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Abstract: Lithium-ion batteries serve as the primary sources of power for electric vehicles (EVs) and 
hybrid electric vehicles (HEVs). For vehicle applications, battery management systems (BMSs) are 
necessary to protect lithium-ion batteries from overheating and to ensure optimum vehicle 
performance. Our approach to developing a BMS was based on recent advances in the application 
of phase field models for lithium-ion batteries. In particular, our reduced-order model (ROM) 
utilized a dataset generated from the COMSOL® Multiphysics simulation of the Cahn–Hilliard 
equation for a single particle of a lithium iron phosphate (LiFePO4) cathode: an example of using a 
reduced-order model (ROM) based on a single-particle model (SPM). The main innovation of our 
ROM is that the SPM is fully coupled to a heat transfer model at the battery cell level. We utilized 
principal component analysis to identify a lower-order model that could reproduce the battery’s 
voltage and temperature response for ambient temperatures ranging from 253 to 298 K and for 
discharge rates ranging from 1 C to 20.5 C. The reduced-order dataset was then fitted to the 
experimental data for an A123 Systems 26650 2.3 Ah cylindrical battery using deep neural network 
(DNN) regression. The entire BMS is realized in conjunction with a digital-twin (DT) configuration 
with an offboard COMSOL® Multiphysics SPM simulation and training of the DNN, allowing the 
ROM to be periodically updated by retraining the DNN for aging batteries and actual operating 
conditions. In this configuration, only the trained DNN predictor function is onboard and in real 
time. 

Keywords: lithium-ion batteries; LIB; LiFePO4; electric vehicles; Cahn–Hilliard; principal  
component analysis, neural networks 

 

1. Introduction 

Global oil resources will eventually dry up and fossil-fueled vehicles are a major source of 
greenhouse emissions. There is an ongoing global trend of electrifying transportation, and as a result, 
intensive research is being conducted into electric vehicles and hybrid electric vehicles (EVs and 
HEVs) [1,2]. Lithium-ion batteries have become the most promising choice for EVs due to their high 
energy density and long cycle life [3,4]. For EV applications, battery management systems (BMSs) are 
necessary to prevent Li-ion batteries from overheating and overcharging and avoid potential thermal 
runaway. Currently, BMSs cannot store and process large amounts of data while managing the 
battery’s state of charge (SOC), voltage, and temperature in real time [5-7]. To address this 
shortcoming, additional research is needed to develop reduced-order models (ROM) that can both 
model complex battery mechanisms and provide real-time management data. Applications of 
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machine learning (ML) and artificial intelligence (AI) are fertile areas for eventual solutions to this 
problem. 

Models that describe battery dynamic processes at all levels are not feasible. Therefore, 
mechanistic battery models, referred to as full-order models (FOMs), need to be tailored to specific 
purposes that require a deep understanding of a particular aspect of the battery’s operation and 
performance. Many mechanistic models have been developed specifically to describe battery thermal 
behavior [8–12]. In general, models for analysis and diagnosis purposes employ detailed simulations 
of the battery’s physics and, thus, are often multidimensional, multiphysics models and are 
computationally slow. Models for control and optimization applications are usually computationally 
fast, but provide a limited description of the underlying physics. The most commonly used 
mechanistic model for single-battery cells is a lumped parameter simplification of a FOM called the 
pseudo-two-dimensional (P2D) model. Even given P2D simplifications of battery homogeneity and 
a constant electrode thickness, P2D models still use more than fifteen parameters specific to a 
particular battery and their computational cost is still too high for control and optimization 
applications. On the other hand, P2M parameters are too lumped to provide much insight into the 
underlying phenomena [13,14]. Decades of research have been conducted to develop reduced-order 
models (ROMs) that adequately retain the robustness of FOMs without excessive computational 
complexity. The state of the art for the various methods of achieving Li-ion battery ROMs has recently 
been reviewed in the literature [15,16]. We limit our following discussion of such methods to 
equivalent circuit models (ECMs), their model-based extensions, and the single-particle model 
approximation. These methods are most pertinent since our ROM, developed in the following 
sections, is a single-particle application and is most likely to be used instead of or alongside an ECM. 

ECMs that do not consider fundamental physics have been extensively used to imitate the 
relationships between battery input and output systems while offering real-time computation [17–
22]. ECMs use electrical circuits to simulate lithium-ion cells utilizing capacitors to shape the battery 
capacity, while variable resistors and controlled-voltage sources shape the temperature effect or SOC 
variations. Black-box modeling is another extensively applied method to provide real-time 
computation. It relies on developing an equivalent transform function with different inputs and 
outputs. Like ECMs, this method depends on experimental data for a specified battery [23]. ECMs 
and transform functions are generally implemented in a “mixed approach” along with thermal and 
aging models, as shown in Figure 1 [24]. 

 
Figure 1. Equivalent-Circuit-Model-Based Battery Management System. 

Model-based methods have been developed that have greatly enhanced the basic ECM. Some of 
the predominant model-based methods have been recently reviewed in the literature including the 
Luenberger, sliding mode, Kalman filter, and proportional integral (PIO) methods [25–30]. Model-
based methods have a battery model at their core that uses measured current and voltage signals to 
provide a closed-loop estimation method. These methods typically use static models where model 
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parameters are applied offline and assumed to not change over time. However, these models often 
do not ensure sufficient accuracy over a broad range of operation conditions and long time frames. 
In light of this, efforts have been made towards online model adaptation methods, including 
population-based optimization, dual filtering, and least squares (LS)-based methods such as moving 
window LS, continuous-time LS, and recursive least squares (RLS) [31–33]. 

Lithium iron phosphate (LiFePO4) is the most frequently used phosphate-based cathode material 
in Li-ion batteries. LiFePO4 has a strong tendency to separate into solid high-Li+-concentration and 
low-Li+-concentration phases, leading to the battery’s characteristic broad voltage plateau at room 
temperature [34–39]. Traditionally, mathematical models of intercalation dynamics in LiFePO4 
cathodes were based on spherical diffusion or the shrinking core concept [40–42]. However, recent 
experimental and theoretical progress suggests that a more realistic SPM should encompass a phase 
field model for equilibrium and nonequilibrium solid-solution transformations [43–47]. A phase-field 
model is a computational method for modeling morphological and microstructure evolution in 
materials. They have been proposed for solid-state phase transformations, grain growth and 
coarsening, microstructure evolution in thin films, and crack propagation [48–51]. Research is 
currently underway that seeks to bridge the gap between phase-field mesoscale models and macro 
battery properties. For example, (Yuan et al. [52], 2021) recently used a phase field modeling approach 
to develop a physics-based, fully coupled model that bridges dendrite and crack propagation at the 
micro level with macrostate battery charging and discharging [53]. Another application (Zeng & 
Bazant [54], 2013) demonstrated a method for estimating the voltage plateau of LiFePO4 batteries 
based on the Cahn–Hilliard phase field model solution for a single cathode particle. Our ROM was 
motivated by (Zeng & Bazant, 2013), and the spatial mass transfer elements of our 3-D COMSOL® 
Multiphysics finite element solution are similar to their 1-D, isotropic, and isothermal solution. The 
major enhancement of our single-particle model (SPM) is that it is a multiphysics thermal model that 
fully couples the battery cell’s heat transfer model. Statistically, we relate the SPM simulation to 
battery cell property estimation. Specifically, the plateauing effect of the battery’s voltage response 
at higher ambient temperatures and the apparent diffusion-controlled behavior at lower 
temperatures are related to the SPM by statistical inference. Our SPM is a specific example of a widely 
used method for order reduction in P2D based on a single-particle model that aims to enhance 
computational run time while retaining elements of the underlying physics, as opposed to an ESM 
[55,56]. In the single-particle thermal model preparation, the local potential and concentration 
gradients in the electrolyte phase were ignored and accounted for by utilizing a lumped solution 
resistance term. Likewise, the potential gradient in the solid phase of the electrodes was dismissed, 
and the porous electrode was considered as a large number of individual particles, all subjected to 
the same conditions. These assumptions are generally only valid under relatively low current rates 
and the SPM is not recommended for high-power applications, such as fast EV charging and 
operations involving high-power pulses, but it is well-suited to daily EV driving, where the operating 
ranges are less extreme. These shortcomings of the SPM are not prohibitive for our ROM since we 
did not attempt to model the battery voltage response by directly scaling up the SPM, but sought to 
only retain enough information from the SPM to make statistical inferences concerning the macro 
battery properties. The ROM was realized by subjecting the raw simulation results from the 
COMSOL® Multiphysics simulation data to principal component analysis (PCA) to determine the 
lowest-order simulation dataset capable of fitting the experimental data using deep neural network 
(DNN) regression. We validated our SPM based on available experimental data for the A123 Systems 
26650 2.3 Ah battery [57].  

2. Methods and Materials 

The scope of our modelling effort is as follows 
1. Use experimental charge/discharge and heat transfer data for the A123 Systems 26650, 2.3 Ah 

lithium-ion battery to estimate the parameters of our SPM. 
2. Use the simulation results from the SPM and experimental data to train and test a DNN. 
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3. Train and test the same DNN with a similar data set except it is derived from real time operation 
data for the extreme road test: Up Mount Sano in Huntsville, AL 
We are stating this here to avoid confusion by our discussion of the implementation of the SPM 

and DNN in an actual BMS in the following sections. 

2.1. COMSOL Simulation of the Cahn–Hilliard Single-Particle Model 

Our SPM poses the Cahn–Hilliard equation in COMSOL® Multiphysics’ standard PDF format 
as two coupled second-order PDEs in ion concentration and chemical potential, respectively. Details 
of the model variables along with all parameter magnitudes and units from the following equations 
are given below in the nomenclature section. We assumed the particles to be spherical and isotropic. 
The model equations are given below, where the overbar denotes dimensionless parameters and 
variables. We provide only the main points of the derivation of the Cahn–Hilliard equation and refer 
the reader to (Zeng & Bazant, 2013) for more details. The diffusional chemical potential based on the 
regular solution model and acquired from the Cahn–Hilliard free energy functional is 

µ� = −𝑘𝑘𝑏𝑏𝑇𝑇ln[ 𝑐𝑐̅
1−𝑐𝑐𝑚𝑚

] + 𝛺𝛺�(𝑐𝑐𝑚𝑚−𝑐𝑐̅)
𝑐𝑐𝑚𝑚

− 𝛫𝛫𝑉𝑉𝑠𝑠
cm

𝛻𝛻�2𝑐𝑐̅  (1) 

The basic equation of evolution for mass conservation is 
𝜕𝜕𝑐𝑐̅
𝜕𝜕𝑡𝑡̅

= −𝛻𝛻� · 𝑞𝑞�  (2) 

The ion flux is driven by the gradient of the diffusional chemical potential as  

𝑞𝑞� = −𝐷𝐷𝑂𝑂(𝑐𝑐𝑚𝑚−𝑐𝑐)̅
𝑘𝑘𝑚𝑚𝑇𝑇𝑐𝑐𝑚𝑚

𝛻𝛻�µ� . (3) 

Voltage enters the Cahn–Hilliard SPM through Butler–Volmer kinetics obtained from transition 
state theory for concentrated solutions as 

𝐼𝐼 ̅ =  𝐼𝐼0̅[𝑒𝑒𝑒𝑒𝑒𝑒(− 𝛼𝛼 �̅�𝜂) 𝑖𝑖 − 𝑒𝑒𝑒𝑒𝑒𝑒�(1 −  𝛼𝛼)�̅�𝜂�].  (4) 

where α is the electron transfer symmetry factor, η = ∆ϕ − ∆ϕeq is the surface overpotential because 
of the activation polarization, ∆ϕ is the local voltage drop across the interface, and ∆ϕeq is the Nernst 
equilibrium voltage. The boundary conditions we implemented in the dimensionless form are 

𝑞𝑞�(𝑜𝑜, 𝑡𝑡) = 0,  

𝑛𝑛 � ·  𝑞𝑞�(1, 𝑡𝑡) = −𝑞𝑞�,  

𝑛𝑛�  ·  𝛻𝛻�𝑐𝑐̅(0, 𝑡𝑡) = 0,  

𝑛𝑛�  ·  𝛻𝛻�𝑐𝑐̅(1, 𝑡𝑡) = 0.  

2.2. Coupling the Heat Transfer Model to the Cahn–Hilliard Equation 

Transient temperature response and thermal power conservation were incorporated into the 
ROM by an enthalpy balance on the bulk battery. An A123 Systems 26650 2.3 Ah cylindrical battery 
was selected because it is extensively studied and property data are readily available. The battery 
specifications are shown in Table 1. 

Table 1. Specifications for Systems A123 2.3 Ah Lithium-ion Battery. 

Nominal capacity and voltage 2.3 Ah, 3.3 V 
Internal impedance (1 kHz AC) 8 mΩ typical 
Internal resistance 10 A, 1 s DC 10 mΩ typical 
Recommended charge method 3 A to 3.6 V CCCV, 45 min 
Recommended fast charge current 10 A to 3.6 CCCV 
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Maximum continuous discharge 70 A 
Pulse discharge at 10 s 120 A 
Cycle life at 10 C discharge Over 1000 cycles 
Recommended pulse charge/discharge cutoff 3.8 V to 1.6 V 
Operating temperature range 243 K to 333 K 
Core cell weight 70 g 

A cylindrical Li-ion battery is constructed by rolling a stack of cathode/separator/anode layers. 
The individual layered sheets are thin, and lumped parameters are used. Therefore, material 
properties such as thermal conductivity, density, and specific heat capacity are presumed to be 
constant in a homogeneous and isotropic body. In the axial direction, the thermal conductivity is one 
or two orders of magnitude higher than in the radial direction, leading to a relatively uniform 
temperature distribution in the axial direction [58,59]. Additionally, considering natural convection, 
the heat transfer at the surface is much smaller than the internal heat transfer by conduction, leading 
to negligible temperature gradients inside the battery. Based on these assumptions, the energy 
balance equation in the battery can be expressed by one bulk volume-averaged temperature. To 
estimate the thermal response of the battery, we utilized a simplified energy balance equation for the 
enthalpy change for electrochemical reactions [60]. Assuming a constant system volume and pressure 
and neglecting heat generation because of enthalpy of mixing, the energy balance equation is 
presented as 

𝑀𝑀 𝑐𝑐𝑝𝑝  𝜕𝜕𝑇𝑇
𝜕𝜕𝑡𝑡

=  𝐼𝐼 �𝑉𝑉𝑜𝑜𝑐𝑐 − 𝑇𝑇 𝜕𝜕𝑉𝑉𝑜𝑜𝑜𝑜
𝜕𝜕𝑇𝑇
� − 𝐼𝐼𝑉𝑉 + �̇�𝑞sur  (5) 

The term 𝑇𝑇 𝜕𝜕𝑉𝑉𝑜𝑜𝑜𝑜
𝜕𝜕𝑇𝑇

 stands for reversible heat generation and can be calculated from the entropy of 
the reaction [61]. In this study, this reversible heat generation was ignored for simplicity. This 
simplification is justified since it is insignificant for the LiFePO4 chemistry [62,63]. Assuming this 
simplification, the OCV becomes a function of SOC only, and Equation (5) was solved exactly for the 
battery’s temperature response. 

T�(t) = T𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. −
𝑒𝑒
−Ab h𝑜𝑜 𝑡𝑡
cp 𝜈𝜈 𝜌𝜌 �−1+𝑒𝑒

A𝑏𝑏 h𝑜𝑜 𝑡𝑡
cp 𝜈𝜈 𝜌𝜌 �I𝑏𝑏(V�(T)−V�oc)

A𝑏𝑏 h𝑜𝑜
  (6) 

The temperature enters the Cahn–Hilliard model via Equation (1) as 

µ (𝑇𝑇)������� = −𝑘𝑘𝑏𝑏𝑇𝑇�(𝑡𝑡)𝑙𝑙𝑛𝑛[ 𝑐𝑐̅
1−𝑐𝑐𝑚𝑚

] + 𝛺𝛺(𝑇𝑇)�������(𝑐𝑐𝑚𝑚−𝑐𝑐)̅
𝑐𝑐𝑚𝑚

− 𝛫𝛫𝑉𝑉𝑠𝑠
𝑐𝑐𝑐𝑐

𝛻𝛻�2𝑐𝑐̅  (7) 

Assuming that the ion activity in the electrolyte adjacent to the particle (based on the 
dimensionless ion concentration) is 1.0, ∆ϕeq = −µ/e. This provides the voltage profile for the single-
particle battery 𝑉𝑉 =  𝑉𝑉𝜃𝜃 + 𝜂𝜂 −  µ/𝑒𝑒, where Vθ is the standard potential defined by the half-cell voltage 
(3.42 V vs. Li metal). The solution for η gives the voltage response of the single-particle battery as 

𝑉𝑉 +  𝑉𝑉𝜃𝜃  = 𝜂𝜂 = + µ
𝑒𝑒

 =   𝑘𝑘𝑏𝑏𝑇𝑇
𝑒𝑒

(−µ� − 2𝑠𝑠𝑖𝑖𝑛𝑛ℎ−1 � 𝐼𝐼̅

𝐼𝐼0(𝑐𝑐̅)��������)  (8) 

2.3. Digital Twin Configuration of BMS 

In this section we describe how our SPM and DNN fit into an actual BMS. This is necessary 
because both components must have on-board and off-board configurations The value of our 
approach is realized in conjunction with a digital-twin (DT) configuration with an offboard 
COMSOL® Multiphysics SPM simulation and training of the DNN, allowing the ROM to be 
periodically updated by retraining the DNN for aging batteries and actual operating conditions. In 
this configuration, only the trained DNN predictor function is onboard and in real time. Our 
approach to implementing a DT for lithium-ion batteries follows the process of (Singh et al. [61], 
2021). There is some ambiguity as to what constitutes a DT and it may be more appropriate to refer 
to our process as a part of the DT for the entire EV but the main focus is to designate on-board and 
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off-board components and the flow of information between the components. At a minimum the DT 
configuration for a BMS, as shown schematically in Figure 2, shows the role of the SPM and the DNN.  
In Figure 2 we refer to the COMSOL® Multiphysics finite element simulation of the SPM in the 
terminology of (Singh et al., 2021) as a heavyweight model because it has a relatively larger number 
of parameters that are related to the actual underlying physics of the battery.  The SPM is 
computationally slow and must be run off-board. Also, in Figure 2 we refer to the on-board trained 
DNN predictor function that replaces the traditional ECM as the lightweight model because it is 
computationally fast and efficient and does not reflect the underlying physics. We envision the DNN 
predictor function as the only component of our ROM that resides on-board and in real time.  The 
SPM calculates electrical, chemical, and electrochemical phenomena to predict the battery’s 
performance and lifespan. Thus, providing for a deeper understanding of aging mechanisms, 
accurately predicting battery performance by considering the material characteristics, mass, heat and 
energy transfer and the electrode design.  

In the initial step of developing the COMSOL® Multiphysics SPM, accurate datasets and 
manufactures’ data was used to develop estimates of the SPM physical parameters. This initial data 
is not EV operational data and tends to be collected in carefully controlled experimental conditions 
on individual cells or packs.  This initial data having served its purpose for parameter estimation 
cannot be treated statically because the battery’s response changes over the lifetime of the battery.  
Battery cells and packs cannot be pulled from the EV and lab tested so updating of the SPM must rely 
on operational data or off-board experiments that mimic EV operation. In our BMS we assume that 
operational data with sufficient quality and or filtering is available for updating the SPM.  The on-
board DNN predictor function, however, is updated using real time operation data. As Figure 2 
indicates, the DNN updates both the on-board trained DNN predictor function for on-board battery 
management and the SPM. During normal operation, model parameter update estimation will 
periodically retrain the onboard DNN predictor function and update the SPM. There is only one 
DNN but its training inputs come from two sources; the SPM and EV real time operation data.  The 
methodology for obtaining the training data is given in Section 2.4. We do not address the medium 
by which the components of the BMS acquire the information that we prescribe.  Suffice it to say that 
research and applications are underway into IoT devices, 4G and 5G networks, cloud computing, and 
artificial intelligence that can augment our model. 

 
Figure 2. DT configuration showing the role of the DNN and SPM according to the process of Singh 
et al., 2021. 
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2.4. Generating the Dataset from the COMSOL® Multiphysics Simulation 

To create the simulation dataset over a large range of conditions, we ran the COMSOL® 
MULTIPHYSICS simulation for temperatures ranging from 253 to 298 K. Each run of the COMSOL® 
MULTIPHYSICS simulation created a vector of length 100, consisting of the right-hand side of 
Equation (8). All the vectors were stacked column-wise into an array to form the matrix shown in 
Figure 3. 

 

Figure 3. Schematic of the COMSOL®-simulated data for the Systems A123 2.3 Ah lithium-ion 
battery. 

We then stacked the experimental voltage responses for the A123 Systems 26650 cylindrical 2.3 
Ah cell column-wise to form the matrix shown in Figure 4. 

 

 
Figure 4. Schematic of the experimental voltage data. 

As shown in Figure 2, the training parameters for the DNN come from two sources, the SPM 
and from the EV’s on-board sensors and computer. The DNN training parameters from the SPM 
simulation before and after PCA are shown in Figure 5.  The resulting input from the SPM is a rank 
five array of column vectors. The input parameters for training the DNN to update the on-board 
DNN predictor function for battery management and updating the SPM are estimates of the same 
SPM parameters derived from the EV’s sensor data. These inputs are also shown in Figure 5. We 
relate 𝑐𝑐̅ to SOC as a fraction the same as (Zeng & Bazant, 2013) and the temperature (𝑇𝑇𝑠𝑠) and the 
current  (𝐼𝐼𝑠𝑠) are EV sensor data. The voltage plateau for the half-filled particle (Vc(12)est) is scaled to 

 𝐼𝐼𝑠𝑠 and 𝑘𝑘𝑏𝑏𝑇𝑇
𝑒𝑒

µ�𝑒𝑒𝑠𝑠𝑡𝑡 is estimated from Equation (7) by setting the penalty function coefficient (𝛫𝛫) to zero. 
All of these parameters are defined below in the nomenclature section. 

 
Figure 5. (Left) DNN training input from SPM before and after PCA; (Right) Estimated parameters 
and EV sensor data. 

2.4. Developing the DNN 

The DNN was coded in the Wolfram language as a Mathematica® notebook. Sufficient detail is 
given in Figure 6 to duplicate our results given a simulation dataset. 
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Figure 6. Mathematica code for the DNN; (a) We used PCA to determine the minimum number of 
features for the ROM from the simulation dataset (A, Figure 3) that adequately fit the experimental 
data (V, Figure 4); (b) Eighty percent of the reduced-order dataset was randomly selected for training 
and twenty percent for testing; (c) The training data were then normalized to mean = 1.0 and standard 
deviation of 0.0 and the test data were standardized relative to the mean and standard deviation of 
the training data; (d) The DNN was constructed and trained using a mean absolute loss layer and 
RMS propagation for gradient descent. 
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Figure 7. (Left)): Layer details of the DNN. (Right): Error report for DNN testing and comparison plot 
(blue circles are actual predictions and the dashed line are perfect predictions) 

3. Results and Discussion 

As shown in Figure 7, the DNN is a simple feed forward neural network (FNN) with nine hidden 
layers, consisting of five linear layers and four elementwise scaled exponential linear layers (SELU). 
The DNN has a rank five vector input for training and a scaler output. The residual plot and error 
report for the predicted and experimental values are also shown in Figure 7. The important things to 
note in the error report for the trained DNN predictor function is the regression correlation coefficient 
and the speed of the processing of examples in this case on a desktop computer CPU. We tested and 
verified the DNN for a 1 C discharge rate for ambient temperatures ranging from 253 to 298 K, as 
shown in Figure 9. Also, in Figure 9, the model results are compared to the experimental results for 
discharge rates ranging from 6.8 to 20.5 C for an ambient temperature of 298 K [65]. 

We tested the DNN predictor function using the road test: Up Mount Sano in Huntsville, AL 
[66].  This is an extreme road test and we had to input a moving average of the current data. Figure 
10 shows the DNN fit for the road test data for 15, 30, and 60 second update times for the moving 
average.  Longer update time on the order of 60 seconds would be necessary for updating the SPM.  
If shorter than 15 seconds updating is necessary it would be necessary to modify the DNN at the 
expense of computation complexity perhaps requiring on-board GPU capability. 
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Figure 9. (Top): Voltage response of DNN for temperature range 253–298 K and 1 C discharge. 
(Bottom): Thermal model validation for fast discharge at ambient temperature of 298 K. 

 
Figure 10. Onboard DNN predictor function testing for road test: “Up Mount Sano in Huntsville, AL” 
for 15, 30 and 60 second updating. 
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4. Conclusions 

Our ROM was motivated by (Zeng & Bazant, 2013) and the spatial mass transfer elements of our 
3-D COMSOL® Multiphysics finite element simulation are similar to their 1-D isotropic and 
isothermal solution. The major enhancement of our single-particle model (SPM) is that it is a 
multiphysics, thermal model that fully couples the battery cell’s heat transfer model. The battery cell 
level thermal model is a robust macro enthalpy balance for the battery despite the simplifying 
assumptions. The OCV in Equation (5) provides an approximation of the voltage profile of the 
limiting reversible cycle and allows for an explicit estimation of the cell’s temperature profile based 
on the updated voltage. We relate the SPM simulation statistically to the battery cell voltage and 
temperature responses. Specifically, the plateauing effect of the battery’s voltage response at higher 
ambient temperatures and the apparent diffusion-controlled behavior at lower temperatures are 
related by statistical inference to the SPM. The ROM was realized by subjecting the raw simulation 
results from the COMSOL® Multiphysics simulation data to PCA to determine the lowest-order 
simulation dataset capable of fitting the experimental data. The reduced-order dataset was then fitted 
using DNN regression. The model was validated for discharge rates ranging from 1 C to 20.5 C and 
for ambient temperatures ranging from 253 to 298 K by comparison with the manufacturer’s 
experimental data. 

Aside from the SPM providing a robust thermal model the other significant outcome of our 
model has to do with the statistical inference we drew from the SPM for the initial training of the 
DNN and then retraining the DNN to reproduce the drive test data from: “Up Mount Sano in 
Huntsville, AL” with a simple FNN with only nine hidden layers. We believe this is evidence of a 
significant correlation between the meso-scale and macro-scale properties. In particular we associate 
this to the strong correlation between the single particle voltage for the half-filed particle and the 
macro cell voltage at 50% SOC where the chemical potential is at or near zero. 
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Nomenclature 

Ab Battery surface area Parameter 4.12 × 10−2 [m2] 
c Concentration Variable [mol m−3] 
𝒄𝒄 Dimensionless concentration Variable 

𝒄𝒄
𝒄𝒄𝒎𝒎

  

cm Maximum concentration Parameter 1.379 × 1028 [m−3] 
cp Specific heat coefficient Parameter 825 J [kg−1 K−1] 
hc Convection heat transfer coefficient Parameter 5.0 [W m−2 K−1] 
I Current Variable [A] 

𝑰𝑰 Dimensionless current Variable 
𝑹𝑹𝒑𝒑

𝒄𝒄𝒎𝒎 𝒏𝒏 𝒆𝒆 𝑫𝑫𝟎𝟎
 𝑰𝑰  

I0 Current density Parameter 1.6 × 10−4 [A m−2] 
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𝑰𝑰𝟎𝟎 Dimensionless current density Parameter 
𝑹𝑹𝒑𝒑

𝒄𝒄𝒎𝒎 𝒏𝒏 𝒆𝒆 𝑫𝑫𝟎𝟎
 𝑰𝑰𝟎𝟎  

Is Current from online sensors Variable [A] 
kb Boltzmann constant Constant 3.13 × 109 [eV K−1] 
q Radial flux Variable [s−1 m−2] 
𝒒𝒒 Dimensionless radial flux Variable 

𝑹𝑹𝒑𝒑
𝒄𝒄𝒎𝒎 𝑫𝑫𝟎𝟎 

 𝒒𝒒  

𝒒𝒒𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔.̇  Heat loss to surroundings Variable [W ] 
Rp Particle diameter Parameter 1 × 10−7 [m] 
T Temperature Variable [K[ 
Tsurrr. Surroundings temperature Parameter (253–298) [K] 
Ts Temperature from on-board sensor Variable [K] 
V Voltage Variable [V] 

𝑽𝑽 Dimensionless voltage Variable 
𝒆𝒆 𝑽𝑽
𝒌𝒌𝒃𝒃 𝑻𝑻

  

𝐕𝐕
𝐜𝐜�𝟏𝟏𝟐𝟐�

 Single particle voltage for half-filled 
particle 

Variable [V] 

𝐕𝐕
𝐜𝐜�𝟏𝟏𝟐𝟐�𝐞𝐞𝐞𝐞𝐞𝐞

)   Cell voltage at 50 % SOC  Variable [V] 
Vθ Reference voltage Constant 3.42 [V] 
VCH Voltage simulated by the SPM Variable [V] 

𝑽𝑽𝜽𝜽 Dimensionless reference voltage Constant 𝒆𝒆 𝑽𝑽𝜽𝜽

𝒌𝒌𝒃𝒃 𝑻𝑻
  

α Electron transfer symmetry factor Parameter 0.5 
η Activation potential Variable - 
𝜼𝜼 Dimensionless activation potential Variable 

𝒆𝒆
 𝒌𝒌𝒃𝒃 𝑻𝑻

 𝜼𝜼  

∆ϕeq Near-equilibrium voltage Variable [V] 
µ Chemical potential Variable [eV] 
𝛍𝛍 Dimensionless chemical potential Variable 

𝝁𝝁
𝒌𝒌𝒃𝒃 𝑻𝑻

  
𝒌𝒌𝒃𝒃𝑻𝑻
𝒆𝒆

𝝁𝝁 Potential energy term from the SPM Variable - 

𝒌𝒌𝒃𝒃𝑻𝑻
𝒆𝒆

µ�𝒆𝒆𝒔𝒔𝒆𝒆 
Potential energy estimated from Equation 
with 7 

Variable - 

VOC Open circuit voltage   
ν Battery volume Parameter 3.42 × 10−5 [m3] 
ρ Battery density Parameter 1824 [kg m−3] 
Ω Enthalpy of mixing Parameter 0.115 [eV] 

𝜴𝜴 Dimensionless enthalpy of mixing Parameter 
𝜴𝜴

𝒌𝒌𝒃𝒃 𝑻𝑻
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