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Abstract: For a system that turns out to be inactive in time t, the past entropy is considered as an
uncertainty measure for the past lifetime distribution. In this study, we consider a coherent system
that includes n components and has the property that all the components of the system have failed at
time t. To assess the predictability of the coherent system’s lifetime, we use the system’s signature
to determine the Rényi entropy of its past lifetime. We study several analytical results, including
expressions, bounds, and order properties for this measure.
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1. Introduction

An accurate quantification of uncertainty of system lifetime is an important task for
engineers engaged in survival analysis. The importance of reducing uncertainty and in-
creasing system lifetime is widely recognized, with longer lifetimes and lower uncertainties
being key indicators of higher system reliability (see, e.g., [1]). The problem of extend-
ing the life cycle of engineering systems is extremely important and has serious practical
applications. To this end, we use the concept of Rényi entropy, denoted Hα(X), which
measures the uncertainty associated with a nonnegative continuous random variable X
with a probability density function (pdf) f , defined as the Rényi entropy of order α, which
is as follows

Hα(X) = Hα( f ) =
1

1 − α
log

∫ ∞

0
f α(x)dx, α > 0, (1)

where ’log" stands as the natural logarithm. Rényi entropy has many applications in 
measuring uncertainty in dynamical systems and has also proved to be a useful criterion 
for optimization problems (see e.g., Erdogmus and Principe [2], Lake [3], Bashkirov [4] 
Henríquez et al. [5]), Guo et al. [6], Ampilova and Soloviev [7], Koltcov [8] and Wang et al.
[9]. Shannon’s differential entropy (Shannon [10]), a fundamental concept in information 
theory, can be derived as follows:

H(X) = lim
α→1

Hα(X) = −
∫ ∞

0
f (x) log f (x)dx. (2)

By consideration of the lifetime a fresh system has, denoted by X, the Rényi entropy
Hα(X) is a useful measure of uncertainty. However, in certain scenarios, actors may know
the current age of the system. For example, they know that the system has been in operation
for a certain period of time t and want to measure the uncertainty induced by the remaining
lifetime of the system, denoted by Xt = X − t|X > t. In such cases, Rényi entropy is no
longer an appropriate measure of uncertainty. To address this problem, we introduce the
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residual Rényi entropy, which is specifically designed to measure the uncertainty associated
with the remaining lifetime of a system. The residual Rényi entropy is (see [11])

Hα(Xt) =
1

1 − α
log

∫ ∞

0
f α
t (x)dx =

1
1 − α

log
∫ ∞

t

(
f (x)
S(t)

)α

dx, (3)

for all α > 0. The concept of Hα(Xt) provides a fascinating aspect of lifetime units in 
reliability engineering as the behaviour of its fluctuations with respect to t (the current age 
of an item with original lifetime X) may be helpful to create models. This area of research 
has attracted the attention of researchers in various fields of science and engineering. This 
entropy measure is a generalization of the classical Shannon entropy, and it has been shown 
to have numerous valuable properties and applications in different contexts. In this area, 
Asadi et al. [12], Gupta and Nanda [13], Nanda and Paul [14], Mesfioui et al. [15], and many 
other researchers have studied the properties and applications of Hα(Xt).

Uncertainty is a pervasive feature of a given (specific) parameter in real systems, such 
as their random lifetime, and its effects are felt not only in the future but also in the past. 
Even if there are facts in the past that we are not aware of, uncertainty remains. There are 
many real situations in nature, in society, in history, in geology, in other branches of science, 
and even in medicine, where there is no information about the exact timing of some past 
events. For example, the exact time when a disease began in a person’s body. This gives 
rise to a complementary notion of entropy, which captures the uncertainty of past events 
and is distinct from residual entropy, which describes uncertainty about future events. In 
many practical scenarios, uncertainty may be associated not only with future events, but 
also with past events. For example, consider a system that is observed only at certain 
inspection times. If the system is inspected for the first time at time t and is in a failed 
state, the uncertainty relates to the past, more specifically to the time of failure within the 
interval [0, t]. Another example: When an aircraft is discovered in a non-functional state, it 
is critical to quantify the degree of uncertainty associated with this situation, which is in the 
past. The uncertainty is in determining the exact point in the aircraft’s operational history 
that led to its current condition. Therefore, it is appropriate to introduce a complementary 
notion of uncertainty that refers to past events rather than future events and is distinct 
from residual entropy. Let (Z | Z ∈ A) denote a random variable withthe conditional 
distribution of Z under the assumption that Z lies in A, where A is a subset of R such
that P(Z ∈ A) > 0. Suppose that X is the random lifetime of a fresh system that has a 
cumulative distribution function (cdf) F, and suppose that an inspection at time t finds
that the system is inactive. Then X(t) = (t − X | X < t) for all t ≥ 0 : F(t) > 0, which is 
known as the inactivity time of the system and measures the time elapsed since the time 
when the failure of the system occurred (cf. Kayid and Ahmad [16]). The random 
variable Xt = (X | X < t) is also called the past lifetime. The uncertainty in distribution of 
Xt, is equivalent to the uncertainty in the in the random variable X(t). The study of past 
entropy, which deals with the entropy properties of the distribution of past lifetimes, and 
its statistical applications have received considerable attention in the literature, as 
evidenced by works such as Di Crescenzo and Longobardi [17], Nair and Sunoj [18], and 
Nair and Sunoj [19]. Li and Zhang [20] studied monotonic properties of entropy in order 
statistics, record values, and weighted distributions in terms of Rényi entropy. Gupta et 
al. [21] have made significant contributions to the field by studying the properties and 
applications of past entropy in the context of order statistics. In particular, they have 
studied the residual and past entropies of order statistics and made stochastic comparisons 
between them. In general, the informational properties of the residual lifetime distribution 
are not related to the informational aspects of the past lifetime distribution, at least not for 
lifetime distributions, which is the case in this work. For further illustrative descriptions on 
this issue we refer the reader to Ahmad et al. [22]. Therefore, the study of uncertainty in 
the past life distribution was considered as a new problem compared to the uncertainty 
properties of the residual life distribution.
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On the other hand, coherent systems are well-known in reliability engineering as a 
large class of such systems and as typical systems in practice (see, e.g., Barlow and 
Proschan [23] for the formal definition and initial properties of such systems). An example 
is the k-out-of-n system, which denotes a structure with n components, of which at least k 
components must be active for the whole system to work. This structure is one of the most 
important special cases of coherent systems, which has many applications. For example, an 
airplane with three engines, where at least two engines must be active for it to continue 
flying smoothly. The (n − 1)−out-of-n structure, referred to in the literature as fail-safe 
systems, has many applications in the real world. A fail-safe system is a special design 
feature that, when a failure occurs, reacts in such a way that no damage is done to the 
system itself. The brake system on a train is an excellent example of a fail-safe system, 
where the brakes are held in the off position by air pressure. If a brake line ruptures or a car 
is cut off, the air pressure is lost; in this case, the brakes are applied by a local air reservoir. 
Consider a coherent system that turns out to be inactive at time t, when all components 
of the system are also inactive. The time t is the first time at which the coherent system is 
found to be inactive. The predictability of the exact time at which the system fails depends 
largely on the uncertainty properties of the past lifetime distributions. The goal of this 
work is to quantify the uncertainty about the exact time of failure of the coherent system 
that is inactive at time t, and furthermore, the uncertainty about the exact time of failure 
of a particular component of this inactive system. To this end, we will utilize the Rényi 
entropy of past life distribution.

In this paper, we present a comprehensive study of Rényi entropy for the distribution 
of past lifetimes, providing a generalized version of the equation (3). By allowing different 
averaging of the conditional probabilities by the parameter α, our proposed measure allows 
for a nuanced comparison of the shapes of different distributions of past lifetimes. Our 
results demonstrate the great potential of this measure to uncover new insights into the 
underlying mechanisms behind these distributions, and its applications go beyond the 
scope of our current study. Furthermore, we assume a coherent system of n components, 
characterized by the property that all components of the system have failed at time t. We 
use the system signature method to calculate the Rényi entropy of the past lifetime of a 
coherent system.

2. Results on the past Rényi entropy
Let us consider a random variable X representing the lifetime of a system. Recall that 

the pdf of Xt = [X|X < t] is given by ft(x) = f (x)/F(t), where 0 < x < t, and ft(x) = 0, 
for x ≤ 0 and x ≥ t. In this context, we define the past Rényi entropy at time t of X as

Hα(Xt) =
1

1 − α
log

∫ +∞

0
f α
t (x)dx

=
1

1 − α
log

∫ t

0

(
f (x)
F(t)

)α

dx, (4)

for all α > 0. Note that Hα(Xt) ∈ [−∞, ∞]. Suppose that at time t it is determined that
a lifetime unit has failed. Then Hα(Xt) measures the uncertainty about its past lifetime,
i.e., about Xt. The role of past entropy in comparing random lifetimes is illustrated by the
following example. This highlights the importance of our proposed measure in detecting
subtle differences in the shapes of different distributions of past lifetimes and underscores
its potential to shed light on the mechanisms underlying these phenomena.

Example 2.1. Let us consider two components in a system having random lifetimes X and
Y with pdfs

f (x) = 2x, 0 < x < 1, and g(x) = 2(1 − x), 0 < x < 1,

respectively. The Rényi entropy of both X and Y are elegantly captured by the expression:
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Hα(X) = Hα(Y) =
1

1 − α
(α log 2 − log(α + 1)), (5)

This result implies that the expected uncertainty regarding the predictability of the out-
comes of X and Y in terms of Rényi entropy is identical for f and g. In the case where both
components failed at time t ∈ (0, 1) during the inspection, the past entropy can be used to
measure the uncertainty around the respective failure time points, in spirit of the equation
(4) as follows:

Hα(Xt) =
1

1 − α
(α log 2 − log(α + 1)− (α − 1) log t),

Hα(Yt) =
1

1 − α

(
α log 2 − log(1 − (1 − t)α+1)− α log(2t − t2)− log(α + 1)

)
,

It can be shown that Hα(Xt) ≤ Hα(Yt), for all t ∈ (0, 1), i.e., the expected uncertainty
related to the predictability of the failure time of the first component with original lifetime
X as long as X < t, is greater than that of the second component with original lifetime Y
provided that Y < t, even if Hα(X) = Hα(Y).

As mentioned before in Section 1, an interesting observation is that the statement
in the equation (4) can be interpreted as the Rényi entropy of the inactivity time X(t) =
[t − X|X ≤ t]. This alternative identification sheds new light on the underlying dynamics.
From (4) we also obtain the following expressions for the past Rényi entropy:

Hα(Xt) =
log α

α − 1
− 1

α − 1
log E[τα−1(Xα,t)], (6)

where τ(x) = f (x)/F(x) denotes the reversed hazard rate of X and Xα,t has the pdf as

fα,t(x) = α ft(x)Fα−1
t (x), (7)

for all α > 0, so that Ft(x) = F(x)/F(x) for all t ≥ 0. Our analysis sheds new light on the
behavior of past Rényi entropy in the presence of DRHR, contributing to our understanding
of this important class of stochastic processes.

Theorem 2.1. If X is DRHR, then Hα(Xt) is increasing in t.

Proof. Differentiating (4) with respect to t implies

(1 − α)H̄′
α(Xt) =

f α(t)∫ t
0 f α(x)dx

− ατ(t)

=
α

f α(t)
Fα(t)

α
∫ t

0
f α(x)
Fα(t) dx

− ατ(t)

=
ατα(t)∫ t

0 τα−1(x) fα,t(x)dx
− ατ(t), (8)

where fα,t(x) is given in (7). Since X is DRHR, then τ(x) is decreasing in t and this results
for all α > 1(α < 1) that τα−1(x) ≥ (≤)τα−1(t) when x ≤ t. Thus Eq. (8) yields

ατα(t)∫ t
0 τα−1(x) fα,t(x)dx

− ατ(t) ≤ (≥)0,

or equivalently
(1 − α)H̄′

α(Xt) ≤ (≥)0,
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and this gives the results.

The result of Theorem 2.1 shows that the DRHR property of a component lifetime 
translates to the increasing property of past Rényi entropy for the component lifetime 
as a function of time. Thus, an interesting conclusion is that when we find for the first 
time that a component with a random lifetime that has the DRHR property has failed, 
the uncertainty about the exact time of failure (in terms of the past Rényi entropy) of the 
component increases accordingly.The following theorem relates the ordering of lifetime

random variables according to the past Rényi entropy and the ordering of lifetime random 
variables on the basis of the reversed hazard rates order.

Theorem 2.2. Let X and Y be two non-negative continuous random variables having cdfs F and G 
with pdfs f and g, and reversed hazard rate functions τX and τY, respectively. If τX(x) ≤ τY(x) for 
all x > 0 and either X or Y is DRHR, then for all α > 0, we have Hα(Xt) ≤ Hα(Yt) for all t > 0.

Proof. Let Xt = [X|X ≤ t] and Yt = [Y|Y ≤ t] denote the random variables with pdfs ft 
and gt, respectively. The condition that τX(x) ≤ τY(x) implies for all 0 ≤ x ≤ t that

F(x)
F(t)

≥ G(x)
G(t)

.

For any α > 0, the inequality
Fα(x)
Fα(t)

≥ Gα(x)
Gα(t)

,

holds which implies that Xα,t ≤st Yα,t, where Xα and Yα have the cumulative distribution
functions Fα(x) and Gα(x), respectively. Now, let us assume that X has DRHR property.
For α > 1 (the same result holds for α ∈ (0, 1)), we obtain the following result

E[τα−1
X (Xα,t)] ≥ E[τα−1

X (Yα,t)] ≥ E[τα−1
Y (Yα,t)].

From this we get

− 1
α − 1

log E[
1
α

τα−1
X (Xα,t)] ≤ − 1

α − 1
log E[

1
α

τα−1
Y (Yα,t)],

and this gives Hα(Xt) ≤ Hα(Yt) by recalling (6). A similar conclusion can be drawn if we 
assume that the random variable Y also possesses the DRHR property.

According to Theorem 2.2, between two random lifetimes, at least one of which has 
the DRHR property, the one with a larger reversed hazard rate leads to greater uncertainty 
in the Rényi entropy of the past lifetime distribution. Therefore, the random lifetime, which 
is stochastically larger, is expected to be less predictable. In the next theorem, we give a 
bound for Hα(Xt) in terms of the reversed hazard rate function.

Theorem 2.3. Assume that τ(x) < ∞. If X is DRHR, then for all α > 0, it holds that

Hα(Xt) ≤
log α

α − 1
− log τ(t), t > 0.
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Proof. If X is DRHR, then τ(t) is decreasing in t, and so recalling (6) for all α − 1 >
0(α − 1 < 0), we have

Hα(Xt) =
log α

α − 1
− 1

α − 1
log
(∫ t

0
τα−1(x) fα,t(x)dx

)
≤ log α

α − 1
− 1

α − 1
log
(

τα−1(t)
∫ t

0
fα,t(x)dx

)
=

log α

α − 1
− log τ(t),

and this completes the proof.

3. Results on the past lifetime of coherent systems

This section presents the application of the system signature approach to find a
definition for the past-life entropy of a coherent system with arbitrary structure. It is
assumed that allcomponents of the system have failed at a given time t. A coherent system
is defined as one that satisfies two conditions: First, it contains no irrelevant components,
and second, its structure function is monotonic. An n-dimensional vector p = (p1, . . . , pn)
whose i-th element pi = P(T = Xi:n), i = 1, 2, . . . , n; is the signature of such a system
(see [24]). Consider a coherent system with independent and identically distributed (i.i.d.)
component lifetimes X1, . . . , Xn, and a known signature vector p = (p1, . . . , pn). If Tt =
[t − T|Xn:n ≤ t], stands for the past lifetime of the coherent system under the condition
that at time t, all components of the system have failed, then from the results of Khaledi
and Kochar [25] the survival function of Tt can be expressed as

P(Tt > x) =
n

∑
i=1

piP(t − Xi:n > x|Xn:n ≤ t), (9)

where

P(t − Xi:n > x|Xn:n ≤ t) =
n

∑
k=i

(
n
k

)(
F(t − x)

F(t)

)k(
1 − F(t − x)

F(t)

)n−k
, 0 < x < t,

denotes the past-life survival function of an i-out-of-n system under the condition that all
components have failed at time t. From (9) it follows that

fTt(x) =
n

∑
i=1

pi fTi
t
(x), (10)

where

fTi
t
(x) =

Γ(n + 1)
Γ(i)Γ(n − i + 1)

(
F(t − x)

F(t)

)i−1(
1 − F(t − x)

F(t)

)n−i f (t − x)
F(t)

, 0 < x < t, (11)

such that Γ(·) is the complete gamma function and Ti
t = [t − Xi:n|Xn:n ≤ t], i = 1, 2, · · · , n,

is the time that has passed from the failure of the component with lifetime Xi:n in the
system given that the system has failed at or before time t. It is worth mentioning, by
(9), that Ti

t denotes the ith order statistics consisting of n i.i.d. components with the cdf
F(t−x)

F(t) , 0 < x < t. Hereafter, we provide an expression for the entropy of Tt. To this aim,

let us keep in mind that Ft(x) = F(x)
F(t) , 0 < x < t. The probability integral transformation

V = Ft(Tt) as a crucial role plays an important role in our aim. It is evidently seen that
Ui:n = Ft(Ti

t ) has the beta distribution with parameters i and n − i + 1 with the following
pdf

gi(u) =
Γ(n + 1)

Γ(i)Γ(n − i + 1)
ui−1(1 − u)n−i, 0 < u < 1, (12)
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for all i = 1, · · · , n. In the forthcoming theorem, we provide an expression for the Rényi
entropy of Tt by using the earlier mentioned transforms.

Theorem 3.1. Let Tt stand for the past lifetime of the coherent system under the condition that, at
time t, all components of the system have failed. The Rényi entropy of Tt can be expressed as follows:

Hα(Tt) =
1

1 − α
log

∫ 1

0
gα

V(u) f α−1
t (F−1

t (u))du, t > 0, (13)

where V is the lifetime of the coherent system with the pdf gV(v) = ∑n
i=1 pigi(v) and F−1

t (u) =
inf{x; Ft(x) ≥ u} is the quantile function of Ft(x) = F(x)/F(t), 0 < x ≤ t. for all α > 0.

Proof. By (1) and (10), and by substituting z = t − x and ᾱ = 1 − α, we have

Hα(Tt) =
1

1 − α
log

∫ t

0
( fTt(x))αdx

=
1
ᾱ

log
∫ t

0

(
n

∑
i=1

pi fTi
t
(x)

)α

dx

=
1
ᾱ

log
∫ t

0

(
n

∑
i=1

pi
Γ(n + 1)

Γ(i)Γ(n − i + 1)

(
F(t − x)

F(t)

)i−1(
1 − F(t − x)

F(t)

)n−i f (t − x)
F(t)

)α

dx

=
1
ᾱ

log
∫ t

0

(
n

∑
i=1

pi
Γ(n + 1)

Γ(i)Γ(n − i + 1)
(Ft(z))

i−1(1 − Ft(z))
n−i ft(z)

)α

dx

=
1
ᾱ

log
∫ 1

0
gα

V(u)
(

ft(F−1
t (u))

)α−1
du.

The last equality is obtained by substituting the change of u = Ft(z) and the proof is then
completed.

If all components have failed at time t, then H(Tt) measures the expected uncertainty
contained in the conditional density of t − T given Xn:n ≤ t, about the predictability of the
past lifetime of the system. In the special case, if we consider an i-out-of-n system with the
system signature p = (0, . . . , 0, 1i, 0, . . . , 0), i = 1, 2, · · · , n, then Eq. (13) reduces to

Hα(Ti
t ) = Hα(Ui:n)−

1
α − 1

logE[ f α−1
t (F−1

t (Zi))], (14)

where Zi has the beta distribution with parameters α(i − 1) + 1 and α(n − i) + 1 and

Hα(Ui:n) =
α

α − 1
log B(i, n − i + 1)− 1

α − 1
log B(α(i − 1) + 1, α(n − i) + 1), (15)

so that B(a, b) = Γ(a)Γ(b)/Γ(a + b) stands for the beta function. In the special case when t
goes to infinity, (14) coincides with the results of Abbasnejad and Arghami [26].

The next theorem immediately follows from Theorem 3.1 in terms of the property that
the reversed hazard rate of X i.e. τ(x) is decreasing.

Theorem 3.2. If X is DRHR, then Hα(Tt) is increasing in t.

Proof. By noting that ft(F−1
t (x)) = xτt(F−1

t (x)), Eq. (13) can be rewritten as

e(1−α)Hα(Tt
1,n) =

∫ 1

0
gα

V(u)u
α−1
(

τt(F−1
t (u))

)α−1
du, (16)
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1 2

3 5

4

Figure 1. A coherent system with signature p = (0, 3
10 , 1

2 , 1
5 , 0).

for all α > 0. It is easy to verify that F−1
t (u) = F−1(uF(t)), for all 0 < u < 1, and hence we

have

τt(F−1
t (u)) = τ(F−1(uF(t))), 0 < u < 1.

If t1 ≤ t2, then F−1(uF(t1)) ≤ F−1(uF(t2)). Consequently, when X is DRHR, then for all
α > 1(0 < α ≤ 1), we have∫ 1

0
gα

V(u)u
α−1
(

τt1(F−1
t1

(u))
)α−1

du =
∫ 1

0
gα

V(u)u
α−1
(

τ(F−1(uF(t1)))
)α−1

du

≥ (≤)
∫ 1

0
gα

V(u)u
α−1
(

τ(F−1(uF(t2)))
)α−1

du

=
∫ 1

0
gα

V(u)u
α−1
(

τt2(F−1
t2

(u))
)α−1

du,

1
2

1
5

for all t1 ≤ t2. Using (16), we get

e(1−α)Hα(Tt1 ) ≥ (≤)e(1−α)Hα(Tt2 ),

for all α > 1(0 < α ≤ 1). This implies that Hα(Tt1 ) ≤ Hα(Tt2 ) for all α > 0 and this 
completes the proof.

The result of Theorem 3.2 in turn shows that when the component lifetimes in a 
coherent system satisfy the DRHR property, the past Rényi entropy increases when all 
components of the coherent system are inactive thus decreasing predictability and making 
it very difficult to determine the exact time of failure in the past. The next example is given 
to apply Theorems 3.1 and 3.2.

Example 3.1. Let us consider a coherent system with the system signature p = (0, 10
3 , , , 0) 

depicted in Figure 1. The exact value of Hα(Tt) can be computed using relation (13) when 
the component lifetime distributions are given. To this aim, let us suppose the following 
lifetime distributions.
(i) Let X follow the uniform distribution in [0, 1]. From (13), we immediately obtain

Hα(Tt) = log(t) +
1

1 − α
log

∫ 1

0
gα

V(u)du, t > 0.

It reveals that the Rényi entropy Hα(Tt) of the random variable Tt is a decreasing function
of time t. This observation is consistent with previous results on the behavior of Rényi
entropy for certain classes of random variables. In particular, the uniform distribution is
known to possess the DRHR property, which implies that the Rényi entropy of Tt should
be an increasing function of time t, in line with Theorem 3.2.

(b) Consider a random variable X with the cdf given by

F(x) = e−x−k
, x > 0, k > 0.
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Figure 2. Exact value of H(Tt) for Part (b) of Example 3.1 for various values of k.

With some algebraic manipulation, we arrive at the following expression:

Hα(Tt) =
1

1 − α
log

∫ 1

0

(
t−k − log u

)( 1
k +1)(α−1)

uα−1gα
V(u)du − log k, t > 0.

The numerical results, which are presented in Figure 2, showcase the increasing nature
of the Rényi entropy of Tt as a function of time t, for α = 0.2 and various values of k (in
this case, the past Rényi entropy for α > 1 is not defined). This observation is in line with
Theorem 3.2, which predicts the monotonicity properties of the Rényi entropy in the case
of DRHR random variables.

The above example sheds light on the complicated relationship between the Rényi
entropy of a random variable and time, and highlights the importance of considering the
DRHR property when analyzing such systems. Thus, our results suggest that the DRHR
property of X plays a crucial role in shaping the temporal behavior of the Rényi entropy
of Tt, which could have far-reaching implications for various applications, including the
analysis of complex systems and the development of efficient data compression techniques.

The duality of a system is a useful concept for technical reliability, which makes it
possible to reduce the computational complexity for determining the signatures of all
coherent systems of a given size by about half. Kochar et al. [27] have proposed a duality
relation that exists between the signature of a system and that of its dual. If p = (p1, · · · , pn)
denotes the signature of a coherent system with lifetime T, then the signature of its dual
system with lifetime TD is given by pD = (pn, · · · , p1). In the following theorem, we apply
the duality property to simplify the calculation of the past entropy for coherent systems.
First, we need the following lemma.

Lemma 3.1. If ϕ(x) is a continuous function on [0, 1] such that
∫ 1

0 xnϕ(x)dx = 0 for all n ≥ 0,
then ϕ(x) = 0 for any x ∈ [0, 1].

Theorem 3.3. Let Tt be the lifetime of a coherent system with signature p consisting of n i.i.d.
components. If ft(F−1

t (u)) = ft(F−1
t (1 − u)) satisfies for all 0 < u < 1 and t, then Hα(Tt) =

Hα(TD
t ) for all p and all n.
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Proof. To prove sufficiency, let us assume that ft(F−1
t (u)) = ft(F−1

t (1 − u)) for all 0 <
u < 1. It is worth noting that gi(1 − u) = gn−i+1(u) for all i = 1, . . . , n and 0 < u < 1.
Consequently, utilizing (13), we obtain that:

∫ 1

0
gα

VD (u)
(

ft(F−1
t (u))

)α−1
du = −

∫ 1

0

(
n

∑
i=1

pn−i+1gi(u)

)α(
ft(F−1

t (u))
)α−1

du

=
∫ 1

0

(
n

∑
r=1

prgn−r+1(u)

)α(
ft(F−1

t (u))
)α−1

du

=
∫ 1

0

(
n

∑
r=1

prgr(1 − u)

)α(
ft(F−1

t (u))
)α−1

du

=
∫ 1

0

(
n

∑
r=1

prgr(u)

)α(
ft(F−1

t (u))
)α−1

du

=
∫ 1

0
gα

V(u)
(

ft(F−1
t (u))

)α−1
du,

and this completes the proof by recalling Eq. (13).

An immediate consequence of the above theorem is given for the i-out-of-n systems.

Corollary 3.1. Let Ti
t be the lifetime of an i-out-of-n system consisting of n i.i.d. components. If

ft(F−1
t (u)) = ft(F−1

t (1 − u)) satisfies for all 0 < u < 1 and t, then Hα(Ti
t ) = Hα(Tn−i+1

t ) for
all n and i = 1, 2, . . . , n/2 if n is even and i = 1, 2, . . . , (n − 1)/2 if n is odd.

4. Bounds for the past Rényi entropy of coherent systems

For complex systems or uncertain distributions of component lifetimes, accurately
calculating the past Rényi entropy Hα(Tt) of a coherent system can be a daunting task.
This scenario is not uncommon in practice, and thus there is a growing need for effective
approximations of the system behavior. One promising approach is to use previous Rényi
entropy bounds, which have been shown to accurately approximate the lifetime of coherent
systems under such circumstances.

Toomaj and Doostparast [28,29] pioneered the development of such barriers for a
new system, while more recently Toomaj et al. [30] has extended this work by deriving
bounds on the entropy of a coherent system when all its components are working; see also
Mesfioui et al. [15]. In the following theorem, we introduce new bounds on the past Rényi
entropy of the coherent system’s lifetime, expressed in terms of the past Rényi entropy of
the higher-order distribution Hα(Xt). By incorporating these bounds into our analysis, we
can achieve a more accurate and efficient characterization of complex systems, even in the
face of limited information about component lifetimes.

Theorem 4.1. Assume a coherent system with the past lifetime Tt = [t − T|Xn:n ≤ t] consisting
of n i.i.d. component lifetimes having the common cdf F with the signature p = (p1, · · · , pn).
Then, we have

Hα(Tt) ≥ (≤)
α

1 − α
log Bn(p) + Hα(Xt), (17)

for α > 1 (0 < α < 1) where Bn(p) = ∑n
i=1 pigi(mi), and mi =

n−i
n−1 .
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Proof. The beta distribution with parameters n − i + 1 and i is a well-known distribution
where its mode, denoted by mi, can be conveniently expressed as mi =

n−i
n−1 . This result

allows us to obtain the following expression:

gV(v) ≤
n

∑
i=1

pigi(mi) = Bn(p), 0 < v < 1. (18)

Thus, for α > 1 (0 < α < 1), we have

Hα(T) =
1

1 − α
log

∫ 1

0
gα

V(v)
(

ft(F−1
t (u))

)α−1
dv

≥ (≤)
1

1 − α
log

∫ 1

0
(Bn(p))

α
(

ft(F−1
t (u))

)α−1
dv

=
α

1 − α
log Bn(p) + Hα(Xt).

The last equality is obtained from (4) which the desired result follows.

The lower and upper bounds shown in equation (17) are a valuable tool for analyzing
systems with a large number of components or complex configurations. However, in
situations where these bounds are not applicable, we can resort to the Rényi information
measure and mathematical concepts to derive a more general lower bound. This approach
leverages the power of the Rényi information measure and mathematical ideas to provide
new insights into the behavior of complex systems, which will be presented in the next
theorem.

Theorem 4.2. In the setting of Theorem 4.1,

Hα(Tt) ≥ HL
α(Tt), (19)

where HL
α(Tt) =

1
1−α log

(
∑n

i=1 pi
∫ t

0 f α
Ti

t
(x)dx

)
for all α > 0.

Proof. The Jensen’s inequality for the function xα (it is concave (convex) for 0 < α < 1(α >
1)) yields (

n

∑
i=1

pi fTi
t
(x)

)α

≥ (≤)
n

∑
i=1

pi f α
Ti

t
(x), x > 0,

and hence we get (∫ t

0
f α
Tt
(x)dx

)
≥ (≤)

(
n

∑
i=1

pi

∫ t

0
f α
Ti

t
(x)dx

)
. (20)

The above inequality is obtained by the linearity property of integration. Since 1 − α >
0(1 − α < 0), by multiplying both side (20) in 1/(1 − α), we get the desired result.

It is noteworthy that the equality condition in (19) holds true for i-out-of-n systems,
where the failure probability pj is zero for j ̸= i, and one for j = i. In this case, the
conditional entropy of the system Hα(Tt) is equal to the conditional entropy of the ith
component Hα(Ti

t ). When the lower bounds for 0 < α < 1 in both parts of Theorems 4.1
and 4.2 can be computed, one may use the maximum of the two lower bounds.

Example 4.1. Let Tt = [t − T|X3:3 ≤ t] represent the past lifetime of a coherent system
with the signature p = ( 1

3 , 2
3 , 0) consisting of n = 3 i.i.d. component lifetimes according to

standard exponential distribution with cdf F(t) = 1 − e−t, t > 0. It is easily seen that

Hα(Xt) =
1

1 − α

(
log

(1 − e−αt)

(1 − e−t)α
− log α

)
, t > 0.
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Figure 3. Exact value of Hα(Tt) (solid line) as well as the corresponding lower bounds (21) (dashed
line) and (22) (dotted line) for the standard exponential distribution concerning time t.

Moreover, we can get B3(p) = 2. Thus, by Theorem 4.1, the Rényi entropy of Tt is bounded
for α > 1 (0 < α < 1) as follows:

Hα(Tt) ≥ (≤)
1

1 − α

(
log

2α

α
+ log

(1 − e−αt)

(1 − e−t)α

)
, t > 0. (21)

It is easily seen that

ft(F−1
t (u)) =

1 − u(1 − e−t)

1 − e−t , t > 0,

for all 0 < u < 1. So, the lower bound given in (19) can be obtained as follows:

Hα(Tt) ≥
1

1 − α
log

(
n

∑
i=1

pi

∫ 1

0
gα

i (u)(1 − u(1 − e−t))α−1du

)
− log(1 − e−t), t > 0, (22)

for all α > 0. Figure 3 depicts the time evolution of the Rényi entropy Hα(Tt) for the
standard exponential distribution. The solid line represents the exact value of Hα(Tt),
while the dashed and dotted lines correspond to the bounds derived from equations (21)
and (22), respectively. The figure provides a clear visualization of the behavior of the past
Rényi entropy over time and highlights the remarkable agreement between the exact value
and the bounds. Notably, for α > 1, the lower bound from (22) (dotted line) surpasses the
lower bound from (21).

5. Concluding remarks

In recent years, the assessment of predictability has become very important when
considering the lifetime of engineering systems. Quantification of uncertainty is a crucial
criterion for measuring the degree of predictability in such systems. Rényi entropy has
proven to be an attractive measure for quantifying the uncertainty associated with the
lifetime of systems. In this work, we have presented an expression for the Rényi entropy
of the lifetime of a system, under the condition that all system components have failed at
time t. This situation may occur in practice, since the time at which we normally observe
system and detect the failure of a system is quite late, so all components of the coherent
system have also failed by that time. Moreover, we investigate the various properties of this
proposed measure, including the determination of boundaries and partial orders between
the random time points that have passed since the failure of two coherent systems, based
on their Rényi entropy uncertainties using the concept of system signature. Our approach
provides an effective method for assessing the predictability of system lifetimes and is
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useful for engineering applications. We demonstrate the effectiveness of our proposed
measure using several application examples. Our results highlight the potential of this
measure to improve the predictability of engineered systems and its importance to current
research. The results presented provide compelling evidence for the value of Rényi entropy
in engineering reliability analysis and highlight its potential for future research in this area.
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