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Abstract: The 11 system in iron-based superconducting family has become one of the most
extensively studied materials in the research of high-temperature superconductivity due to their
simple structure and rich physical properties. However, the research on 11 iron-based
superconductors faces numerous obstacles, mainly stemming from the challenges associated with
producing high-quality single crystals. Since the discovery of FeSe superconductivity in 2008,
researchers have made significant progress in crystal growth, overcoming the hurdles that initially
impeded their studies. Consequently, they have successfully established the complete phase
diagrams of 11 iron-based superconductors, including FeSei«Tex, FeSe1«S: and FeTeixSx. In this
paper, we aim to provide a comprehensive summary of the preparation methods employed for 11
iron-based single crystals over the past decade. Specifically, we will focus on hydrothermal,
chemical vapor transport (CVT), self-flux, and annealing methods. Additionally, we will discuss the
quality, size, and superconductivity properties exhibited by single crystals obtained through
different preparation methods. By exploring these aspects, we can gain a better understanding of
the advantages and limitations associated with each technique.

Keywords: single crystal; hydrothermal; CVT; self-flux; annealing; 11 iron-based superconductors;
superconductivity

1. Introduction

Compared with FeAs-based superconductors, the 11 iron-based superconductors have the
advantages of simplest crystal structure and non-toxicity. FeSe consists solely of edge-sharing
trtrahedral FeSes layers stacked along the c-axis, without charge storage layer [1-3]. A structural
transition from tetragonal to orthorhombic occurs at about Ts ~ 90 K accompanied by the nematic
phase [4-7]. Despite having a relatively low superconducting critical temperature (Tc) of
approximately 9 K, high tunability and nematicity without magnetic order have garnered significant
attention and research interest. Under high pressure, the T. of FeSe can be elevated to approximately
38 K, and a new magnetic order emerges within a specific pressure range once the nematic phase is
suppressed [8-11]. Chemical methods, such as intercalation [12,13], ionic liquid gating [14-16] and
potassium deposition [17,18], have been employed to raise T. to over 40 K. Remarkably, monolayer
FeSe films on doped SrTiOs substrates have exhibited superconductivity with Tec surpassing 65 K
[19,20].

The substitution of isovalent sulfur (S) in FeSe, equivalent to applying positive chemical
pressure, has proven to be an effective method for tuning superconductivity and nematic order. With
S doping, the nematic transition temperature Ts gradually decreases until it vanished at x ~ 0.17,
marking a nonmagnetic nematic quantum critical point (QCP) [21-24]. Nuclear magnetic resonance
(NMR) measurements indicate a strong suppression of antiferromagnetic (AFM) fluctuations with S
substitution, resulting in negligible AFM fluctuations near the QCP [23]. Within the nematic regions,
Te exhibits a small superconducting dome, reaching a maximum of 11 K at x ~ 0.11. Beyond the
nematic regions, superconductivity is gradually suppressed, reaching a minimum at x ~ 0.45, after
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which T. slowly increases until x = 1 [25]. Notably, unlike when external pressure is applied, no new
magnetic order emerges after the nematic phase [25-27].

Similarly, the substitution of isovalent tellurium (Te) in FeSe, equivalent to applying negative
chemical pressure, is an effective method for tuning the superconductivity and various ordered
states. In FeSe1«Tex single crystals phase diagram, Ts linearly decreases until it disappears at x = 0.5
with Te doping [28-30]. T. initially decreases to a minimum at x ~ 0.3 and then increases to a
maximum at x ~ 0.6; subsequently, Tcis gradually suppressed and antiferromagnetic (AFM) behavior
emerges when x > 0.9 [28,29,31-33]. FeTe undergoes a tetragonal-to-monoclinic structural transition
at around 70 K, exhibiting AFM behavior without superconductivity, reminiscent of the emergence
of superconductivity from AFM in the cuprate superconductors [34-38]. The unique phase diagram
of 11 iron-based superconductors, with its interplay of competing orders, nematic phase, magnetic
order and superconductivity, provides important insights for exploring the mechanism of high-
temperature superconductivity.

Unfortunately, preparing high-quality single crystals is one of the challenges in the study of the
11 iron-based superconducting system, particularly FeSei»Ter and FeSei«Sx. This difficulty is also
commonly encountered in the study of other iron-based superconducting families. On the one hand,
the low chemical stability of FeSei-:S5x and the issue of phase separation in FeSei-xTex (0 < x <0.5) make
it arduous to obtain single crystals or single phase samples using traditional solid-state reactions [39-
43]. On the other hand, even though the preparation of single crystals of FeSei«Tex (0.5 < x < 1) is
relatively straightforward using the self-flux method, the presence of excess Fe significantly affects
the investigation of their intrinsic properties, such as the localization of charge carriers [44—46], spin
glass phase [47] and incoherent electronic states [45,48]. It is difficult to prepare high-quality single
crystals of the 11 system using traditional solid-state reaction methods, and new methods are
gradually developed.

To synthesize high quality single crystals across the entire doping range, different methods need
to be employed. In this review, we provide an overview of the common synthesis methods for 11
iron-based system, focusing on the optimal method for different doping regions, along with a
relevant phase diagram of the entire region. Initially, we discuss the conventional methods of
obtaining FeSe single crystals, namely the flux method and chemical vapor transport (CVT). In
section 3, we describe the preparation of FeSei«Sxsingle crystals using CVT for range 0 < x <0.29 and
the hydrothermal method for the entire region. In section 4, we explain how high quality FeSei-+Tex
(0 < x <0.5) single crystals can be directly synthesized via CVT. For the Te-high doping region (0.5 <
x < 1), it becomes necessary to anneal the as-grown single crystals in Oz or Te vapor. Finally, we
conclude the review with a summary and outlook in section 5.

2. Single Crystal Growth and Superconductivity of FeSe
2.1. Flux Method for Growing FeSe Single Crystals

Maw-Kuen Wu’s group reported the observation of superconductivity with zero-resistance
transition temperature at 8 K in the FeSe polycrystalline bulk for the first time [1]. The crystal of FeSe
is composed of a stack of edge-sharing FeSes-tetrahedra layer by layer, as shown schematically in
Figure 1. FeSe single crystal with a size about 500 pm was firstly synthesized using the flux method
employing a NaCl/KCI mixed eutectic [49]. The preparation process can be divided into two stages.
Firstly, Fei2Se polycrystalline with nominal stoichiometry was prepared through a traditional solid-
state reaction using high purity Fe and Se powders as the raw materials. Then the obtained Fe12Se
polycrystal powder and NaCl/KCl mixed eutectic with mole ratio 1:1 were ground and sealed in an
evacuated quartz tube. The quartz tube was slowly heated to 850 °C and kept two hours for sufficient
solution of the raw materials and flux, Afterward, the temperature was gradually reduced at a rate
of 3 °C/h down to 600 °C, followed by furnace cooling. FeSe single crystals were separated from the
flux by dissolving the NaCl/KCl mixed eutectic in deionized water.

doi:10.20944/preprints202306.0392.v1
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Figure 1. Crystal structure of tetragonal FeSe [1].

Figure 2 illustrates the basic physical properties of the obtained single crystals. In Figure 2(a),
the optical image of FeSe reveals two different shapes present in all the grown single crystals:
rectangular and hexagonal, both with a size of approximately 500 um. The X-ray diffraction (XRD)
pattern in Figure 2(b) shows two sets of peaks corresponding to two distinct crystal structures,
tetragonal (with space groups P4/nmm) and hexagonal (with space groups P63/mmc). This indicates
the presence of non-superconducting impurities in the single crystals. The temperature dependence
of resistance and magnetic susceptibility is presented in Figure 2(c) and (d), respectively. The large
superconducting transition width (ATc) and the small superconducting volume fraction observed
suggest a low-quality superconducting tetragonal phase.
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Figure 2. (a) Optical image of FeSe with two different shapes, rectangular and hexagonal; (b) XRD
pattern from FeSe flake along c-axis, including two sets of peaks; (c) Temperature dependence of
resistance for FeSe single crystal in the ab plane, the inset is a magnified plot in the low temperature
region; (d) Temperature dependence of magnetic susceptibility for FeSe single crystal at 10 Oe, the
inset is a magnified plot in the low temperature region [49].

Subsequently, several research groups successfully synthesized FeSe single crystals using
similar methods [50-54]. While superconductivity has improved, the presence of impurities remains
a significant concern. Impurities such as hexagonal FeSe, FerSes and FesOs exist in all as-grown single
crystals, posing a major obstacle in understanding the intrinsic properties of FeSe. The strong
magnetism of these impurities, often results in a prominent ferromagnetic background in the
superconducting magnetization-field (M-H) loop [51]. FeSe single crystals with no impurity have
been synthesized using the LiCl/CsCl flux method where the ferromagnetic background in M-H loop
is nearly absent below T¢[55]. However, even with this method, the superconducting volume fraction
remains below 60 %, indicating the need for further improvements
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2.2. Chemical Vapor Transport (CVT) Method for Growing FeSe Single Crystals

Despite the successful growth of large-sized FeSe single crystals using the flux method, the
quality of the crystals and the presence of impurities hindered related research. The iodine vapor
transport method did not effectively improved the crystal quality [52]. However, a breakthrough was
achieved through the preparation of high-quality FeSe single crystals using the CVT method with
KCI/AICIs transport agent [5,56]. A distinct kink at approximately 90 K was observed in the
temperature dependence of resistance R(T) and confirmed to be a structural(nematic) transition from
tetragonal to orthorhombic phase [4,56—62]. The temperature dependence of resistance and magnetic
susceptibility confirmed the presence of a superconducting transition around 9.4 K. The
superconducting transition width of about 1.5 K and a nearly 100 % superconducting volume fraction
demonstrated good superconductivity [56].

The synthesis process is as follows: High-purity Fe and Se powders were sealed in an evacuated
quartz tube along with KCI and AICls powders. The quartz tube was horizontally placed in a tube
furnace with double-temperature zone. The hot part of the tube containing the raw materials was
heated to 390 °C while the cold part for single crystal growth was kept at 240 °C. After approximately
30 days of transport growth, a large number of single crystals with tetragonal morphology could be
observed in the cold part. Similarly to the flux method, FeSe single crystals need to be separated from
the flux by dissolving the KCI/AICl: mixed eutectic in deionized water. The schematic representation
of the typical CVT growth assembly is shown in Figure 3(a). The scanning electron microscope image
in Figure 3(b) displays the clear layered structure of a tetragonal FeSe single crystal [56]. Temperature
dependence of resistivity (p - T) and magnetization (M - T), shown in Figure 3(c) and inset, indicate
high quality crystallization and good bulk superconductivity [63].
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Figure 3. (a) Schematic image of the typical CVT growth assembly. (b) The scanning electron
microscope image of the layered structure of a tetragonal FeSe single crystal [56]. (c) Temperature
dependence of resistivity for FeSe single crystal. The inset shows the magnetic susceptibility
measured under H =5 Oe external magnetic field [63].

Since then, the preparation of FeSe single crystals using similar methods has become more
prevalent, leading to a flourishing research landscape due to the availability of high-quality single
crystals. However, the quality of these single crystals is highly sensitive to the preparation conditions,
primarily influenced by the complex binary Fe-Se composition-temperature phase diagram [64].

A study conducted by A. E. Bohmer et al. explored the relationship between transition
temperatures and residual resistivity ratio (RRR) in vapor-grown FeSe [65]. Their findings revealed
that the inclusion of some excess Fe, with an Fe:Se ratio of 1.1:1 as nominal compositions, effectively
suppressed the formation of the hexagonal FesSes phase. Additionally, the temperature conditions
during growth strongly influenced the single crystal quality, with an optimal temperature gradient
of 350-390 °C observed in their work. In addition, the tilt angle of the quartz tube can also have some
impact on the growth. Figure 4 (a) shows the single crystals under the optimal growth conditions and
the schematic picture. Figure 4(b) and (c) provides a summary of the correlation between RRR (ratio
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of resistance at 250 K to resistance just above T¢), Ts and T.. Both Ts and T. decrease as the RRR
increases. Composition analysis using wavelength dispersive X-ray spectroscopy (WDS) indicated
no correlation between T and sample composition. Extrapolating the linear relation between Ts and
Te suggests that superconductivity would be completely suppressed when Ts reaches 64 K.
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Figure 4. (a) Photograph of tetragonal FeSe single crystals under optimal growth conditions and the
schematic picture. (b) Structural transition temperature Ts and superconducting transition
temperature Tc as a function of residual resistivity ratio (ratio of resistance at 250 K to resistance just
above T¢) for different samples. The inset shows the transition temperature as a function of the inverse
residual resistivity ratio. (c) T¢ as a function of Ts for various samples [65].

3. Single Crystal Growth and Superconductivity of FeSe1xSx
3.1. CVT Growth of FeSe1xSxsingle crystals with Low S Doping

FeSe1«Sx single crystals are typically grown by CVT from FeSe up to x ~ 0.4, using similar
preparation methods as FeSe [23,66-69]. Figure 5(a) displays the temperature dependence of the
resistivity normalized to the value at 300 K value for x = 0 to 0.25. With S doping, a clear kink in
resistivity is gradually decreases to lower temperatures and disappears at a nonmagnetic nematic
QCP, x=0.17, as shown more clearly in Figure 5(b), depicting the temperature dependence of the first
derivative dp/dT. The discovery of QCP with nonmagnetic nematicity in 11 system has raised the
prospect of investigating the role of relationship between nematicity and superconductivity [24,70].
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Figure 5. Temperature dependence of the resistivity of FeSei-:S:. (a) Temperature dependence of
resistivity normalized to the 300K value from x = 0 to 0.25. (b) The first derivative of the resistivity
with respect to temperature for the same data. The curves for different S concentrations have been
offset for clarity. The location of the structural transition, Ts is defined by the intercept of the linear
fits on either side of the transition, as indicated by arrows [68].
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3.2. Hydrothermal Method for Growing FeSe1-xSxsingle Crystals across the Entire Doping Range

While the CVT method allows the synthesis of FeSeiS: single crystals with x < 0.29, the
hydrothermal method has been employed to overcome this limitation. Xiaofang Lai et al. successfully
synthesized tetragonal FeS through the hydrothermal reaction of Fe powder with a sulfide solution
and observed bulk superconductivity for the first time at 5 K [26]. Subsequently, a hydrothermal ion
release/introduction technique involving the de-intercalation of K ions from KosFe1.6Se2-+Sx precursors
has been widely utilized for the preparation of FeS and FeSeiS: single crystals [25,71-77], as
schematically depicted in Figure 6(a). The process involves the growth of KosFe165e2+Sx precursors
using the self-flux method, followed by the addition of Fe powder, selenourea, thiourea, and
KosFe1sSe2xSx single crystals pieces to a solution containing dissolved NaOH in deionized water
within a Teflon-linked stainless-steel autoclave (25 mL). The autoclave is then sealed and heated to
130-150°C for 50-70 h resulting in the formation of FeSe1«Sxsingle crystals, shown in Figure 6(b).
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Figure 6. (a) Schematic illustration of the hydrothermal ion release/introduction route for the
synthesis of FeSei-Sx single crystals. (b) Optical image of select FeSe1«Sx single crystals [26].

Figure 7 presents a comprehensive phase diagram of FeSei-+S: single crystals, encompassing the
entire region obtained from hydrothermal method [25] and a partial region (0 < x < 0.29) obtained
from CVT method [23,67,68]. The values of Ts and T. obtained from the hydrothermal method are
slightly lower than those from the CVT method, possibly due to disorder effects in the crystals [65].
The exponent “n” in the contour plot corresponds to the power law, p (T) = po+ AT", where po
represents the residual resistivity. In the nematic phase, the resistivity exhibits a non-Fermi liquid
behavior characterized by sublinear temperature dependence. Outside the nematic phase, the
resistivity at low temperatures follows a prefect Fermi liquid behavior, i.e. T2 dependence. In the
Fermi liquid region, the coefficient A decreases monotonically with S doping, indicating a reduction
in effective mass since A is proportional to the carrier effective mass according to the Landau Fermi
liquid theory. Below the characteristic temperature T", the resistivity displays an anomalous upturn
just before the superconducting transition. The origin of this anomaly may be attributed to local
magnetic impurity scattering or inelastic scattering due to crystallographic disorder.
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Figure 7. Complete phase diagram of FeSei-xSx single crystals. Ts represents the nematic transition
temperature. Tc zero and Tc m are the SC transition temperatures obtained from resistivity and
magnetization measurements, respectively. T* is the characteristic temperature at which the p-T
curves show local minima at low temperatures [25].

4. Single Crystal Growth and Superconductivity of FeSei«Tex
4.1. CVT Growth of FeSe1xTex (0 <x < 0.5) Single Crystals

While high-quality single crystals of FeSei:Sx have been successfully obtained, achieving
homogenous Te-doping single crystals remains challenging due to strict preparation conditions and
the phase separation in the region of 0.1 < x < 0.4 [30,42,43]. In recent years, significant efforts have
been made in crystal growth, leading to several studies on phase separation regions. The synthesis of
FeSei1«Tex (0 < x <0.41) single crystals using the flux mothed with temperature gradient, including the
phase separation regions, has been reported for the first time [28].

Figure8 (a) illustrates the schematic diagram of the growth setup, where a horizontal quartz tube
is placed in a two-temperature zone tube furnace. The mixture of high-purity Fe, Se and Te powders,
pre-sintered at 450 °C, along with a flux mixture of AlCls/KCl was placed in high-temperature zone
of quartz tube. After 20-30 days, flake-like single crystals were obtained in the low-temperature zone
and the residual flux was removed by dissolving it in distilled water, shown in Figure 8(b). Then,
FeSeos7Teoss single crystal was grown using a flux method with single temperature zone in a box
furnace [30].

The results of these two works are summarized in a phase diagram, shown in Figure 8(c). Te
exhibits a minimum around x ~ 0.2, which is attributed to the effect of sample disorder, as indicated
by the relatively small RRR value [28,65]. Ts decreases linearly with increasing Te doping and
disappears at approximately x ~ 0.5. Tc exhibits a maximum around x ~ 0.6, and the Néel temperature
(Tn) starts to appear when x > 0.9, accompanied by the suppression of superconductivity [78]. The
breakthrough in the phase separation region provides a promising approach for preparation of high-
quality single crystals, particularly in the phase separation region, enabling the investigation of the
evolution of the intrinsic properties of FeSei«Tex with Te doping.

(a) 100 (C) T T T T T T . T T

FeSe. Te,
Thot Teola i e
) Phase separation
2 | source flux crystais 80 ko (bulk) © @ Temoetal,
g 4 / Phys. Rev. B 100, 224516 (2019)
g epoetco o0 0§ o ¥ % this work
§
Y | PRI 602 g
e g o Tetragonal
£ 12 T
~ wol2 <
L5 B
£ x i7
g o £
E <
5
20 1 T 7
alc
ok @
8 ° sc
L L L

0 1 1 1 I 1 I
00 01 02 03 04 05 06 07 08 09 10
X

Figure 8. (a) Schematic image of the temperature distribution in the horizontal tube furnace for single-
crystal growth of FeSeixTexby the flux method [28]. (b) Photograph of as-grown single crystals of
FeSeiTex after removing the flux [28]. (c) Complete Temperature-doping x phase diagram of FeSe:-
«Tex single crystals [30].

Recently, significant progress has been made in the growth of high-quality FeSei«Tex (0 <x <0.5)
single crystals using CVT method, and the temperature-composition phase diagrams have been
established, shown in Figure 9 [29]. Similar to the flux method with two temperature zone described
earlier, the mixture of Fe, Se, and Te powders was sealed in a quartz ampoule with transport agents
AICI3/KCI and the growth time was 1-2 weeks. The temperatures of the hot and cold sides were
controlled at 420 and 250 °C for 0 < x < 0.25 (620 and 450 °C for 0.25 < x < 0.55), respectively, which
play a significant role in the crystal growth process.


https://doi.org/10.20944/preprints202306.0392.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 June 2023 doi:10.20944/preprints202306.0392.v1

Despite the similar synthesis methods employed by different research groups, there is
considerable variation in the quality of the obtained single crystals, including RRR, superconducting
transition temperature T and transition width AT. In this systematic study, a comprehensive analysis
of RRR with a large number of data points, represented by p(200 K)/p(15 K), reveals a monotonous
decrease with increasing Te concentration, shown in Figure 9(c). This suggests an intrinsic origin of
the minimum T. observed at x = 0.3. Additionally, when considering the temperature-pressure-
composition phase diagrams of FeSei«Tex (0 < x < 0.5) single crystals, it is proposed that nematic
fluctuations play a role in enhancing T. above x = 0.3 and contribute to the formation of the observed
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Figure 9. (a) Temperature - x (Te) phase diagram of FeSe1«Tex (0 < x <0.5) single crystals. (b) The same
as in (a), but the temperature range is 0-20K. (c) Dependence of p(200K)/p(15K) on x(Te) extracted
from the resistivity data [29].

4.2. Self-Flux plus Annealing Method for Growing FeSei-xTex (0.5 < x <1) Single Crystals

FeSe1«Tex (0.5 < x < 1) single crystals can be grown using standard melting methods, such as
Bridgeman method [41], self-flux method (a modified Bridgeman method, similar each other) [79,80]
and optical zone-melting [81]. In the self-flux method, high-purity Fe, Se and Te powders with
nominal ratios were loaded into a quartz tube, which is then evacuated and sealed. To prevent
cracking during the growth process, it is necessary to seal the quartz tube into a lager quartz tube.
The assembly was slowly heated to 1050 °C and sustained for 24 h, followed by cooling down to 710
°C at a rate of 3 °C/h and furnace cooling. The obtained single crystals have a mirror-like surface and
can reach the centimeter scale sizes, shown in Figure 10(a).

Bt
L AT

0 OTe/Se
excess Fe(2)
llllllfllfllllil rrginm & )
-4 é (S} ,8‘
OO ) o

Figure 10. (a) Photograph of the as-grown FeTeosSeo. single crystal. (b) Crystal structure of FeSei«Tex.
The orange ball represents the excess Fe [33,82].

The position of excess iron in the crystal structure is shown in Figure 10(b) marked by the orange
ball. Excess Fe in the crystal structure of FeSei«Tex significantly affects its intrinsic properties, such as
localization of the charge carriers [44—46], spin glass phase [47] and incoherent electronic states
[45,48]. Annealing processes have been developed to effectively remove excess Fe. FeTeos1Seo39 single
crystals was successfully annealed in vacuum environment for the first time at 400 °C for more than
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10 days resulting a sharp superconducting transition at around 14 K [83]. Subsequently, vacuum
annealing technique have been applied to remove excess Fe from FeSei+Tex (0.5 <x < 1) single crystals
[78,84]. It was reported that N2 annealing can also effectively remove excess Fe [85]. However, it was
later discovered that vacuum and N2 annealing have no effect on the excess Fe, and the observed
improvement was actually due to the action of a small amount of residual O2 present during the
annealing process [86-88]. Apart from Oz annealing, elements such as Te, Se, S, P, As, I, and Sb have
been proved to be effectively remove excess Fe through vapor annealing for FeSei«Tex (0.5 < x < 1)
single crystals [89-95]. For efficiency and nontoxicity, we focus on providing a detailed introduction
using Oz annealing to remove excess Fe.

Figure 11 shows the schematic picture of the annealing system used for O2 [33]. To perform the
O2 annealing, as-grown single crystals were cut and cleaved into thin slices with dimensions of about
2.0 x 1.0 x 0.05 mm?3. These slices were then weighed and loaded into a quartz tube with an inner
diameter of 10 mm. The quartz tube was carefully evacuated using a diffusion pump, and the
pressure in the tube was detected using a diaphragm-type manometer with an accuracy greater than
1 mTorr. Once the gas was fully removed, the quartz tube was filled with Ar/O2 (1% Ar) mixed gas
and sealed to a length of 100 mm. The pressure in the system is continuously monitored during the
sealing process to prevent gas leakage and control the Oz pressure in the quartz tube. The crystals
were then annealed at 400 °C for various periods of time and subsequently quenched in water.

10mmI_Cee-

Figure 11. Schematic picture of the annealing system for sealing the crystal in quartz tube with a
controlled amount of Oz [33].

The doping-temperature phase diagram for the as-grown and annealed Fei+yTei-»Sex (0 <x <0.43,
y represents excess Fe) were established based on the magnetization, magnetic susceptibility,
resistivity, and Hall effects, as shown in Figurel2 (a) and (b), respectively [31]. In the as-grown, there
is a clear spin glass state originating from excess Fe in the interstitial site before the onset of
superconductivity. The superconductivity observed in the as-grown crystals is not of bulk nature and
can only be obviously detected through the temperature dependence of resistivity. After annealing,
significant changes in superconductivity and magnetic order are observed. The AFM phase is
suppressed into a very narrow regions for x (Se) <0.05, and the spin glass state completely disappears.
This confirms the effective removal of excess Fe through annealing. The superconducting state
exhibits a clear bulk effect and can be easily detected by magnetic measurements.
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Figure 12. The doping-temperature (x-T) phase diagrams for FeinTeiSex (0 < x < 0.43, y represents
excess Fe) single crystals (a) before and (b) after O2 -annealing obtained from magnetization, magnetic
susceptibility, resistivity, and Hall effect measurements [31].

In our recent work, we have successfully prepared high-quality full-range FeSei«Tex single
crystals, with varying Te doping levels (0 <x < 0.5 by CVT and 0.5 < x <1 by the flux method plus
annealing). The corresponding phase diagram is illustrated in Figure 13. Notably, Te doping
gradually suppresses the nematic phase until it completely disappears at x = 0.5. Our results also
reveal that T. reaches its minimum at x = 0.3, which aligns with the findings of Mukasa et al. [29],
further supporting the intrinsic nature of the Te-dip phenomenon observed in FeSeixTex.
Subsequently, Tc increases and reaches a maximum at x = 0.6 but gradually decreases upon further
Te doping, eventually leading to a transition into a non-superconducting antiferromagnetic state.

The high chemical stability, high T, and strong upper critical field exhibited by FeSei«Texsingle
crystals make them excellent candidates for investigating the pairing mechanism underlying high-
temperature superconductivity. Consequently, the comprehensive phase diagram we have
established for FeSeixTe: provides valuable support for the ongoing exploration of the
superconducting pairing mechanism in high-temperature superconductors.
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Figure 13. Complete phase diagram of FeSei.Tex (0 < x < 1) single crystals in our recent work.

4.3. Optical Zone-Melting Technique for Growing FeSeixTex Single Crystals

FeSei«Texsingle crystals also can be grown using the optical zone-melting technique [81,96]. This
method allows for real-time observation of single crystal growth and precise control of the growth
rate by visualizing the melting zone. Figure 14 illustrates the schematic picture of single crystal
growth and shows a large-sized single crystal obtained using this technique. The growth process is
as follows:

High purity powders of Fe, Se and Te with nominal ratio were mixed in a ball mill for 4 h. The
mixed powders were cold pressed into discs under a uniaxial pressure of 400 kg-cm2, and then heated
at 600 °C for 20h under a vacuum. The reacted bulk material was reground into a fine powder and
loaded into a double quartz tube. The tube was loaded in an optical zone-melting furnace equipped
with two 1500 W halogen lamps as infrared radiation sources, as shown in Figure 14. The tube was
rotated at a rate of 20 rpm and moved at a rate of 1-2 mm-h-. After the growth, the as-grown crystals
undergo an annealing process: ramping to 700-800 °C in 7 h, holding for 48 h; cool to 420 °C in 4 h,
hold for 30 h; and finally shutting down the furnace and cooling to room temperature.

'

ellisoidal mirror

growth quartz

halogen lamp ampoule

heated area

quartz tube

(b)

Figure 14. (a) Schematic diagram of apparatus setup of the optical zone-melting method. (b) Single
crystal boule of as-grown FeTeoSeos single crystal on a Imm grid. The shiny surface is the a-b plane.
(c) The crystal flakes with the (001) face. Crystals from A-F represent FeSexTe1x single crystals of x =
0.3,0.5,0.6, 0.7, 0.9, and 1.0, respectively [81].


https://doi.org/10.20944/preprints202306.0392.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 June 2023 doi:10.20944/preprints202306.0392.v1

12

Despite obtaining large-sized and well-crystallized single crystals using the optical zone-melting
technique, the upwarping behavior of the R(T) curves before superconducting transition is still
apparent, indicating the presence of excess Fe in the crystals [81]. Moreover, due to the complexity of
the preparation process and the more established self-flux method, the optical zone-melting method
is not commonly used for the growth of FeSei«Tex single crystals.

5. Single Crystal Growth and Superconductivity of FeTe1..Sx

FeTe1+Sx system also exhibits superconductivity. Yoshikazu Mizuguchi et al. first reported the
superconductivity in FeTei.Sxsystem and found that T. can reach 10 K when x is 0.2 [97]. FeTe15«
single crystals with low S doping were grown using self-flux method, similar to FeSe1«Tex (0.5 < x <
1) single crystals [98-102]. Annealing treatment is also necessary to improve superconductivity for
FeTe1.Sx single crystals although the excess Fe cannot be completely removed [103-108]. The
solubility limit of S in FeTe is about 12% and Chiheng Dong et al. provided the phase diagram in this
region [106,109]. With S doping, AFM is suppressed and superconductivity is enhanced.

Caiye Zhao et al. successfully synthesized a series of FeSi«Tex (0 < x < 0.15) single crystals by a
hydrothermal method for the first time and provided a phase diagram of FeSi«Tex single crystals,
shown in Figure 15 [110]. T is rapidly suppressed with the Te doping for FeSi«Tex (0 < x <0.15) single
crystals and finally disappears when x > 0.1. Due to the large solution limited region, only a small
amount of doping can be applied at both ends of the phase diagram. The complete phase diagram
needs further exploration.

10
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Figure 15. The doping phase diagram of FeSi«Tex single crystals [106,110].

6. Conclusions

In conclusion, significant progress has been made in the preparation of 11 system single crystals,
including FeSei«Terand FeSe1:S;x, through various methods. A comprehensive phase diagram has
been constructed, as depicted in Figure 16, summarizing the superconducting transition
temperatures (T¢), the onset of nematic phase (Ts), and the Néel temperature (Tn) for the single
crystals prepared using the optimal techniques in different intervals.

High quality FeSe1«Sx(0 < x < 0.29) and FeSei-+Tex (0 < x < 0.55) single crystals are typically grown
using CVT method with AICls/KCl transport agent. It is fortuitous that the range encompassing these
single crystals includes the nematic phase without magnetic order. The exceptional quality of these
crystals serves as an excellent platform for investigating the interplay between nematicity and
superconductivity. FeSe1xSx (0.29 < x < 1) single crystals, however, can only be synthesized using
hydrothermal method. Although the quality of single crystals using hydrothermal is slightly inferior
to those grown using CVT, they still hold great significance for studying the complete phase diagram
of FeSe1«Sx. By utilizing the self-flux plus annealing technique, single crystals without excess Fe in the
highly Te doping region can be obtained. In this particular region, Tc reaches maximum of the entire
phase diagram, approximately 15 K, occurring around x (Te) ~ 0.6. Furthermore, AFM state is
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observed within a narrow region around FeTe. In summary, the establishments of the comprehensive
phase diagram for the 11 iron-based system is of utmost importance for unraveling the mechanism
behind high-temperature superconductivity and for discovering novel superconducting materials.

Hydrothermal CVT Self-flux plus
100 | oo t0gs annealing
TS‘ o T
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®
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Figure 16. The entire phase diagram of FeSei«Ter and FeSe1.S: single crystals synthesized by the
optimal methods, hydrothermal for FeSe1-+5:(0.29 < x <1) [25], CVT for FeSe1:5: (0 < x <0.29) [23,67,68]
and FeSei«Tex (0 < x < 0.55) [29] and self-flux plus annealing for FeSei-+Tex (0.55 < x < 1) [31].
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