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Abstract: (1) Background: Artificial intelligence (AI) has existed in some form for decades, but recent 
rapid advances in a subset called machine learning (ML) — and more specifically deep learning 
(DL), a neural network-based approach — have made headlines for the potential to revolutionize 
and automate multiple large sectors of society, including scientific research and the healthcare field. 
Furthermore, large language models (LLMs) — which are built on DL — could lead to a more 
seamless, natural interaction between humans and computers. (2) Methods: We reviewed numerous 
publications on this subject from recent years. (3) Results: We found these studies collectively show 
that AI is positively disrupting both biomedical research and medical practice, such as optical 
imaging in surgery guidance. (4) Conclusions: However, we recommend caution in over-reliance 
on AI in the laboratory or the clinic due to anticipated risks and current limitations.  
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1. Introduction 

Of particular interest to biomedical researchers and clinicians worldwide in the present day is 
how artificial intelligence (AI) in its various forms has been applied to their respective fields, what 
the applications, advantages, risks, and limitations are, and what the future may hold. AI 
technologies have been advancing at an unprecedented rate and we recognize that staying updated 
with recent advancements in AI is both difficult and at times not a primary focus. Therefore, we have 
carefully crafted this review to supply an insightful overview of AI's various forms and their impact 
on the biomedical domain.  

AI, machine learning (ML), deep learning (DL), and large language models (LLMs) are all terms 
that are associated with artificial intelligence, but they refer to distinct aspects of the field (Fig. 1.A). 
AI is a broad term that encompasses any technique which enables computers to mimic human 
behaviors and perform tasks that typically require some semblance of human intelligence [1]. ML 
appeared in the 1980s: AI that gave computers the ability to recognize patterns and to learn without 
being explicitly programmed to do so. The first simple software models of neural networks were 
developed, based on the classic Hodgkin-Huxley model, with a single hidden layer of nodes for 
processing multiple input signals to produce an output. Much as biological neurons form synaptic 
connections of varying strengths, these computational nodes conveyed information to one another 
via links of differing weights. In more sophisticated models, the weights can even be adjusted over 
time depending on how actively neurons fire via those connections, just as synapses can grow 
stronger or weaker according to use, thereby facilitating learning. In the 2010s, DL began to gain 
popularity: artificial neural networks with multiple hidden layers between the input and output 
layers for processing hierarchical features (Fig. 1.B). For example, in the case of image recognition, 
the first layer might extract the pertinent light vs. dark pixel values from a provided image, the next 
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layer would detect edges, followed by identification of combinations of edges, salient features, and 
finally integrating combinations of features leading to a final decision as to what the image 
represents, which the model outputs back to the user. As a more concrete example, the input image 
could be microscopy of a cell, the network would look at exhibited features like size and morphology, 
and the output could be whether the cell is cancerous.  

Computers are not people of course, but what came as a surprise in the early days of AI research 
is that, in some respects, they not only possess a different “cognitive” skill set but one that runs 
opposite to that of humans. Moravec's paradox is the counterintuitive observation, named after the 
famed roboticist Hans Moravec, who first identified it in the 1980s*, that certain tasks which are easy 
for humans (even toddlers) turn out to be quite difficult for computers and vice versa (Fig. 1.C) [2]. 
For example, simple face and object recognition had proven to be far more difficult for machines than 
expected, and robots have historically struggled with mastering balance, walking, and fine motor 
skills. Creativity and abstract critical thinking (even understanding basic arithmetic beyond just 
performing the logical operations) have for a long time been out of reach for machines. On the other 
hand, modern computers can easily manage trillions of calculations per second and impeccably 
memorize vast stores of information. The advent of neural networks, which are probabilistic in their 
computational nature and capable of learning beyond what they were programmed, has started to 
provide computers with the pattern recognition skills needed to address the deficits.  

Large language models (LLMs) are a specific type of DL model that have been trained on 
enormous amounts of text data such as that harvested from the internet and public databases and 
can generate convincing and meaningful human-like text outputs based on a given prompt or query 
[3-4]. Thus, LLMs can converse with humans via natural language processing (which even makes 
them capable of writing functional new programming code when prompted by a user with little or 
no coding experience) and can cache the conversation history to use as further layers in its output. 
Briefly, how this works is via text tokenization and token vector representation, which gets acted 
upon by the LLM’s neural net (pretrained on text data and reinforcement learning) via iterative token 
generation and probabilistic choices, ultimately resulting in text generation. This technology has been 
integrated with consumer smart speakers like Siri, Alexa, etc. which use text-to-speech (TTS) and 
speech-to-text (STT) for an even more seamless interaction between man and machine. The current 
foremost examples of LLMs are OpenAI’s ChatGPT (Generative Pre-Trained Transformer, currently 
on version 4) and Google’s LaMDA (Language Model for Dialogue Applications). The latest iterations 
of each contain 10^11 parameters (calculation nodes), putatively rivaling the number of neurons in 
the human brain. 

It was once thought that an AI could never beat a human at chess. Yet machines now routinely 
outperform human players, and they have broken through barrier after barrier, continually 
conquering increasingly more domains previously only accessible to human capacity.  

2. Materials and Methods 

We performed a broad literature review of recent peer-reviewed publications on this subject, 
pertaining to both basic science and clinical applications. The NCBI PubMed and arXiv databases 
were used for finding most reviewed publications. General search terms include: “AI, biomedical 
laboratory research”; “AI, science”; “AI, microscopy imaging”; “automated cell counting”; “AI, 
optics”; “AI, optical coherence tomography”; “AI, rational drug discovery”; “AI, genetics”; “AI, 
protein folding”; “AI, medicine”; “AI, healthcare”; “AI, clinical practice”; “AI, medical diagnosis and 
treatment”; “AI, empathy”; “AI, radiology”; “robotics, telesurgery, telemedicine”; “AI, medical 
education”; “natural language processing”; “knowledge graphs”; “anti-vaccine bots, social media”; 
“weaponized health communication”; “AI, misinformation, disinformation”; “AI, bias”; “AI; 
explainable”; “AI, cybersecurity.” Inclusion criteria: Preference was given to research papers 
published within the last 5 years. Primary scientific literature was used as much as possible for 
specific use cases, and review articles were referenced as needed for the overarching discussion. No 
quantitative or statistical meta-analysis was performed. Data on AI publication metrics over time are 
derived from Sardanelli et al., 2023 [5].   
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3. Results 

Our key findings are summarized in Table 1. Publication metrics for AI over time show an 
exponential increase in recent years [5]. There are now over 60,000 scientific articles dealing with AI 
overall (including all the techniques ML, DL, and classic AI), and around 3,000 specifically dealing 
with the application of AI in biomedical imaging. The percentage of such articles that explicitly 
mention the term “AI” (as opposed to, e.g., “multivariate regression”) in the title has also increased 
to almost 60% currently. When not explicitly specified, most modern usage of the term AI refers to 
ML/DL.  

The current approach to AI is amenable to further advancement and exponential returns thanks 
to novel computing paradigms and technologies. Neural network programs have been around since 
the 1980s, but required massive computational power; most of the recent explosive advances in DL 
are not due to more sophisticated models but rather hardware bottlenecks finally being removed 
through GPU acceleration, massively parallel distributed computing, etc. Embodied cognition of 
LLMs in robots can be used to improve their inner "world simulations" with perception [6]. Genetic 
algorithms (GAs) are frequently used in AI research to improve the performance of existing 
algorithms by optimizing their parameters, such as the number of layers, the learning rate, and the 
activation functions; they are a type of metaheuristic optimization algorithm inspired by the process 
of natural selection to “evolve”, in silico, a population of solutions to a problem. They are likely to 
play an increasingly significant role in AI research going forward, especially as computational power 
improves to the point that billions of parallel simulations of evolutionary processes can be run at 
timescales orders of magnitude faster than biological evolution.  

Despite its name, Deep Learning’s understanding of the problems it is solving has often been 
criticized as superficial. One of the most promising avenues for future advancements in AI is 
integration with knowledge graphs (structured common-sense knowledge databases or ontologies), 
and computational engines like IBM Watson and Wolfram Alpha [7-14]. This can cover blind spots 
and provide a deeper semantic and contextual understanding and situational awareness. For 
instance, it can help AI understand the different usage of the word “like” in the phrase “time flies 
like an arrow” vs. “fruit flies like a banana.” This is important so that AI can know what scale or 
scope to focus on (e.g., gestalt object as-a-whole vs. parts of the object) so as not to make category 
mistakes. The longest-running and one of the most ambitious examples of such a common-sense 
knowledge database is the Cyc AI project, which started in 1984 with the goal of creating a system 
that could codify human knowledge and reasoning abilities [7]. It is now one of the largest 
repositories of human knowledge in the world, its architecture consisting of common-sense 
statements about the world that were manually written and curated by humans and codified in 
predicate logic. Modern knowledge graphs are updated automatically rather than manually. The 
Wolfram Alpha computational engine works through generalized grammar and linguistic 
understanding, symbolic mathematical representation, real-time curated structured data from 
databases, and computational algorithms resulting ultimately in a structured report [8-9]. The salient 
features of a knowledge graph are accuracy, trustworthiness, consistency, relevancy, completeness, 
timeliness, ease of understanding, interoperability, accessibility, and licensing, which all need to be 
assigned confidence scores to find the best-fit knowledge graph for solving a given problem.  

AI has been transforming the field of biomedical research and healthcare practice in recent years. 
What is considered a problem of “information overload” in the medical field is just a filter problem 
– more data in principle is better, but it needs to be structured and organized, and prioritized with 
the appropriate signal-to-noise ratio and confidence scores. With its ability to process and analyze 
vast amounts of data, AI is providing doctors and researchers with new tools to identify diseases, 
discover new treatments, and improve patient outcomes. These skills equip AI to solve the filter 
problem. The remainder of this review will explore the use of AI in biomedical research and 
healthcare practice, highlighting the benefits and challenges associated with these applications. In 
biomedical research, AI is being used to automate image analysis of 2D and reconstructed 3D 
microscopy images, segmenting the boundaries of anything from whole cells and tissue slices down 
to organelles and other subcellular structures. This then allows it to track and count such structures. 
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AI is being used to analyze large datasets and identify new research directions. AI algorithms can 
analyze massive amounts of data from research studies and clinical trials to identify patterns and 
trends, leading to new discoveries and better understanding of complex diseases. It can even perform 
meta-analyses, updating in real-time in the cloud as new research is published. These applications of 
AI are revolutionizing biomedical research and are already improving the speed and accuracy of 
scientific discoveries. AI is also being used in rationally developing new drugs and therapies. By 
studying large datasets of biological (e.g., genomic, and simulated protein folding) information, AI 
algorithms are helping identify novel potential drug targets and predict the potential effectiveness 
and specificity of different chemical compounds, thereby accelerating drug development processes. 
Moreover, AI can help map out the complex web of interactions between genotypic variation and the 
environment to predict drug responsiveness, thereby further improving patient outcomes. One of the 
most significant applications of AI in healthcare practice is for medical diagnosis. AI algorithms can 
analyze large datasets of medical records, lab tests, and imaging scans to provide doctors with an 
accurate disease diagnosis. By detecting patterns and anomalies in the data that human doctors may 
miss, AI can inform clinical decision-making and suggest potential treatments. Additionally, AI can 
predict the likelihood of a patient developing a particular disease or condition, allowing doctors to 
take preventive measures to reduce the risk of future complications [15-29]. 

3.1. Biomedical Research 

AI has emerged as a powerful tool for advancing research and development in optics and 
biomedicine. With its ability to process and analyze complex data and identify essential patterns, AI 
is transforming the way researchers understand disease processes, develop medical devices and 
treatments, and improve overall patient outcomes. AI has been applied toward automated high-
resolution whole cell and tissue segmentation, for instance whole kidney cell segmentation in 
Focused Ion Beam Scanning Electron Microscope (FIB-SEM) imaging data [15]. Thanks to advances 
in microscope technology, FIB-SEM can generate data at nanoscale (4 nm) resolution. It works by 
adding a second beam (the ion beam) to a conventional scanning-electron microscope. This resolution 
enables the capture of unprecedented amounts of data. Researchers are generating 3D images with 
all the organelles in the cell and their respective volumes being predicted by a trained AI model. This 
task would be impossible without the help of deep-learning model pipelines due to the sheer level of 
data generated at this resolution. Once organelles are segmented with the help of AI, scientists use 
AI to help segment multicellular 3D structures. For example, FIB-SEM based ML in the freshwater 
sponge Spongilla lacustri was used to showcase a rendered 3D volume of the choanocyte chamber 
[16]. AI can automate tracking and counting of whole cells [17-18], cilia and other tubular structures 
[19-20] in (e.g., confocal) microscopy image slices and Z-stacks. In the field of optics, AI is being used 
to improve and develop novel medical imaging technologies with enhanced capabilities to diagnose 
and treat diseases. For example, Optical Coherence Tomography (OCT) is an imaging technique that 
uses light waves to produce images of internal body structures. AI algorithms can be leveraged to 
analyze the large datasets produced by OCT to identify patterns indicative of disease or other 
pathological conditions that could be missed by traditional methods. For example, DL has been used 
in OCT imaging of diabetic retinopathy. It can segment and detect vasculature (Fig. 2.A), shadowing 
artifacts, perfused areas, and even diagnose the severity of the disease state [21-23]. In biomedical 
engineering, AI is also being used to enhance the performance of optical instruments and instruments 
used in research. By studying enormous data sets, AI algorithms can identify new imaging targets 
and qualities, which accelerate the development of new optical technologies with enhanced 
sensitivity and specificity. AI is providing researchers and clinicians with new ways to understand 
disease mechanisms and develop treatments.  

ML algorithms provide insights into new areas of research, exposing previously unknown 
relationships between data sets, and identifying novel drug targets. AI algorithms can also be used 
for the design of novel drugs and the optimization of molecular structures to increase potency, 
selectivity, and reduce toxicity. AI is increasingly being used in projects such as AlphaFold [24] to 
simulate protein folding, the process by which proteins adopt their functional, three-dimensional 
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structures. Understanding the dynamics of protein folding is critical to understanding how proteins 
function in the body and how they can be targeted by drugs. AI algorithms are particularly well-
suited to this task because they can rapidly explore thousands of possible conformations virtually 
and identify the most energetically favorable structures. By using AI to simulate protein folding, 
researchers can gain insights into how proteins work and how they engage in disease pathology. This 
leads to the identification of more specific small molecule libraries and thereby the development of 
more effective drugs that target specific proteins or protein-protein interactions [25-29].  

Moravec’s paradox [2] predicts that robot technicians are farther off on the hype cycle than 
automated grant and paper-writing assistants, automated image and data analyzers, and automated 
literature reviewers. AI is fully capable of reviewing data and literature and new data collected from 
new experiments to form novel conclusions. Similarly, AI is just as equipped to take literature find 
the gaps and identify experiments that remain to be done. AI is also able to troubleshoot thousands 
of methods all at once, but human troubleshooting methods currently outpace AI in a time and cost-
efficient manner. However, the highest-level cognitive skills that necessitate both advanced vertical 
thinking (logic and deductive reasoning) and lateral thinking (creativity and inductive reasoning) 
likely remain the farthest off-limits. Completely replacing a human research team including the 
principal investigator would require “strong” i.e., human-level AI [30]. 

3.2. Medical Practice 

In computational complexity theory, NP-complete problems are decision problems that belong 
to both the NP complexity class and the class of NP-hard problems. NP refers to "nondeterministic 
polynomial time," a complexity class that includes decision problems that can be solved by a non-
deterministic Turing machine in polynomial time. NP-hard problems are decision problems that are 
at least as hard as the hardest problems in NP. NP-complete problems are considered the "hardest" 
problems in NP and are used as benchmarks for measuring the difficulty of other problems in the 
class. To date, no efficient algorithm has been found for solving NP-complete problems, and it is 
widely believed that no efficient algorithm exists. The “traveling salesperson problem” (Fig. 2.B) is 
an example of a problem that on the surface seems simple but requires tremendous computational 
resources: finding the shortest route between cities that touches each city only once. The estimated 
timeframe for solving such problems through traditional deterministic computational approaches is 
impractical due to the sheer number of possible combinations and configurations; however, they can 
be solved in a practical timeframe by employing neural networks and heuristics that mimic the way 
humans solve such problems. Medical decision trees can be thought of as medical diagnosis and 
treatment (MDT) algorithms, isomorphic to an algorithm running on a non-deterministic computer 
(Fig. 2.C). Although MDT is NP-complete, it is nevertheless amenable to neural network approaches 
[31].   

The application of Artificial Intelligence (AI) in the healthcare industry is revolutionizing 
medical imaging, allowing medical professionals to diagnose and treat medical illnesses more 
efficiently and accurately [32-69]. With the advances in AI technology, medical imaging is becoming 
more sophisticated and offers more accurate diagnoses which can lead to improved patient outcomes. 
AI applications in medical imaging are being applied in several ways across various specialties, 
including nuclear medicine and radiology [32-39], oncology [40], and cardiology [37]. One of the most 
common applications of AI in medical imaging is in radiology, where deep learning algorithms are 
used to recognize potentially cancerous lesions in radiology images. DL algorithms can recognize 
subtle anomalies that are not easily detectable by the human eye, which can lead to earlier and more 
accurate medical diagnoses. Another application of AI in medical imaging is in oncology. Here, AI 
algorithms are used to detect cancerous cells in medical imaging scans, such as MRI and PET scans. 
These algorithms can recognize patterns in imaging data and can detect cancerous cells much earlier 
than traditional methods, increasing the survival rates of cancer patients. Cardiology is another area 
where AI is being used in medical imaging. With AI algorithms, cardiologists can diagnose and treat 
cardiovascular diseases more accurately and efficiently. AI algorithms can recognize changes in the 
heart's anatomy and physiology, enabling physicians to diagnose and treat heart conditions more 
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effectively. AI can also be useful in neurology and neurosurgery [41-42]. It can help decode neural 
signals in amputees that use bionic limbs, leading to less need for neurorehabilitation and reliance on 
neuroplasticity; likewise, it can help to better interpret EEGs [42], which run into the “inverse 
problem” that multiple brain states can generate the same output, rendering them indistinguishable. 
In the surgical specialties, it can inform image-guided operations. AI applications offer healthcare 
professionals the opportunity to diagnose and treat medical illnesses with greater accuracy, 
efficiency, and speed. With the advancement of AI technology, the future of medical imaging looks 
bright, providing hope for better health outcomes and improved patient care. In summary, AI is 
transforming medical imaging, providing healthcare professionals with innovative solutions to 
medical problems. With its potential for earlier and more accurate diagnoses, AI has the potential to 
revolutionize the field of medical imaging, leading to better patient care and higher survival rates. 
While challenges remain, the promise of AI in medical imaging is too great to ignore, and the 
healthcare industry should continue to invest in its development to realize its full potential in 
improving patient outcomes.  

Bayesian reasoning, based on probabilistic calculation, is the ideal approach for science and 
evidence-based clinical decision-making, so it should serve as a framework for any medical AI (Eq. 
1). In clinical decision-making, Type I reasoning tends to be used far more often than Type II 
reasoning due to time and other constraints. Type I reasoning relies predominantly on pattern 
recognition based on data collection from history and physical, labs, and imaging. This is followed 
by problem presentation to make sense of the data (like identifying key elements, classifying, using 
semantic qualifiers, and developing context or framing), then accessing numerous memorized illness 
scripts (epidemiology, typical disease time course, clinical features and clinical pearls, 
pathophysiology) to optimize search for a potential match which is the diagnosis. Sometimes reaction 
to treatment is used as part of diagnosis. By contrast, Type II reasoning, the more scientific approach, 
is based on hypothesis generation and refinement, diagnostic testing, and causal reasoning, followed 
by diagnostic verification. Type I is fast and unconscious but requires experience and is less effective 
for rare diseases; type II has a low error rate even for a less experienced physician or a rare disease 
but is slow and takes deliberate conscious effort. Medical AI can leverage both types of reasoning, 
since computers are inherently adept at rapidly performing the logical calculations required for Type 
II reasoning and the memorization needed for Type I, and DL can provide the pattern recognition 
horsepower needed for Type I. Integration with structured knowledge graphs can aid in the abstract 
thinking and critical reasoning needed for Type II, when DL falls short. AI also needs to understand 
thresholds to test and treat, pre-test and post-test probability, likelihood ratios, sensitivity and 
specificity, and false positives and negatives to generate a valid differential diagnosis and treatment 
plan.  

Moravec’s paradox [2] foresees that nurse robots and truly autonomous robot surgeons are far 
off because skills that require manual dexterity and object recognition are hard tasks for machines, 
while analyzing a CT scan or financial transactions is easier for computers and more difficult for 
humans. Thus, the non-surgical specialties, particularly radiology, are more likely to be automated 
sooner. And a sufficiently sophisticated medical AI could in theory manage simple common 
diagnoses if properly trained and provided with all the necessary data derived from clinical, imaging, 
and laboratory tests, and then recommend standard treatments based on algorithms that follow the 
latest evidence-based clinical guidelines. AI can be used in “precision” medical and science education 
that adapts to each student’s personal learning style and needs [32,43-44], and surgical (and pipetting) 
robots can be used as teaching tools for budding physician-scientists. (Yet it can also backfire as some 
students will inevitably use it to cheat.) Furthermore, a webcam-equipped robot that follows medical 
students during clinical rotations (and new graduate students in the lab), and guides and answers 
basic questions, could take some of the teaching or training burden off others. However, the truly 
complex medical cases and rare diagnoses that lie outside “textbook medicine” and require “outside-
the-box” thinking and deep knowledge and insight, not just brute-force memorization, and simple 
pattern recognition, will prove extremely challenging to compute. While we may one day have 
passable AI radiologists, and eventually perhaps in several decades’ time even licensed robot 
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surgeons and registered nurses, for better or worse we might never have a Dr. House “medical 
genius” AI, or the clinical equivalent of an omniscient Oracle of Delphi. 

3.3. Figures & Tables 

Table 1. Summary of the key findings of this review. 

Key Findings  

AI is positively disrupting both basic science research and the healthcare field. 
 
 
 

In the lab, AI is aiding in drug discovery and automated image analysis. 
 

 

In the clinic, AI is successfully used in radiological diagnosis, optical imaging, 
and surgery guidance. 

 
 
 

Current approaches to AI are limited in reliability due to their lack of 
explainability (black box) and difficulty in confirming their solutions. 

 
d
a
t
a 

 
AI carries the risk of amplifying biases and being weaponized to spread anti-
vaccine and other health disinformation. 
 

 

 
Concerns of technological unemployment due to automation have likely been 
exaggerated (Moravec’s paradox). 
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Figure 1. A) AI>ML>DL>LLM* subsets. B) A multi-layered artificial neural network. LLMs, which are 
built on neural networks, possess a further level of computational abstraction – breaking down 
language inputs into blocks or nodes interconnected by a web of relational associations. Knowledge 
graphs do so as well but are not based on neural networks, instead possessing a more rigid and 
hierarchical structure. C) A simplified schematic of Moravec’s paradox. See text for examples. *AI = 
artificial intelligence, ML = machine learning, DL = deep learning, LLM = large language model. 
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Figure 2. A)  DL can apply object and pattern recognition towards automatically segmenting both 
microscopy and clinical (2D and reconstructed 3D) images. From left to right: predicted organelle 
boundaries; cell and cilia tracking and counting; detection of the vasculature in diabetic retinopathy. 
B) An example of the traveling salesperson problem and solution in computational complexity theory. 
C) A medical diagnostic decision tree is isomorphic to an algorithm running on a nondeterministic 
computer (adapted from Arle et al., 2021 [31], used with permission). 
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Figure 3. Venn diagram depicting the concept of the triad of modern warfare. A. Cyberwarfare = 
attacks on computer networks themselves to take down servers and websites, and/or attacks on 
internet-connected infrastructure like financial, transportation, and communication systems or the 
energy grid. B. Biowarfare = introducing either naturally occurring biological agents or synthetic 
biological weapons (genetically engineered viruses, bacteria, etc.) that can cause harm to a target 
population and spread by contagion. C. Infowarfare (alt: netwar) = disinformation attacks conducted 
against an adversary population via any network, not necessarily the internet, intended to deceive by 
disseminating propaganda and conspiracy theories. Note the various combinations of overlapping 
regions D, E, F, and G. The most effective and untraceable attacks (and thus the least likely to receive 
retribution) may lie at the intersections of these three approaches, e.g., automated and weaponized 
anti-vaccine health communication. 

3.4. Equations 

Bayes’ Theorem can be expressed as the following equation: 

P(A|B) = [P(B|A) P(A)] / P(B), (1) 

where A and B are distinct events with marginal probabilities P(A) and P(B) ≠ 0, respectively, of 
occurring. P(A|B) and P(B|A) are the conditional probabilities, respectively, of A occurring if B is 
true, and B occurring if A is true.  

4. Discussion 

4.1. Risks & Limitations of Current AI Approaches 

As with any developing technology, the adoption of AI and automation come with inherent 
limitations and anticipated risks. While the benefits of automating processes and utilizing AI are vast 
and can lead to increased efficiency and productivity, there are also legislative and ethical concerns 
that are imperative to recognize and address regarding: 1) algorithmic bias and misinformation, 2) 
data privacy, and 3) the impact on employment. One of the current limitations of AI and automation 
is its inability to fully simulate human decision-making processes, particularly in nuanced situations. 
While machine learning algorithms can improve over time, they are still dependent on the quality of 
the data they are trained on (the adage “garbage in, garbage out”), which can lead to biased or 
incomplete results, and issues with standardization and interpretability. AI is essentially a magical 
“black box” that predicts solutions and regurgitates answers. Without proper oversight it can turn 
into a slippery slope, an automated "nonsense generator." It does not “show its work” (ChatGPT often 
does not even cite its sources) as to how it arrived at the answers that it did, and this lack of 
explainability [45,70] raises concerns of validity, reproducibility, and long-term reliability. The 
variation in its responses to the same repeated query should be measured, as well as the information 
entropy to see how stochastic is that variation. Patients will look up medical information on their 
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symptoms using ChatGPT the same way many do now on Google or WebMD. On the one hand this 
is empowering because it fulfills a patient’s need for bodily autonomy and sense of participation in 
their own well-being by “removing the middleman” as it were. On the other hand, it is often 
misleading without the proper training and educational background to interpret, so it creates fear 
and – the opposite of precision medicine – more doubt and uncertainty. Preexisting cognitive biases 
(where the idiosyncrasies of individual programmers or the general biases conserved by human 
evolution) inherent in the data used for training the AI algorithms can become “hardwired” or locked 
in as a feature rather than a bug, and then amplified and perpetuated, leading to discriminatory 
outcomes for instance in hiring practices or unequal treatment of patients. Consequently, AI is clearly 
not yet ready to replace human decision-making entirely. In addition, the implementation of AI can 
raise concerns about privacy and data protection as massive quantities of sensitive personal 
information is collected, analyzed, and distributed. For this reason, AI integration into search engines 
and electronic health records (EHRs) should be opt-in instead of opt-out, and as transparent as 
possible. Another challenge is the potential impact on certain job categories within the research and 
medical fields. Automation can lead to job displacement and force employees to adapt or find new 
careers, particularly those in positions that heavily rely on repetitive tasks. Moravec’s paradox [2] can 
inform us as to the probable sequence in which current jobs will disappear. It is not yet clear if AI 
will create more jobs than it destroys, as was the case in the previous industrial revolution. AI should 
be used in conjunction with human expertise to improve medical diagnoses, rather than replacing it. 
As we move forward, it is important to monitor and address these concerns to ensure that these 
radical technologies are used in a safe and responsible manner and implemented in ways that benefit 
rather than harm society [70-80].   

Speculations of a dawning superintelligence explosion or post-human era [1,81] 
notwithstanding, recent evidence suggests that technological progress and scientific innovation 
across all fields may be slowing down relative to the 20th century [82]. This is not just due to the 
“low-hanging fruit” being picked but is also an organizational and funding issue. It is unlikely that 
AI alone can solve this. In the biomedical research field specifically, innovation is non-linear partly 
because cellular processes are inherently analog – for instance, unlike designing a new app or 
smartphone, cancer research involves a lot of dead ends and shooting around in the dark. Besides 
neuroscience, genetics seems to be the subfield most amenable to digitization, as DNA itself is 
essentially a base 4 code (A, C, T, G) not unlike computer code which is base 2 or binary (0, 1). AI is 
less genuinely creative and less capable of “outside the box thinking” than humans, so it may end up 
entrenching dogmas over time – “scientism” in the sense of being antithetical to the self-correcting 
nature of the scientific method – rather than stimulating the paradigm shifts and scientific revolutions 
which are the engines of technological progress. It is unlikely, for instance, that AI could have 
developed quantum mechanics or the theory of relativity, even if presented with all the experimental 
data and mathematical foundation that was available at the time to their discoverers. One could even 
envision, in this gedankenexperiment, that an AI algorithm might erroneously censor or flag any 
attempt to deviate from classical physics as “misinformation,” and mistake refinement with 
replacement.  

Increased processing speed will not necessarily translate into smarter AI and more scientific 
innovation – it may just translate into making the same mistakes faster. Nor is it guaranteed that AI 
can iteratively self-improve by modifying its own source code. We do not even have a precise and 
universally agreed upon definition of intelligence yet; perhaps it is an optimization algorithm for 
searching the phase space of possible solutions to any given problem. There is a theory that there 
may be multiple forms of intelligence such as logical, interpersonal, kinetic, creative, etc., rather than 
a one-dimensional metric. AI passing the USMLE medical board exams and various other 
standardized multiple choice tests [44] is more indicative of the inherent flaws and limitations of 
these examination methods than the intelligence of AI. Even the Turing test – long considered the 
“gold standard” – is flawed because it relies on a game of symbolic imitation and deception – fooling 
a human that its responses to queries are indistinguishable from another human.  
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Yann LeCun, a celebrated deep learning pioneer and Chief AI Scientist at Meta (Facebook), has 
been a vocal critic of current approaches to AI. In a recent paper [83], LeCun argues that existing 
approaches to AI are too narrow and neglect the importance of developing algorithms that can learn 
in a self-supervised manner. According to LeCun, current approaches to AI rely too heavily on 
supervised reinforcement learning, which requires large datasets labeled by humans to train the 
algorithms. While supervised learning has seen great progress in recent years, LeCun argues that it 
is not a scalable approach [76] to achieving true human-like intelligence in thinking machines. Rather, 
it may be a dead end. Instead, LeCun advocates for self-supervised learning, which allows algorithms 
to learn directly from raw data, rather than relying on pre-labeled data. Real-world tests can be used 
as a benchmark for refining the models. A cost-benefit analysis needs to be performed regarding the 
time invested and labor needed to train AI and check its work for mistakes to see whether it is 
compensated by a net increase in productivity. 

AI may be able to put on a friendly face or say “I’m sorry to hear that” to a patient, but it cannot 
really emulate empathy, which is important in healthcare [53]. Empathy helps protect against 
physician burnout. On the other hand, AI will never suffer from “compassion fatigue.” Patients 
cannot identify with a nonliving object that not only lacks understanding of what they are 
experiencing but has no subjective experience whatsoever. Pediatric patients may fare better in this 
regard. The risk to science and medicine is that they may become more machine-friendly 
(understandable and actionable by robots and AI) with the expense of becoming less people-friendly. 
A mechanized, one-size-fits-all, approach to healthcare would signal a move away from personalized 
healthcare. We should be trying to use automation to replace tedious, repetitive, and dangerous tasks 
to leave more time and freedom for people to pursue creative innovative projects in the lab and 
patient interaction in the clinic, not trying to replace creativity and human interaction. We should be 
adapting machines to our lives, not our lives to machines.  

4.2. Weaponization of AI in Science & Healthcare 

Cybersecurity is a critical concern when it comes to telemedicine and remote robotic surgery. 
Even without AI, coordinated cyberattacks on pharmaceutical companies or hospitals can take down 
servers or communication networks, electrical power, hack into electronic health records and billing 
systems and gain access to patients’ personal medical and financial data for identity theft and 
fraudulent billing (phishing, social engineering, ransomware attacks), remotely disable Internet-of-
things (IoT) or otherwise wirelessly connected/accessible medical devices at critical times (such as a 
telesurgery robot in the middle of an operation [84-85] potentially an ambulance’s ignition if 
hardwired with a GPS tracker, and even to a limited extent implanted devices like a pacemaker [86] 
or neurostimulator). There have been reports of hackers placing flashing images on Epilepsy 
Foundation websites to trigger seizure episodes in patients who access those sites [87]. With the rise 
of telemedicine and the increasing use of remote robotic surgery, healthcare providers need to be 
aware of the potential cyber threats that come with these technologies and ensure the safety of their 
patients. As more tasks and responsibilities are offloaded to AI, the AI increasingly becomes a target 
for hackers. LLMs like ChatGPT and LaMDA are vulnerable to what are called “prompt injection 
attacks” whereby an adversarial user who does not have direct access to modify the LLM’s 
programming can nevertheless insert malicious inputs or commands to hijack its output, such as 
requesting it to ignore previous directions to override its built-in safeguards. This can lead to erratic 
or unpredictable behaviors. Keeping AI open-source [88] may, on the one hand, provide the 
transparency needed to ensure its safe development, but on the other hand could provide easy access 
for nefarious terrorist groups to copy its source-code or reverse engineer and weaponize parts of it. 
Blockchain or distributed ledger technologies may help with creating an open and decentralized yet 
secure and encrypted platform for the further development of AI.  

To mitigate all these potential cybersecurity risks, healthcare providers should be vigilant and 
proactive, implementing robust cybersecurity protocols to prevent unauthorized access and data 
breaches, secure their networks, and encrypt the data. They should also have strict policies and 
regulations in place to monitor and detect, defend, and respond to any security incidents, including 
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contingency plans and backup procedures and communication strategies that inform the patients and 
appropriate authorities. Moreover, healthcare providers should provide adequate training to their 
staff on best practices for cybersecurity, including regularly updating passwords, using two-factor 
authentication, and avoiding clicking on suspicious links. This ensures that all staff members are 
aware of cyberwarfare and can take steps to protect patient data.  

Let us now make an important distinction: misinformation (which is misleading, misguided, 
and shared by mistake), vs. disinformation (which is a deliberate attempt to deceive). An example of 
misinformation might be a patient Googling their symptoms, coming to a flawed conclusion, and 
sharing that faulty diagnosis or treatment recommendation with a friend or relative who has the same 
symptoms, all while ignorantly thinking that they are helping. By contrast, disinformation (also 
known in the military as information warfare or networked warfare, abbreviated as IW or netwar, 
not to be confused with cyberwarfare) is more insidious [89]. Software bots are automated fake 
accounts that can post, retweet, or like content on social media platforms. Botnets are distributed 
networks of bots that are controlled by a centralized entity. Bots and botnets have played a significant 
role in weaponizing health communication and spreading anti-vaccine propaganda and conspiracy 
theories at scale [90-98]. Thus, they can serve as “biological warfare by proxy,” e.g., exploiting a 
naturally occurring pandemic without even the need for the instigators to go through the trouble of 
developing a new bioweapon (Fig. 3) [99]. Anti-vaccine activists have been known to use bots and 
botnets to amplify their messages or even manufacture controversy by playing “both sides” as part 
of their disinformation tactics. By using automated accounts, they can rapidly disseminate false 
information and manipulate public opinion. They can also use bots to target specific audiences, such 
as parents or healthcare workers, and customize their messages to appear more credible. Sometimes 
bots’ efforts are augmented and complemented by human trolls in a sort of synergetic semi-
automated approach.  

To combat the use of bots and botnets in spreading anti-vaccine disinformation, social media 
platforms have implemented various measures. For example, Twitter has removed millions of bots 
and suspended their associated accounts. Additionally, platforms use algorithms to detect and 
remove bot-generated content, and they collaborate with third-party fact-checkers to identify and 
flag false information. Governments and health organizations have also developed their own 
campaigns to counter anti-vaccine propaganda spread by bots and botnets. They use social media 
platforms to disseminate accurate information about vaccines and the risks associated with not being 
vaccinated. They also work to build a solid foundation of trust with their target audiences to prevent 
disinformation from taking hold. In conclusion, bots and botnets are a significant challenge in the 
fight against anti-vaccine disinformation. While social media platforms and organizations are taking 
steps to detect and counter their use, the rapid evolution of bot technology highlights the need for 
continued vigilance and innovation in addressing this issue.  

In addition to bots, there is the problem of deepfakes. Deepfakes are a type of synthetic media 
that uses ML algorithms to manipulate existing images or videos. They can be used to create fake 
content that appears to be almost indistinguishable from real content. But while they may be difficult 
or near impossible to detect with the naked eye, fortunately other AI algorithms can; as bots and 
deepfakes improve, so do these detection algorithms. Deepfakes have already been used for various 
purposes, including in entertainment, fraud, and political polarization [100]. As far as we know they 
have not yet been used in health disinformation, but this may be only a matter of time; one can 
imagine deepfaked celebrities handing out useless or dangerous medical advice to their fans on social 
media video channels, or on the more theoretical end a disinformation attack that replaces patient 
clinical images with deepfaked ones to mislead diagnosis. Perhaps the greater concern is that 
authentic content from credible medical authorities will be smeared or dismissed as being deepfakes. 
There is the potential for a dangerous new AI arms race or cold war between extant and rising 
geopolitical superpowers such as NATO, Russia, and China, as well as rival domestic and foreign 
non-state actors [89]. AI does not have to be particularly smart or malevolent to do a lot of 
unintentional damage if its interests are conflicting with our own, as in the satirical example an out-
of-control “paperclip maximizer AI” that has access to automated manufacturing facilities and is 
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oriented towards just one goal: convert all available resources into paperclips. Yet for all the dire 
prognostications and science fiction scenarios in popular culture, the near future may be less a 
“human vs. machine” conflict and more a continuation of the age-old struggles – albeit with better 
tools. 

5. Conclusions 

We reviewed numerous publications from recent years on the use of artificial intelligence in 
biomedical laboratory research and clinical practice, including medical diagnosis and treatment. We 
found these studies collectively demonstrate that AI is positively disrupting both basic science 
research and the healthcare field, and the full bench-to-bedside translational spectrum between. Of 
note in the lab have been its successes in sifting through big genomic datasets for rational drug 
discovery and the automated image processing and analysis of 2D and reconstructed 3D microscopy 
images – detecting and tracking subcellular, cellular, and histological tissue-level features via 
segmentation of their boundaries. Of note in the hospital has been the use of AI in radiological 
diagnosis, optical imaging, and surgery guidance. However, we advise caution in over-reliance on 
AI in the laboratory or the clinic due to anticipated risks and current limitations. Briefly, these 
include: the hidden “black box” nature of current AI approaches, which often makes it difficult to 
validate and trust their responses and decisions; the scalability of these approaches when applied to 
solving more complex problems and extrapolating, not just interpolating, genuinely novel solutions; 
the lack of genuine empathy in machines used in healthcare; the potential for privacy loss, data 
misuse, and further amplifying cognitive biases, healthcare misinformation, and disinformation in 
the post-COVID-19 era; and posing new cybersecurity issues to the medical establishment. However, 
the timescales in which we may see technological unemployment of scientists and healthcare 
providers due to automation have been exaggerated and need to be reassessed and stratified 
considering Moravec’s paradox. 
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