
Article 

Identifying the common cell-free DNA biomarkers 

across seven major cancer types 

Mingyu Luo1, Yining Liu 2 and Min Zhao 1,* 

1. School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, 

Queensland, 4558, Australia;  
2. The School of Public Health, Institute for Chemical Carcinogenesis, Guangzhou Medical University, 

Guangzhou, China;  

* Correspondence: mzhao@usc.edu.au; Tel.: +61 07 54563402 

Simple Summary: Blood-based circulating cell free DNA(cfDNA) biomarkers are important for can-

cer detection because they can provide a less invasive and more cost-effective way of detecting can-

cer, and offer the potential for large-scale screening of at-risk populations for the early detection of 

multiple cancers. However, highly sensitive techniques are needed to detect ctDNA, and further 

optimization and standardization of pre-analytical and analytical steps are required to harness the 

full potential of cfDNA analysis. 

Abstract: Blood-based circulating cell free DNA(cfDNA) detection offers a non-invasive and easily 

accessible way for early cancer detection. Despite the extensive utility of cfDNA, there are still many 

challenges to develop the clinical biomarkers. For example, cfDNA with genetic alterations often 

compose a small portion of the DNA circulating in plasma, which can be confounded by cfDNA 

contributed by normal cells. Therefore, filtering out the potential false-positive cfDNA mutations 

from health population will be important for the cancer-based biomarkers. Additionally, many low-

frequency genetic alterations are easily overlooked in small amount of cfDNA-based cancer test. We 

hypothesize that, the combination of diverse types of cancer studies on cfDNA can provide us a new 

insight to identify low-frequency genetic variant across cancer types for early clinical detection of 

cancers. By building a standardized computational pipeline for 1358 cfDNA samples across seven 

cancer types, we prioritize 129 shard genetic variants in the major cancer types. Further functional 

analysis of the 129 variants found that they are mainly enriched in ribosome pathways such as co-

translational protein targeting to membrane, some of which are tumor suppressor, oncogene and 

related to cancer initiation. In summary, our integrative analysis revealed the important roles of 

ribosome proteins as the common biomarkers in early cancer diagnosis.  
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1. Introduction 

In cancers, apoptotic and necrotic cells release cfDNA into the blood, and cancer patients have 

elevated levels of cell-free DNA (cfDNA). Therefore has been a great deal of interest in the use of 

circulating cfDNA as a "liquid biopsy" for noninvasive early cancer detection [1]. In general, cfDNA 

with genetic alterations constitute a small proportion of the DNA circulating in plasma, which can be 

confused with cfDNA from normal cells [1]. Therefore, it will be essential for cancer-based bi-

omarkers to eliminate potential false-positive cfDNA mutations from the healthy population. In ad-

dition, many low-frequency genetic alterations are easily missed in cancer tests based on a small 

amount of cfDNA.  

Cancer genome project advancements and new applications of next-generation sequencing 

(NGS) technology have facilitated groundbreaking research on cfDNA over the past decade. How-

ever, the development of clinical biomarkers continues to face significant obstacles. Firstly, current 
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cfDNA profiling strategies are insufficiently sensitive for the concurrent detection of multiple can-

cers. This can be improved in a number of ways, such as by optimizing the pre-analytical steps, col-

lecting samples from body fluids with higher mutation allele fractions, and enriching tumor-derived 

cfDNA after extraction. The sensitivity and specificity of cfDNA tests can be significantly enhanced 

by combining multiple biomarkers into a single evaluation. Secondly, the quantitative and qualitative 

fluctuations of cfDNA in a person's blood hinder the reproducibility of measurements, interpreta-

tions, and comparisons. A better comprehension of cfDNA release rate may be able to resolve this 

problem [2]. Thirdly, it is necessary to validate the quantification of cfDNA, subsequent mutation 

analysis, and other analytical steps, including the sequencing platform itself, in order to simulate the 

clinical environment [3]. Lastly, the use of diverse high-throughput sequencing platforms frequently 

makes it challenging to reproduce results and highlights the need for standardization and analytical 

validation of liquid biopsy methods [4]. 

Normally, mutations in oncogenes and tumor suppressor genes play a crucial role in cancer in-

itiation [5,6]. There are fewer than 2,000 genes, despite the fact that these important driver genes are 

essential for cancer diagnosis. On the other hand, cancer cells typically contain thousands of muta-

tions that do not directly drive cancer initiation and progression, and these mutations can also be 

found in healthy populations. To concentrate on key cancer progression events, we collect data on 

1,358 experiments with original sequences from 14 projects, involving 7 major types of head and neck 

cancer, lung cancer, breast cancer, prostate cancer, gastric cancer, colon cancer, and liver cancer. We 

hypothesize that the combination of diverse types of cancer studies on cfDNA will allow us to iden-

tify high-quality genetic variants across cancer types for early clinical cancer detection [5]. 

2. Materials and Methods 

2.1. Data sources and the data filtering pipeline 

As shown in Figure 1A, our analysis pipeline were started by downloading data from the NCBI 

SRA database (http://www.ncbi.nlm.nih.gov/sra) using the SRA Toolkit 

(https://www.ncbi.nlm.nih.gov/sra/docs/toolkitsoft/). SRA database is a public repository for mil-

lions of publicly available data related to genomics sequencing. For our project, we only focused on 

the cell free DNA data in cancers. Therefore, we searched from the SRA database by the following 

expression: “cell free DNA [title] or single cell DNA [title] or single cell RNA [title]” and “cancer or 

tumor” on 2019 Apr 10. Then we downloaded 1358 experiments with raw sequence from a total of 

fourteen projects involving seven major cancer types including breast, colorectal, head and neck, 

liver, lung, prostate, and stomach cancers. 

2.2. Sequence data alignment and pre-processing 

The raw data downloaded from SRA database are the short reads in the Fastq format. To trans-

late the raw data to the meaningful information, we adopted the best practices of Genome Analysis 

Toolkit’s (GATK) for the overall data pre-processing and genome mapping. Firstly, we aligned the 

raw fastq reads to the Human reference assembly HG19 by using the genome aligner BWA v0.7.13 

[7] with default settings. The resulted binary alignment map (BAM) files were used as the input for 

the tools used in the GATK best practice [8]. In brief, we removed the potential duplicated short reads 

with Picard’s MarkDuplicates command. We also corrected the local alignment around indels based 

on GATK’s Indel-Realigner module. The recalibration of the quality score and reduction of machine-

read error was further conducted by using GATK’s base quality score recalibration (BQSR) module 

(Figure 1A). 
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Figure 1. Flow chart of cfDNA data processing and filtering. (A) A three-stage workflow to identify 

the cancer driver genes in cfDNA sequence read, and 5 detailed steps for variant calling process on 

the left. (B) Flowchart for variants filtering, annotation, and deleterious gene prediction. 

2.3. Variant calling, filtration and annotation 

The pre-processed BAM files with recalibrated quality scores were further analyzed by the so-

matic mutation calling tools of MuTect2 [9] and Monovar [10] for single-cell DNA data. In detail, the 

variant calling format (VCF) files were generated from two variant calling tools for each sample. Then 

the VCF files were used as input to eliminate potential sequencing and germline artifacts. For exam-

ple, we removed those non-functional variants, and we focused on those somatic variants detected 

in three or more cancer types. In addition, we also removed the false-positive genetic mutations that 

may be present in the VCFs (Figure 1B). Then, functional annotations for variants were added to each 

mutation using the ANNOVAR software v. 2019Oct24 [11]. And the pathogenicity of missense vari-

ants was predicted in silico using scores from dbNSFP [12] based on 12 different algorithms such as 

SIFT and CADD [13].  

2.4. High-quality variants prediction 

It is crucial to accurately predict the deleteriousness of nonsynonymous variants in order to dis-

tinguish pathogenic mutations from background polymorphisms [13]. Although numerous methods 

for predicting deleteriousness have been developed, their prediction results are sometimes incon-

sistent [14]. The computational algorithms utilised by these prediction methods (Markov model, evo-

lutionary conservation, random forest, neural network, etc.) vary. Therefore, it is recommended to 

use multiple prediction algorithms for variant evaluation to eliminate algorithm bias [15]. We chose 

Combined Annotation-Dependent Depletion (CADD) [16] and Functional Analysis through Hidden 

Markov Models with an eXtended Feature set (FATHMM-XF) [17] as our prediction algorithms based 

on their relative merits. In brief, CADD assesses the deleterious nature of SNVs based on a variety of 

genomic characteristics, including the surrounding sequence context, epigenetic measurements, evo-

lutionary constraints, and functional predictions [16]. CADD's ability to prioritise functional, delete-

rious, and pathogenic variants is unmatched by any single-annotation method currently in use [18]. 

Compared to traditional procedures (such as SIFT), CADD was determined to be the most effective 
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in silico algorithm in previous SNV pathogenicity analyses [19]. However, the disadvantage of CADD 

is limited accuracy for predicting variants in the non-coding regions [20]. To add non-coding infor-

mation, we utilised FATHMM-XF, one of the most efficient tools for non-coding regions [17].  

2.5. Functional and pathway enrichment analysis 

To investigate the functional patterns of the genes associated with the identified somatic muta-

tions, we conducted a comprehensive functional annotation. In brief, significant gene ontology (GO) 

biological process terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrich-

ment analysis were performed to analyse the identified biomarkers at the functional level. GO pro-

vides a general framework to characterize the gene function shared in multiple species [21]. Accord-

ing to the adjusted statistical P values, the terms were arranged in ascending order, making it simple 

to focus on the most significant GO terms associated with the biomarker genes. To supplement the 

missing information in GO annotation, we also consulted the KEGG database for pathway infor-

mation. KEGG assigns specific gene set pathways to key data containing higher-order functional in-

formation and can be used for the functional interpretation and practical application of genomic data 

[22]. In practice, all human genes as the background and the identified biomarkers as the input were 

used to perform GO function and KEGG pathway enrichment analysis, and FDR 0.05 was considered 

statistically significant using Toppfun [23].  

2.6. Protein-protein interaction and hub gene analysis 

To understand the metabolic and molecular mechanisms related to the identified biomarkers 

shared in multiple cancers, we utilized the existent protein-protein interaction data. In brief, the 

Search Tool for the Retrieval of Interacting Genes (STRING) database (version 10.0) [24] provides a 

comprehensive analysis and integration of protein-protein interactions, including direct physical 

connections and indirect functional associations such as co-expression in multiple dataset. The output 

from the STRING results were further visualized by using Cytoscape 3.7.1, which is easy to depict 

the genes from different functional groups [25]. In addition, the plug-in app cytohubba in Cytoscape 

was downloaded and installed to explore the hub genes [26]. Using the top scores of the Maximal 

Clique Centrality (MCC) algorithm, the hub genes with high connectivity in the gene expression net-

work were eliminated and clustered.   

2.7. Survival and mutational analysis of the top module genes in TCGA database  

Using 10967 samples from 33 TCGA pan-cancer study, we further explored the potential clinical 

application of those key genes identified in the network modules. For instance, mutational analysis 

was performed to investigate the single-nucleotide somatic mutation and copy number variation pat-

tern of the genes from the top module at a pan-cancer level [27]. The frequency of genetic alteration 

was further plotted based on the number of tumor samples containing the somatic mutation, copy 

number alteration associated with the key network genes. Additionally, we associate the genes to 

patient overall survival data from TCGA by classification of all patients into altered and unaltered 

groups using cBioportal [28]. To focus on the reliable result, the log-rank analysis and Kaplan–Meier 

plots were generated.  

3. Results 

3.1. Identification of potential biomarkers in cfDNA 

To collect the high-quality genetic variations in cfDNA for liquid biopsy biomarker, we searched 

SRA and downloaded raw sequence data from 14 projects involving seven major cancer types. Firstly, 

we performed a gene-based annotation of all called variants to remove non-functional variants and 

identified a total of 896193 exonic SNVs or indels (Figure 2A). Secondly, to further minimize the rate 

of false-positive calls, variants from different cancer types were combined and duplicate variants 

were removed, leaving a total of 858,176 variants. Figure 2B and Figure 2C show how the variants 
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were distributed and shared across different cancer types. Thirdly, variants present in at least 3 cancer 

types were selected to refine the list to 6981 for downstream analysis. A total of 129 variants were 

predicted to be deleterious by a combination of two pan-genome prediction scores (CADD and 

FATHMM-XF). The 116 corresponding potential biomarkers then were used for further analysis (Ta-

ble S1). 

 

Figure 2. Summary of cfDNA sequence data processing results. (A) Detailed steps for variant call-

ing, filtration, and biomarkers prediction. (B) A bar chart indicates the number of variants called for 

different cancer types. (C) Venn diagram depict the overlap of somatic variants detected in various 

cancer types. 
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3.2.  KEGG pathway analysis confirmed the close relationship between ribosome and cancer 

 

Figure 3. The functional enrichment analysis of potential cancer biomarkers in cfDNA. (A) The 

significant enriched gene ontology (GO) terms. (B) All enriched KEGG pathways with statistical sig-

nificance. (C) The overlapping of the top GO terms and the most frequent mutated genes. 

As shown in Figure 3A, the top GO terms of cellular component, molecular function and biolog-

ical process includes co-translational protein targeting to membrane (adjusted P-value = 1.326E-21), 

protein targeting to ER (adjusted P-value = 2.894E-19), translational initiation (adjusted P-value = 

8.101E-17), mRNA catabolic process (adjusted P-value = 2.941E-16), establishment of protein locali-

zation to endoplasmic reticulum (adjusted P-value = 5.164E-19), and cytosolic ribosome (adjusted P-

value = 4.468E-20) (Table S2).  

Additional signaling pathway analysis (Table S3) were conducted. For instance, the KEGG anal-

ysis showed that the biomarkers were mainly enriched in Ribosome, Oxidative phosphorylation, Pro-

teasome, and other signaling pathways (Figure 3B). Ribosomes, for instance, are important for the 

translation of mRNA-contained information into functional proteins, which is align well with the 

enriched GO function “co-translational protein targeting to membrane” [29]. More interesting, hy-

peractivation of ribosome biogenesis, which can be triggered by oncogenes or the loss of tumour 

suppressor genes, plays an essential role in the initiation and progression of cancer [30]. Recent stud-

ies suggest that both increased numbers and altered modifications of ribosomes may contribute to 

the cancer development. For instance, multiple cancers, including endometrial cancer, high-grade 

gliomas, colorectal cancer, acute and chronic lymphocytic leukaemia, have been found to contain 

ribosomal genetic mutations [31]. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 June 2023                   doi:10.20944/preprints202306.0288.v1

https://doi.org/10.20944/preprints202306.0288.v1


 

The OXPHOS (oxidative phosphorylation) metabolic pathway is another significant pathway 

that deserves mention. It produces ATP by transporting electrons to the electron transport chain, a 

series of transmembrane protein complexes in the mitochondrial inner membrane (ETC) [32,33]. Can-

cer cells require OXPHOS, and cancer stem cells are frequently characterized by an increased reliance 

on OXPHOS [34]. Downregulation of OXPHOS is frequently correlated with poor clinical outcomes 

and metastasis [35]. Inhibition of OXPHOS has also been shown to reduce oxygen consumption rate 

(OCR) and alleviate hypoxia in tumors [32]. 

3.3. Network analysis revealed hub genes associated with cancer development 

 

Figure 4. The network analysis of potential cancer biomarkers in cfDNA. (A) Visualized PPI anal-

ysis of biomarker genes. (B) 25 genes in module 1 with the highest Maximal Clique Centrality (MCC) 

scores. (C) Interconnection of 10 hub genes; the color represents MCC scores, darker is higher. (D) 

The overlap of identified biomarkers (CDGs) with CIGs (cancer initiation genes), OCGs (oncogenes), 

and TSGs (tumor suppressor genes). 

To evaluate the interactive relationships among identified biomarkers, we mapped them to the 

STRING database. The final interactome contains 115 genes and 477 connections. In the network, the 

average node degree is 8.3 and the average local clustering coefficient is 0.506. The Protein-protein 

interaction (PPI) enrichment P < 1.0E-16 (Figure 4A). In sum, these topological characteristics of the 

network indicate that the genes within it can exchange information efficiently. 

Then, we utilized the Molecular COmplex DEtection (MCODE) application to identify clustered 

modules throughout the entire network. The network consisted of 5 modules, and with the top mod-

ule containing 25 nodes and 262 edges. The 25 genes in the top module were selected for alteration 
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frequency and survival analysis (Figure 4B). Based on the MCC (Maximal Clique Centrality) scores, 

we prioritize the most stable hub genes in the network including RPS15A, RPS23, RPS9, RPS21, 

RPS14, RPS25, RPS6, RPL27, RPL35A, and UBA52 (Figure 4C). Among these genes, RPS15A (Riboso-

mal protein s15a) has been shown related to many cancers in previous studies. As a component of 

the 40S subunit, increased RPS15A expression is closely correlated with poor prognosis in gastric 

cancer (GC) patients and promotes epithelial-mesenchymal transition (EMT) and GC progression, as 

demonstrated [36].  

3.4. Overlapping with OCGs, TSGs, and CIGs revealed multiple roles played by identified biomarkers 

In order to evaluate the roles of the potential biomarkers in cancer progression, we mapped the 

genes to known oncogenes (OCGs) [37], tumor suppressor genes (TSGs) [5], and cancer initiation 

genes (CIGs) [38]. This analysis identified 10 biomarker genes reported as either CIGs, OCGs, or TSGs 

(Figure 4D) (Table S4). These genes included DUSP12, VIM, FOS, UBE2C, MIEN1, HINT1, LITAF, 

GABARAP, PFN1, and MLF2. As a member of the E2 ubiquitin-conjugating enzyme family, UBE2C 

is overexpressed in all 27 cancers and patients with higher UBE2C expression levels exhibited a 

shorter overall survival duration [39]. Another interesting gene is LITAF (Lipopolysaccharide-in-

duced tumor necrosis factor-α factor). It possesses transcription factor activity and is involved in the 

regulation of protein quality. Previous research has suggested that LITAF functions as a TSG and is 

frequently underrepresented in prostate, pancreatic, and stomach cancers [40]. Taken together, these 

findings confirmed the significance of these biomarkers in the development of cancer, indicating their 

potential use in clinical diagnosis. 

3.5. Patients with altered genes in the top functional module has a significantly worse overall survival rate 

The frequencies of genetic alterations of the 25 genes in the top module were evaluated using 

the cBioPortal database. Approximately 27% of clinical cases from 32 different cancer studies exhib-

ited significant alterations in the 25 genes (Figure 5A). Kaplan-Meier plots were used to compare 

Overall survival in 10953 patients with or without alterations in the 25 hub genes (Figure 5B). It was 

revealed that cases with altered genes exhibited significantly worse OS compared to those with un-

altered genes (P value=6.639E-5).  

 

Figure 5. The mutational and clinical feature of the 25 genes in the top functional module. (A) The 

mutational frequency across multiple cancer types; the percentages of cases with the 25 altered genes 

was depicted in the y axis. (B) The overall survival analysis of patients with altered (red) and unal-

tered (blue) 25 genes from the top functional module. 
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4. Discussion 

Numerous studies have demonstrated the potential of cfDNA as a biomarker for the early de-

tection of cancer. However, the accuracy of cfDNA-based tests faces significant obstacles [2]. Previous 

cfDNA studies focused on a single tumor type or the results from a single cohort study [41,42], but 

there is no systematic examination of high-quality variants in different cancer types. In order to col-

lect high-quality biomarkers in cfDNA, we constructed a computational pipeline to screen genetic 

variants shared by multiple tumor types based on the raw sequence data in the SRA databases.  

In total, we identified 116 potential biomarkers following variant calling and filtering pipeline. 

As was suggested by functional enrichment analysis, these biomarker genes were mainly involved 

in the ribosome pathway confirming the close relationship between ribosome and cancer develop-

ment, which contradicts the view held until recently that ribosomes played a rather passive role as 

the only molecular factory in the translation process [43]. Recent studies have linked the altered ribo-

some and dysregulated expression of specific ribosomal proteins to cancer initiation, evolution, and 

progression (RP) [44]. As an example, the correlation between accelerated colorectal cancer (CRC) 

cell growth and alterations in particular steps of ribosome biogenesis is cited as a key factor in cancer 

initiation [45]. Erica Buoso et al. provided an analysis on how ribosomes translate cancer progression 

in breast cancer through the ribosomal protein RACK1 [46]. Amandine et al. provided evidence sup-

porting the role of altered ribosome components in the development of cancer and argued that ribo-

somes may play a crucial role in the acquisition and maintenance of the cancer stem cell phenotype 

[43]. Our study confirmed the association between ribosomes and cancer by statistical analysis of 

large-scale genomic data from multiple cancer types. It also indicated targeting ribosome pathway 

is another promising possibility for developing a cancer therapeutic strategy. 

The ctDNA, which is a portion of the cfDNA released from the blood of cancer patients by tu-

mour cells via apoptosis, necrosis, or active release, is another intriguing aspect of our data. As a new 

type of cancer biomarker, tumor-specific mutations in the ctDNA sequence can be used to identify 

cancer patients. To evaluate tumour heterogeneity, cfDNA-based liquid biopsy is less invasive, more 

feasible, and more comprehensive than tissue biopsy due to the rapid development of next-genera-

tion sequencing (NGS) technology. However, the use of ctDNA sequencing for cancer screening and 

early diagnosis is hindered by a low concentration of ctDNA in the blood and an increase in false 

positives resulting from normal healthy cells. This study developed a systematic pipeline that inte-

grated a combination of prediction algorithms with optimised parameters to analyse raw sequencing 

data of cfDNA from various cancer types and identify high-quality variants in order to identify reli-

able biomarkers for cfDNA tests. 

Raw sequence data in FASTQ format were downloaded from public available SRA database, 

these data come from 14 projects involving seven major cancer types. By applying the systematic 

pipeline, 116 biomarker genes shared by different cancer types were screened out.from a total of 

896,193 exonic SNVs or indels. Functional enrichment analysis shows that these biomarker genes are 

mainly involved in the ribosomal pathway, implying the close relationship between ribosomes and 

cancer development. By cross-referencing these 116 biomarker genes with known oncogenes, tumor 

suppressor genes, and cancer initiation genes, 10 genes were identified with multiple roles in cancer 

development. Then the importance of these biomarkers in cancer development were confirmed im-

plying their potential application for clinic diagnosis. In summary, this study provided new insight 

to identify high-quality genetic variants in cfDNA across different cancer types enabling a better ap-

plication of cfDNA as a non-invasive diagnostic clinical biomarker for early detection of cancers. 
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downloaded at the website of this paper posted on Preprints.org, Table S1. The 

14 bioprojects related to circulating cell-free DNA integrated in this study. Ta-
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S3. The gene ontology enrichment of the 116 genes. Table S4: The KEGG anal-

ysis for the 116 genes. 
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