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Abstract: Infrared detection plays an important role in the military, aerospace, and other fields, which

has the advantages of all-weather, high stealth, and strong anti-interference. However, infrared

dim small target detection suffers from complex backgrounds, low signal-to-noise ratio, blurred

targets with small area percentages, and other challenges. In this paper, we proposed a multiscale

YOLOv5-AFAM algorithm to realize high-accuracy and real-time detection. Aiming at the problem of

target intra-class feature difference and inter-class feature similarity, the Adaptive Fusion Attention

Module - AFAM was proposed to generate feature maps that are calculated to weigh the features

in the network and make the network focus on small targets. This paper proposed a multiscale

fusion structure to solve the problem of small and variable detection scales in infrared vehicle

targets. In addition, the downsampling layer is improved by combining Maxpool and convolutional

downsampling to reduce the number of model parameters and retain the texture information.

For multiple scenarios, we constructed an infrared dim and small vehicle target detection dataset,

ISVD. The multiscale YOLOv5-AFAM was conducted on the ISVD dataset, compared to YOLOv7,

mAP@0.5 achieves a small improvement while the parameters are only 17.98% of it. By contrast

with the YOLOv5s model, mAP@0.5 was improved by 4.3% with a 6.6% reduction in the parameters.

Experiments results demonstrate that the multiscale YOLOv5-AFAM has a higher detection accuracy

and detection speed on infrared dim and small vehicles.

Keywords: Infrared dim small targets; Object detection; Adaptive Fusion Attention Module; ISVD

1. Introduction

Infrared detection has the advantages of all-weather, high stealth, and strong anti-interference [1–4]. It

can realize infrared dim small target detection under poor lighting. Therefore, infrared dim small target

detection has important application significance in infrared surveillance systems, precise guidance

systems, and aerospace. The Society of Photo-Optical Instrumentation Engineers (SPIE) defines small

targets as targets that account for less than 0.15% of the image [5]. The challenges and difficulties

of infrared vehicle dim small target detection can be summarized in three aspects: First, due to the

low pixel resolution and long imaging distance of the infrared image used in this article, the size

of vehicle targets in the image is small, and the details of features such as edges and textures are

blurred, making it difficult to extract target features. Second, infrared images have the problem of low

signal-to-noise ratio under complex background conditions, making it difficult to distinguish targets

from the background. Therefore, the accuracy of target detection is easily affected by environmental

factors. Finally, compared to visible light images, the intra-class feature changes of infrared vehicle

targets are significant (due to grayscale flipping and scale changes), while the inter-class feature

differences are small.

Infrared dim small target detection algorithms can be divided into two categories [6]: traditional

detection algorithms based on the separation of target object and background, and deep learning
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detection algorithm based on feature extraction. In terms of traditional methods, Chen et al. [7] used

local contrast difference to detect small targets, but the algorithm is not suitable for detecting dim

targets, and it takes a long time to calculate the contrast. Moreover, Hou et al. [8] used a method based

on the human visual system to analyze the logarithmic spectrum of the dataset to extract the spectral

residual of the image in the spectral domain, but the algorithm could not suppress the background

clutter well. Traditional detection algorithms rely on manual feature extraction, these methods have

defects in generalization ability in different scenarios.

The algorithms based on deep learning can be divided into two categories: two-stage [9–12]

and one-stage [13–16]. In terms of two-stage algorithm, Fast RCNN [10] trains the entire network

in a multi-task way, and Faster RCNN [11] optimizes the generation method of candidate boxes to

improve the detection speed. The accuracy of two-stage algorithm performs well, but there are some

shortcomings in the detection speed, and it is difficult to achieve real-time computing on the platform

with weak computing power. In respect of one-stage algorithm, YOLO Series [13,17–22] can realize the

regression of candidate boxes and classification of categories. The use of the attention mechanism in

deep learning has improved the detection results. Besides, Dai et al. [23] proposed to add an improved

attention mechanism SE module to YOLOv5 to improve the feature extraction ability and detection

efficiency of the algorithm. SSD [24] adopts multi-scale feature extraction to adapt to the detection

of multi-size targets. The one-stage method has advantage in detection speed while obtaining high

accuracy.

When the target detection algorithm based on depth learning is applied to infrared dim small

target detection, appropriate adjustments and improvements should be made. For this demand, this

paper proposed a real-time detection algorithm for infrared dim small target detection based on

YOLOv5, which can improve the average detection accuracy while maintaining the detection speed

and model parameters.

The main contributions in this paper is constructed as follows: Section 2 provides an introduction

to the original model of YOLOv5, as well as a detailed description of the multiscale YOLOv5-AFAM

network constructed in this paper to address difficulties encountered in the dim and small target

detection process. In Section 3, to demonstrate the effectiveness of our model, the impact of each

improvement on the detection effect is verified from multiple perspectives by conducting rigorous

ablation experiments on the target detection dataset constructed in this paper for infrared dim vehicles,

combined with evaluation metrics. Section 4 concludes this study and provides outlooks.

Therefore, the main contributions of this study lie in four aspects:

• In this paper, a target detection dataset for infrared dim and small vehicles is constructed in the

empirical analysis, which covers 9976 infrared images from 39 scenes with different city, terrain,

and shooting angle conditions, and the average size of the target is 0.041% of the background.
• To address the problems of the low signal-to-noise ratio of weak infrared targets and susceptibility

to background interference, this study proposes the Adaptive Fusion Attention Module (AFAM),

which makes the neural network feature extraction focus on the target region, as can be seen from

the results in Section 2, compared with the original YOLOv5 model, mAP@0.5, mAP@0.5:0.95 and

recall are improved compared with the original YOLOv5 model.
• To solve the problems of the low contrast of weak targets and the large scale variance of targets,

this study optimizes the multiscale fusion structure, which enables the network to adapt to the

detection of small targets with diverse scales and accurately extract the features of each class of

targets.
• Given the low resolution and blurred contours of infrared images, this study improves the

downsampling method by incorporating Maxpool in convolutional downsampling, which

reduces the computational effort while preserving texture information.
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2. Methods

2.1. Overview of YOLOv5

YOLOv5 proposes four network structures of different sizes [25], including YOLOv5s, YOLOv5m,

YOLOv5l, and YOLOv5x. They have the same overall structure, but the depth and width of the CSPNet

differ from each other. The YOLOv5 network consists of the backbone network, neck network, and

head network. As shown in Figure 1, the backbone network mainly consists of the Conv module, the

C3 module, and the SPPF module. The neck network adopts a feature pyramid network [26] structure

to achieve multiscale target detection in a top-to-bottom manner. The Head network consists of three

target detectors. It uses a grid-based anchor to perform target detection on feature maps of different

scales. As the feature map becomes larger, it will contain more contour and geometric information,

facilitating the detection of small targets.

Figure 1. The architecture of YOLOv5. Specifically, Conv module (“Conv-BN-ReLU”) is the basic

component of many important modules. C3 module includes the Conv Module and Bottleneck [27]

module. SPPF module consists of the Conv module, Maxpool Layer and Concat Layer.

In this paper, we follow YOLOv5 to tackle target detection task for infrared dim and small vehicle

targets. Since the target is weak in brightness, small in size, inconspicuous in texture information and

susceptible to noise interference [28], the network needs to increase the contextual information of the

target and increase the receptive field to improve the performance of detection. Based on this analysis,

we propose multiscale YOLOv5-AFAM with three improvements based on YOLOv5. (1) Propose the

AFAM attention mechanism. (2) Improve the feature fusion scale. (3) Optimize the downsampling

strategy.
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2.2. Multiscale YOLOv5-AFAM

As shown in Figure 2, we first add the AFAM attention mechanism to the C3 modules of the

backbone network. Then, we change the original down-sampling convolution modules of the backbone

network into DownC downsampling module. Finally, the 4x, 8x, and 16x downsampling features are

used for fusion and sent to the detection head for prediction.

Figure 2. The architecture of multiscale YOLOv5-AFAM.

2.2.1. Adaptive Fusion Attention Module

To address the challenges of low signal-to-noise ratio and susceptibility to background interference

for infrared vehicle targets, we propose AFAM, which can be flexibly plugged in YOLOv5 network.

Specifically, AFAM utilizes the adaptive receptive field to enhance the fusion of context information. It

achieves performance improvement while reducing computational complexity, making the network

suitable for detecting small and weak targets with blurred contours and complex backgrounds, and

reducing false positives and missed detection.

The AFAM module consists of the Adaptive Receptive Field Channel Attention Module (ACM)

and the Fusion Spatial Attention Module (FSM). The former focuses on the region of interest in the

input data and aggregates the features of each channel to increase the context information around

the target to further expand the receptive field. The latter focuses on determining the location of the

target, compressing the spatial dimension while fusing the context information around the target. In

this paper, they are added to the C3 module of the YOLOv5 backbone network. As shown in Figure 3,

a feature map F ∈ R
C×H×W is first served as input of the network. Then input features are then

sequentially fed into ACM and FSM to involve channel-wise and spatial-wise attention information.

The mathematical formulation is shown in Equation (1).

FA = fA(F)⊗ F, F
′

= fF(FA)⊗ FA (1)

where fA(·) and fF(·) respectively indicates the ACM and FSM Module. ⊗ denotes the element-wise

multiplication operation.
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Figure 3. The network structure of AFAM.

Adaptive Receptive Field Channel Attention Module. As shown in Figure 3, ACM first performs

a parallel convolution operation with three convolution kernels of size 1× 1, 3× 3 and 5× 5 respectively.

Then, output features perform weighted summation operation to generate fused feature (Ff ). This

fusion process ensures that the network can expand and adjust the receptive field in an adaptive

manner. Equation (2) shows the above process. Next, the fused feature respectively passes through

Avgpool and Maxpool operations to generate the corresponding contextual descriptors. Finally, MLP

(multilayer perceptron) is employed for generating the final adaptive receptive field channel attention

feature. Equation (3) shows the above process.

Ff =
3

∑
i=1

(Convi(F)× ωi) (2)

FA = σ(MLP(AvgPool(Ff )) + MLP(MaxPool(Ff ))) (3)
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where Convi(·) denotes the convolution operation with three types of kernel size. ωi is the ith weight

factor corresponding to each convolution operation. σ(·) denotes Sigmoid operation. AvgPool(·) and

MaxPool(·) denote the average-pooling and max-pooling operation respectively.

Fusion Spatial Attention Module. In AFAM, we first design ACM to involve channel-wise

attention information into feature. Then, we further design FSM to explore spatial-wise attention

information. As shown in Figure 3, Feature map (FA) generated by the ACM first passes through three

branches in parallel to extract features with different information (formulated in Equation (4)). Second,

three output features are concatenated together and refined by the Conv module ( fC(·)). Third, output

feature map is normalized utilizing the Sigmoid function to obtain the FSM features F
′

. Equation (5)

expresses the second and third process.

Fmax
A = fmax(MaxPool(FA)); F

avg
A = AvgPool(FA); Fconv

A = f3×3(FA) (4)

F
′

= σ( fC(Concat(Fmax
A ; F

avg
A ; Fconv

A ))) (5)

where fmax(·) denotes the convolution operation with a kernel size of h × w. Fmax
A , F

avg
A and Fconv

A

correspond to the features after MaxPool(·), AvgPool(·) and the 3 × 3 convolutional layer respectively.

2.2.2. Improved Downsampling Module

Due to the low resolution of infrared images and the blurring of targets, it becomes difficult to

extract features such as edges and textures of targets. Our proposed downsampling module (DownC)

in YOLOv5 can effectively expand the receptive field, reduce the number of parameters to be learned,

and prevent overfitting during training.

To preserve more information while extracting the feature map, we design DownC to improve

the downsampling method. Our designing follows two principles. (1) Maxpool Layer can reduce

computational burden and preserve the texture features better. (2) A learnable convolution layer with

a corresponding step size can retain more information.

As shown in Figure 4, DownC consists of two branches for downsampling operation. The first

branch is a “All-Conv” branch while the second branch is a “MaxPool-Conv” branch. To concatenate

features of two branch and keep the number of channels unchanged, the channel of each branch is

halved. Specifically, “All-Conv” branch contains two Conv modules. The stride of first Conv module

is set as 1, so that the number of channels is halved. “MaxPool-Conv” branch first uses a MaxPool

operation and then applies a 1 × 1 Conv module. Similar to “All-Conv” branch, the Conv module set

stride as 1 to halve the channel number. Compared to the YOLOv5’s Conv module with step size 2,

DownC has less computation and retains the maximum pooled texture feature information.

Figure 4. The structure of DownC module.

2.2.3. Improved Multiscale Fusion Structure

The contrast ratio of vehicle targets in infrared images is relatively low, and there are scale and

grayscale differences among intra-class targets in the dataset. There is feature similarity between
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different categories of targets, all of which increase the difficulty of detection. In response to the above

issues, we add shallow feature maps to feature aggregation to improve the detection performance of

infrared dim and small vehicles.

With the deepening of the neural network and the increase of down sampling times, the semantic

information obtained by this feature layer is more abundant, but the texture information of the image

will be reduced. In this paper, the infrared dim small target in this study occupies approximately

20 × 20 pixels in the 640 × 640 infrared image. Therefore, it is not conducive to the detection of dim

and small targets. In response to the above issues, we involve feature maps in shallow layers improve

the detection performance of dim and small targets. As shown in Figure 5, we propose three improved

multiscale fusion structures, which are “Four-scale feature fusion”, “Four-scale shallow feature fusion”,

and “Three-scale shallow feature fusion”.

In order to enhance the contour information and geometric information of the target, we propose

a “Four-scale feature fusion” structure, which incorporates 4 times downsampling features on the basis

of the original feature extraction network. This design can make the network facilitate the detection of

infrared dim small targets, and the improved structure is shown in Figure 5 (a). To further analyze

the effect of scale variation on the detection effect, we add a new 2 times downsampling features

in “Four-scale shallow feature fusion” structure. In this structure, {2, 4, 8, 16} times downsampling

features are fused together to keep the texture feature of dim small targets. The structure is shown

in Figure 5 (b). For performance comparison and analysis, we propose “Three-scale shallow feature

fusion” structure. Compared to “Four-scale shallow feature fusion” structure, it removes 2 times

downsampling and leaves {4, 8, 16} times downsampling features for fusion.

In this paper, feature fusion methods are selected according to the size differences of the detected

targets. As 4 times downsampling features are more suitable for detecting small targets, they are

incorporated into the feature fusion for all three structures. Based on the improvement in network

detection accuracy, an attempt is made to incorporate 2 times downsampling feature. However,

involving 2 times downsampling feature will boost the computation and memory cost. Therefore, we

remove this feature after making a trade-off between performance improvement and cost. Whereas,

when using 32 times downsampling features, the target is easily missed with a very small percentage

of the feature map, so this scale was removed. Based on the above-mentioned analysis, we select

{4, 8, 16} times downsampling features (Figure 5 (c)) to solve the problem of infrared dim small target

detection, which can achieve the best detection effect under acceptable cost.

Figure 5. Improved multiscale fusion network (a) Four-scale feature fusion; (b) Four-scale shallow

feature fusion; (c) Three-scale shallow feature fusion.

3. Experiments

3.1. Dataset

3.1.1. Establishment

Due to the rapid advancement of unmanned aerial vehicle (UAV) technology, UAVs have gained

widespread adoption in aerial imaging tasks. However, the lack of specialized thermal infrared vehicle

detection datasets focusing on small objects represents a significant gap in the field. In order to
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complete the task of infrared weak vehicle target detection, we first propose the Infrared Small Vehicle

Dataset (ISVD), which comprises infrared images collected by UAVs. All images were taken using

infrared imaging drones in scenes, which include cities, farmlands, Gobi, deserts and ports. In addition

to being small in size, the vehicles included in the dataset also exhibit different variations, such as

multidirectional, lighting/shadow changes, specular reflections, or occlusion. Our dataset includes

9976 images of 102 sequences. To provide a visual representation, Figure 6 showcases a selection of

representative images from the ISVD.

Figure 6. Samples of ISVD.

The dataset in this paper is labeled by 13 experts in the field of infrared target detection and

machine vision by rectangular box annotation. Due to the small target and low contrast in the images

of the dataset in this paper, in order to ensure the labeling quality of infrared images, each infrared

image needs to be cooperated by three experts and set up a responsible expert for a specific scene

(such as different categories of scenes including cities, grasslands, Gobi, etc.). Among them, after being

marked by one expert, it is confirmed by another expert, and then the responsible expert is asked for

final confirmation.

3.1.2. Data Analysis

Before training, the dataset was pre-processed and the target types were divided into three

categories: "car", "truck" and "other vehicles". In order to ensure accurate evaluation, we divided

the dataset into training, validation, and test sets using an 8:1:1 ratio. Furthermore, we analyzed the

distribution of targets and determined the average dimensions of the anchor boxes for each class, as

presented in Table 1.

Table 1. Target parameter statistics for ISVD.

Dataset Number
Frame Box size (mean)

car truck other vehicles car truck other vehicles

train 7981 30284 20248 1683 (11.5,8.8) (21.0,13.1) (26.2,19.2)

test 997 2929 2801 233 (10.0,8.2) (19.8,12.5) (20.8,15.7)

val 998 3492 2572 184 (12.7,9.1) (21.3,13.4) (20.2,14.6)

all 9976 36705 25621 2100 (11.5,8.8) (20.9,13.0) (25.1,18.4)
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Concretely, The ISVD encompasses a total of 9976 infrared images, with 36705 instances of the

"car" class, 25621 instances of the "truck" class, and 2100 instances of "other vehicles." On average, each

image in the dataset contains approximately 7.56 bounding boxes, indicating the presence of multiple

targets in a single image. This characteristic of the dataset allows for the evaluation of detection models

in scenarios where small targets are mixed with larger ones.

Figure 7 presents a comprehensive visualization of the distribution of bounding box sizes across

different classes. It provides a clear depiction of the size variations within each class, emphasizing the

crucial importance of accurate detection and localization of small objects in infrared images. The x-axis

represents the size range of the anchor boxes, while the y-axis indicates the frequency of occurrence of

bounding boxes within each size range. This valuable information will facilitate the development and

evaluation of robust algorithms for small object detection in thermal infrared vehicle detection tasks.

Figure 7. Distribution of Bounding Box size of ISVD. The x-axis represents the area of the Bounding

boxes, and the y-axis represents the count of Bounding boxes.

Table 2 shows the comparison between the ISVD image dataset and the previous infrared image

datasets. Through comparison, we analyze in the following areas. 1) The previous infrared data

sets were taken at a closer distance, and the target occupies a large pixel scale in the figure; 2) In the

currently disclosed infrared image dataset with UAV shooting perspective, vehicle targets mainly

include car and truck, which have less coverage for other types of vehicle targets, and it is difficult

to meet the infrared target detection needs of different vehicle types; 3) At present, the infrared

image dataset is basically based on urban and rural scenes, and the coverage of farmland, mountains,

ports and Gobi scenes is obviously insufficient to meet the needs of target detection under different

background conditions.

Table 2. The comparison between the ISVD image dataset and the previous infrared image datasets.

Object detection datasets Scenario Modality Target background Object size #Images Categories

VEDAI aerial R+NIR
urban,
rural

(20.11,19.76) 1.2k 9

FLIR car R+I urban (37.69, 43.68) 10228 5

Drone Vehicle drone R+I urban (51.47,48.47) 56,878 5

ISVD drone I

urban,
rural,

farmland,
mountains,

. . . . . .

(15.73, 10.84) 9976 3
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3.2. Implementation Details

The configuration of the experimental platform and setting of experimental parameters are

shown in Table 3 and Table 4. In this paper, the performance of the model is measured from several

perspectives and the evaluation metrics include precision (P), recall(R), average precision metrics

(mAP@0.5, mAP@0.5:0.95), and trainable parameters. The evaluation metrics in this paper not only

reflect the comprehensive performance of the model but also improve the detection requirements of

complex datasets. On our proposed ISVD, this evaluation metrics are also effective in assessing the

detection results.

Table 3. Setting of the experimental platform.

Name Related Configuration

GPU GeForce RTX 2080 Ti 11G

CPU Intel Xeon Platinum 8280

Operating systems ubuntu18.04

CUDA 10.2

cuDNN 7.5

PyTorch pytorch1.8.1+cu102

Table 4. Setting of experimental parameters.

Parameter Related Configuration

Epoch 400

Class number 3

Batch size 32

Image size 640×640

Batch size(test) 1

3.3. Experiments and Analysis

3.3.1. Comparison Experiments on ISVD

In this paper, four algorithms, including YOLOv5s, YOLOv5m, YOLOv7 [29], and Multiscale

YOLOv5s-AFAM, are compared and analyzed on the ISVD, and the results are shown in Table 5. The

Multiscale YOLOv5-AFAM has a small increase in parameters and GFLOPs, but in return, a significant

improvement in mAP@0.5 and mAP@0.5:0.95, rising to 85.7% and 39.6%. The improved network of

mAP@0.5 and mAP@0.5:0.95 exceeds YOLOv7 with only 19.25% of model parameters. The intuitive

comparison of the mAP@0.5-GFLOPs on the ISVD is shown in Figure 6. The improved network greatly

improves the detection accuracy of infrared dim small targets while reducing parameters.

Table 5. Comparison experimental results on ISVD.

Models Params GFLOPs mAP@0.5 mAP@0.5:0.95 P R

YOLOv5s 7.03M 15.8 0.814 0.376 0.795 0.817

YOLOv5m 20.87M 48 0.824 0.38 0.825 0.818

YOLOv7 36.49M 103.5 0.847 0.385 0.811 0.833

ours 6.56M 17.8 0.857 0.396 0.803 0.857
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Figure 8. Comparison of mAP-GFLOPs on ISVD

3.3.2. Ablation Study

To verify the performance of each proposed module in a separated manner. We conduct ablation

study based on YOLOv5s (baseline model). Here, we first compare the effectiveness of single module.

The results are shown in Figure 9.

Figure 9. Improvement of single module. YOLOv5s is selected as baseline model.

We then analyze the effectiveness of different combinations of modules in detail. The results are

shown in Table 6. Here, we will analyze in the following points. (1) By joining the AFAM module

into the backbone network, the feature extraction capability and detection accuracy of the network

increases significantly. E.g., mAP@0.5 rises to 82.7% (increase by 1.3%) and the GFLOPs drops to

14.7. Experimental results demonstrate a significant improvement in detection capability. (2) The

feature extraction capability is significantly enhanced after applying DownC. The values of mAP@

0.5, mAP@0.5:0.95, P and R evaluation metrics are 82.3%, 37.8%, 82.6%, and 79.7% respectively. The

accuracy rate P is the highest value among all the improved models. This result proves the feasibility

of switching to the DownC downsampling method. (3) When applying “Four-scale feature fusion”,

“Four-scale shallow feature fusion”, and “Three-scale shallow feature fusion” on baseline model, results

also get obviously improved. (4) Our proposed multiscale YOLOv5-AFAM achieves the best results.
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When combining “AFAM”, “DownC” and “Three-scale shallow feature fusion”, the mAP@0.5 and

mAP@0.5:0.95 improve by 4.3% and 2% respectively with slighlt decrease on parameters.

As a whole, the ablation study demonstrates that the multiscale YOLOv5-AFAM improves the

detection accuracy of the infrared dim small target, even in some scenarios where the environment is

complex and the target object is blurred.

Table 6. Ablation comparison on different combinations of modules. Here, “4s”, “4ds” and “3ss”

respectively indicate “4scales”, “4deepscales” and “3shallowscales”.

AFAM DownC 4s 4ds 3ss Params GFLOPs mAP@0.5 mAP@0.5:0.95 P R

✘ ✘ ✘ ✘ ✘ 7.02M 15.8 0.814 0.376 0.795 0.821

✓ ✘ ✘ ✘ ✘ 6.66M 14.7 0.827 0.379 0.785 0.844

✘ ✓ ✘ ✘ ✘ 6.42M 15 0.823 0.378 0.826 0.797

✘ ✘ ✓ ✘ ✘ 7.17M 18.6 0.840 0.377 0.799 0.852

✘ ✘ ✘ ✓ ✘ 7.19M 22.5 0.848 0.392 0.797 0.854

✘ ✘ ✘ ✘ ✓ 7.15M 18.6 0.842 0.386 0.805 0.831

✓ ✓ ✘ ✘ ✘ 6.05M 13.8 0.825 0.382 0.817 0.795

✓ ✘ ✓ ✘ ✘ 6.80M 17.5 0.840 0.383 0.789 0.864

✓ ✘ ✘ ✓ ✘ 6.83M 21.4 0.832 0.383 0.78 0.868

✓ ✘ ✘ ✘ ✓ 6.79M 17.4 0.843 0.387 0.826 0.846

✘ ✓ ✓ ✘ ✘ 6.56M 17.8 0.851 0.389 0.802 0.85

✘ ✓ ✘ ✓ ✘ 6.59M 21.7 0.852 0.383 0.806 0.852

✘ ✓ ✘ ✘ ✓ 6.54M 17.8 0.851 0.396 0.825 0.832

✓ ✓ ✓ ✘ ✘ 6.19M 16.6 0.844 0.39 0.823 0.829

✓ ✓ ✘ ✓ ✘ 6.22M 20.5 0.842 0.386 0.797 0.854

✓ ✓ ✘ ✘ ✓ 6.56M 17.8 0.857 0.396 0.803 0.857

3.3.3. Visualization and Analysis

To further analyze the improvement of our multiscale YOLOv5-AFAM compared to the YOLOv5

model, we conduct a series visualization experiments.

We visualize the curves of losses, precisions, recalls, mAP@0.5 and mAP@0.5:0.95 of the two

models in the training stage, as shown in Figure 10.

During training, the Multiscale YOLOV5-AFAM model has several following performance

improvements compared to the YOLOv5s model. As shown in Figure 10(a), the training loss had a

significantly faster convergence speed and it reached a lower value at the end of the training. Overall,

the stability of each indicator during training had increased and jitter had decreased. As can be seen in

Figure 10(b) and Figure 10(c), there are improvements in precision and recall during training, which

means the Multiscale YOLOV5-AFAM had a higher mAP@0.5. From Figure 10(d) and Figure 10(e), we

can conclude that the mAP@0.5 and mAP@.5:.95 of the Multiscale YOLOV5-AFAM had improved,

especially mAP@.5:.95 rose by 1.8%, indicating that our algorithm was more accurate in the infrared

dim and small vehicle recognition and localization.

We compare the Mutilscale YOLOv5s-AFAM model and the YOLOv5s model on the validation

set, with a confidence threshold of 0.25 and NMS IoU threshold of 0.45. The Figure 11 shows four cases

which can prove the superiority of our model.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 June 2023                   doi:10.20944/preprints202306.0281.v1

https://doi.org/10.20944/preprints202306.0281.v1


13 of 16

Figure 10. The changes in each indicator of the YOLOv5 model and the Multiscale YOLOv5-AFAM

model during the training process. (a) box loss, (b) precision, (c) recall, (d) mAP@0.5, (e) mAP@0.5:0.95.

Figure 11. Four cases of comparison between two models. (a) False Negative, (b) False Positive in

category, (c) False Positive from the background, (d) Under the dense and occluded scene.

We can see that the improved model performs significantly better with a higher confidence score.

In addition, there are fewer cases of missing or false positives in the detection results and the improved

model has a better performance in dense and occluded scenes.
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Heat map is a visualization tool that can demonstrate target detection results and visualize the

target activation score as a colour image to observe the correctness and accuracy of the target detection

results. Figure 12 shows heat maps derived from a input image. The heat map can show information

such as the density, distribution, or intensity of the data by the shade of colour. In addition, the heat

map is used to visualize the activation level of the prediction corresponding to each position of the

network on the image. Specifically, the image is divided into a number of small cells. Each grid

corresponds to a confidence score, and these scores are then represented as shades of colour, with

darker colours indicating a higher confidence level for the region on the image. The heat map provides

a more visual indication of how well the algorithm detects different regions of the image and the

confidence distribution of the results.

Figure 12. The thermodynamic diagrams of YOLOv5 and Multiscale YOLOv5-AFAM.

While in traditional detection networks, feature maps are usually treated with equal weights,

the AFAM attention mechanism introduced by the improved algorithm proposes a dynamic weight

assignment method that allows the network to focus adaptively on features in different regions.

Through AFAM attention, the network is able to capture the features associated with the target more

accurately.

The original image and its heat map detected by the improved algorithm are shown in Figure 12.

(b) to (g) in Figure 12 show the three stages of feature extraction by the network from light to dark.

The green and yellow areas in the images indicate a higher probability of appearing targets, while the

blue areas indicate a lower probability of appearing targets. It can be observed that the areas where

targets appear in the algorithm’s heat map are usually dense areas such as roads and car parks in the

scene, which are more capable of recognizing the active areas of the targets to be detected. As shown

in (d) and (g) in the figure below, the central region and the coloured region in the lower right corner of

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 June 2023                   doi:10.20944/preprints202306.0281.v1

https://doi.org/10.20944/preprints202306.0281.v1


15 of 16

the heat map of the algorithm proposed in this thesis are denser, corresponding to a greater possibility

of the target being detected appearing in these regions, and the number and density of targets in the

heat map are more consistent with the original scene, indicating that it locates the target object more

accurately. Thus, it is demonstrated that the inclusion of the AFAM attention mechanism has a more

significant improvement in the target detection performance of the algorithm, which can detect targets

more accurately.

4. Conclusions

To tackle the characteristics of low signal-to-noise ratio, blurred background, and low proportion

of infrared dim and small vehicles in images, we constructs an infrared dim and small vehicle target

detection dataset, ISVD. Then we proposes a Multiscale YOLOv5-AFAM algorithm, which can improve

the average accuracy while reducing parameters. The AFAM attention mechanism proposed in this

paper is joined to the feature extraction backbone network to obtain more context information by

increasing the receptive field and spatial feature fusion. In addition, the multiscale fusion structure

is adapted for small target detection. Finally, the Conv module in the backbone network is replaced

with a DownC fusion module which is combined with Maxpool and Convolutional downsampling

to reduce the computational complexity while retaining more texture information. The experimental

results show that mAP@0.5 of the improved algorithm, reaching 85.7% on the ISVD dataset, gets a 4.3%

and 0.1% improvement compared to the YOLOv5s and the YOLOv7 respectively. At the same time,

the parameters of the improved algorithm are 6.6% less than the YOLOv5s and only 17.98% of the

YOLOv7. On the VEDAI dataset, the improved algorithm compared to the YOLOv5s algorithm gets a

5.3% improvement in mAP@0.5. In the future, the detection field will be broadened to further improve

the model generalization capability, so that the model can better serve the analysis and processing of

infrared dim small targets.
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