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Abstract: Pose estimation has various applications in analyzing human movement and behavior,

including providing feedback to users about their movements so they could adjust and improve

their movement skills. To investigate the current research status and possible gaps, we searched

Scopus and Web of Science for articles that (1) human ‘body’ pose estimation is used and (2) user

movement is assessed and communicated. We used either a bottom-up or top-down approach to

analyze 20 articles for methods used to estimate human pose, assess movement, provide feedback to

users, as well as methods to evaluate them. Our review found that pose estimation systems typically

used CNNs while movement assessment methods varied from mathematical formulas or models,

rule-based approaches, to machine learning. Feedback was primarily presented visually in verbal

forms and nonverbal forms. The experiments to evaluate each part ranged from the use of public

datasets to human participants. We found that while there was an improvement, the majority of

pose estimation challenges remain. The effectiveness and factors for choosing movement assessment

methods for a new context are still unclear. In the end, we suggest that studies about feedback

prioritization and erroneous feedback are needed.

Keywords: pose estimation; movement assessment; augmented feedback; physical movement;

review

1. Introduction

Human pose estimation is the process of determining the positions and orientations of specific

human body parts, such as the head, shoulders, arms, and legs. Pose estimation has a wide range of

applications in fields that involve the analysis and understanding of human movement and behavior.

For example, in human-computer interaction, the estimation of hand pose could enable gesture-based

natural interaction [1]. In healthcare, pose estimation could help monitor and analyze the movements

and posture of patients in rehabilitation or therapy settings (e.g., [2,3]). While doing a physical

movement, such as rehabilitation or sports training, pose estimation could be used for various purposes

[4–7], and one of them is to provide feedback about the movement to a user.

Feedback is an important aspect of physical movement learning and training, as it allows

individuals to assess their performance and adjust to improve their movement skills. Feedback

could be task-intrinsic, from the sensory system of a performer, or augmented, from an external source

to a performer. Traditionally, a coach or instructor provides augmented feedback as verbal cues or

corrections during a training session. For example, a yoga instructor may tell a learner who does an

inverted U-shape downward dog pose to do a V-shape instead. With automated pose estimation, a

computer system could assess user movement and provide augmented feedback. Da Gama et al. [8], for

example, reviewed 31 articles that used Kinect to assess and provide feedback on motor rehabilitation.

The review suggested development possibilities and further studies of using Kinect to rehabilitate at

home.

While there is a large body of knowledge on using Kinect or other sensors for pose estimation

and physical movement applications, recent advances in pose estimation using a web camera open

new opportunities in this field. Several physical movement applications using deep learning-based
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human pose estimation have been proposed and reviewed [5–7]. Yet, none of them focus on how it

is used for assessing a movement and providing feedback to a user, which is an important aspect of

physical movement applications and an indication of how pose estimation is adopted in practice.

This paper presents a review of recent articles that use deep learning-based human pose estimation

to assess user movement and provide feedback on the user’s physical movement. We divided the

physical movement applications into three parts or modules: (1) pose estimation that detects keypoints

of a human body; (2) movement assessment that uses keypoints or the motion of keypoints to evaluate

quality or value of movement; and (3) augmented feedback presentation that communicates the results of

other modules to users.

The goal of our paper is threefold:

• to investigate methods used for pose estimation, movement assessment, and augmented feedback

presentation;
• to investigate how those methods were experimented or evaluated;
• to discuss the current research status of each part, possible gaps, and future research directions.

We searched for articles published between January 2017 to July 2022 in Scopus and Web of

Science, then we analyzed 20 articles that fitted our inclusion criteria.

We organize this article as follows: Section 2 gives an overview of the current topic followed by

Section 3 that presents the review methodology. Section 4 and 5 presents the results and discussions.

We conclude this article in Section 6.

2. Background and Related Work

This section clarifies terms used in this paper and summarizes related articles on pose estimation

for physical movement applications, smart technology for movement assessment, and augmented

feedback and their effectiveness.

2.1. Pose estimation for physical movement applications

In this paper, we use the term pose estimation for a process for determining the position of key

points of a person’s body from a given image or video. The methods for pose estimation can be

classified into two-dimensional (2D) [9] and three-dimensional (3D) [10,11], and could be further

classified based on the number of people in the image (single-person or multi-person) or approaches

(e.g., top-down or bottom-up) [12].

Pose estimation has a wide range of applications. For physical movement learning or training,

a lot of works have been proposed, and as a result, there exist a number of articles that review

them. For instance, Difini et al. [5] systematically reviewed the usage of human pose estimation

for training assistance. They identified 8 articles and investigated the challenges, the technology

used, the application context, and the accuracy of human pose estimation. Stenum et al. [6]

reviewed the applications of pose estimation in three domains: motor and non-motor development;

human performance optimization, injury prevention, and safety; and clinical motor assessment.

Their identified application limitations included occlusions, limited training data, capture errors,

positional errors, and limitations of recording devices. Their identified application limitations included

user-friendliness (i.e., set-up time, delayed results, and programming and training requirements),

outcome measure challenges, limited hardware infrastructure, technology challenges, and lack of

validation and feasibility data. Badiola-Bengoa and Mendez-Zorrilla [7] reviewed 20 articles on pose

estimation in sports and physical exercise. They discussed the available data, methods, performance,

opportunities, and challenges. Niu et al. [13] surveyed articles that used inertial measurement units

(IMU) and computer vision for human pose estimation in rehabilitation applications. They summarized

the research status and challenges as well as suggested that the two methods can be combined to get

better outcomes.
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These reviews are useful for identifying existing methods, challenges, and future directions of

using pose estimation in physical movement applications. Still, they had not reviewed how those

applications assessed movement and provided feedback to users, which is our focus in this paper.

2.2. Smart technology for movement assessment

We use the term movement assessment as a way to evaluate or estimate the quality of movement to

provide feedback to a user. According to this definition, we consider works on, for example, action

recognition or movement modeling, if a user could use the result to assess their movement, such as

telling whether it is correct or not. The use of Artificial Intelligence to analyze user movement and

provide feedback to improve user performance, quality of life, and well-being has been a subject

of research for more than a decade. Several reviews have been published to present the level of

knowledge on the topic.

Caramiaux et al. [14] conducted a short review of machine learning approaches for motor

learning. They focused on motor variability which requires the algorithms to differentiate between new

movements and variations from known ones. They identified three types of adaptation: parameter

adaptation in probabilistic models, transfer and meta-learning in deep neural networks, and planning

adaptation by reinforcement learning. They also discussed challenges for applying the models,

including variations of an already-trained skill, an adaptation that involves re-training procedures,

and continuous evolution of motor variation patterns.

Rajšp and Fister [15] identified 109 articles related to intelligent data analysis for sports training.

They focused on the competitive activity (e.g., no leisure training) in four training stages: planning,

realization, control, and evaluation. They discussed the challenges of gathering data sets, working

with coaches and players, and applying knowledge to practical situations.

Gámez Díaz et al. [16] focused on digital twin coaching, which collects user data and provides

personalized feedback. They categorized the works into sports, well-being, and rehabilitation domain.

The discussed algorithms, devices, performance, and usability feedback of users. They discussed the

challenges in evaluating the user’s feedback and user interface.

As these reviews did not particularly focus on pose estimation, they mostly analyzed articles that

used other techniques, such as sensors, and only some or a few articles that used pose estimation.

Tsiouris et al. [17], for instance, reviewed 41 articles on virtual coaching for users with morbidity, but

only one article monitored 3D pose. In this paper, we focus on works that use pose estimation only,

as we deem it a promising technology for its capability to work on a normal laptop or mobile phone

without extra equipment needed.

2.3. Augmented feedback and their effectiveness

Augmented feedback refers to feedback from an external source to a performer. While works

on smart technology for movement assessment discuss feedback, a large body of knowledge about

augmented feedback comes from various fields within sport science. Several ways to provide feedback,

such as knowledge of results and knowledge of performance, have been discussed and studied their

effectiveness in various settings. Lauber and Keller [18], for example, reviewed studies that have

applied augmented feedback in exercise and prevention settings, focusing on the positive influence of

augmented feedback on motor performance. They discussed the limitations of studies, which caused

difficulties for practitioners to determine the best way to provide augmented feedback.

Recent reviews of works suggested more pieces of evidence for the effectiveness of different

augmented feedback methods. Zhou et al. [19], for example, investigated the data supporting the

value of feedback in physical education. Based on 23 studies, the effectiveness of feedback over

no-feedback had strong evidence, the effectiveness of visual feedback over verbal feedback had

limited evidence, and the effectiveness of information feedback compared with praise or corrective

feedback was inconsistent. Meanwhile, Mödinger et al. [20] systematically reviewed the effectiveness

of video-based visual feedback in physical education in schools. They found 11 articles in total and
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suggested that visual feedback was more effective than solely verbal feedback. Still, they found its

practical usage required considerations of specific conditions.

The reviewed articles range from the usage of video recording with human instructors to the usage

of smart technology to provide augmented feedback. In this paper, we investigate and discuss how

pose estimation applications implemented or extended existing knowledge of augmented feedback.

3. Methodology

We adopt PRISMA guidelines [21], an evidence-based minimum set of items for reporting in

systematic reviews and meta-analyses.

We searched Scopus and Web of Science databases on 27 July 2022, using the following query:

(“pose estimation" OR “pose tracking") AND (“exercise" OR “sport" OR “rehabilitation” OR “physical

education" OR “motor" OR “movement" OR “athlet*") AND (“assistance" OR “correction" OR

“guidance" OR “feedback" OR “learning" OR “coach" OR evaluat* OR assess* OR performan*). The

search was in title, abstract, and keywords (i.e., “topic" in Web of Science). We limited the years to

between 2017 - 2022 and the language to English only. For Scopus, we also exclude articles with the

document type “Review".

We used CADIMA [22] as a tool for data collection and selection. The inclusion criteria were: (1)

human ‘body’ pose estimation is used; (2) user movement is assessed and communicated. Articles that

simply classify movement or count correct repetitions without giving feedback to users were excluded.

The feedback must be shown, explained, and/or discussed (e.g., articles that simply mentioned giving

feedback without screenshots or other details are excluded). We also excluded review articles from the

analysis.

The first author performed article selection and initial analysis. We first identified methods for

pose estimation, methods for assessing movement, and methods for presenting augmented feedback.

Once the methods were noted, we categorized the pose estimation and movement assessment using a

bottom-up approach while we largely adopt classifications of augmented feedback from Lauber and

Keller [18] and Magill and Anderson [23]. As we focus on the methods, not the result, we did not

assess the risk of bias or the certainty (or confidence) of experiments that were conducted to evaluate

proposed methods. Instead, we reported how experiments were conducted and what data was used.

Both authors discussed the results and wrote this paper.

4. Result

Figure 1 presents the article selection process. We found 104 articles from the search (81 from

Scopus and 23 from Web of Science). After removing 18 duplicated records, we screened the title

and abstract based on the criteria and excluded 34 articles that did not meet the criteria. In full-text

screening, 6 articles were excluded because the full-text was not accessible. 7 articles (e.g., [3]) were

excluded as they failed the first criterion and 25 articles (e.g., [24]) were excluded as they failed

the second criterion. In the end, we found 20 articles as listed in Table 1. Human pose estimation,

movement assessment, and augmented feedback presentation of each article were analyzed and are

presented in the next subsections.

Table 1. List of 20 articles reviewed in this paper. The articles are listed with the context of use and

grouped by publication year.

Year Articles Count

2018 Tennis [25] 1

2019 Dance [26], Ski [27], Tai Chi [28], Exercise [29], Rehabilitation [30] 5

2020 Rehabilitation [2] 1

2021 Ballet [31], Yoga [32–34], Tai Chi [35], Kickboxing [36], Baseball [37], Exercise [38–41] 11

2022 Baseball [42], Exercise [43] 2
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Figure 1. Paper selection flow diagram.

4.1. Human Pose Estimation

Human pose estimation module infers landmarks or keypoints of human figures, such as elbow

locations, from an input. Human pose estimation could be broadly classified into 2D (X and Y

coordinates) and 3D (X, Y, and Z coordinates). We discuss the techniques and studies conducted to

evaluate those techniques.

4.1.1. Libraries or techniques used for pose estimation

We found the usage of OpenPose, PoseNet, Convolutional Neural Network (CNN), and other

techniques for human pose estimation, as summarized in Table 2.

OpenPose is a real-time multi-person pose estimation library based on Cao et al. [44]. The library1

used multi-stage CNN to detect 135 keypoints and reconstruct either 2D pose (e.g., [34,37,41–43]) and

1 https://github.com/CMU-Perceptual-Computing-Lab/openpose
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3D pose (e.g., [2,31]). Though Nagarkoti et al. [29] and Kurose et al. [25] did not state using OpenPose

directly, they cited Cao et al. [45], which OpenPose is based on.

Most articles used the library as it is while some extended the library for their purposes. Jan

et al. [35] employed Lifting from the Deep [46] to to translate a 2D pose into a 3D pose. Similarly, [26]

obtained 2D poses from multiple cameras, then implemented the binocular stereo matching principle

to obtain a 3D pose. Yang et al. [38] used data augmentation, randomly cropped and rotated images, to

address "abnormal human" situations and considered context information to address the uncertainty

in the case of occlusion.

PoseNet is an open-sourced library [47] that uses a deep learning TensorFlow model to detect

17 2D-keypoints of human. The library supports multiple models. The lightest model could be run

in realtime on modern smartphones but with lower accuracy. Articles that used PoseNet include

[32,36,39].

Other CNN is used in [27,28,33,40]. Jeon et al. [40] used use Mobilenetv2 [48] to optimize an HPE

model [49], which added a few deconvolutional layers over the last convolution stage in the ResNet

[50]. They implemented Online Pose Distillation to minimize performance drop. Wang et al. [27]

proposed a structural-aware convolution module, which concatenated spatial and temporal relation

modules to go through a convolution layer to reduce dimension. Shi and Jiang [33] proposed a

framework containing two branches: one used a confidential map to estimate the positions of bone

joint points; another used affinity domain to predict the positions and directions of the limbs. They

iterated the above two branches to construct a human skeleton based on the confidence set. Kamel

et al. [28] implemented CNN with four convolutional layers, which received input from an RGB-D

camera and generated a 3D skeleton model.

Other techniques, such as Kinect and other deep learning models, were experimented by Gu

et al. [30].

Table 2. Methods for pose estimation. The asterisk (*) indicates that the method is further modified or

extended.

Technique 2D Examples 3D Examples

OpenPose [42], [43], [41], [34], [37], [29], [25],
[38]*

[31], [2], [35]*, [26]*

PoseNet [36], [39], [32] NA

Other CNN [40], [27], [33] [28]

Others [30] [30]

4.1.2. Experiments

Experiments performed on the pose estimation module include accuracy and/or performance

such as speed or frame rate. The accuracy is generally measured by comparing the positions of

landmarks from the pose estimation module to some ground truth. Kamel et al. [28], for example,

compared their pose estimation results with the results they gathered from Kinect. Similarly,

Zhang et al. [26] evaluated dance movement reconstruction against previously measured actual

3D coordinates. On the other hand, some articles used publicly available datasets, including COCO

[38,40], MPII [38], Penn Action, and JHMDB [27].

A few works experimented with different models. Gu et al. [30] compared 2D pose and 3D pose

generated from four deep learning models [46,48,49,51] and Kinect. They selected Kinect for their

system as it provided the most accurate result. Huang et al. [34] evaluated the accuracy and frame rate

of different models, but there is no detail about the data used for the evaluation.
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4.2. Movement Assessment

This module replaces the need for human experts, such as instructors or trainers, to oversee user

movement. In order to analyze the quality of movement and give users feedback, the system may

process keypoints or the motion of keypoints and/or measure the amount or degree of user attributes,

then assess how well a user performs. We discuss the techniques for each part and studies conducted

to evaluate those techniques.

Table 3. Movement assessment

Technique Examples

Pre-processing
Temporal alignment Dynamic time warping [31], [35], [41], [30], [29]
Spatial alignment and
normalization

Align using selected origin point and normalize [30], [28];
Normalization only [33]

Noise handling and smoothing Filter [43], [31], [40]; Fill missing values [33]; Quarter-shift [40]
Selection Spatial [35], [43]; Temporal [42]
Temporal segmentation Peak detection [43]

Measurement
Spatial measurement Angle of body parts [39], [31], [35], [34], [37], [27], [28], [38],

[30],
Temporal measurement Direction/displacement [28], [42], [26]; Range of

motion/rotated angle [39], [26]; Number of repetition [43]

Assessment methods
Mathematical formula or model Difference of a measurement [29], [26], [26]; Angular

similarity/distance [42], [40], [34]; Euclidean distance [34],
[33]; Others [35], [40], [38]

Rule-based method Grading [26]; Correct posture checking [39], [36], [39]
Machine learning Classification using SVM [25], [27], [2]; using Neural Network

based on LSTM [2]; using Artificial Neural Network (ANN)
[36], [32]; using time series classification [43]; Similarity score
of embedding pairs from multi-stage CNN [41,52]

4.2.1. Pre-processing

Pre-processing involves translating keypoints or the motion of keypoints into a more desirable

one, such as findings correct keypoints by removing wrong keypoints. Pre-processing techniques

include temporal alignment, spatial alignment and normalization, noise handling and smoothing,

selection, and temporal segmentation.

Temporal alignment aligns temporal sequences to cope with temporal issues. For instance, a

delay typically occurs when a user is trying to imitate the model’s movement. The speed of movement

between a user and a model could differ. Temporal alignment attempts to minimize such temporal

differences so the movement assessment can focus on comparing, for example, the posture. All papers

with temporal alignment [29–31,35,41] employ dynamic time warping (DTW). The technique has been

used to find patterns in time series [53] in various domains. The technique optimizes a distance metric

and nonlinearly maps a frame of the model to a frame of the user, as illustrated in Figure 2. The

distance metric can be customized. For instance, Nagarkoti et al. [29] used angles between the pair of

limbs as the distance metric.
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Figure 2. Dynamic time warping by Programminglinguist [CC BY-SA 4.0], via Wikimedia Commons.

Two sequences (the solid lines) are matched (the dash lines) with certain rules.

Spatial alignment and normalization processes and geometrically matches points within a frame

to address spatial difficulties, such as differences in physique or camera distance. The alignment and/or

normalization are particularly essential when user performance is inferred from the position of human

keypoints. Gu et al. [30] and Shi and Jiang [33] used a pelvis joint or a middle point to be the origin

and normalized coordinates before calculating the Euclidean distance between a model and a user. On

the other hand, Kamel et al. [28] only normalized coordinates to neutralize the difference in body size.

They used rotations and direction of motions to evaluate the user performance, thus the alignment

was not necessary.

Noise handling and smoothing processes data to minimize the effect of imperfections in pose

estimation. Singh et al. [43] used SavGol filter [54] to minimize fluctuations of coordinates before

detecting repetitions. [31] applied a median filter to angle sequences to prevent poor results due

to noisy data. Jeon et al. [40] applied heatmap-smoothing, quarter-shift, and the one-euro filter to

minimize fluctuation. Shi and Jiang [33] predicted undetected joint coordinates based on the standard

movement of the limbs.

Selection chooses a subset of relevant features before processing, which could be either temporal

or spatial features. Jan et al. [35] used only elbow, knee, and foot information for evaluating Tai-Chi

Chuan practice. In contrast, [43] removed ankle, knee, and other points that have low variability when

evaluating CrossFit workouts. Akiyama and Umezu [42] excluded redundant frames before and after

a baseball pitching motion by selecting only 30 frames after the system detected a specific body part at

an angle.

Temporal segmentation splits a sequence into sub-sequences. Singh et al. [43], for example, used

peak detection methods to segment workout exercises into repetitions.

4.2.2. Measurement

Measurement refers to the quantification of attributes of one person. For instance, a system could

identify the value of the angle between body parts or quantify the speed of a movement. Measurement

could be briefly categorized into spatial and temporal ones.

Spatial measurement. The measurement involves the attributes of one person within one frame.

Yang et al. [38], for example, calculated the horizontal distance between the hip and heel and the score

of thigh length of a user to infer the proper form of a squat. The angle of body parts seems to be

the most common spatial measurement [27,28,30,31,34,35,37–39]. Ranasinghe et al. [39], for example,

calculated hip-shoulder-elbow angle to check for proper elbow lock during an arm curl exercise.

Temporal measurement. The measurement involves the attributes of one person across frames.

A straightforward measurement is a difference in keypoint position over time. The direction of motion

was used by Kamel et al. [28] in practicing Tai Chi. Similarly, Akiyama and Umezu [42] calculated

displacement direction and distance of the body joint to provide suggestions for improving a baseball

pitching form. Ranasinghe et al. [39] used the range of motion, i.e. the angular distance of the
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movement around a joint, to evaluate an arm curl exercise. Zhang et al. [26] incorporated the distance

of the joint point between frames and the corresponding rotated angle as a curvature of the joint point

combination movement for analyzing dance actions. Akiyama and Umezu [42] visualized the amount

of joint movement between two successive frames as the indication of speed. They also mentioned the

acceleration of joints and timing of the motion, but the detail of how those attributes were measured is

unclear. A number of repetitions counted from a number of segments such as [43] can also be seen as a

temporal measurement. However, a number of correct and/or incorrect repetitions would typically

involve some assessment methods.

4.2.3. Assessment methods

Assessment methods assess how well users perform. The system could implement multiple

methods or conditionally select methods, for example, based on the type of movement as seen in [34].

Note that some methods could be explained in multiple ways. We categorized the methods as the

authors expressed them.

Mathematical formula or model evaluates user performance mathematically. It could be as

simple as the summation or average of the absolute difference of measurement (e.g., angle [26,29]

or displacement [26]). Variations of formulas have been adopted to find angular similarity/distance

[34,40,42] as well as Euclidean distance [33,34]. Other mathematical formulas or models found include

Gaussian function-based similarity metric [35] and the dot product between the joint dynamic vectors

[40].

The mathematical formula or model typically results in a numerical value, which could be further

classified into classes (e.g., good and bad) using a formula or other assessment methods. Yang et al.

[38], for example, expressed the conditions of good angle and hip-heel distance in mathematical form.

Rule-based method evaluates or classifies user performance based on conditions. Zhang et al.

[26], for example, graded user performance (excellent, good, pass, fail) based on the similarity score.

The rule-based method could also lead to a numerical result. Ranasinghe et al. [39] detected a

number of correct arm curl repetitions when shoulder-elbow-wrist angles are less than 90 degrees,

then larger than 170 degrees repeatedly. Wessa et al. [36] and [39] tracked the time taken to perform a

specific action by identifying the starting and ending point according to conditions of user posture.

Machine learning leverages data to evaluate user performance. It is typically used for classifying

user performance into a predefined class. The technique used ranges from well-known supervised

learning, such as Support Vector Machines (SVM) or K-nearest neighbors, to deep learning. Kurose

et al. [25] first created feature vectors using joint position coordinates and classified the vectors with

Gaussian Mixture Model (GMM). They then used SVM to predict a tennis shot result based on the

posture class, movement amount, and play area. Wang et al. [27] used SVM with radial basis kernel

function (RBF) to classify good and bad poses of skiing. Chalvatzaki et al. [2] used gait parameters, such

as stride length or gait speed, as a feature vector for an SVM classifier with classes from Performance

Oriented Mobility Assessment [55]. They also used Neural Network based on LSTM units for human

activity recognition and gait stability assessment. Wessa et al. [36] and Tarek et al. [32] used the

Artificial Neural Network (ANN) of 3 layers to classify keypoints into correct and incorrect poses

of kickboxing and yoga. Singh et al. [43] implemented and compared four time series classification

methods, including 1-nearest neighbors dynamic time warping (1NN-DTW), ROCKET [56], Fully

Convolutional Network (FCN), and Residual Network (ResNet).

In addition to classifying a pose into a class, machine learning could be used for calculating a

numerical value. Zhou et al. [41], Park et al. [52] proposed a body part embedding model for motion

similarity. They decomposed joint points into 5 body parts, then encoded motion classes, skeletons,

and camera views of each body part as an embedding using multi-stage CNN. The similarity score

was then calculated from the average cosine similarity between the embedding pairs.
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4.2.4. Experiments

Studies related to movement assessment include its accuracy and/or performance. We found

various ways to test how the proposed automated assessment conforms to the correct value or standard.

One common way was to ask humans to put a label or value, such as a score or number of repetitions,

on movement gather from themselves or other participants, then compared human annotation with

the system, as seen in [32–34,40]. For user movement assessment that employed machine learning,

labeled data could be also used for training. Zhou et al. [41] and Wang et al. [27] asked participants to

perform the correct and incorrect movements, then split the data to train and test their classification.

The ground truth could come from seen results, such as the hit distance of a baseball swing [37] or a

tennis shot result [25], and the authors discussed the correlation between their result and the actual

one [25,37]. Some articles used less formal methods for the study. Li and Pulivarthy [31] and Kamel

et al. [28] compared the score of experienced and novice users, then inferred the effectiveness of their

assessment module as the experienced users’ scores were higher than the novice scores. Yang et al.

[38] simply intentionally performed incorrect movement and presented the output. Lastly, we found

only one article that used a publicly available dataset. Zhou et al. [41] used NTU RGB+D similarity

annotations dataset to validate their results.

For the performance, Singh et al. [43] reported training time. [33] mentioned that their system

satisfied realtime requirements, but no actual time was given.

4.3. Augmented Feedback Presentation

Augmented feedback (or extrinsic feedback or external feedback) refers to information about

performance from others. In our scope, it is the feedback provided by the system to a user. We

discuss the type of information, format, and timing and frequency of the augmented feedback. Table 4

provides examples of works that implemented each category of feedback. Note that some categories

are excluded from the table due to the lack of examples, and one work could provide multiple pieces

of feedback.

Table 4. Example of augmented feedback, classified by type of information and format. We note

the timing Concurrent and Terminal as superscripts. We also note how the model and/or user are

visualized: Model only, User only, Juxtaposition, Superposition, and Relationship encoding. The

asterisk (*) indicates different media types are put, for example, in juxtaposition. NA means we could

not find any example from the reviewed papers.

Category Knowledge of Results
Knowledge of Performance

General Error

Visual-verbal

- Number [40]C, [30]C, [35]T ,
[37]T , [28]T , [41], [2]

NA NA

- Word(s) [42]T , [37]T NA NA

- Phase NA [32]C, [34]C, [31]T , [36], [38]

Visual-nonverbal

- Video NA U: [40]C, [37]T , [26], [2];
U&R: [32]C, [28]T ;
J: [39]C*, [36]*;
J&R: [35]T*;
S: [29]T*

M: [27]

- Image NA S&R: [42]T U: [43]T ;
J: [39]C*, [35]T*, [36]*

- Animation NA U: [2], [26];
J: [30]C;
S: [29]T*

J&R: [41]

- Other [32]C, [40]C, [25]T NA NA
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4.3.1. Type of information

Type of information involves what content of the feedback is communicated to a user. Literature

classifies augmented feedback into two main types: knowledge of results and knowledge of

performance.

Knowledge of results (KR) gives information about the outcome of the user’s movement.

Common feedback of this type includes an indication whether a user does a movement correctly

[37] or a score relating to movement quality [2,28,35,37,40], which could be a result from assessing

overall performance or individual aspects. Li et al. [37], for example, color-coded a list of body parts

according to the goodness of the posture of each part. A number of repetitions, as seen in [30,40], could

be another feedback that informs the successful movement.

Some knowledge of results is tied to the context of movement. Akiyama and Umezu [42], for

example, compared the user’s baseball swing timing with the model and displayed whether the user

was faster, slower, or had similar timing. Kurose et al. [25] listed the characteristics of tennis shots for

each prediction result (a score, a losing point, or a rally continuation).

Knowledge of performance (KP) gives information about the characteristics of the user’s

movement that lead to the result. Tarek et al. [32] informed whether and why the pose is correct or

incorrect (e.g., a foot above kneecap for Yoga Tree Pose) by highlighting the related body parts over

user video recordings. Video replay or live video of a user is a common approach to demonstrate

user performance, and systems usually annotate them with information from pose estimation or

movement assessment modules. For example, a system could show a user video, overlaid with its

detected skeleton [2,37,40]. A system could highlight parts with low scores [41] or color-coded body

parts according to similarity score [35], then overlaid on a user video. Other types of knowledge of

performance include movement kinetics and kinematics, such as the amount of movement over time

[42]

The information from an assessment module, as the annotation or other forms, could highlight

correct aspects or error aspects of the performance. Correct aspects informs that a user is on track and

encourages them to continue. Error aspects informs a user about their mistakes (descriptive) and/or

directs how to correct the mistakes (prescriptive). Akiyama and Umezu [42] highlighted body parts

that received minimum similarity score. They provided advice on form improvements by drawing

arrows indicating the motion direction of the model on the user’s image. Some systems, such as

[27,31,33,36,38,39], suggested the correction or the model movement when the system detected the

wrong movement.

In addition to displaying information from an assessment module, the system could have a

dedicated module for feedback. Ranasinghe et al. [39] used a reinforcement learning model to provide

correct and incorrect instruction images. [31] surveyed correction feedback from experts, then used a

decision tree classifier with Gradient Boosting to classify the feedback and present it to a user.

4.3.2. Format

The format involves the ways the feedback is communicated to a user. We broadly classify format

according to signs and channels [57] into audio-verbal (word heard), visual-verbal (word read), and

visual-nonverbal. There could be a system that provides audio-nonverbal, such as music or sound

effect, but we have not found such a system in this review.

Audio-verbal is the use of words to communicate feedback through speech. This approach is the

closest to traditional motor learning, where a coach or trainer verbally gives a learner feedback. To

translate an output to speech, Chalvatzaki et al. [2] used a TTS (text-to-speech) system to give verbal

feedback to the user.

Visual-verbal is the use of words to communicate the feedback visually (e.g., on-screen).

Quantitative information is generally presented as Number, as found in [28,35,37,40,41]. For qualitative

information, a system could display a category as simple words, e.g., "faster" or "slower" [42], or "front
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arm angle" or "back arm angle" [37]). Lastly, a system could output phases or sentences, as seen in

[31,34,36,38].

Visual-nonverbal does not use words to communicate the feedback. We found the use of videos

(e.g., [2,34,37,40]), images (e.g., [26,35,36,39,43]), 2D animations of skeleton (e.g., [26,30]), and other graphic

(e.g., correct/incorrect symbols [32] or movement paths and colormap [25]). Some systems display

multiple types of media. Jan et al. [35], for example, displayed a user video beside a 3D model of a

trainer.

The system could display information about a user only, a model only, or both. Displaying user

only could be used to provide KP feedback in general as well as highlight incorrect aspects of user

movement. Systems, such as [2,37,40], visualized detect skeleton on a user video. Singh et al. [43]

displayed frames from the user camera feed that was identified as incorrect. Displaying model only,

on the other hand, is typically used to prescribe the correct movement. Wang et al. [27] offered advice

to a user by sampling a related video clip with correct poses.

In case both model and user information are displayed, we could further consider visual

comparison [58], as a user typically needs to identify differences or similarities of their movement in

relation to a model in order to see errors and/or improve their movement. Juxtaposition places a user

and a model in separated, nearby spaces. Juxtaposition could be side-by-side, as seen in [30,34,35,39],

or picture-in-picture, as seen in [36]. Superposition places a user and a model in the same space.

Akiyama and Umezu [42], for example, superimposed the user image on the model image. Nagarkoti

et al. [29] displayed the user’s video with their skeleton and overlaid the skeleton of a model on them

when the error is above a threshold. Lastly, relationship encoding displays relationships between a user

and a model, such as a score or classification results, directly. The relationship could appear as an

annotation on the user’s video, as seen in [32,35,41].

We also found the usage of the temporal component of a video to communicate the feedback that

a user could perceive visually. Kamel et al. [28] provided motion replay, which would be suspended

when the similarity score of a frame was lower than 50%, and the joints that have lower-than-average

scores were highlighted with yellow.

A visual comparison could happen with a visual-verbal format. For example, a similarity score

could be considered as relationship encoding since it represents a relationship between a model and a

user.

4.3.3. Timing and frequency

Timing and frequency involve when and how often the feedback is communicated to a user.

Timing could be generally classified into concurrent and terminal. Concurrent feedback is the

feedback given while a person is performing a skill or movement, as seen in [30,32,34,39]. Terminal

feedback is the feedback given after a person has finished performing a skill or movement, as seen in

[25,28,29,31,35,37,42,43].

Frequency of feedback could be on every practice trial or less. In case of reduced frequency, a

system could provide feedback only when user performance meets a certain value (performance-based

bandwidths). Nagarkoti et al. [29], for example, projected a model movement on a user only when their

error is above a threshold. The frequency could be self-selected, or the feedback could be summarized or

averaged after a number of practice trials. However, we have yet to find examples in this review.

4.3.4. Experiments

Ranasinghe et al. [39], which provided feedback based on the reinforcement learning model,

reported the relevance and value of feedback on errors. However, most articles evaluated augmented

feedback, specifically or as a whole system, through users. Straightforward ways included asking

participants to use a system, then conducting interviews or using questionnaires to investigate system

usability, usability issues, user preference, and/or user satisfaction [27,28,30,35]. Alternatively, user
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performance or improvement when using a system could be used to evaluate the overall system. A

study could be short-term (within a day, e.g., [28,36,39,42]) or long-term (e.g., [28,30,36]).

5. Discussion

This section summarizes the findings of each module that we observed while reviewing the

articles. We also suggest some future research directions for pose estimation-based physical movement

applications.

5.1. Pose Estimation

Open-source libraries that support pose estimation in real-time plays an important role for

research on pose estimation-based physical movement applications, as supported by the number of

works that used OpenPose and PoseNet (see Table 2). The recent release of pose estimation libraries,

such as AlphaPose [59], Detectron2 [60], and MediaPipe [61], could bring more researchers to work in

this area.

Pose estimation libraries for a specific purpose may be needed, even though general-purpose

pose estimation libraries are useful. Wang et al. [27], for example, proposed a pose estimation method

that incorporates spatial and temporal relation of human keypoints to deal with the fast movement

of ski technique and skiing skis. They trained the model, experimented with a dataset, and reported

errors in pose estimation due to crossed snowboards that mixed with the background. As a physical

movement application usually focused on one or a few specific types of movement, a pose estimation

library that could be trained with a custom dataset could be useful for research in this area and possibly

yield more accurate results.

Many challenges of pose estimation remains. There was a proposal to address well-known

limitations of unusual poses and occlusion Yang et al. [38]. However, the challenges identified by prior

works such as capture errors, positional errors, or limitations of recording devices Stenum et al. [6]

were rarely addressed or discussed in the articles. This lack of discussion about pose estimation issues

might be because they are not a focus of the works we reviewed. However, one possible reason is that

the pose estimation result was good enough in their experiments and settings.

Pose estimation may not have to be perfect to be useful in physical movement applications.

Though this point was not obvious from reviewed articles, the lack of discussion about pose estimation

issues and our experience with a pose estimation-based physical movement application [24] could

suggest so. We observed some inaccuracy of pose estimation results during the experiment, but

our participants did not notice it because they focused on other parts. Thus, in addition to continue

improving pose estimation accuracy, one future research is to study the effect of imperfect pose

estimation in physical movement applications on users.

5.2. Movement Assessment

There is limited evaluation and discussion to tell which technique is better or which factors

should be considered when applying a technique to a new context. For instance, differences in

physique, camera angle, or camera distance could result in high Euclidean distance even if a user

perfectly imitates a trainer. Though there could be articles outside our review that compare techniques,

such as Srikaewsiew et al. [62], none of them was compared with proposed movement assessment

methods. We thus encourage more experiments to evaluate and identify the limitations of movement

assessment methods.

The lack of ready-to-use datasets could be one factor that hinders the experiment. Only one

review article [41] used the public dataset, NTU RGB+D 120 Similarity Annotations, to evaluate their

movement assessment module. The dataset was annotated with motion similarity score via Amazon

Mechanical Turk [52]. In addition to the lack of movement quality data, the list of existing datasets

provided by Zhou et al. [41] also showed that almost all datasets were gathered using Kinect, which

may need some additional processing to be used with pose estimation-based applications. Similar to
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pose estimation that is generally evaluated using publicly available datasets, such as COCO [63] or

MPII [64], there is a need for datasets for evaluating movement assessment.

5.3. Augmented Feedback Presentation

Relating results of automated feedback to a traditional one is difficult due to the lack of

feedback description in a number of reviewed papers. We mainly adopt feedback classification

from literature in motor learning Magill and Anderson [23]. The classification is well-established and

includes research works where a human trainer gives feedback to a learner, which should allow us to

compare research within our scope with others. However, we found difficulty in classifying feedback.

For instance, Ranasinghe et al. [39] mentioned verbal encouragement phrases, but no detail about

the channel was given. Chalvatzaki et al. [2] gave verbal feedback, but it is unclear what feedback

information was given to users. We were unable to identify the timing of a number of works ([36],

[41], [38], [2], [27], [26], [33]). This lack of description limits the replication, comparison, as well as

contribution to general knowledge in motor learning. Thus, we encourage authors to always report

content, format, and timing of feedback in their literature.

Researchers could experiment with different ways to provide augmented feedback in the

design space. While it is not comprehensive, Table 4 can still give us an idea of trends and gaps

that can be experimented with. We could observe more usage of a visual channel in communicating

verbal feedback, compared to audio one. Different forms of visual objects, such as a number or a video,

seem to be suitable for different types of content. Still, one could try to come up with items in NA

cells or items excluded from the table. For instance, a number could be used to provide knowledge of

performance by annotating angles between body parts on a user video. A system could provide audio

feedback, correct aspects of knowledge of performance, kinetics, kinematics, and/or biofeedback.

Study about feedback prioritizing is still underexplored. In motor learning, selecting the skill

component for knowledge of performance is recommended [23]. For instance, a trainer could tell a

learner to correct arm movement first, then leg movement later. For automated feedback, one area that

we found interesting to explore is the usage of artificial intelligence to provide feedback according to

user needs, similar to [31,39]. Alternately, designing a user interface that allows a user to customize

provided feedback could take less time to implement and easier to test the effect of priority feedback

in an automated system.

Erroneous feedback should be considered and discussed, even though there is no apparent

discussion about the challenges of providing augmented feedback from the review. Erroneous feedback

is wrong feedback, which could hinder motor learning as a user would use the wrong feedback

and ignore their (correct) sensory feedback [65]. Though the accuracy of pose estimation improves

over years, it is not perfect and could lead to erroneous feedback. A system could, for example,

disable augmented feedback when the confidence value of pose estimation is below a threshold.

Finding a way to mitigate the erroneous feedback could be one essential future research direction for

pose-estimation-based physical movement applications to be widely adopted.

5.4. Limitations

Our work has two limitations. First, there exist articles that addressed specific module(s), which

may provide rich knowledge about the module, but were excluded from this review by our inclusion

criteria or other reasons. Our prior works, for instance, either provided feedback with no movement

assessment [24] or assess movement without providing feedback [62].

Second, as we discussed in the previous section, some articles provided very limited descriptions

of the user interface and feedback. We thus used provided images as a source of information. It is

possible that we could not study every aspect of the user interface. Also, it was sometimes unclear

whether an image depicted concepts or actual implementation. Because the description was quite

limited, we decided to consider those images as a way to communicate feedback to either users or

readers and included them in our analysis.
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6. Conclusion

The purpose of this study was to examine current methods for estimating human pose, assessing

movement, and providing feedback using deep learning techniques. The review analyzed 20 articles

on these topics. We found that systems used CNN (notably OpenPose) for pose estimation and

used either mathematical formula or model, rule-based method, or machine learning for assessing

movement. The feedback, including knowledge of result and knowledge of performance, was mostly

presented visually in verbal forms (i.e., number, word, and phase) and nonverbal form (i.e., video,

image, animation, and other graphics). Public datasets and human subjects were both used in the tests

to assess each module.

We discuss the remaining gaps and areas for future research. We suggest a need for

general-purpose pose estimation libraries as well as specialized ones. While there are still challenges

to be addressed in pose estimation, it may not be necessary for it to be perfect to be useful in

certain applications. For movement assessment, there is limited evaluation and discussion on which

techniques are best and what factors should be taken into consideration when applying them to

new contexts. Ready-to-use datasets should facilitate the evaluation. Still, the usefulness of pose

estimation-based physical movement application in providing feedback is unclear. It is difficult to

relate the results of automated feedback to traditional methods due to the lack of description. We

suggest further study about feedback prioritization and erroneous feedback, which could possibly

facilitate the adoption of pose-estimation-based physical movement applications.
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