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Abstract: Infrared detection plays an important role in the military, aerospace, and other fields, which
has the advantages of all-weather, high stealth, and strong anti-interference. However, infrared
dim small target detection suffers from complex backgrounds, low signal-to-noise ratio, blurred
targets with small area percentages, and other challenges. In this paper, we proposed a multiscale
YOLOvV5-AFAM algorithm to realize high-accuracy and real-time detection. Aiming at the problem of
target intra-class feature difference and inter-class feature similarity, the Adaptive Fusion Attention
Module - AFAM was proposed to generate feature maps that are calculated to weigh the features
in the network and make the network focus on small targets. This paper proposed a multiscale
fusion structure to solve the problem of small and variable detection scales in infrared vehicle
targets. In addition, the downsampling layer is improved by combining Maxpool and convolutional
downsampling to reduce the number of model parameters and retain the texture information.
For multiple scenarios, we constructed an infrared dim and small vehicle target detection dataset,
ISVD. The multiscale YOLOv5-AFAM was conducted on the ISVD dataset, compared to YOLOv?7,
mAP@0.5 achieves a small improvement while the parameters are only 17.98% of it. By contrast
with the YOLOv5s model, mAP@0.5 was improved by 4.3% with a 6.6% reduction in the parameters.
Experiments results demonstrate that the multiscale YOLOv5-AFAM has a higher detection accuracy
and detection speed on infrared dim and small vehicles.

Keywords: Infrared dim small targets; Object detection; Adaptive Fusion Attention Module; ISVD

1. Introduction

Infrared detection has the advantages of all-weather, high stealth, and strong anti-interference [1-4]. It
can realize infrared dim small target detection under poor lighting. Therefore, infrared dim small target
detection has important application significance in infrared surveillance systems, precise guidance
systems, and aerospace. The Society of Photo-Optical Instrumentation Engineers (SPIE) defines small
targets as targets that account for less than 0.15% of the image [5]. The challenges and difficulties
of infrared vehicle dim small target detection can be summarized in three aspects: First, due to the
low pixel resolution and long imaging distance of the infrared image used in this article, the size
of vehicle targets in the image is small, and the details of features such as edges and textures are
blurred, making it difficult to extract target features. Second, infrared images have the problem of low
signal-to-noise ratio under complex background conditions, making it difficult to distinguish targets
from the background. Therefore, the accuracy of target detection is easily affected by environmental
factors. Finally, compared to visible light images, the intra-class feature changes of infrared vehicle
targets are significant (due to grayscale flipping and scale changes), while the inter-class feature
differences are small.

Infrared dim small target detection algorithms can be divided into two categories [6]: traditional
detection algorithms based on the separation of target object and background, and deep learning

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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detection algorithm based on feature extraction. In terms of traditional methods, Chen et al. [7] used
local contrast difference to detect small targets, but the algorithm is not suitable for detecting dim
targets, and it takes a long time to calculate the contrast. Moreover, Hou et al. [8] used a method based
on the human visual system to analyze the logarithmic spectrum of the dataset to extract the spectral
residual of the image in the spectral domain, but the algorithm could not suppress the background
clutter well. Traditional detection algorithms rely on manual feature extraction, these methods have
defects in generalization ability in different scenarios.

The algorithms based on deep learning can be divided into two categories: two-stage [9-12]
and one-stage [13-16]. In terms of two-stage algorithm, Fast RCNN [10] trains the entire network
in a multi-task way, and Faster RCNN [11] optimizes the generation method of candidate boxes to
improve the detection speed. The accuracy of two-stage algorithm performs well, but there are some
shortcomings in the detection speed, and it is difficult to achieve real-time computing on the platform
with weak computing power. In respect of one-stage algorithm, YOLO Series [13,17-22] can realize the
regression of candidate boxes and classification of categories. The use of the attention mechanism in
deep learning has improved the detection results. Besides, Dai et al. [23] proposed to add an improved
attention mechanism SE module to YOLOvV5 to improve the feature extraction ability and detection
efficiency of the algorithm. SSD [24] adopts multi-scale feature extraction to adapt to the detection
of multi-size targets. The one-stage method has advantage in detection speed while obtaining high
accuracy.

When the target detection algorithm based on depth learning is applied to infrared dim small
target detection, appropriate adjustments and improvements should be made. For this demand, this
paper proposed a real-time detection algorithm for infrared dim small target detection based on
YOLOV5, which can improve the average detection accuracy while maintaining the detection speed
and model parameters.

The main contributions in this paper is constructed as follows: Section 2 provides an introduction
to the original model of YOLOVS, as well as a detailed description of the multiscale YOLOv5-AFAM
network constructed in this paper to address difficulties encountered in the dim and small target
detection process. In Section 3, to demonstrate the effectiveness of our model, the impact of each
improvement on the detection effect is verified from multiple perspectives by conducting rigorous
ablation experiments on the target detection dataset constructed in this paper for infrared dim vehicles,
combined with evaluation metrics. Section 4 concludes this study and provides outlooks.

Therefore, the main contributions of this study lie in four aspects:

¢ Inthis paper, a target detection dataset for infrared dim and small vehicles is constructed in the
empirical analysis, which covers 9976 infrared images from 39 scenes with different city, terrain,
and shooting angle conditions, and the average size of the target is 0.041% of the background.

¢  To address the problems of the low signal-to-noise ratio of weak infrared targets and susceptibility
to background interference, this study proposes the Adaptive Fusion Attention Module (AFAM),
which makes the neural network feature extraction focus on the target region, as can be seen from
the results in Section 2, compared with the original YOLOv5 model, mAP@0.5, mAP@0.5:0.95 and
recall are improved compared with the original YOLOv5 model.

*  To solve the problems of the low contrast of weak targets and the large scale variance of targets,
this study optimizes the multiscale fusion structure, which enables the network to adapt to the
detection of small targets with diverse scales and accurately extract the features of each class of
targets.

*  Given the low resolution and blurred contours of infrared images, this study improves the
downsampling method by incorporating Maxpool in convolutional downsampling, which
reduces the computational effort while preserving texture information.
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2. Methods

2.1. Overview of YOLOv5

YOLOVS5 proposes four network structures of different sizes [25], including YOLOv5s, YOLOvV5m,
YOLOVS5I, and YOLOv5x. They have the same overall structure, but the depth and width of the CSPNet
differ from each other. The YOLOvV5 network consists of the backbone network, neck network, and
head network. As shown in Figure 1, the backbone network mainly consists of the Conv module, the
C3 module, and the SPPF module. The neck network adopts a feature pyramid network [26] structure
to achieve multiscale target detection in a top-to-bottom manner. The Head network consists of three
target detectors. It uses a grid-based anchor to perform target detection on feature maps of different
scales. As the feature map becomes larger, it will contain more contour and geometric information,
facilitating the detection of small targets.
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Figure 1. The architecture of YOLOV5. Specifically, Conv module (“Conv-BN-ReLU”) is the basic
component of many important modules. C3 module includes the Conv Module and Bottleneck [27]
module. SPPF module consists of the Conv module, Maxpool Layer and Concat Layer.

In this paper, we follow YOLOVS5 to tackle target detection task for infrared dim and small vehicle
targets. Since the target is weak in brightness, small in size, inconspicuous in texture information and
susceptible to noise interference [28], the network needs to increase the contextual information of the
target and increase the receptive field to improve the performance of detection. Based on this analysis,
we propose multiscale YOLOv5-AFAM with three improvements based on YOLOVS. (1) Propose the
AFAM attention mechanism. (2) Improve the feature fusion scale. (3) Optimize the downsampling
strategy.
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2.2. Multiscale YOLOv5-AFAM

As shown in Figure 2, we first add the AFAM attention mechanism to the C3 modules of the
backbone network. Then, we change the original down-sampling convolution modules of the backbone
network into DownC downsampling module. Finally, the 4x, 8x, and 16x downsampling features are
used for fusion and sent to the detection head for prediction.
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Figure 2. The architecture of multiscale YOLOv5-AFAM.

2.2.1. Adaptive Fusion Attention Module

To address the challenges of low signal-to-noise ratio and susceptibility to background interference
for infrared vehicle targets, we propose AFAM, which can be flexibly plugged in YOLOvVS5 network.
Specifically, AFAM utilizes the adaptive receptive field to enhance the fusion of context information. It
achieves performance improvement while reducing computational complexity, making the network
suitable for detecting small and weak targets with blurred contours and complex backgrounds, and
reducing false positives and missed detection.

The AFAM module consists of the Adaptive Receptive Field Channel Attention Module (ACM)
and the Fusion Spatial Attention Module (FSM). The former focuses on the region of interest in the
input data and aggregates the features of each channel to increase the context information around
the target to further expand the receptive field. The latter focuses on determining the location of the
target, compressing the spatial dimension while fusing the context information around the target. In
this paper, they are added to the C3 module of the YOLOV5 backbone network. As shown in Figure 3,
a feature map F € RE*H*W is first served as input of the network. Then input features are then
sequentially fed into ACM and FSM to involve channel-wise and spatial-wise attention information.
The mathematical formulation is shown in Equation (1).

Fo=fa(F)®F, F = fr(F4)®F4 1)

where f4(-) and fr(-) respectively indicates the ACM and FSM Module. ® denotes the element-wise
multiplication operation.
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Figure 3. The network structure of AFAM.

Adaptive Receptive Field Channel Attention Module. As shown in Figure 3, ACM first performs
a parallel convolution operation with three convolution kernels of size 1 x 1,3 x 3 and 5 x 5 respectively.
Then, output features perform weighted summation operation to generate fused feature (Fs). This
fusion process ensures that the network can expand and adjust the receptive field in an adaptive
manner. Equation (2) shows the above process. Next, the fused feature respectively passes through
Avgpool and Maxpool operations to generate the corresponding contextual descriptors. Finally, MLP
(multilayer perceptron) is employed for generating the final adaptive receptive field channel attention
feature. Equation (3) shows the above process.

e

Fp =) (Conv;(F) x wj) 2)

1

Fy = 0(MLP(AvgPool(F¢)) + MLP(MaxPool (Fy))) 3)
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where Conv;(+) denotes the convolution operation with three types of kernel size. w; is the i*" weight
factor corresponding to each convolution operation. o(-) denotes Sigmoid operation. AvgPool(-) and
MaxPool(-) denote the average-pooling and max-pooling operation respectively.

Fusion Spatial Attention Module. In AFAM, we first design ACM to involve channel-wise
attention information into feature. Then, we further design FSM to explore spatial-wise attention
information. As shown in Figure 3, Feature map (F4) generated by the ACM first passes through three
branches in parallel to extract features with different information (formulated in Equation (4)). Second,
three output features are concatenated together and refined by the Conv module (fc(+)). Third, output
feature map is normalized utilizing the Sigmoid function to obtain the FSM features F . Equation (5)
expresses the second and third process.

3" = fuuax(MaxPool(Fy)); 4™ = AvgPool (Fa); 5™ = fa.3(Fa) @)
F = o(fc(Concat(F3*; ng}PﬁDnv))) ()

where fy,x(-) denotes the convolution operation with a kernel size of 1 x w. Fj'*%, szg and F""
correspond to the features after MaxPool(-), AvgPool(-) and the 3 x 3 convolutional layer respectively.

2.2.2. Improved Downsampling Module

Due to the low resolution of infrared images and the blurring of targets, it becomes difficult to
extract features such as edges and textures of targets. Our proposed downsampling module (DownC)
in YOLOVS can effectively expand the receptive field, reduce the number of parameters to be learned,
and prevent overfitting during training.

To preserve more information while extracting the feature map, we design DownC to improve
the downsampling method. Our designing follows two principles. (1) Maxpool Layer can reduce
computational burden and preserve the texture features better. (2) A learnable convolution layer with
a corresponding step size can retain more information.

As shown in Figure 4, DownC consists of two branches for downsampling operation. The first
branch is a “All-Conv” branch while the second branch is a “MaxPool-Conv” branch. To concatenate
features of two branch and keep the number of channels unchanged, the channel of each branch is
halved. Specifically, “All-Conv” branch contains two Conv modules. The stride of first Conv module
is set as 1, so that the number of channels is halved. “MaxPool-Conv” branch first uses a MaxPool
operation and then applies a 1 x 1 Conv module. Similar to “All-Conv” branch, the Conv module set
stride as 1 to halve the channel number. Compared to the YOLOv5’s Conv module with step size 2,
DownC has less computation and retains the maximum pooled texture feature information.

C/2xHxW C/2xH/2xW/2

Conv 1x1,1 —¥% Conv 3x3.2

Input CxH/2xW/2

Maxpooling

W 222 —» Conv 1x1,1

CxH12xW/2 Cr2xH/2xW/2

Figure 4. The structure of DownC module.
2.2.3. Improved Multiscale Fusion Structure

The contrast ratio of vehicle targets in infrared images is relatively low, and there are scale and
grayscale differences among intra-class targets in the dataset. There is feature similarity between
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different categories of targets, all of which increase the difficulty of detection. In response to the above
issues, we add shallow feature maps to feature aggregation to improve the detection performance of
infrared dim and small vehicles.

With the deepening of the neural network and the increase of down sampling times, the semantic
information obtained by this feature layer is more abundant, but the texture information of the image
will be reduced. In this paper, the infrared dim small target in this study occupies approximately
20 x 20 pixels in the 640 x 640 infrared image. Therefore, it is not conducive to the detection of dim
and small targets. In response to the above issues, we involve feature maps in shallow layers improve
the detection performance of dim and small targets. As shown in Figure 5, we propose three improved
multiscale fusion structures, which are “Four-scale feature fusion”, “Four-scale shallow feature fusion”,
and “Three-scale shallow feature fusion”.

In order to enhance the contour information and geometric information of the target, we propose
a “Four-scale feature fusion” structure, which incorporates 4 times downsampling features on the basis
of the original feature extraction network. This design can make the network facilitate the detection of
infrared dim small targets, and the improved structure is shown in Figure 5 (a). To further analyze
the effect of scale variation on the detection effect, we add a new 2 times downsampling features
in “Four-scale shallow feature fusion” structure. In this structure, {2,4,8,16} times downsampling
features are fused together to keep the texture feature of dim small targets. The structure is shown
in Figure 5 (b). For performance comparison and analysis, we propose “Three-scale shallow feature
fusion” structure. Compared to “Four-scale shallow feature fusion” structure, it removes 2 times
downsampling and leaves {4, 8,16} times downsampling features for fusion.

In this paper, feature fusion methods are selected according to the size differences of the detected
targets. As 4 times downsampling features are more suitable for detecting small targets, they are
incorporated into the feature fusion for all three structures. Based on the improvement in network
detection accuracy, an attempt is made to incorporate 2 times downsampling feature. However,
involving 2 times downsampling feature will boost the computation and memory cost. Therefore, we
remove this feature after making a trade-off between performance improvement and cost. Whereas,
when using 32 times downsampling features, the target is easily missed with a very small percentage
of the feature map, so this scale was removed. Based on the above-mentioned analysis, we select
{4,8,16} times downsampling features (Figure 5 (c)) to solve the problem of infrared dim small target
detection, which can achieve the best detection effect under acceptable cost.

=

@) (b) ' (©

Figure 5. Improved multiscale fusion network (a) Four-scale feature fusion; (b) Four-scale shallow
feature fusion; (c) Three-scale shallow feature fusion.

3. Experiments
3.1. Dataset

3.1.1. Establishment

Due to the rapid advancement of unmanned aerial vehicle (UAV) technology, UAVs have gained
widespread adoption in aerial imaging tasks. However, the lack of specialized thermal infrared vehicle
detection datasets focusing on small objects represents a significant gap in the field. In order to
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complete the task of infrared weak vehicle target detection, we first propose the Infrared Small Vehicle
Dataset (ISVD), which comprises infrared images collected by UAVs. All images were taken using
infrared imaging drones in scenes, which include cities, farmlands, Gobi, deserts and ports. In addition
to being small in size, the vehicles included in the dataset also exhibit different variations, such as
multidirectional, lighting /shadow changes, specular reflections, or occlusion. Our dataset includes
9976 images of 102 sequences. To provide a visual representation, Figure 6 showcases a selection of
representative images from the ISVD.

Figure 6. Samples of ISVD.

The dataset in this paper is labeled by 13 experts in the field of infrared target detection and
machine vision by rectangular box annotation. Due to the small target and low contrast in the images
of the dataset in this paper, in order to ensure the labeling quality of infrared images, each infrared
image needs to be cooperated by three experts and set up a responsible expert for a specific scene
(such as different categories of scenes including cities, grasslands, Gobi, etc.). Among them, after being
marked by one expert, it is confirmed by another expert, and then the responsible expert is asked for
final confirmation.

3.1.2. Data Analysis

Before training, the dataset was pre-processed and the target types were divided into three
categories: "car", "truck” and "other vehicles". In order to ensure accurate evaluation, we divided
the dataset into training, validation, and test sets using an 8:1:1 ratio. Furthermore, we analyzed the
distribution of targets and determined the average dimensions of the anchor boxes for each class, as

presented in Table 1.

Table 1. Target parameter statistics for ISVD.

Dataset Number Frame Box size (mean)
car truck other vehicles car truck  other vehicles
train 7981 30284 20248 1683 (11.5,8.8) (21.0,13.1) (26.2,19.2)
test 997 2929 2801 233 (10.0,8.2) (19.8,12.5) (20.8,15.7)
val 998 3492 2572 184 (12.79.1) (21.3,134) (20.2,14.6)

all 9976 36705 25621 2100 (11.5,8.8) (20.9,13.0) (25.1,18.4)



https://doi.org/10.20944/preprints202306.0281.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 June 2023 doi:10.20944/preprints202306.0281.v1

9o0f 16

Concretely, The ISVD encompasses a total of 9976 infrared images, with 36705 instances of the
"car" class, 25621 instances of the "truck" class, and 2100 instances of "other vehicles." On average, each
image in the dataset contains approximately 7.56 bounding boxes, indicating the presence of multiple
targets in a single image. This characteristic of the dataset allows for the evaluation of detection models
in scenarios where small targets are mixed with larger ones.

Figure 7 presents a comprehensive visualization of the distribution of bounding box sizes across
different classes. It provides a clear depiction of the size variations within each class, emphasizing the
crucial importance of accurate detection and localization of small objects in infrared images. The x-axis
represents the size range of the anchor boxes, while the y-axis indicates the frequency of occurrence of
bounding boxes within each size range. This valuable information will facilitate the development and
evaluation of robust algorithms for small object detection in thermal infrared vehicle detection tasks.

Bounding Box Size Distribution (ISVD)

1600 A Car

mm Truck

1400 A ,
mmm Other Vehicles

1200 A

1000 ~

800

600 -

Counts of Bounding Box

400 A

200 A

10! 102 103

Figure 7. Distribution of Bounding Box size of ISVD. The x-axis represents the area of the Bounding
boxes, and the y-axis represents the count of Bounding boxes.

Table 2 shows the comparison between the ISVD image dataset and the previous infrared image
datasets. Through comparison, we analyze in the following areas. 1) The previous infrared data
sets were taken at a closer distance, and the target occupies a large pixel scale in the figure; 2) In the
currently disclosed infrared image dataset with UAV shooting perspective, vehicle targets mainly
include car and truck, which have less coverage for other types of vehicle targets, and it is difficult
to meet the infrared target detection needs of different vehicle types; 3) At present, the infrared
image dataset is basically based on urban and rural scenes, and the coverage of farmland, mountains,
ports and Gobi scenes is obviously insufficient to meet the needs of target detection under different
background conditions.

Table 2. The comparison between the ISVD image dataset and the previous infrared image datasets.

Object detection datasets | Scenario Modality Target background Objectsize #Images Categories

VEDAI aerial  R+NIR urrlll’raarl‘ (20.11,19.76) 1.2k 9

FLIR car R+I urban (37.69,43.68) 10228 5

Drone Vehicle drone R+I urban (51.47,48.47) 56,878 5
urban,
rural,

ISVD drone 1 farmland, (15.73,10.84) 9976 3

mountains,
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3.2. Implementation Details

The configuration of the experimental platform and setting of experimental parameters are
shown in Table 3 and Table 4. In this paper, the performance of the model is measured from several
perspectives and the evaluation metrics include precision (P), recall(R), average precision metrics
(mAP@0.5, mAP@0.5:0.95), and trainable parameters. The evaluation metrics in this paper not only
reflect the comprehensive performance of the model but also improve the detection requirements of
complex datasets. On our proposed ISVD, this evaluation metrics are also effective in assessing the
detection results.

Table 3. Setting of the experimental platform.

Name Related Configuration
GPU GeForce RTX 2080 Ti 11G
CPU Intel Xeon Platinum 8280
Operating systems ubuntul8.04
CUDA 10.2
cuDNN 7.5
PyTorch pytorch1.8.1+cu102

Table 4. Setting of experimental parameters.

Parameter Related Configuration
Epoch 400
Class number 3
Batch size 32
Image size 640x 640
Batch size(test) 1

3.3. Experiments and Analysis

3.3.1. Comparison Experiments on ISVD

In this paper, four algorithms, including YOLOv5s, YOLOv5m, YOLOV? [29], and Multiscale
YOLOv5s-AFAM, are compared and analyzed on the ISVD, and the results are shown in Table 5. The
Multiscale YOLOvV5-AFAM has a small increase in parameters and GFLOPs, but in return, a significant
improvement in mAP@0.5 and mAP@0.5:0.95, rising to 85.7% and 39.6%. The improved network of
mAP@0.5 and mAP@0.5:0.95 exceeds YOLOV7 with only 19.25% of model parameters. The intuitive
comparison of the mAP@0.5-GFLOPs on the ISVD is shown in Figure 6. The improved network greatly
improves the detection accuracy of infrared dim small targets while reducing parameters.

Table 5. Comparison experimental results on ISVD.

Models Params GFLOPs mAP@0.5 mAP@0.5:0.95 P R
YOLOv5s  7.03M 15.8 0.814 0.376 0.795 0.817
YOLOvSm  20.87M 48 0.824 0.38 0.825 0.818
YOLOv7  36.49M 103.5 0.847 0.385 0.811 0.833

ours 6.56M 17.8 0.857 0.396 0.803 0.857
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Figure 8. Comparison of mAP-GFLOPs on ISVD
3.3.2. Ablation Study

To verify the performance of each proposed module in a separated manner. We conduct ablation
study based on YOLOV5s (baseline model). Here, we first compare the effectiveness of single module.
The results are shown in Figure 9.

OmAP@O.5-variation

multiscale YOLOvS-AFAM P430%

YOLOvS-3shallowscales '2.80%

YOLOv35-4deepscales J3.40%

YOLOvS-4scales J2.60%

YOLOvS-DownC 0.90%
YOLOvS-AFAM 1.30%

YOLOvSs [0.00%

Figure 9. Improvement of single module. YOLOVv5s is selected as baseline model.

We then analyze the effectiveness of different combinations of modules in detail. The results are
shown in Table 6. Here, we will analyze in the following points. (1) By joining the AFAM module
into the backbone network, the feature extraction capability and detection accuracy of the network
increases significantly. E.g., mAP@0.5 rises to 82.7% (increase by 1.3%) and the GFLOPs drops to
14.7. Experimental results demonstrate a significant improvement in detection capability. (2) The
feature extraction capability is significantly enhanced after applying DownC. The values of mAP@
0.5, mAP@0.5:0.95, P and R evaluation metrics are 82.3%, 37.8%, 82.6%, and 79.7% respectively. The
accuracy rate P is the highest value among all the improved models. This result proves the feasibility
of switching to the DownC downsampling method. (3) When applying “Four-scale feature fusion”,
“Four-scale shallow feature fusion”, and “Three-scale shallow feature fusion” on baseline model, results
also get obviously improved. (4) Our proposed multiscale YOLOv5-AFAM achieves the best results.
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When combining “AFAM”, “DownC” and “Three-scale shallow feature fusion”, the mAP@0.5 and
mAP@0.5:0.95 improve by 4.3% and 2% respectively with slighlt decrease on parameters.

As a whole, the ablation study demonstrates that the multiscale YOLOv5-AFAM improves the
detection accuracy of the infrared dim small target, even in some scenarios where the environment is
complex and the target object is blurred.

Table 6. Ablation comparison on different combinations of modules. Here, “4s”, “4ds” and “3ss”
respectively indicate “4scales”, “4deepscales” and “3shallowscales”.

AFAM DownC 4s 4ds 3ss Params GFLOPs mAP@0.5 mAP@0.5:0.95 P R
b 4 b 4 b 4 b 4 X 7.02M 15.8 0.814 0.376 0.795 0.821
v b 4 b 4 6.66M 14.7 0.827 0.379 0.785 0.844
b 4 v 4 b 4 b 4 6.42M 15 0.823 0.378 0.826 0.797
b 4 b 4 v b 4 X 7.17M 18.6 0.840 0.377 0.799 0.852
b 4 b 4 X Vv b 4 7.19M 225 0.848 0.392 0.797 0.854
X b 4 b 4 b 4 v 7.15M 18.6 0.842 0.386 0.805 0.831
v v b 4 b 4 b 4 6.05M 13.8 0.825 0.382 0.817 0.795
v b 4 v b 4 b 4 6.80M 17.5 0.840 0.383 0.789  0.864
v b 4 X Vv b 4 6.83M 214 0.832 0.383 0.78 0.868
v b 4 b 4 b 4 v 6.79M 17.4 0.843 0.387 0.826 0.846
b 4 v v b 4 b 4 6.56M 17.8 0.851 0.389 0.802 0.85
b 4 v X Vv b 4 6.59M 21.7 0.852 0.383 0.806  0.852
b 4 v b 4 b 4 v 6.54M 17.8 0.851 0.396 0.825 0.832
v v v b 4 b 4 6.19M 16.6 0.844 0.39 0.823  0.829
v v X Vv b 4 6.22M 20.5 0.842 0.386 0.797 0.854
v v b 4 b 4 v 6.56M 17.8 0.857 0.396 0.803 0.857

3.3.3. Visualization and Analysis

To further analyze the improvement of our multiscale YOLOv5-AFAM compared to the YOLOvS
model, we conduct a series visualization experiments.

We visualize the curves of losses, precisions, recalls, mAP@0.5 and mAP@0.5:0.95 of the two
models in the training stage, as shown in Figure 10.

During training, the Multiscale YOLOV5-AFAM model has several following performance
improvements compared to the YOLOv5s model. As shown in Figure 10(a), the training loss had a
significantly faster convergence speed and it reached a lower value at the end of the training. Overall,
the stability of each indicator during training had increased and jitter had decreased. As can be seen in
Figure 10(b) and Figure 10(c), there are improvements in precision and recall during training, which
means the Multiscale YOLOV5-AFAM had a higher mAP@0.5. From Figure 10(d) and Figure 10(e), we
can conclude that the mAP@0.5 and mAP@.5:.95 of the Multiscale YOLOV5-AFAM had improved,
especially mAP@.5:.95 rose by 1.8%, indicating that our algorithm was more accurate in the infrared
dim and small vehicle recognition and localization.

We compare the Mutilscale YOLOv5s-AFAM model and the YOLOv5s model on the validation
set, with a confidence threshold of 0.25 and NMS IoU threshold of 0.45. The Figure 11 shows four cases
which can prove the superiority of our model.
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Figure 10. The changes in each indicator of the YOLOv5 model and the Multiscale YOLOv5-AFAM
model during the training process. (a) box loss, (b) precision, (c) recall, (d) mAP@0.5, () mAP@0.5:0.95.

. . Mutilscale
original image YOLOvSs YOLOv3s-AFAM

Figure 11. Four cases of comparison between two models. (a) False Negative, (b) False Positive in
category, (c) False Positive from the background, (d) Under the dense and occluded scene.

We can see that the improved model performs significantly better with a higher confidence score.
In addition, there are fewer cases of missing or false positives in the detection results and the improved
model has a better performance in dense and occluded scenes.
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Heat map is a visualization tool that can demonstrate target detection results and visualize the
target activation score as a colour image to observe the correctness and accuracy of the target detection
results. Figure 12 shows heat maps derived from a input image. The heat map can show information
such as the density, distribution, or intensity of the data by the shade of colour. In addition, the heat
map is used to visualize the activation level of the prediction corresponding to each position of the
network on the image. Specifically, the image is divided into a number of small cells. Each grid
corresponds to a confidence score, and these scores are then represented as shades of colour, with
darker colours indicating a higher confidence level for the region on the image. The heat map provides
a more visual indication of how well the algorithm detects different regions of the image and the
confidence distribution of the results.

YOLOvSs

0 5 10 15 20 25 30

(b) (©) (d)

Mutilscale
YOLOvV5s-AFAM

6 10 2 30 4 50 6 70 6 10 20 3 4 S0 & 70 6 5 10 15 20 2 3

(e) ® (2

Figure 12. The thermodynamic diagrams of YOLOv5 and Multiscale YOLOv5-AFAM.

While in traditional detection networks, feature maps are usually treated with equal weights,
the AFAM attention mechanism introduced by the improved algorithm proposes a dynamic weight
assignment method that allows the network to focus adaptively on features in different regions.
Through AFAM attention, the network is able to capture the features associated with the target more
accurately.

The original image and its heat map detected by the improved algorithm are shown in Figure 12.

(b) to (g) in Figure 12 show the three stages of feature extraction by the network from light to dark.
The green and yellow areas in the images indicate a higher probability of appearing targets, while the
blue areas indicate a lower probability of appearing targets. It can be observed that the areas where
targets appear in the algorithm’s heat map are usually dense areas such as roads and car parks in the
scene, which are more capable of recognizing the active areas of the targets to be detected. As shown
in (d) and (g) in the figure below, the central region and the coloured region in the lower right corner of
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the heat map of the algorithm proposed in this thesis are denser, corresponding to a greater possibility
of the target being detected appearing in these regions, and the number and density of targets in the
heat map are more consistent with the original scene, indicating that it locates the target object more
accurately. Thus, it is demonstrated that the inclusion of the AFAM attention mechanism has a more
significant improvement in the target detection performance of the algorithm, which can detect targets
more accurately.

4. Conclusions

To tackle the characteristics of low signal-to-noise ratio, blurred background, and low proportion
of infrared dim and small vehicles in images, we constructs an infrared dim and small vehicle target
detection dataset, ISVD. Then we proposes a Multiscale YOLOv5-AFAM algorithm, which can improve
the average accuracy while reducing parameters. The AFAM attention mechanism proposed in this
paper is joined to the feature extraction backbone network to obtain more context information by
increasing the receptive field and spatial feature fusion. In addition, the multiscale fusion structure
is adapted for small target detection. Finally, the Conv module in the backbone network is replaced
with a DownC fusion module which is combined with Maxpool and Convolutional downsampling
to reduce the computational complexity while retaining more texture information. The experimental
results show that mAP@0.5 of the improved algorithm, reaching 85.7% on the ISVD dataset, gets a 4.3%
and 0.1% improvement compared to the YOLOv5s and the YOLOV7 respectively. At the same time,
the parameters of the improved algorithm are 6.6% less than the YOLOvV5s and only 17.98% of the
YOLOV?. On the VEDALI dataset, the improved algorithm compared to the YOLOvV5s algorithm gets a
5.3% improvement in mAP@0.5. In the future, the detection field will be broadened to further improve
the model generalization capability, so that the model can better serve the analysis and processing of
infrared dim small targets.
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