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Abstract: Pose estimation has various applications in analyzing human movement and behavior,
including providing feedback to users about their movements so they could adjust and improve
their movement skills. To investigate the current research status and possible gaps, we searched
Scopus and Web of Science for articles that (1) human ‘body’ pose estimation is used and (2) user
movement is assessed and communicated. We used either a bottom-up or top-down approach to
analyze 20 articles for methods used to estimate human pose, assess movement, provide feedback to
users, as well as methods to evaluate them. Our review found that pose estimation systems typically
used CNNs while movement assessment methods varied from mathematical formulas or models,
rule-based approaches, to machine learning. Feedback was primarily presented visually in verbal
forms and nonverbal forms. The experiments to evaluate each part ranged from the use of public
datasets to human participants. We found that while there was an improvement, the majority of
pose estimation challenges remain. The effectiveness and factors for choosing movement assessment
methods for a new context are still unclear. In the end, we suggest that studies about feedback
prioritization and erroneous feedback are needed.

Keywords: pose estimation; movement assessment; augmented feedback; physical movement;
review

1. Introduction

Human pose estimation is the process of determining the positions and orientations of specific
human body parts, such as the head, shoulders, arms, and legs. Pose estimation has a wide range of
applications in fields that involve the analysis and understanding of human movement and behavior.
For example, in human-computer interaction, the estimation of hand pose could enable gesture-based
natural interaction [1]. In healthcare, pose estimation could help monitor and analyze the movements
and posture of patients in rehabilitation or therapy settings (e.g., [2,3]). While doing a physical
movement, such as rehabilitation or sports training, pose estimation could be used for various purposes
[4-7], and one of them is to provide feedback about the movement to a user.

Feedback is an important aspect of physical movement learning and training, as it allows
individuals to assess their performance and adjust to improve their movement skills. Feedback
could be task-intrinsic, from the sensory system of a performer, or augmented, from an external source
to a performer. Traditionally, a coach or instructor provides augmented feedback as verbal cues or
corrections during a training session. For example, a yoga instructor may tell a learner who does an
inverted U-shape downward dog pose to do a V-shape instead. With automated pose estimation, a
computer system could assess user movement and provide augmented feedback. Da Gama et al. [8], for
example, reviewed 31 articles that used Kinect to assess and provide feedback on motor rehabilitation.
The review suggested development possibilities and further studies of using Kinect to rehabilitate at
home.

While there is a large body of knowledge on using Kinect or other sensors for pose estimation
and physical movement applications, recent advances in pose estimation using a web camera open
new opportunities in this field. Several physical movement applications using deep learning-based
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human pose estimation have been proposed and reviewed [5-7]. Yet, none of them focus on how it
is used for assessing a movement and providing feedback to a user, which is an important aspect of
physical movement applications and an indication of how pose estimation is adopted in practice.

This paper presents a review of recent articles that use deep learning-based human pose estimation
to assess user movement and provide feedback on the user’s physical movement. We divided the
physical movement applications into three parts or modules: (1) pose estimation that detects keypoints
of a human body; (2) movement assessment that uses keypoints or the motion of keypoints to evaluate
quality or value of movement; and (3) augmented feedback presentation that communicates the results of
other modules to users.

The goal of our paper is threefold:

. to investigate methods used for pose estimation, movement assessment, and augmented feedback
presentation;

*  toinvestigate how those methods were experimented or evaluated;

*  to discuss the current research status of each part, possible gaps, and future research directions.

We searched for articles published between January 2017 to July 2022 in Scopus and Web of
Science, then we analyzed 20 articles that fitted our inclusion criteria.

We organize this article as follows: Section 2 gives an overview of the current topic followed by
Section 3 that presents the review methodology. Section 4 and 5 presents the results and discussions.
We conclude this article in Section 6.

2. Background and Related Work

This section clarifies terms used in this paper and summarizes related articles on pose estimation
for physical movement applications, smart technology for movement assessment, and augmented
feedback and their effectiveness.

2.1. Pose estimation for physical movement applications

In this paper, we use the term pose estimation for a process for determining the position of key
points of a person’s body from a given image or video. The methods for pose estimation can be
classified into two-dimensional (2D) [9] and three-dimensional (3D) [10,11], and could be further
classified based on the number of people in the image (single-person or multi-person) or approaches
(e.g., top-down or bottom-up) [12].

Pose estimation has a wide range of applications. For physical movement learning or training,
a lot of works have been proposed, and as a result, there exist a number of articles that review
them. For instance, Difini et al. [5] systematically reviewed the usage of human pose estimation
for training assistance. They identified 8 articles and investigated the challenges, the technology
used, the application context, and the accuracy of human pose estimation. Stenum et al. [6]
reviewed the applications of pose estimation in three domains: motor and non-motor development;
human performance optimization, injury prevention, and safety; and clinical motor assessment.
Their identified application limitations included occlusions, limited training data, capture errors,
positional errors, and limitations of recording devices. Their identified application limitations included
user-friendliness (i.e., set-up time, delayed results, and programming and training requirements),
outcome measure challenges, limited hardware infrastructure, technology challenges, and lack of
validation and feasibility data. Badiola-Bengoa and Mendez-Zorrilla [7] reviewed 20 articles on pose
estimation in sports and physical exercise. They discussed the available data, methods, performance,
opportunities, and challenges. Niu et al. [13] surveyed articles that used inertial measurement units
(IMU) and computer vision for human pose estimation in rehabilitation applications. They summarized
the research status and challenges as well as suggested that the two methods can be combined to get
better outcomes.
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These reviews are useful for identifying existing methods, challenges, and future directions of
using pose estimation in physical movement applications. Still, they had not reviewed how those
applications assessed movement and provided feedback to users, which is our focus in this paper.

2.2. Smart technology for movement assessment

We use the term movement assessment as a way to evaluate or estimate the quality of movement to
provide feedback to a user. According to this definition, we consider works on, for example, action
recognition or movement modeling, if a user could use the result to assess their movement, such as
telling whether it is correct or not. The use of Artificial Intelligence to analyze user movement and
provide feedback to improve user performance, quality of life, and well-being has been a subject
of research for more than a decade. Several reviews have been published to present the level of
knowledge on the topic.

Caramiaux et al. [14] conducted a short review of machine learning approaches for motor
learning. They focused on motor variability which requires the algorithms to differentiate between new
movements and variations from known ones. They identified three types of adaptation: parameter
adaptation in probabilistic models, transfer and meta-learning in deep neural networks, and planning
adaptation by reinforcement learning. They also discussed challenges for applying the models,
including variations of an already-trained skill, an adaptation that involves re-training procedures,
and continuous evolution of motor variation patterns.

Rajsp and Fister [15] identified 109 articles related to intelligent data analysis for sports training.
They focused on the competitive activity (e.g., no leisure training) in four training stages: planning,
realization, control, and evaluation. They discussed the challenges of gathering data sets, working
with coaches and players, and applying knowledge to practical situations.

Géamez Diaz et al. [16] focused on digital twin coaching, which collects user data and provides
personalized feedback. They categorized the works into sports, well-being, and rehabilitation domain.
The discussed algorithms, devices, performance, and usability feedback of users. They discussed the
challenges in evaluating the user’s feedback and user interface.

As these reviews did not particularly focus on pose estimation, they mostly analyzed articles that
used other techniques, such as sensors, and only some or a few articles that used pose estimation.
Tsiouris et al. [17], for instance, reviewed 41 articles on virtual coaching for users with morbidity, but
only one article monitored 3D pose. In this paper, we focus on works that use pose estimation only,
as we deem it a promising technology for its capability to work on a normal laptop or mobile phone
without extra equipment needed.

2.3. Augmented feedback and their effectiveness

Augmented feedback refers to feedback from an external source to a performer. While works
on smart technology for movement assessment discuss feedback, a large body of knowledge about
augmented feedback comes from various fields within sport science. Several ways to provide feedback,
such as knowledge of results and knowledge of performance, have been discussed and studied their
effectiveness in various settings. Lauber and Keller [18], for example, reviewed studies that have
applied augmented feedback in exercise and prevention settings, focusing on the positive influence of
augmented feedback on motor performance. They discussed the limitations of studies, which caused
difficulties for practitioners to determine the best way to provide augmented feedback.

Recent reviews of works suggested more pieces of evidence for the effectiveness of different
augmented feedback methods. Zhou et al. [19], for example, investigated the data supporting the
value of feedback in physical education. Based on 23 studies, the effectiveness of feedback over
no-feedback had strong evidence, the effectiveness of visual feedback over verbal feedback had
limited evidence, and the effectiveness of information feedback compared with praise or corrective
feedback was inconsistent. Meanwhile, Modinger et al. [20] systematically reviewed the effectiveness
of video-based visual feedback in physical education in schools. They found 11 articles in total and
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suggested that visual feedback was more effective than solely verbal feedback. Still, they found its
practical usage required considerations of specific conditions.

The reviewed articles range from the usage of video recording with human instructors to the usage
of smart technology to provide augmented feedback. In this paper, we investigate and discuss how
pose estimation applications implemented or extended existing knowledge of augmented feedback.

3. Methodology

We adopt PRISMA guidelines [21], an evidence-based minimum set of items for reporting in
systematic reviews and meta-analyses.

We searched Scopus and Web of Science databases on 27 July 2022, using the following query:
(“pose estimation" OR “pose tracking") AND (“exercise” OR “sport" OR “rehabilitation” OR “physical
education” OR “motor" OR “movement” OR “athlet*") AND (“assistance” OR “correction” OR
“guidance" OR “feedback” OR “learning"” OR “coach" OR evaluat* OR assess* OR performan*). The
search was in title, abstract, and keywords (i.e., “topic" in Web of Science). We limited the years to
between 2017 - 2022 and the language to English only. For Scopus, we also exclude articles with the
document type “Review".

We used CADIMA [22] as a tool for data collection and selection. The inclusion criteria were: (1)
human ‘body’ pose estimation is used; (2) user movement is assessed and communicated. Articles that
simply classify movement or count correct repetitions without giving feedback to users were excluded.
The feedback must be shown, explained, and/or discussed (e.g., articles that simply mentioned giving
feedback without screenshots or other details are excluded). We also excluded review articles from the
analysis.

The first author performed article selection and initial analysis. We first identified methods for
pose estimation, methods for assessing movement, and methods for presenting augmented feedback.
Once the methods were noted, we categorized the pose estimation and movement assessment using a
bottom-up approach while we largely adopt classifications of augmented feedback from Lauber and
Keller [18] and Magill and Anderson [23]. As we focus on the methods, not the result, we did not
assess the risk of bias or the certainty (or confidence) of experiments that were conducted to evaluate
proposed methods. Instead, we reported how experiments were conducted and what data was used.
Both authors discussed the results and wrote this paper.

4. Result

Figure 1 presents the article selection process. We found 104 articles from the search (81 from
Scopus and 23 from Web of Science). After removing 18 duplicated records, we screened the title
and abstract based on the criteria and excluded 34 articles that did not meet the criteria. In full-text
screening, 6 articles were excluded because the full-text was not accessible. 7 articles (e.g., [3]) were
excluded as they failed the first criterion and 25 articles (e.g., [24]) were excluded as they failed
the second criterion. In the end, we found 20 articles as listed in Table 1. Human pose estimation,
movement assessment, and augmented feedback presentation of each article were analyzed and are
presented in the next subsections.

Table 1. List of 20 articles reviewed in this paper. The articles are listed with the context of use and
grouped by publication year.

Year Articles Count
2018 Tennis [25] 1

2019 Dance [26], Ski [27], Tai Chi [28], Exercise [29], Rehabilitation [30] 5

2020 Rehabilitation [2] 1

2021 Ballet [31], Yoga [32-34], Tai Chi [35], Kickboxing [36], Baseball [37], Exercise [38—41] 11

2022 Baseball [42], Exercise [43] 2
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104 records identified 0 additional records identified through
through database searching other sources

l l

86 records after duplicate

removal

l

86 records screened at

34 records excluded

title/abstract level —>
52 full-text articles assessed 32 full-text articles
—

for eligibility excluded, with reasons

l

20 full-text articles included

Figure 1. Paper selection flow diagram.
4.1. Human Pose Estimation

Human pose estimation module infers landmarks or keypoints of human figures, such as elbow
locations, from an input. Human pose estimation could be broadly classified into 2D (X and Y
coordinates) and 3D (X, Y, and Z coordinates). We discuss the techniques and studies conducted to
evaluate those techniques.

4.1.1. Libraries or techniques used for pose estimation

We found the usage of OpenPose, PoseNet, Convolutional Neural Network (CNN), and other
techniques for human pose estimation, as summarized in Table 2.

OpenPose is a real-time multi-person pose estimation library based on Cao et al. [44]. The library'
used multi-stage CNN to detect 135 keypoints and reconstruct either 2D pose (e.g., [34,37,41-43]) and

1 https://github.com/CMU-Perceptual-Computing-Lab /openpose
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3D pose (e.g., [2,31]). Though Nagarkoti et al. [29] and Kurose et al. [25] did not state using OpenPose
directly, they cited Cao et al. [45], which OpenPose is based on.

Most articles used the library as it is while some extended the library for their purposes. Jan
et al. [35] employed Lifting from the Deep [46] to to translate a 2D pose into a 3D pose. Similarly, [26]
obtained 2D poses from multiple cameras, then implemented the binocular stereo matching principle
to obtain a 3D pose. Yang et al. [38] used data augmentation, randomly cropped and rotated images, to
address "abnormal human" situations and considered context information to address the uncertainty
in the case of occlusion.

PoseNet is an open-sourced library [47] that uses a deep learning TensorFlow model to detect
17 2D-keypoints of human. The library supports multiple models. The lightest model could be run
in realtime on modern smartphones but with lower accuracy. Articles that used PoseNet include
[32,36,39].

Other CNN is used in [27,28,33,40]. Jeon et al. [40] used use Mobilenetv2 [48] to optimize an HPE
model [49], which added a few deconvolutional layers over the last convolution stage in the ResNet
[50]. They implemented Online Pose Distillation to minimize performance drop. Wang et al. [27]
proposed a structural-aware convolution module, which concatenated spatial and temporal relation
modules to go through a convolution layer to reduce dimension. Shi and Jiang [33] proposed a
framework containing two branches: one used a confidential map to estimate the positions of bone
joint points; another used affinity domain to predict the positions and directions of the limbs. They
iterated the above two branches to construct a human skeleton based on the confidence set. Kamel
et al. [28] implemented CNN with four convolutional layers, which received input from an RGB-D
camera and generated a 3D skeleton model.

Other techniques, such as Kinect and other deep learning models, were experimented by Gu
etal. [30].

Table 2. Methods for pose estimation. The asterisk (*) indicates that the method is further modified or

extended.
Technique 2D Examples 3D Examples
OpenPose [42], [43], [41], [34], [37], [29], [25], [31], [2], [35]%, [26]*
[38]*
PoseNet [36], [39], [32] NA
Other CNN [40], [27], [33] [28]
Others [30] [30]

4.1.2. Experiments

Experiments performed on the pose estimation module include accuracy and/or performance
such as speed or frame rate. The accuracy is generally measured by comparing the positions of
landmarks from the pose estimation module to some ground truth. Kamel et al. [28], for example,
compared their pose estimation results with the results they gathered from Kinect. Similarly,
Zhang et al. [26] evaluated dance movement reconstruction against previously measured actual
3D coordinates. On the other hand, some articles used publicly available datasets, including COCO
[38,40], MPII [38], Penn Action, and JHMDB [27].

A few works experimented with different models. Gu et al. [30] compared 2D pose and 3D pose
generated from four deep learning models [46,48,49,51] and Kinect. They selected Kinect for their
system as it provided the most accurate result. Huang et al. [34] evaluated the accuracy and frame rate
of different models, but there is no detail about the data used for the evaluation.
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4.2. Movement Assessment

This module replaces the need for human experts, such as instructors or trainers, to oversee user
movement. In order to analyze the quality of movement and give users feedback, the system may
process keypoints or the motion of keypoints and/or measure the amount or degree of user attributes,
then assess how well a user performs. We discuss the techniques for each part and studies conducted
to evaluate those techniques.

Table 3. Movement assessment

Technique

Examples

Pre-processing

Temporal alignment

Spatial alignment and
normalization

Noise handling and smoothing
Selection

Temporal segmentation

Dynamic time warping [31], [35], [41], [30], [29]

Align using selected origin point and normalize [30], [28];
Normalization only [33]

Filter [43], [31], [40]; Fill missing values [33]; Quarter-shift [40]
Spatial [35], [43]; Temporal [42]

Peak detection [43]

Measurement
Spatial measurement

Temporal measurement

Angle of body parts [39], [31], [35], [34], [37], [27], [28], [38],
[30],
Direction/displacement [28], [42], [26]; Range of

motion/rotated angle [39], [26]; Number of repetition [43]

Assessment methods
Mathematical formula or model  Difference of a measurement [29], [26], [26]; Angular
similarity / distance [42], [40], [34]; Euclidean distance [34],
[33]; Others [35], [40], [38]

Grading [26]; Correct posture checking [39], [36], [39]
Classification using SVM [25], [27], [2]; using Neural Network
based on LSTM [2]; using Artificial Neural Network (ANN)
[36], [32]; using time series classification [43]; Similarity score
of embedding pairs from multi-stage CNN [41,52]

Rule-based method
Machine learning

4.2.1. Pre-processing

Pre-processing involves translating keypoints or the motion of keypoints into a more desirable
one, such as findings correct keypoints by removing wrong keypoints. Pre-processing techniques
include temporal alignment, spatial alignment and normalization, noise handling and smoothing,
selection, and temporal segmentation.

Temporal alignment aligns temporal sequences to cope with temporal issues. For instance, a
delay typically occurs when a user is trying to imitate the model’s movement. The speed of movement
between a user and a model could differ. Temporal alignment attempts to minimize such temporal
differences so the movement assessment can focus on comparing, for example, the posture. All papers
with temporal alignment [29-31,35,41] employ dynamic time warping (DTW). The technique has been
used to find patterns in time series [53] in various domains. The technique optimizes a distance metric
and nonlinearly maps a frame of the model to a frame of the user, as illustrated in Figure 2. The
distance metric can be customized. For instance, Nagarkoti et al. [29] used angles between the pair of
limbs as the distance metric.
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Figure 2. Dynamic time warping by Programminglinguist [CC BY-SA 4.0], via Wikimedia Commons.
Two sequences (the solid lines) are matched (the dash lines) with certain rules.

Spatial alignment and normalization processes and geometrically matches points within a frame
to address spatial difficulties, such as differences in physique or camera distance. The alignment and /or
normalization are particularly essential when user performance is inferred from the position of human
keypoints. Gu et al. [30] and Shi and Jiang [33] used a pelvis joint or a middle point to be the origin
and normalized coordinates before calculating the Euclidean distance between a model and a user. On
the other hand, Kamel et al. [28] only normalized coordinates to neutralize the difference in body size.
They used rotations and direction of motions to evaluate the user performance, thus the alignment
was not necessary.

Noise handling and smoothing processes data to minimize the effect of imperfections in pose
estimation. Singh et al. [43] used SavGol filter [54] to minimize fluctuations of coordinates before
detecting repetitions. [31] applied a median filter to angle sequences to prevent poor results due
to noisy data. Jeon et al. [40] applied heatmap-smoothing, quarter-shift, and the one-euro filter to
minimize fluctuation. Shi and Jiang [33] predicted undetected joint coordinates based on the standard
movement of the limbs.

Selection chooses a subset of relevant features before processing, which could be either temporal
or spatial features. Jan et al. [35] used only elbow, knee, and foot information for evaluating Tai-Chi
Chuan practice. In contrast, [43] removed ankle, knee, and other points that have low variability when
evaluating CrossFit workouts. Akiyama and Umezu [42] excluded redundant frames before and after
a baseball pitching motion by selecting only 30 frames after the system detected a specific body part at
an angle.

Temporal segmentation splits a sequence into sub-sequences. Singh et al. [43], for example, used
peak detection methods to segment workout exercises into repetitions.

4.2.2. Measurement

Measurement refers to the quantification of attributes of one person. For instance, a system could
identify the value of the angle between body parts or quantify the speed of a movement. Measurement
could be briefly categorized into spatial and temporal ones.

Spatial measurement. The measurement involves the attributes of one person within one frame.
Yang et al. [38], for example, calculated the horizontal distance between the hip and heel and the score
of thigh length of a user to infer the proper form of a squat. The angle of body parts seems to be
the most common spatial measurement [27,28,30,31,34,35,37-39]. Ranasinghe et al. [39], for example,
calculated hip-shoulder-elbow angle to check for proper elbow lock during an arm curl exercise.

Temporal measurement. The measurement involves the attributes of one person across frames.
A straightforward measurement is a difference in keypoint position over time. The direction of motion
was used by Kamel et al. [28] in practicing Tai Chi. Similarly, Akiyama and Umezu [42] calculated
displacement direction and distance of the body joint to provide suggestions for improving a baseball
pitching form. Ranasinghe et al. [39] used the range of motion, i.e. the angular distance of the
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movement around a joint, to evaluate an arm curl exercise. Zhang et al. [26] incorporated the distance
of the joint point between frames and the corresponding rotated angle as a curvature of the joint point
combination movement for analyzing dance actions. Akiyama and Umezu [42] visualized the amount
of joint movement between two successive frames as the indication of speed. They also mentioned the
acceleration of joints and timing of the motion, but the detail of how those attributes were measured is
unclear. A number of repetitions counted from a number of segments such as [43] can also be seen as a
temporal measurement. However, a number of correct and/or incorrect repetitions would typically
involve some assessment methods.

4.2.3. Assessment methods

Assessment methods assess how well users perform. The system could implement multiple
methods or conditionally select methods, for example, based on the type of movement as seen in [34].
Note that some methods could be explained in multiple ways. We categorized the methods as the
authors expressed them.

Mathematical formula or model evaluates user performance mathematically. It could be as
simple as the summation or average of the absolute difference of measurement (e.g., angle [26,29]
or displacement [26]). Variations of formulas have been adopted to find angular similarity /distance
[34,40,42] as well as Euclidean distance [33,34]. Other mathematical formulas or models found include
Gaussian function-based similarity metric [35] and the dot product between the joint dynamic vectors
[40].

The mathematical formula or model typically results in a numerical value, which could be further
classified into classes (e.g., good and bad) using a formula or other assessment methods. Yang et al.
[38], for example, expressed the conditions of good angle and hip-heel distance in mathematical form.

Rule-based method evaluates or classifies user performance based on conditions. Zhang et al.
[26], for example, graded user performance (excellent, good, pass, fail) based on the similarity score.

The rule-based method could also lead to a numerical result. Ranasinghe et al. [39] detected a
number of correct arm curl repetitions when shoulder-elbow-wrist angles are less than 90 degrees,
then larger than 170 degrees repeatedly. Wessa et al. [36] and [39] tracked the time taken to perform a
specific action by identifying the starting and ending point according to conditions of user posture.

Machine learning leverages data to evaluate user performance. It is typically used for classifying
user performance into a predefined class. The technique used ranges from well-known supervised
learning, such as Support Vector Machines (SVM) or K-nearest neighbors, to deep learning. Kurose
et al. [25] first created feature vectors using joint position coordinates and classified the vectors with
Gaussian Mixture Model (GMM). They then used SVM to predict a tennis shot result based on the
posture class, movement amount, and play area. Wang et al. [27] used SVM with radial basis kernel
function (RBF) to classify good and bad poses of skiing. Chalvatzaki et al. [2] used gait parameters, such
as stride length or gait speed, as a feature vector for an SVM classifier with classes from Performance
Oriented Mobility Assessment [55]. They also used Neural Network based on LSTM units for human
activity recognition and gait stability assessment. Wessa et al. [36] and Tarek et al. [32] used the
Artificial Neural Network (ANN) of 3 layers to classify keypoints into correct and incorrect poses
of kickboxing and yoga. Singh et al. [43] implemented and compared four time series classification
methods, including 1-nearest neighbors dynamic time warping (INN-DTW), ROCKET [56], Fully
Convolutional Network (FCN), and Residual Network (ResNet).

In addition to classifying a pose into a class, machine learning could be used for calculating a
numerical value. Zhou et al. [41], Park et al. [52] proposed a body part embedding model for motion
similarity. They decomposed joint points into 5 body parts, then encoded motion classes, skeletons,
and camera views of each body part as an embedding using multi-stage CNN. The similarity score
was then calculated from the average cosine similarity between the embedding pairs.
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4.2.4. Experiments

Studies related to movement assessment include its accuracy and/or performance. We found
various ways to test how the proposed automated assessment conforms to the correct value or standard.
One common way was to ask humans to put a label or value, such as a score or number of repetitions,
on movement gather from themselves or other participants, then compared human annotation with
the system, as seen in [32-34,40]. For user movement assessment that employed machine learning,
labeled data could be also used for training. Zhou et al. [41] and Wang et al. [27] asked participants to
perform the correct and incorrect movements, then split the data to train and test their classification.
The ground truth could come from seen results, such as the hit distance of a baseball swing [37] or a
tennis shot result [25], and the authors discussed the correlation between their result and the actual
one [25,37]. Some articles used less formal methods for the study. Li and Pulivarthy [31] and Kamel
et al. [28] compared the score of experienced and novice users, then inferred the effectiveness of their
assessment module as the experienced users’ scores were higher than the novice scores. Yang et al.
[38] simply intentionally performed incorrect movement and presented the output. Lastly, we found
only one article that used a publicly available dataset. Zhou et al. [41] used NTU RGB+D similarity
annotations dataset to validate their results.

For the performance, Singh et al. [43] reported training time. [33] mentioned that their system
satisfied realtime requirements, but no actual time was given.

4.3. Augmented Feedback Presentation

Augmented feedback (or extrinsic feedback or external feedback) refers to information about
performance from others. In our scope, it is the feedback provided by the system to a user. We
discuss the type of information, format, and timing and frequency of the augmented feedback. Table 4
provides examples of works that implemented each category of feedback. Note that some categories
are excluded from the table due to the lack of examples, and one work could provide multiple pieces
of feedback.

Table 4. Example of augmented feedback, classified by type of information and format. We note
the timing Concurrent and Terminal as superscripts. We also note how the model and/or user are
visualized: Model only, User only, Juxtaposition, Superposition, and Relationship encoding. The
asterisk (*) indicates different media types are put, for example, in juxtaposition. NA means we could
not find any example from the reviewed papers.

Knowledge of Performance ‘

Category Knowledge of Results }

General { Error ‘
Visual-verbal
- Number [40]€, [30]€, [35], NA NA
[37)7, (28], [41], [2]
- Word(s) [42]T, [37]T NA NA
- Phase NA [32]C, [34]€, [31]7, [36], [38]

Visual-nonverbal

- Video NA U: [40]S, [37]7, [26], [2]; M: [27]
U&R: [32], [28]T;
J: [39]%%, [36]%;

J&R: [35]T%;
S: [29]T*
- Image NA S&R: [42]T U: [43]T;
J: [39]<%, [35]T*, [36]*
- Animation ~ NA U: [2], [26]; J&R: [41]
J: [30];
S: [29]T*

- Other [32]€, [40]€, [25]T NA NA
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4.3.1. Type of information

Type of information involves what content of the feedback is communicated to a user. Literature
classifies augmented feedback into two main types: knowledge of results and knowledge of
performance.

Knowledge of results (KR) gives information about the outcome of the user’s movement.
Common feedback of this type includes an indication whether a user does a movement correctly
[37] or a score relating to movement quality [2,28,35,37,40], which could be a result from assessing
overall performance or individual aspects. Li et al. [37], for example, color-coded a list of body parts
according to the goodness of the posture of each part. A number of repetitions, as seen in [30,40], could
be another feedback that informs the successful movement.

Some knowledge of results is tied to the context of movement. Akiyama and Umezu [42], for
example, compared the user’s baseball swing timing with the model and displayed whether the user
was faster, slower, or had similar timing. Kurose et al. [25] listed the characteristics of tennis shots for
each prediction result (a score, a losing point, or a rally continuation).

Knowledge of performance (KP) gives information about the characteristics of the user’s
movement that lead to the result. Tarek et al. [32] informed whether and why the pose is correct or
incorrect (e.g., a foot above kneecap for Yoga Tree Pose) by highlighting the related body parts over
user video recordings. Video replay or live video of a user is a common approach to demonstrate
user performance, and systems usually annotate them with information from pose estimation or
movement assessment modules. For example, a system could show a user video, overlaid with its
detected skeleton [2,37,40]. A system could highlight parts with low scores [41] or color-coded body
parts according to similarity score [35], then overlaid on a user video. Other types of knowledge of
performance include movement kinetics and kinematics, such as the amount of movement over time
[42]

The information from an assessment module, as the annotation or other forms, could highlight
correct aspects or error aspects of the performance. Correct aspects informs that a user is on track and
encourages them to continue. Error aspects informs a user about their mistakes (descriptive) and/or
directs how to correct the mistakes (prescriptive). Akiyama and Umezu [42] highlighted body parts
that received minimum similarity score. They provided advice on form improvements by drawing
arrows indicating the motion direction of the model on the user’s image. Some systems, such as
[27,31,33,36,38,39], suggested the correction or the model movement when the system detected the
wrong movement.

In addition to displaying information from an assessment module, the system could have a
dedicated module for feedback. Ranasinghe et al. [39] used a reinforcement learning model to provide
correct and incorrect instruction images. [31] surveyed correction feedback from experts, then used a
decision tree classifier with Gradient Boosting to classify the feedback and present it to a user.

4.3.2. Format

The format involves the ways the feedback is communicated to a user. We broadly classify format
according to signs and channels [57] into audio-verbal (word heard), visual-verbal (word read), and
visual-nonverbal. There could be a system that provides audio-nonverbal, such as music or sound
effect, but we have not found such a system in this review.

Audio-verbal is the use of words to communicate feedback through speech. This approach is the
closest to traditional motor learning, where a coach or trainer verbally gives a learner feedback. To
translate an output to speech, Chalvatzaki et al. [2] used a TTS (text-to-speech) system to give verbal
feedback to the user.

Visual-verbal is the use of words to communicate the feedback visually (e.g., on-screen).
Quantitative information is generally presented as Number, as found in [28,35,37,40,41]. For qualitative
information, a system could display a category as simple words, e.g., "faster" or "slower" [42], or "front
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arm angle" or "back arm angle" [37]). Lastly, a system could output phases or sentences, as seen in
[31,34,36,38].

Visual-nonverbal does not use words to communicate the feedback. We found the use of videos
(e.g., [2,34,37,40]), images (e.g., [26,35,36,39,43]), 2D animations of skeleton (e.g., [26,30]), and other graphic
(e.g., correct/incorrect symbols [32] or movement paths and colormap [25]). Some systems display
multiple types of media. Jan et al. [35], for example, displayed a user video beside a 3D model of a
trainer.

The system could display information about a user only, a model only, or both. Displaying user
only could be used to provide KP feedback in general as well as highlight incorrect aspects of user
movement. Systems, such as [2,37,40], visualized detect skeleton on a user video. Singh et al. [43]
displayed frames from the user camera feed that was identified as incorrect. Displaying model only,
on the other hand, is typically used to prescribe the correct movement. Wang et al. [27] offered advice
to a user by sampling a related video clip with correct poses.

In case both model and user information are displayed, we could further consider visual
comparison [58], as a user typically needs to identify differences or similarities of their movement in
relation to a model in order to see errors and/or improve their movement. Juxtaposition places a user
and a model in separated, nearby spaces. Juxtaposition could be side-by-side, as seen in [30,34,35,39],
or picture-in-picture, as seen in [36]. Superposition places a user and a model in the same space.
Akiyama and Umezu [42], for example, superimposed the user image on the model image. Nagarkoti
et al. [29] displayed the user’s video with their skeleton and overlaid the skeleton of a model on them
when the error is above a threshold. Lastly, relationship encoding displays relationships between a user
and a model, such as a score or classification results, directly. The relationship could appear as an
annotation on the user’s video, as seen in [32,35,41].

We also found the usage of the temporal component of a video to communicate the feedback that
a user could perceive visually. Kamel et al. [28] provided motion replay, which would be suspended
when the similarity score of a frame was lower than 50%, and the joints that have lower-than-average
scores were highlighted with yellow.

A visual comparison could happen with a visual-verbal format. For example, a similarity score
could be considered as relationship encoding since it represents a relationship between a model and a
user.

4.3.3. Timing and frequency

Timing and frequency involve when and how often the feedback is communicated to a user.

Timing could be generally classified into concurrent and terminal. Concurrent feedback is the
feedback given while a person is performing a skill or movement, as seen in [30,32,34,39]. Terminal
feedback is the feedback given after a person has finished performing a skill or movement, as seen in
[25,28,29,31,35,37,42,43].

Frequency of feedback could be on every practice trial or less. In case of reduced frequency, a
system could provide feedback only when user performance meets a certain value (performance-based
bandwidths). Nagarkoti et al. [29], for example, projected a model movement on a user only when their
error is above a threshold. The frequency could be self-selected, or the feedback could be summarized or
averaged after a number of practice trials. However, we have yet to find examples in this review.

4.3.4. Experiments

Ranasinghe et al. [39], which provided feedback based on the reinforcement learning model,
reported the relevance and value of feedback on errors. However, most articles evaluated augmented
feedback, specifically or as a whole system, through users. Straightforward ways included asking
participants to use a system, then conducting interviews or using questionnaires to investigate system
usability, usability issues, user preference, and/or user satisfaction [27,28,30,35]. Alternatively, user
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performance or improvement when using a system could be used to evaluate the overall system. A
study could be short-term (within a day, e.g., [28,36,39,42]) or long-term (e.g., [28,30,36]).

5. Discussion

This section summarizes the findings of each module that we observed while reviewing the
articles. We also suggest some future research directions for pose estimation-based physical movement
applications.

5.1. Pose Estimation

Open-source libraries that support pose estimation in real-time plays an important role for
research on pose estimation-based physical movement applications, as supported by the number of
works that used OpenPose and PoseNet (see Table 2). The recent release of pose estimation libraries,
such as AlphaPose [59], Detectron2 [60], and MediaPipe [61], could bring more researchers to work in
this area.

Pose estimation libraries for a specific purpose may be needed, even though general-purpose
pose estimation libraries are useful. Wang et al. [27], for example, proposed a pose estimation method
that incorporates spatial and temporal relation of human keypoints to deal with the fast movement
of ski technique and skiing skis. They trained the model, experimented with a dataset, and reported
errors in pose estimation due to crossed snowboards that mixed with the background. As a physical
movement application usually focused on one or a few specific types of movement, a pose estimation
library that could be trained with a custom dataset could be useful for research in this area and possibly
yield more accurate results.

Many challenges of pose estimation remains. There was a proposal to address well-known
limitations of unusual poses and occlusion Yang et al. [38]. However, the challenges identified by prior
works such as capture errors, positional errors, or limitations of recording devices Stenum et al. [6]
were rarely addressed or discussed in the articles. This lack of discussion about pose estimation issues
might be because they are not a focus of the works we reviewed. However, one possible reason is that
the pose estimation result was good enough in their experiments and settings.

Pose estimation may not have to be perfect to be useful in physical movement applications.
Though this point was not obvious from reviewed articles, the lack of discussion about pose estimation
issues and our experience with a pose estimation-based physical movement application [24] could
suggest so. We observed some inaccuracy of pose estimation results during the experiment, but
our participants did not notice it because they focused on other parts. Thus, in addition to continue
improving pose estimation accuracy, one future research is to study the effect of imperfect pose
estimation in physical movement applications on users.

5.2. Movement Assessment

There is limited evaluation and discussion to tell which technique is better or which factors
should be considered when applying a technique to a new context. For instance, differences in
physique, camera angle, or camera distance could result in high Euclidean distance even if a user
perfectly imitates a trainer. Though there could be articles outside our review that compare techniques,
such as Srikaewsiew et al. [62], none of them was compared with proposed movement assessment
methods. We thus encourage more experiments to evaluate and identify the limitations of movement
assessment methods.

The lack of ready-to-use datasets could be one factor that hinders the experiment. Only one
review article [41] used the public dataset, NTU RGB+D 120 Similarity Annotations, to evaluate their
movement assessment module. The dataset was annotated with motion similarity score via Amazon
Mechanical Turk [52]. In addition to the lack of movement quality data, the list of existing datasets
provided by Zhou et al. [41] also showed that almost all datasets were gathered using Kinect, which
may need some additional processing to be used with pose estimation-based applications. Similar to
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pose estimation that is generally evaluated using publicly available datasets, such as COCO [63] or
MPII [64], there is a need for datasets for evaluating movement assessment.

5.3. Augmented Feedback Presentation

Relating results of automated feedback to a traditional one is difficult due to the lack of
feedback description in a number of reviewed papers. We mainly adopt feedback classification
from literature in motor learning Magill and Anderson [23]. The classification is well-established and
includes research works where a human trainer gives feedback to a learner, which should allow us to
compare research within our scope with others. However, we found difficulty in classifying feedback.
For instance, Ranasinghe et al. [39] mentioned verbal encouragement phrases, but no detail about
the channel was given. Chalvatzaki et al. [2] gave verbal feedback, but it is unclear what feedback
information was given to users. We were unable to identify the timing of a number of works ([36],
[41], [38], [2], [27], [26], [33]). This lack of description limits the replication, comparison, as well as
contribution to general knowledge in motor learning. Thus, we encourage authors to always report
content, format, and timing of feedback in their literature.

Researchers could experiment with different ways to provide augmented feedback in the
design space. While it is not comprehensive, Table 4 can still give us an idea of trends and gaps
that can be experimented with. We could observe more usage of a visual channel in communicating
verbal feedback, compared to audio one. Different forms of visual objects, such as a number or a video,
seem to be suitable for different types of content. Still, one could try to come up with items in NA
cells or items excluded from the table. For instance, a number could be used to provide knowledge of
performance by annotating angles between body parts on a user video. A system could provide audio
feedback, correct aspects of knowledge of performance, kinetics, kinematics, and/or biofeedback.

Study about feedback prioritizing is still underexplored. In motor learning, selecting the skill
component for knowledge of performance is recommended [23]. For instance, a trainer could tell a
learner to correct arm movement first, then leg movement later. For automated feedback, one area that
we found interesting to explore is the usage of artificial intelligence to provide feedback according to
user needs, similar to [31,39]. Alternately, designing a user interface that allows a user to customize
provided feedback could take less time to implement and easier to test the effect of priority feedback
in an automated system.

Erroneous feedback should be considered and discussed, even though there is no apparent
discussion about the challenges of providing augmented feedback from the review. Erroneous feedback
is wrong feedback, which could hinder motor learning as a user would use the wrong feedback
and ignore their (correct) sensory feedback [65]. Though the accuracy of pose estimation improves
over years, it is not perfect and could lead to erroneous feedback. A system could, for example,
disable augmented feedback when the confidence value of pose estimation is below a threshold.
Finding a way to mitigate the erroneous feedback could be one essential future research direction for
pose-estimation-based physical movement applications to be widely adopted.

5.4. Limitations

Our work has two limitations. First, there exist articles that addressed specific module(s), which
may provide rich knowledge about the module, but were excluded from this review by our inclusion
criteria or other reasons. Our prior works, for instance, either provided feedback with no movement
assessment [24] or assess movement without providing feedback [62].

Second, as we discussed in the previous section, some articles provided very limited descriptions
of the user interface and feedback. We thus used provided images as a source of information. It is
possible that we could not study every aspect of the user interface. Also, it was sometimes unclear
whether an image depicted concepts or actual implementation. Because the description was quite
limited, we decided to consider those images as a way to communicate feedback to either users or
readers and included them in our analysis.
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6. Conclusion

The purpose of this study was to examine current methods for estimating human pose, assessing
movement, and providing feedback using deep learning techniques. The review analyzed 20 articles
on these topics. We found that systems used CNN (notably OpenPose) for pose estimation and
used either mathematical formula or model, rule-based method, or machine learning for assessing
movement. The feedback, including knowledge of result and knowledge of performance, was mostly
presented visually in verbal forms (i.e., number, word, and phase) and nonverbal form (i.e., video,
image, animation, and other graphics). Public datasets and human subjects were both used in the tests
to assess each module.

We discuss the remaining gaps and areas for future research. We suggest a need for
general-purpose pose estimation libraries as well as specialized ones. While there are still challenges
to be addressed in pose estimation, it may not be necessary for it to be perfect to be useful in
certain applications. For movement assessment, there is limited evaluation and discussion on which
techniques are best and what factors should be taken into consideration when applying them to
new contexts. Ready-to-use datasets should facilitate the evaluation. Still, the usefulness of pose
estimation-based physical movement application in providing feedback is unclear. It is difficult to
relate the results of automated feedback to traditional methods due to the lack of description. We
suggest further study about feedback prioritization and erroneous feedback, which could possibly
facilitate the adoption of pose-estimation-based physical movement applications.
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