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Abstract: It is common knowledge that estimating the height component of GNSS stations in general 

is much more problematic than estimating the horizontal position. Many different effects, such as 

tectonic signals, non-tectonic signals, atmospheric delay, noise, etc., are known to affect the height 

component of GNSS stations more than the horizontal component. However, the height component 

of GNSS stations is still poorly estimated. In this study, the height time series of 37 continuous GNSS 

stations covering the 2014–2019 date range is used from the Turkish National Permanent GNSS Net-

work-Active (TUSAGA-Active). Since it is easier to interpret the effects of the height component 

due to its topographic features and seasonal changes being more effective than in the rest of the 

country, stations were chosen in the Eastern Anatolia region of Turkey. The daily coordinates of the 

GNSS stations were obtained as a result of the GAMIT/GLOBK software solution. By applying time 

series analysis to the daily coordinate values of the stations, statistically significant trends, periodic 

and stochastic components of the stations were determined. As a result of the analysis, the vertical 

velocities of the GNSS stations and the standard deviations of the vertical velocities were deter-

mined. Furthermore, when the height components of continuous GNSS stations were examined, it 

was seen that there were seasonal effects, and it was investigated whether the height components 

were related to meteorological parameters. For that, simple linear regression analysis was per-

formed to determine how dependent the height components of the continuous GNSS stations were 

on meteorological parameters. As a result of the analysis, the height components of the continuous 

GNSS stations are dependent on meteorological parameters such as temperature, pressure, relative 

humidity, wind speed, and precipitation. In addition, height component time series analysis of con-

tinuous GNSS stations was performed by using Autoregressive Moving Average (ARMA) models 

from linear time series methods. As a result of the study, the performance of the ARMA modeling 

results again indicated the dependence of the height component of the continuous GNSS stations 

on the meteorological parameters. 
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1. Introduction 

Positioning accuracy with GNSS data analysis in geodesy is 1–2 mm in horizontal 

coordinates and 5–10 mm in vertical coordinates [1, 2, 3]. There are two main reasons for 

the weakness in the vertical component. The first is due to the geometric distribution of 

satellites in the sky. The latter is due to tropospheric path delay, particularly water vapor 

[4, 5, 6, 7]. In order to increase the usability of height information obtained in today's 

highly sensitive geodetic studies, it has become necessary to investigate the disruptive 

effects on GNSS heights since many error sources first manifest themselves in this com-

ponent. Increasing the sensitivity of GNSS ellipsoidal heights is possible by developing 

the most appropriate measurement and evaluation strategies according to the experiment 

and purpose, taking into account the error sources affecting the heights determined by the 
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GNSS technique. GNSS velocities have improved significantly over the last 20 years due 

to studies on noise characteristics [8, 9], ionospheric effects [10], or multipath and geome-

try effects [11]. 

Many GNSS time series analyses can be found in the literature review [12, 13, 14, 15, 

16, 17, 18]. The first investigation of the permanent GNSS station time series was done in 

the 1990s [19, 20]. Santamaria-Gomez et al. [17, 21] developed different methodologies to 

estimate vertical velocities in the study. The effect of different antenna calibration models, 

the effect of different tropospheric delay models, and the geometric distribution of sta-

tions in the studied network geometry affect vertical velocities. Also, velocity domains 

were evaluated by analyzing the type and amplitude of noise content in time series.  

A more accurate estimation of the seasonal signal is required to distinguish signals 

produced only by tectonic movement from other signals. For this reason, Ming et al. [22] 

performed seasonal signal analysis and long-term trend analysis in height time series at 

IGS stations. Strong seasonal variations in amplitudes of 4–9 mm were observed in the 

height component at the IGS stations. In previous studies of GNSS time series, the sea-

sonal signal was thought to have annual or semi-annual periods, which can be described 

by a harmonic pattern of constant amplitude and phase [12, 18, 20, 23]. 

Time series analysis employs a variety of techniques to separate tectonic displace-

ment signals from seasonal signals, which are a result of the signal's nature and other 

factors. Davis et al. [15] proposed a linear Kalman filter model to explain the behavior of 

a seasonal signal, assuming that the stochastic model includes random noise. However, 

the hypothesis is implausible since many studies have proven that GNSS time series have 

flicker noise (FN). In particular, GNSS station velocities are often estimated by assuming 

the presence of white, flicker, and random walk noise [12, 20, 24].  

Significant semi-annual and annual variations are visible in the height time series 

created using continuous GNSS station data over several years [25]. Seasonal movement 

from continuous GNSS observations can be a source of error in the GNSS coordinate time 

series and needs to be modeled to improve the accuracy of GNSS positioning. One of the 

important parameters affecting the accuracy of the velocity components at each station is 

the observation (session) time. The purpose of using different observation times is to in-

crease station location accuracy. In order to minimize seasonal effects, it is recommended 

to estimate velocities with the help of at least 3 years of observations [26, 27]. 

Wang et al. [28] examined the relationship between climate change and the height 

component of GNSS stations with the data for July and December from GNSS stations that 

measure continuously from different networks in Taiwan. As a result of the research, 

GNSS height values showed that the monthly averages of July values are higher than the 

interval values, and the difference reaches 2 cm, and it reaches 6 cm in the daily averages. 

The main objectives and results of our study are to: first, present a velocity field in 

the Eastern Anatolia region of Turkey from a continuous GNSS network that has operated 

for almost 6 years. We obtained realistic uncertainties as well by taking the noise charac-

teristics into account. Also, to improve the accuracy of the height component of the GNSS 

stations, the effects of seasonal variation are investigated. Since it will not be enough to 

investigate the effects of seasonal changes alone, it is also intended to increase the accu-

racy of the height component of GNSS stations with meteorological parameters. For this 

reason, we used two different approaches to see the effects of meteorological parameters 

on the vertical component. The first is simple linear regression analysis, and another is the 

ARMA model. 

2. Materials and Methods 

2.1. Study Area 

The Eastern Anatolia Region is a tectonically active region where many geodetic and 

geophysical scientific studies have been carried out for many years. A part of these scien-

tific studies is to reveal the current velocity field of the region. In this study, time series 

analyses were made with the MATLAB program after evaluating the data collected at 
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GNSS stations continuously for about 6 years in the 2014–2019 period with a scientific 

software, GAMIT/GLOBK. It is aimed to reveal the periodic changes in the GNSS obser-

vations with the analyses made and to investigate the effects of these changes in the GNSS 

studies that have been made before and will be made in the Eastern Anatolia Region. Data 

from 37 continuous GNSS stations were used (Figure 1). The main subject of the study is 

to determine the periodic effects as a result of the analysis of the time series of these 37 

GNSS stations from which data was collected and to develop strategies to improve the 

height component of GNSS stations. 

 

Figure 1. Locations of GNSS stations. 

In this study, 37 continuous GNSS stations covering the 2014–2019 date range from 

the Turkey National Permanent GNSS Network-Active (TUSAGA-Active) were used. The 

stations were chosen from the Eastern Anatolia region of Turkey because it is easier to 

interpret the effects of the height component due to their topographic features and also 

because seasonal changes are more effective there than in other parts of the country. By 

comparing GNSS measurements taken in various months and years, it was possible to 

investigate the impact of seasonal variation on station location accuracy. The locations of 

the GNSS stations are given in Figure 1. Eight of the stations used in the application were 

placed on the terrace; twenty-one of them are on the roof; and three of them are concrete 

poles. The stations installed on the ground are 2 meters-long concrete pole; the poles in-

stalled on the terraces are 3 meters; and the steel poles installed on the roofs are 4 meters. 

Normally, the stations on the building are expected to be more stationary, but when the 

time series of the stations are examined, it is seen that this is not the case. 

Furthermore, average temperature, pressure, relative humidity, wind speed, and 

precipitation data from 37 Meteorology General Directorate stations in the study area 

were used to show the relationship between meteorological parameters and the GNSS 

height component. In the selection of these stations, attention was paid to ensuring that 

the data was continuous and in working condition. 

2.2. GNSS Time Series in Height Component 

Time series analyses are performed for two main purposes: First of all, it is to make 

predictions for the future by explaining the past with the help of observation values from 

past periods. The other purpose is to determine the effect of any factor that is effective in 
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the series. This effect can be a momentary event or a set of events spread over a certain 

period of time. In this way, the degree of impact is determined, and measures are taken 

or regulations are made for the future. Some changes and irregularities can be seen over 

the course of the series. These changes and irregularities are caused by the existence of 

four factors (components) and the difference in the direction and intensity of their effects. 

These are the trends: seasonal fluctuations, cyclical fluctuations, erratic movements: noise 

[29, 30]. 

The time series of GNSS stations are obtained as a result of daily processes. Linear, 

periodic, and irregular movements of reference stations can be determined by time series 

analysis. The time series of these reference stations can be written for horizontal and ver-

tical components as follows [31, 32]; 

p qm r_ _
k 1

i t i s s i s s i j i j jj i jj

k 1 s 1 j 1 jj 1

x(t ) a t b cos(2 f t ) c sin(2 f t ) x(t ) (t )

Trend Component Periodic Component Stochastic Component

i(t )

Residual

    (1) 

where ka  is the trend component parameter, ,s sb c  are amplitude of periodic signals 

and sf  is the corresponding frequency, 
j  is an autoregressive (AR) model parameter, 

jj  is moving-average (MA) model parameter and ( )it  is residual (noise) to which we 

pay more attention. 

The trend component in the time series represents the time-dependent long-period 

changes of the series [33]. The Least Squares Method (LSM) separates the trend compo-

nent from the series in the time series. However, LSM cannot predict the parameters of 

the time series components in the equation with outliers. The main disadvantage of LSM 

is its sensitivity to outliers [31]. 

An outlier is an observation that significantly deviates from other observations in the 

sample [34]. Prior to the application, the coordinate time series were cleaned for outliers. 

Outliers should be removed from the time series before starting the analysis. Outliers in 

the time series were investigated using a robust method. According to the predicted 

model, outliers were determined and removed from the time series, then gaps in the data 

were calculated and the time series were reconstructed [35]. 

Outliers in time series are eliminated from the series by using Bi-square weighted ro-

bust predictor methods. New values are determined for the eliminated values in the se-

ries. Also, the loss of data can be determined by this method. Bi-square weights minimize 

a weighted sum of squares, where the weight given to each observation point depends on 

how far the point is from the fitted line. Points near the line get full weight, whereas points 

far from the line get reduced weight. Robust fitting with bi-square weights uses an itera-

tively re-weighted LS algorithm and follows the weight function [35]. 
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Figure 2. Outlier test for RZE1 station. 

Outliers of the stations were removed, the gaps were calculated according to the 

model, and then the frequencies contained in the series and the period values correspond-

ing to these frequencies were calculated by applying Fast Fourier Transform (FFT) to the 

height time series where the trend component was removed [36]. Since the peaking values 

in the graphs differ, the frequency range has been changed according to the suitability of 

the graphs. Figure 3 shows the power-frequency relationship of GNSS stations of different 

ellipsoid heights. 

 

Figure 3. Power frequency variation for GNSS stations with different ellipsoidal heights. 
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In order to better understand and interpret the results obtained, the periods included 

in each time series were calculated using the f 1 / T  equation from the frequencies 

with high power values in the power-frequency graphs of the stations. Annual periodic 

movement in the vertical only at SIVS1 and TOK1 stations; semi-annual periodic move-

ment at all stations except ADIY1, ERZ2, and TUF1 stations; seasonal periodic movement 

at all stations except ARTV, BING, DIV1, FASA, GEME, GUMU, GURU, and TRBN GNSS 

stations; and much daily periodic motion was observed at all GNSS stations [14, 37]. 

2.3. Simple Linear Regression 

The relationship between a single independent variable (x) and the dependent vari-

able (Y) expressed with a linear function is defined as simple linear regression analysis 

[38]. 

i i iY a bx = + +                                                              (3) 

where the value of a  is the value of the dependent variable Y  when 0x =  or in 

other words, the site where the vertical axis intersects with Y , while the value of b  is 

expressed as the regression coefficient. The difference between the true value Y  of the 

dependent variable and its predicted value Y


 from the model is the error ( ) . 

( )i i i iY a bx Y Y


= − + = −                                                     (4) 

In the regression, we try to estimate the independent variable Y by taking the de-

pendent X variables. The results we get as a result of estimation are usually either incom-

plete or wrong. The real question we have to ask here is how wrong it is. In other words, 

what we really need to do is find the distance between the actual values and the predicted 

values. The following are the concepts used to evaluate the regression model [39]. 

 

2.3.1. Model Performance 

The mean absolute error represents the average of the absolute difference between the 

actual and predicted values in the dataset. It measures the average of the residuals in the 

dataset. 

1
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
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= −                                                        (5) 

(best value = 0; worst value = +∞) 

where; y


 predicted value of y  and y  means value of y . 

The mean squared error represents the average of the squared difference between the origi-

nal and predicted values in the data set. It measures the variance of the residuals. 
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The root mean squared error is the square root of mean squared error. It measures the 

standard deviation of residuals. 
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(best value = 0; worst value = +∞) 

The coefficient of determination or R-squared, represents the proportion of the variance 

in the dependent variable that is explained by the linear regression model. It is a scale-free 

score, irrespective of the values being small or large, the value of R square will be less than 

one. 

2
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 
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 = −
 

− 
 




                                                       (8) 

(worst value = −∞; best value = +1) 

Both RMSE and R-squared quantify how well a linear regression model fits a dataset. 

The RMSE tells how well a regression model can predict the value of a response variable 

in absolute terms, while R-squared tells how well the predictor variables can explain the 

variation in the response variable [40]. 

2.4. The Autoregressive Moving-Average (ARMA) 

ARMA  models are used for modeling stationary data and are a combination of AR  

and MA  models. In these models, the observation value of any period of a time series 

is expressed as a linear combination of a certain number of previous observation values 

and the error term. If the ARMA  model is a combination of ( )AR p  and ( )MA q  

model, it contains p q+  terms and is expressed as ( ),ARMA p q  [41]. 

1 1
; 1, ......,

p q

t i t i j t j ti j
x x a a t T − −= =
= − + =                                 (9) 

Here, ta  is known as normal white noise process. It has a zero mean and variance 
2 . 

T  is the amount of data in the time series [42]. AR  parameters should satisfy the con-

dition for stationarity and MA  parameters should satisfy the conditions for inevitability 

[43]. 

ARMA model was applied to the height component of GNSS stations in the same 

region by using the daily average temperature, pressure, relative humidity, wind speed, 

and precipitation values measured at 37 meteorology stations in the study area. Model 

results for four GNSS stations are given in Figure 4 as an example, and the model results 

for all stations subject to the study are given in Table 1. 
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Figure 4. ARMA model results for RZE1, DIYB, GEME, and HINI stations, respectively. 

ARMA model results are generally consistent with the time series of all stations. The 

RMS values are generally less than 5 mm in the vertical directions, except for ARTV, ERZ2, 

GIRS, MUUS, and SIRT1 stations. The RMS values of the vertical component were com-

puted with all meteorological data. 

Table 1. ARMA model results of all GNSS stations (mm). 

Station RMSE Station RMSE Station RMSE 

ARPK 4.3 FASA 3.7 RHIY 4.0 

ARTV 6.0 GEME 3.6 RZE1 4.6 

BAYB 3.8 GIRS 5.6 SAM1 5.0 

BING 4.5 GUMU 4.5 SIRT1 5.8 

BTMN 4.6 GURU 4.0 SIV1 4.6 

DIYB 4.6 HINI 4.7 SIVS 3.6 

EKIZ 4.3 HORS 4.7 SSE1 4.5 

ELAZ 4.1 MALY 4.6 TNCE 4.4 

ERGN 4.3 MAR1 5.0 TOK1 4.1 

ERZ2 5.9 MUUS 5.8 TRBN 5.2 

ERZR 4.3 RDIY 4.3 TUF1 4.3 
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Figure 5. The histograms of ARMA model residuals for RZE1, DIYB, GEME, and HINI stations, 

respectively. 

3. Results and Discussion 

3.1. Seasonal Variation 

In this study, the effects of seasonal variation on the vertical position accuracy of 

GNSS calculated by time series analysis of continuous GNSS stations were investigated. 

Weather changes and water vapor in the atmosphere affect the position accuracy of GNSS 

and cause fluctuations in GNSS height values. It is also known that the height component 

has more air passage changes. By applying time series analysis to the daily coordinate 

values of the stations, statistically significant trends, periodic, and stochastic components 

of the stations were determined. As a result of the analysis, the vertical annual velocities 

of the stations and the standard deviations of the velocities were determined. 

For the stations determined according to the ellipsoid heights, the velocity and stand-

ard deviation values of the height component were calculated for each month, season, and 

year. As the ellipsoid height increases, the velocity and its standard deviation values de-

crease. While the minimum vertical velocity values are observed for the station with the 

lowest ellipsoidal height in winter, for the station with the highest ellipsoidal height in 

autumn, the minimum standard deviation values are determined in winter for the station 

with the lowest ellipsoidal height, and in summer for the station with the highest ellipsoi-

dal height. According to the results obtained, the coordinate displacements caused by sea-

sonal variation may be important, and their effects should be considered, especially in 

high-precision geodetic surveys [44]. 
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Figure 6. Vertical velocity variations of GNSS stations (The minimum velocity for RZE1 station in 

winter (December), for DIYB station in winter (December), for GEME station in summer (August), 

and for HINI station in autumn (November). The maximum velocity for RZE1 station in autumn 

(September), for DIYB station in autumn (October), for GEME station in spring (April), and for HINI 

station in winter (December)). 

 

Figure 7. Standard deviation variations for vertical velocities of GNSS stations (The minimum 

standard deviation for RZE1 GNSS station in winter (December), for DIYB GNSS station in winter 

(February), for GEME GNSS station in spring (March), and for HINI GNSS station in summer (June). 

The maximum standard deviation for RZE1 GNSS station in summer (July), for DIYB GNSS station 

in summer (August), for GEME GNSS station in summer (August), and for HINI GNSS station in 

autumn (September)). 

In addition, the velocity values of the stations were calculated for different years, and 

a decrease was observed in the height component depending on the observation duration. 

As the observation duration for the height component increases, both the velocity values 

and their standard deviation values decrease. In order to avoid velocity estimation errors 

completely, the data length should be more than 4.5 years. 
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Figure 8. The velocity and standard deviation depend on the observation time. 

It has been determined that the height components of the GNSS stations used in the 

application make periodic movements. Considering that this may be due to seasonal ef-

fects, daily average temperature, pressure, relative humidity, wind speed, and precipita-

tion values between 2014 and 2019 of meteorological stations in the cities where the GNSS 

stations are located were obtained from the General Directorate of Meteorology. By using 

these parameters, the relationship of the stations with the height component was investi-

gated. 

Table 2. Regression results for GNSS stations of different ellipsoidal heights (m). 

temperature R-squared Standard error MAE MSE RMSE Height 

RZE1 0.781 0.012 0.0880 0.01 0.1135 70.69 

DIYB 0.864 0.009 0.0943 0.01 0.1173 773.67 

GEME 0.850 0.008 0.1072 0.02 0.1371 1214.79 

HINI 0.839 0.008 0.1006 0.02 0.1302 1742.62 

pressure R-squared Standard error MAE MSE RMSE Height  

RZE1 0.845 0.019 0.1106 0.02 0.1311 70.69 

DIYB 0.801 0.014 0.0987 0.02 0.1250 773.67 

GEME 0.894 0.009 0.1122 0.02 0.1458 1214.79 

HINI 0.864 0.008 0.1004 0.02 0.1288 1742.62 

relative humidity R-squared Standard error MAE MSE RMSE Height 

RZE1 0.843 0.019 0.1087 0.02 0.1136 70.69 

DIYB 0.797 0.014 0.0946 0.01 0.1184 773.67 

GEME 0.894 0.009 0.1021 0.02 0.1338 1214.79 

HINI 0.861 0.008 0.0986 0.02 0.1248 1742.62 

wind speed R-squared Standard error MAE MSE RMSE Height 

RZE1 0.845 0.019 0.1029 0.02 0.1267 70.69 

DIYB 0.794 0.014 0.0968 0.01 0.1223 773.67 

GEME 0.893 0.009 0.1096 0.02 0.1404 1214.79 

HINI 0.861 0.008 0.0967 0.02 0.1225 1742.62 
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precipitation R-squared Standard error MAE MSE RMSE Height  

RZE1 0.847 0.019 0.1122 0.02 0.1371 70.69 

DIYB 0.796 0.014 0.0962 0.01 0.1212 773.67 

GEME 0.895 0.009 0.1095 0.02 0.1396 1214.79 

HINI 0.858 0.008 0.0952 0.01 0.1201 1742.62 

The estimation of the parameters was carried out with the least squares method. Hy-

pothesis tests determined the suitability of the regression model and the significance of 

the regression coefficients. 

3.2. Determination of noise patterns 

Noise analysis is needed to reveal the characteristics of the stations and to investigate 

the time series more deeply. [12, 13, 20, 24, 29] emphasized that GNSS time series contain 

time-independent white noise (WN), time-dependent flicker noise (FN), and random walk 

noise (RWN). In all these analyses, it was observed that the vertical component had more 

noise than the horizontal component, and the periodic motion of the vertical component 

was more pronounced. 

The most suitable noise model for the height component of the stations was examined 

with the CATS software [45]. CATS is software that uses Maximum Likelihood Estimation 

(MLE) to fit a multi-parameter model to time series such as fixed GNSS station coordi-

nates. Using MLE, it is possible to estimate the amplitudes of multiple noises and the un-

known (e.g., velocity, periodic signals, and coordinate pulses) simultaneously [12, 36]. 

Three noise types and combinations of these noise types were used in the study car-

ried out to reveal the correlated noise models. First, the noise was assumed to be only WN, 

then a combination of WN+FN and WN+RWN was used. The preferred noise pattern was 

determined to be one of these three combinations. In the second stage, the amplitudes and 

spectral indices of the noise model were presented simultaneously with the WN. 

As a result of the analysis made, the most appropriate noise model for the height 

component is given in Table 3. When the MLE values are examined, it is seen that the 

WN+FN model is the most dominant model among the three noise models, as suggested 

by [12, 20, 24]. Again, for all stations, the WN+FN noise model was found to be more 

suitable than the WN+RWN noise model [46]. In addition, when the results are examined, 

the values of WN+FN and WN+RWN noise combinations for all stations are quite close to 

each other. 

Table 3. MLE values for the height component of GNSS stations. 

Station Name WN WN+FN WN+RWN 

ADIY -2055.88 -2021.53 -2030.47 

ADIY1 -893.33 -870.36 -875.66 

ARPK -6117.94 -5522.66 -5535.37 

ARTV -6228.81 -6058.52 -6083.00 

BAYB -5480.71 -5263.38 -5285.34 

BING -5966.24 -5649.25 -5674.37 

BTMN -5346.34 -5025.07 -5030.89 

DIV1 -1862.70 -1837.18 -1849.91 

DIYB -5674.47 -5330.02 -5348.08 

EKIZ -5608.21 -5380.61 -5400.12 

ELAZ -6552.98 -5582.48 -5595.51 

ERGN -5862.46 -5438.95 -5460.24 

ERZ2 -3044.00 -2957.26 -2982.03 
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ERZR -4878.81 -4669.01 -4693.86 

FASA -4466.79 -4367.48 -4395.73 

GEME -4286.05 -4208.82 -4238.10 

GIRS -5560.61 -5493.86 -5511.82 

GUMU -5710.76 -5505.63 -5529.03 

GURU -5582.92 -5346.43 -5367.65 

HINI -5039.06 -4906.68 -4923.73 

HORS -4864.26 -4651.58 -4676.16 

MALY -4938.48 -4751.52 -4767.68 

MAR1 -2810.56 -2715.46 -2716.60 

MUUS -5508.72 -5128.36 -5144.83 

RDIY -5586.74 -5326.16 -5351.67 

RHIY -5505.22 -5290.85 -5310.65 

RZE1 -5883.08 -5651.90 -5666.65 

SAM1 -6262.62 -5906.24 -5934.94 

SIRT -6470.70 -5907.66 -5934.17 

SIV1 -2292.51 -2143.37 -2144.46 

SIVS -5274.21 -5002.70 -5037.81 

SSE1 -1881.27 -1871.78 -1876.02 

TNCE -6089.55 -5600.75 -5634.75 

TOK1 -5262.40 -5136.50 -5154.79 

TRBN -6005.57 -5824.70 -5849.34 

TUF1 -5358.58 -5248.94 -5263.92 

UDE1 -1754.19 -1703.14 -1715.38 

 

Amplitudes are one of the important parameters for noise analysis. The amplitudes 

indicate the magnitude of the appropriate noise pattern present in the available data. The 

calculated amplitudes for the noise models are given in Figure 8. It is seen that the lowest 

noise amplitudes are for WN. It is considered that the reason for the WN amplitude dif-

ferences is the use of different GNSS receivers at the stations. A significant amount of WN 

amplitudes and seasonal atmospheric mass distributions are considered to reflect more 

general physical-based processes, such as atmospheric noise. A very small amount of 

RWN amplitude also results from more regional-scale processes such as atmospheric ef-

fects [12, 25, 47]. 
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Figure 9. Noise amplitudes for the height component of GNSS stations (mm). 

As a result of the analysis, the velocities for the height component of the stations were 

obtained. When the annual velocity of the height coordinate components of the stations is 

examined, a vertical velocity value in the (+) direction was observed at ADIY, ADIY1, 

EKIZ, ERGN, ERZR, and HINI GNSS stations; that is, the height value increased. While 

the highest vertical velocity value was seen at station ADIY1 with a value of 4.92 mm/year, 

the smallest vertical velocity value was obtained at station ERZR with a value of 0.03 

mm/year. At other stations, a vertical velocity value in the (-) direction was observed, that 

is, the height value decreased. The smallest vertical velocity value was -0.03 mm/year at 

SIRT GNSS station, and the vertical velocity was -7.10 mm/year at UDE1 GNSS station. 

The vertical velocities of GNSS stations are given in Figure 9. 
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Figure 10. Vertical velocities of GNSS stations (with standard deviation). 

4. Conclusions 

The goal of this paper is to find a way to increase the accuracy of the height compo-

nent of continuous observation GNSS stations. For the vertical displacement analysis of 

the region, we selected 37 GNSS stations and processed approximately 6 years of contin-

uous data.  

First of all, data arrangements were made, and an outlier test was used in MATLAB 

ver. R2015b (The MathWorks, Inc., USA). After data editing was completed, time series 

were plotted, and anomalies were investigated. The seasonal behavior of GNSS stations 

was examined, and strong seasonal and interannual signals were found at all stations. It 

is also clearly seen that GNSS signals have a lot of noise. CATS software is used for spec-

tral analysis. As expected, the most appropriate noise model for the station was found to 

be the WN+FN noise model. Then, the relationship between seasonal variation and verti-

cal time series was examined. As a result of the analysis, the vertical seasonal and annual 

velocities of the stations and the standard deviations of the velocities were determined. 

The results are variable for stations with different ellipsoid heights. However, as expected, 

as the observation time increased, the velocity and standard deviation values improved. 

Furthermore, when the height components of continuous GNSS stations were examined, 

it was seen that there were seasonal effects, and it was investigated whether the height 

components were related to meteorological parameters. Simple linear regression analysis 

was performed to determine how dependent the height components of the continuous 

GNSS stations were on meteorological parameters. As a result of the analysis, the height 

components of the continuous GNSS stations are dependent on meteorological parame-

ters such as temperature, pressure, relative humidity, wind speed, and precipitation. In 

addition, height component time series analysis of continuous GNSS stations was per-

formed by using Autoregressive Moving Average (ARMA) models from linear time series 

methods. As a result of the study, the performance of the ARMA modeling results again 

indicated the dependence of the height component of the continuous GNSS stations on 

the meteorological parameters.  

The consideration of the above-mentioned analysis may improve the quality of the 

station coordinate estimates, especially for the up component. 
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Appendix A 

See Table 4. 

Table 4. Vertical velocity field 
1( )mm yr−

. 

Station 0Lon  0Lat  Start End 
Total 

Data 

Existing 

Data 

Missing 

Data (%) 
V    

ADIY 38,22 37,74 1.01.2014 26.12.2016 1091 739 32,26 0.28 0.23 

ADIY1 38,26 37,76 1.12.2018 20.10.2019 324 319 1,54 4.92 1.06 

ARPK 38,48 39,04 1.01.2014 20.10.2019 2118 1926 9,07 -2.24 0.10 

ARTV 41,81 41,17 1.01.2014 20.10.2019 2118 1876 11,43 -2.52 0.10 

BAYB 40,19 40,25 1.01.2014 20.10.2019 2118 1909 9,87 -0.66 0.07 

BING 40,50 38,88 1.01.2014 20.10.2019 2118 1933 8,73 -1.01 0.10 

BTMN 41,15 37,86 1.01.2014 20.10.2019 2118 1710 19,26 1.93 0.09 

DIV1 38,11 39,37 1.10.2017 20.10.2019 750 654 12,80 -5.45 0.32 

DIYB 40,18 37,95 1.01.2014 20.10.2019 2118 1871 11,66 -1.39 0.07 

EKIZ 37,18 38,05 1.01.2014 20.10.2019 2118 1882 11,14 0.08 0.08 

ELAZ 39,25 38,64 1.01.2014 20.10.2019 2118 1961 7,41 -3.54 0.10 

ERGN 39,75 38,26 1.01.2014 20.10.2019 2118 1896 10,48 0.26 0.09 

ERZ2 39,69 39,70 1.01.2017 20.10.2019 1023 921 9,97 -5.50 0.36 

ERZR 41,25 39,90 1.01.2014 20.10.2019 2118 1622 23,42 0.03 0.08 

FASA 37,48 41,04 1.01.2014 20.10.2019 2118 1570 25,87 -0.86 0.07 

GEME 36,08 39,18 1.01.2014 20.10.2019 2118 1578 25,50 -0.22 0.06 

GIRS 38,38 40,92 1.01.2014 20.10.2019 2118 1749 17,42 -0.67 0.09 

GUMU 39,51 40,43 1.01.2014 20.10.2019 2118 1892 10,67 -0.05 0.08 

GURU 37,30 38,71 1.01.2014 20.10.2019 2118 1912 9,73 -1.01 0.07 

HINI 41,69 39,36 2.01.2014 20.10.2019 2118 1652 22,00 0.45 0.07 

HORS 42,16 40,04 1.01.2014 20.10.2019 2118 1567 26,02 -1.63 0.09 

MALY 38,21 38,33 1.01.2014 20.10.2019 2118 1615 23,75 -1.17 0.08 

MAR1 36,86 37,59 1.07.2017 20.10.2019 1023 897 14,50 -2.32 0.29 

MUUS 41,50 38,79 3.01.2014 20.10.2019 2116 1622 23,35 -1.58 0.14 
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RDIY 37,33 40,38 1.01.2014 20.10.2019 2118 1848 12,75 -1.14 0.08 

RHIY 38,77 39,90 1.01.2014 20.10.2019 2118 1902 10,20 -0.33 0.08 

RZE1 40,49 41,03 1.01.2014 20.10.2019 2118 1920 9,35 -1.74 0.08 

SAM1 36,33 41,30 1.01.2014 20.10.2019 2118 1942 8,31 -0.59 0.10 

SIRT 41,93 37,93 1.01.2014 19.10.2019 2118 1871 11,66 -0.03 0.11 

SIV1 39,32 37,75 1.07.2017 20.10.2019 841 730 13,20 -6.13 0.35 

SIVS 37,00 39,74 1.01.2014 20.10.2019 2118 1857 13,32 -0.32 0.07 

SSE1 38,10 40,16 1.10.2017 20.10.2019 750 645 14,00 -3.76 0.38 

TNCE 39,54 39,10 29.03.2014 20.10.2019 2031 1824 10,19 -1.55 0.09 

TOK1 36,55 40,33 1.01.2014 20.10.2019 2118 1894 10,58 -0.88 0.08 

TRBN 39,71 41,00 21.01.2014 20.10.2019 2098 1834 12,58 -0.701 0.09 

TUF1 36,20 38,26 1.01.2014 20.10.2019 2118 1922 9,25 -0.38 0.08 

UDE1 41,54 40,52 1.10.2017 20.10.2019 750 590 21,33 -7.10 0.36 
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