

8 9

10 11

 

Figure 8. (a) T1 and (b) T2 are dual-PRT0s of LTQ4. 

Lemma 5. LTQ4 has dual-PRTds with diameters 6 and 8 where d is any odd vertex in LTQ4. 

Proof of Lemma 5. Let destination node d be vertex 1. Dual-PRT1s are shown in Figure 9. Clearly, 

the diameters of the two trees are 6 and 8 respectively. Vertices 1, 2, 6, 7, 10, 11, 13, 14 are inner nodes 

in T1 and vertices 0, 3, 4, 5, 8, 9, 12, 15 are inner nodes in T2. Stems are (1, 7), (1, 13), (2, 6), (6, 7), (6, 

14), (7, 11), (10, 11) (respectively, (0, 4), (0, 8), (3, 5), (4, 5), (4, 12), (8, 9), (9, 15)) and leaf edges are (0, 

2), (1, 3), (4, 6), (5, 7), (8, 10), (9, 11), (12, 14), (13, 15) (respectively, (0, 1), (2, 3), (4, 6), (5, 7), (8, 10), (9, 
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11), (12, 14), (13, 15)) in T1 (respectively, T2). Clearly, T1 and T2 obey Definitions 3 and 6. Let d’ be 

vertex 0 and w be vertex 2, then Definitions 7 holds. Since all odd vertices belong to the same 

automorphism group in LTQ4, this lemma holds.                  

□ 

By using the unified approach [10] to configure dual-PRTds of LTQn from dual-PRTds of LTQn-1. 

It is better to choose vertices near the center of the tree as port vertices. According to the edge adjacent 

rules of LTQn, it is necessary to select an even vertex x to ensure that (x, x+2n-1) exists. As a 

counterexample, (1, 1+24) does not exist in LTQ5. Then, we deal with the following theorem. 

(a)  T1                                                                                       (b) T2

dd’

w

4 5

6 7

0 1

2 3

12 13

14 15

8 9

10 11

4 5

6 7

0 1

2 3

dd’
12 13

14 15

8 9

10 11

 

Figure 9. (a) T1 and (b) T2 are dual-PRT1s of LTQ4. 

Theorem 8. LTQn has dual-PRTds with the diameter 2n – 1 (respectively, 6 or 8) while n ≥ 3 and n ≠ 4 

(respectively, n = 4) where d ∈ LTQn. 

Proof of Theorem 8. First, according to lemmas 3, 4, 5, this theorem holds when n = 3 or 4. Then we 

use the unified approach [10] to recursively construct dual-PRTds of LTQn+1 from dual-PRTds of LTQn 

while n ≥ 5. We consider the following two cases. 

Case 1. Destination node d is any even vertex in LTQn while n ≥ 5. 

We prove by induction, based on n = 4. Since LTQn+1 consists of two LTQn, there are n-

dimensional dual-PRTds in each LTQn. We adopt the dual-PRTds shown in Figure 8 as the induction 

base, by using the unified approach, we shoose vertex 0 of T1 and vertex 6 of T2 as port vertices. For 

LTQn+1, we connect a pair of port vertices (0, 0+2n) (respectively, (6, 6+2n))to link two T1s (respectively, 

T2s) in each subcube LTQn-1, then we have dual-PRTds T’1 (respectively, T’2) in LTQn. Because the 

length from vertex 0 (respectively, vertex 6) to the farthest leaf in T1 (respectively, T2) is 4, the diameter 

of recursively constructed dual-PRTds is both 2n – 1 while n ≥ 5. 

Case 2. Destination node d is any even odd in LTQn while n ≥ 5. 

The proof is similar to that of Case 1. In this case, we adopt the dual-PRTds shown in Figure 9 as 

the induction base, and select vertex 6 of T1 and vertex 0 of T2 as port vertices. Other parts are the 

same as in case 1.                                           □ 

For example, Figure 10 shows dual-PRT0s on LTQ5, which can be used to illustrate the proof of 

Theorem 8. According to Theorem 8, there exist dual-PRTds in LTQn where d ∈ V(LTQn) while n ≥ 5. 

Then two trees can be used to configure the protection routing via Algorithm 1. By Definition 2, we 

have the following theorem. 

Theorem 9. LTQn is protectable where n ≥ 3. 

Theorem 9 improves the known result that LTQn is protectable when n ≥ 4. As far as I know, the 

diameters of two CISTs of LTQ4 are both 7 [10]. In each dimension of LTQn, the diameter of dual-

PRTds is about the same as that of two CISTs. 

4. Performance Evaluation 

In this section, we present simulation results for evaluating the performance of the protection 

routings on Qn and LTQn. The protection routings can be configured by dual-PRTds or two CISTs. For 
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Qn (respectively, LTQn), we use C programs to implement the routing algorithms by dual-PRTds in 

the previous section and two CISTs in [5] (respectively, [10]). To speed up the evaluation, we have 

carried out the simulation separately for each of Qn and LTQn by using a 5.10 GHz Intel® Core™ i9-

12900 CPU and 32GB RAM under the Linux operating system. 
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(a)  T1                                                                                       (b) T2
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Figure 10. (a) T1 and (b) T2 are dual-PRT0s of LTQ5. 

For each dimension 3, 4, 5, …, 9, we randomly generate 1,000,000 instances of vertex-list (s, d, f) 

with s ≠ d ≠ f for the two kinds of networks, where s, d and f are source, destination, failure node of 

traffic, respectively. The protection routing Rd is constructed by dual-PRTds (respectively, two CISTs) 

using Algorithm 1 (respectively, Tapolcai’s method [3]). We are interested in computing the path 

length from s to d under two scenarios: (i) no failure and (ii) a single node failure. For each instance, 

if no failure occurs, we compute the path length by tracking the primary links and PHNs alternately 

from s to d in Rd. For convenience, we call this specific routing is the default path Ps,d. Then, the length 

of Ps,d is defined by the number of links from s to d in Rd. Likewise, we are also concerned with 

computing path lengths in case of node failures in Rd. We assume that the appearance of node failure 

is uniformly distributed throughout the network. If failure node f = PNH(u) and f is contained in Rd, 

we calculate the path length of an alternate path Ps,u ∪ Pu,SNH(u) ∪ PSNH(u),d. We then compute three 

statistical quantities related to path length: (a) average path length, (b) standard deviation of path 

length, and (c) maximum path length and the number of its occurrences. More descriptions and 

examples of the simulation process are available on the website [24]. 

Tables 2 and 3 show some simulation results of the two scenarios (no failure and a single node 

failure) on Qn and LTQn. Due to save space, four additional tables are available on the website [24]. 

In these tables, three quantities mentioned above are calculated by the usual way in statistics. They 

present simulation results for Qn and LTQn when the routing is with two scenarios. Also, the ratio of 

invoking SNH under a single node failure is calculated (see the footer * in Tables 2 and 3). It is obvious 

that the ratio tends to decrease gradually as the network’s dimension increases, and eventually, its 

effect on length becomes less pronounced. According to Lemma 1, there are no 2 CISTs in Q3, so there 

are 2 missing values in Table 2. For the same reason, there are also 2 missing values in Table 3. 

Table 2. Simulation results: the average path length on Qn when the routing is with two scenarios: (1) 

no failure; and (2) a single node failure. 

 no failure a single node failure 

n 2 CISTs Dual-PRTds 2 CISTs Dual-PRTds 

3  2.000  2.000 (* 16.69%) 

4 3.233 2.533 3.394 (* 15.94%) 2.580 (* 10.98%) 
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5 4.272 3.031 4.445 (* 10.92%) 3.081 (* 6.77%) 

6 5.278 3.523 5.417 (* 6.91%) 3.562 (* 4.08%) 

7 6.271 4.016 6.369 (* 4.17%) 4.042 (* 2.40%) 

8 7.264 4.510 7.327 (* 2.46%) 4.527 (* 1.37%) 

9 8.257 5.008 8.296 (* 1.42%) 5.018 (* 0.77%) 

* The ratio of invoking SNH. 

Table 3. Simulation results: the average path length on LTQn when the routing is with two scenarios: 

(1) no failure; and (2) a single node failure. 

 no failure a single node failure 

n 2 CISTs Dual-PRTds 2 CISTs Dual-PRTds 

3  2.285  2.237 (* 21.41%) 

4 2.932 2.600 3.027 (* 13.83%) 2.637 (* 11.44%) 

5 3.869 3.290 3.983 (* 9.53%) 3.325 (* 7.64%) 

6 4.826 3.870 4.914 (* 6.16%) 3.902 (* 4.59%) 

7 5.794 4.411 5.853 (* 3.78%) 4.434 (* 2.67%) 

8 6.774 4.926 6.811 (* 2.26%) 4.941 (* 1.55%) 

9 7.766 5.432 7.788 (* 1.34%) 5.442 (* 0.85%) 

* The ratio of invoking SNH. 

According to Tables 2 and 3, we have Figures 11 and 12. Obviously, the average path lengths of 

protection routing by dual-PRTds are smaller than the ones by two CISTs, no matter in which scenario.  

 

Figure 11. the average path lengths of protection routing on Qn while 3 ≤ n ≤ 9. 

5. Conclusions 

In our previous research on using CISTs to construct the protection routing, we found that it is 

not easy to find k-CISTs on some graph classes even when k is equal to 2. We try to find trees that are 

less restrictive, but can still be used to configure the protection routing. Then we propose dual-PRTds 

in this paper. As mentioned earlier, there are no two CISTs on K3,3, Q3, and LTQ3. But there are dual-
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PRTds on them, which can be used to construct the protection routing. These results improve on 

previous research. Also, as shown in the performance evaluation of protection routing through 

simulation results, the average path length of protection routing configured by dual-PRTds is shorter 

than that by two CISTs. For future research, it would be an interesting question to determine the 

existence of dual-PRTds in other graph classes. 

 

Figure 12. the average path lengths of protection routing on LTQn while 3 ≤ n ≤ 9. 
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