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Abstract: Practical entanglement distillation is a critical component in quantum information theory. 

Entanglement distillation is often utilized for designing quantum computer networks and quantum 

repeaters. The practical entanglement distillation problem is formulated as a bilevel optimization 

problem. A fuzzy formulation is introduced to estimate the quantum state (density matrix) from 

pseudo-likelihood functions (i.e., quantum state tomography). A scale-independent relationship be-

tween fuzzy relations in terms of the pseudo-likelihood functions is obtained. The entanglement 

distillation optimization problem was solved using the combined coupled map lattice and dual an-

nealing approach. Comparative analysis of the results is then conducted against a standard dual 

annealing algorithmic implementation. 
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1. Introduction 

Entanglement distillation is a critical aspect of quantum information systems. The 

key idea of entanglement distillation is to preserve or restore the quality of diluted entan-

glement states of quantum information transmitted over large distances. Decoherence ef-

fects during transmission causes the dilution of entanglement states. Past theoretical and 

experimental research works have focused on the studies of quantum distillation frame-

works [1], [2], [3]. Recently, pairs of single photons (entangled in multiple degrees of free-

dom) were used to experimentally determine the domain of distillable states and their 

relative fidelity [4]. In Ecker et al., (2021) [4] comparative studies were also done on vari-

ous distillation schemes to gain a deeper understanding in terms of resilient quantum 

network design. A proof-of-concept experiment was recently conducted to study the ap-

plication of filtering protocols (in atomic ensembles) for constructing quantum repeater 

nodes [5]. The experiment was conducted in a crystal (rare-earth-ion-doped). In that set-

ting, the entanglement states were prepared. The relationship between bit thread, entan-

glement distillation, and entanglement purification (in the holographic framework) was 

recently studied [6]. In Lin et al., (2021) [6], a bit thread interpretation of the one-shot en-

tanglement distillation tensor network was provided. It was shown that the holographic 

entanglement purification process could be viewed as a special case of a type of surface 

growth scheme. The objective of the study in Lin et al., (2021) [6] was to develop an accu-

rate framework for describing physical entanglement structures. Another interesting 

work is seen in the theoretical investigation of entanglement distillability presented in 

Qian et al., (2021) [7]. In that work, the authors studied the mentioned subject with regards 

to the undistillability conjecture of specific Werner states - where they gained deeper un-

derstanding of the distillability problem. Recent developments of entanglement distilla-

tion are seen in Kondra et al., (2021) [8], He et al., (2021) [9], Gour and Scandolo, (2021) 
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[10], Yan et al., (2022) [11], Shchukin and van Loock, (2022) [12] and Riera-Sàbat et al., 

(2021) [13]. 

In the past few years, much research works in quantum information systems have 

been directed towards optimization. This can be seen in the work of Gyongyosi and Imre 

(2020) [14]. In that work, the optimization of the read-out procedure of local unitaries of a 

high-retrieval efficiency quantum memory was done. The authors also studied the re-

trieval efficiency of quantum memory and the signal-to-noise ratio. A similar work is seen 

in Gyongyosi et al., (2020) [15]; where an approach for obtaining the optimal quantum 

state and computational path evaluation for gate-model quantum computing devices was 

proposed. Efficient algorithms for attaining generation time and transmission fidelity of 

entangled pairs between the end nodes of quantum chains is seen in Brand et al., (2020) 

[16]. 

Quantum state tomography (QST) is an effective method to reconstruct or estimate 

quantum states from measurements of identical quantum states. This directly impacts the 

development of reliable quantum resources as well as quantum devices for quantum in-

formation processing. A recent interesting study on information gain in QST is seen in the 

work of Sahu et al., (2022) [17]. In that work, the authors discuss the effects of chaotic 

dynamics on the information transfer during QST. Their investigations also uncovered 

operational insights into the mechanisms of fidelity gain during actual quantum infor-

mation tomography protocols. In Schmale et al., (2022) [18], the authors improve the ac-

curacy of observables measurement from tomographic data. This was done by using a 

QST scheme that approximates a probability distribution over a measurement (informa-

tionally complete) within a variational manifold characterized by a convolutional neural 

network. In that work, the authors regenerated high- classical fidelity states which per-

formed more efficiently as compared to standard techniques (e.g., maximum likelihood 

estimation). Another recent approach in QST is observed in the work of Farooq et al., 

(2022) [19]. In that work, the authors developed a formulation for pure quantum state 

reconstruction via eigenvalue decomposition. In Farooq et al., (2022) [19], the authors 

demonstrated that the proposed approach is robust against depolarizing noise (high-

strength white noise) - where the quantum states were reconstructed accurately similar to 

the noiseless case. A computational-focused strategy for QST is seen in the work Ahmad 

et al., (2022) [20]. In that research, the authors proposed a simultaneous perturbation sto-

chastic approximation algorithm with high-speed convergence. The central idea in that 

work was to develop a computational technique for estimating quantum states under lim-

ited computational conditions using a Barzilai–Borwein two-point step size gradient 

method. In Choi (2022) [21], a low-complexity effective QST scheme was proposed. The 

proposed scheme requires the measurement of only three observables for systems of any 

scale. The key concept is coupling of the system and the ‘pointer’ of single qubit. In that 

work, the authors also developed a similarly scalable efficient maximum likelihood com-

putational framework for approximating states from incomplete statistical data. 

Complex nonlinear dynamical systems have been successfully modeled using chaotic 

maps such as coupled map lattices (CML).  For instance, in Lu et al., (2022) [22] an urban 

rail transit system under cascading failure was modeled with respect to network vulner-

ability using CMLs. In that work, the authors quantified the relation between passenger 

flow and the perturbation index. In addition to investigations of the anti-risk resistance 

capability of stations, the dependency of cascading failures on location and type of sta-

tions were identified. In Stenzinger and Tragtenberg, (2022) [23], CMLs were for a bio-

medical-focused application. In that work, the authors utilized spatiotemporal chaos in 

the CML to simulate cardiac reentry. Among their key research findings were clinical 

manifestations of certain types of tachycardia in the electrocardiogram as well as a novel 

type of dynamical pattern (with wavefronts comprised of harmonized bursts and cardiac 

plateaus). In Wang and Liu, (2021) [24], a one-dimensional, two-parameter with a wide-

range system mixed coupled map lattice model was proposed for image encryption. The 

authors of that work performed simulations to establish the effectiveness of the proposed 

encryption algorithm for grayscale and color images. In addition, they also carried out 
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security tests to ensure that the proposed method could hold against conventional secu-

rity attacks. CMLs have also been recently employed in the field of wireless communica-

tion. For instance, in Xie et al., (2022) [25], a CML model was developed to assess the vul-

nerability of unmanned aerial vehicle (UAV) network. The authors in that work showed 

that precision interference on critical UAV nodes could inflict significant damage to the 

entire UAV network. In addition, the authors in Xie et al., (2022) [25] also discovered that 

network vulnerability increases with the intensity of external interference. 

This work reformulates the practical entanglement distillation problem as a bilevel 

optimization model. This work extends the practical entanglement distillation problem to 

account for approximating the quantum state (density matrix) using QST using fuzzy re-

lations. The bilevel practical entanglement distillation optimization problem is then 

solved using the combined CML and the dual annealing approach. The central idea is to 

leverage on the complex behavior of the CML to enhance the optimization capabilities of 

the dual annealing algorithm. This paper is organized as follows: the second section de-

scribes the model formulation for the bilevel practical entanglement distillation problem. 

In this section, the novel QST formulation using fuzzy relations is presented. The third 

section discusses the CML and its hybridization with the dual annealing algorithm. The 

fourth section presents analysis on the results generated by the numerical experiments. 

This paper concludes with some final remarks and recommendations for future research 

works. 

2. Entanglement Distillation with Fuzzy Relations for QST 

In this work, a bipartite entanglement distillation model is considered – where the 

central idea is to convert a state, 𝜌𝐴𝐵 (density matrix form) into a state which is close to a 

maximally entangled state utilizing only local operations and classical communication. 

This communication takes place between two nodes of a communication network A and 

B. This can be represented mathematically as follows: 

𝐹 =  ⟨Φ𝑑|𝜂𝐴�̂�|Φ𝑑⟩       such that       |Φ𝑑⟩ =
1

√𝑑
∑ |i⟩𝐴|i⟩�̂�

𝑑−1
𝑖=0         (1) 

where 𝐹 ∈ (0,1) is the fidelity – i.e., closeness of the converted state to the maximally en-

tangled state. A and B are the input registers while �̂� and �̂� are the output registers. 𝑑 

is the dimension of the quantum state and 𝜂𝐴�̂� is the converted state (𝜌𝐴𝐵 → 𝜂𝐴�̂�). |Φ𝑑⟩ is 

the maximally entangled state across output registers �̂� and �̂�. Therefore, as an example 

if the dimension, 𝑑 = |𝐴| = |𝐵| = 2, then 𝜌𝐴𝐵 would be as follows: 

𝜌𝐴𝐵 = (1 − 𝑝)|01⟩⟨01| + 𝑝|Φ2⟩⟨Φ2|                      (2) 

In contrast to theoretical entanglement distillation, practical entanglement distillation 

frameworks allow for the possibility of failure [26]. Therefore, the fidelity parameter would 

only be relevant to the analysis if the entanglement distillation is a success. This then cre-

ates a multilevel scenario with the probability of distillation success, 𝑃(𝛿) ∈ (0,1) is cas-

caded by the fidelity parameter, F. Since the local quantum memory utilized to store the 

quantum entanglement is imperfect/non-ideal, this entanglement cannot be preserved for 

an arbitrary amount of time. Hence, the probability of distillation success, 𝑃(𝛿) would 

control the rate at which high-fidelity entanglement between the different nodes in the 

network is aimed at.  

Practical entanglement distillation uses schemes involving the application of local 

operation and measurement on A and B registers. This is then followed by a measurement 

outcome (single exchange) using classical communication to determine distillation suc-

cess/failure. In this work, the practical quantum distillation scheme presented in Rozpędek 
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et al., (2018) [27] is considered. The central idea is to search for the following optimal pa-

rameters: (i) output dimension, d, (ii) input state, 𝜌𝐴𝐵 as well as (iii) quantum channels 

(i.e., quantum operations). To optimize quantum operations, Choi isomorphism could be 

utilized - where a one-to-one correspondence between quantum channels and quantum 

states is established (with certain properties) (Jiang et al., 2013). This way, the isomorphism 

would carry over all the information from the original channel to the Choi state. Following 

the problem formulation in Rozpędek et al., (2018) [27], the bilevel optimization formula-

tion of entangle distillation is follows: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒  →  𝐹 =
|𝐴||𝐵|

𝑃(𝛿)
 Tr [|Φ𝑑⟩⟨Φ𝑑|𝐴�̂� ⊗ 𝜌𝐴′𝐵′

𝑇 (�̂�1,𝐴𝐴′ ⊗ �̂�1,�̂�𝐵′)]  

subject to,   

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 →  𝑃(𝛿) =   |𝐴||𝐵| Tr [𝜌𝐴′𝐵′
𝑇 (�̂�1,𝐴′ ⊗ �̂�1,𝐵′)]        such that, 

𝜌𝐴′𝐵′
𝑇  ≥ 0  

�̂�1,𝐴𝐴′ ≥ 0 , �̂�1,�̂�𝐵′ ≥ 0 

�̂�1,𝐴′ ≤
𝕀

𝐴′

|𝐴|
 , �̂�1,𝐵′ ≤

𝕀
𝐵′

|𝐵|
, |𝐴| = |𝐵| = 𝑑 ≥ 0 ∶ 𝑑 ∈ ℕ                  (3) 

where 𝐴′  and 𝐵′  are Choi state equivalent for output registers A and B. Similarly, 

�̂�1,𝐴𝐴′  , �̂�1,�̂�𝐵′ , �̂�1,𝐴′ and  �̂�1,𝐵′are matrices depicting Choi states which correspond to quan-

tum channels. The symbol ⊗ represents the Kronecker product and the dimensions of the 

identity matrices, 𝕀𝐴′  and 𝕀𝐵′  depend on the dimensions of the registers 𝐴′and 𝐵′.  

In designing practical quantum information processing systems, quantum state tomogra-

phy (QST) is employed to approximate a certain state of the density matrix. This is done 

by using measurement results of repeated state preparation. Unfortunately, QST becomes 

very challenging as the system scales up in terms of size - i.e., dimensions, 𝑑. Current 

methods for QST formulation include linear inversion, maximum likelihood, Bayesian, hy-

brid Bayesian-Monte Carlo and neural network approaches [28], [29]. In this work, a fuzzy 

approach is developed and employed for QST. In Recasens, (2022) [30] it was demon-

strated that symmetric positive semi-definite matrices could be constructed from the ap-

plication of fuzzy relations on certain sets (fuzzy subsets). Consider sets: 𝑋 and 𝑌 with 

both having cardinality of 𝑛 and 𝜇 are fuzzy subsets of 𝑋 and 𝑌 with the additive gen-

erator of the 𝑡-norm being: 𝑡𝑁(𝑥) = (1 − 𝑥)𝑁 . Then the following matrix is constructed: 

 𝜌(𝑥, 𝑦) = 1 − |(1 − 𝜇(𝑥))𝑁 − (1 − 𝜇(𝑦))𝑁|1/𝑁 where   𝑁 =
𝑛+1

𝑙𝑜𝑔2𝑒
       (4) 

In the case of estimating the density matrix, 𝜌𝐴′𝐵′  in equations (2) and (3), 𝜌𝐴′𝐵′ ∼ 𝜌 is 

considered as symmetric and positive semi-definite with the additional normalization con-

dition:  Tr (𝜌𝐴′𝐵′) = 1. In this view, the  𝜇(𝑥) and 𝜇(𝑦) are fuzzy sets that act as pseudo-

likelihood functions obtained from measurement data (empirical). Since 𝑥  and 𝑦  are 

quantum states |Φ𝑑⟩⟨Φ𝑑| for 𝑑 ≥ 0, it can be stated that 𝑥 = 𝑦. The measurements of 

these quantum states in the form of fuzzy memberships may not be equal: 𝜇1(𝑥 = 𝑦) ≠

𝜇2(𝑥 = 𝑦) and the normalization condition:  ∑ 𝜌𝐴′𝐵′ = 1𝐴′𝐵′  holds. Using the simplified 

notations for the pseudolikelihood measurements 𝜇1(𝑥)~𝜇1 and 𝜇2(𝑥)~𝜇2, Equation (4) 

then becomes: 𝜌(𝑥, 𝑦) = 1 − |(1 − 𝜇1)𝑁 − (1 − 𝜇2)𝑁|1/𝑁. An interesting result is obtained 
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from the symmetric semi-definite density matrix construction when the differential form 

of equation (4) is obtained: 

𝜕𝜌

𝜕𝜇2

= −
(1 − 𝜇2)𝑁−1

(1 − 𝜇1)𝑁−1

𝜕𝜌

𝜕𝜇1

                where        𝑁 =
𝑛 + 1

𝑙𝑜𝑔2𝑒
                                                                (5) 

Equation (5) is then obtained by taking the partial differential for the density matrix in 

equation (4) and assuming 𝜇 and 𝜌 to be continuous parameters. Similarly, the analysis 

is extended to seek for an analogue to approximate the factor in equation (5) using the 

binomial formula and Maclaurin series: 

−
(1 − 𝜇2)𝑁−1

(1 − 𝜇1)𝑁−1
= −

∑ (
𝑁 − 1

𝑘
) (−𝜇2)𝑘

𝑘≥0

∑ (
𝑁 − 1

𝑘
)𝑘≥0 (−𝜇1)𝑘

= =    −
∑ (−𝜇2)𝑘/𝑘!𝑘≥0

∑ (−𝜇1)𝑘/𝑘!𝑘≥0

   ≈ −
𝑒−𝜇2

𝑒−𝜇1
  

=     −𝑒  (𝜇1−𝜇2)                                                                                                                                               (6) 

Therefore, a generalized partial differential equation (PDE) independent of scale (i.e., car-

dinality or dimension) is obtained: 

𝜕𝜌

𝜕𝜇2

+ 𝑒  (𝜇1−𝜇2)
𝜕𝜌

𝜕𝜇1

= 0                                                                                                                               (7) 

The measurements 𝜇1 and 𝜇2 are treated as continuous parameters and the solution to 

the scale-free exact solution to the PDE in equation (7) is obtained: 

𝜌(𝜇1, 𝜇2) = 𝑐0𝑒−𝜇1 − 𝑐0𝑒−𝜇2                         (8) 

where 𝑐0  is a constant. Considering 𝜇1  and 𝜇2  to be subsequent measurements, 

pseudo-likelihood measurements is conjectured to have the Markov property such that: 

𝜇2 =  𝐏𝜇1                                 (9) 

where 𝐏 is an 𝑛 × 𝑛 transition or stochastic matrix. With this conjecture, the density ma-

trix, 𝜌(𝑥) is approximated using data from the current pseudo-likelihood measurement, 

𝜇2 and the previous pseudo-likelihood function, 𝜇1. The current pseudo-likelihood meas-

urement, 𝜇2 could be generated using the stochastic matrix, 𝐏 as in equation (9). QST is 

highly efficient when estimating density matrices, 𝜌 for small quantum systems. How-

ever, as the system scales-up and 𝜌 increases in dimensions, effective QST becomes a chal-

lenging feat [28]. The fuzzy formulation for pseudo-likelihood relations presented in equa-

tions (4)-(9) aim to enable effective estimation of density matrices, 𝜌 at larger scales. Treat-

ing density matrices, 𝜌 as symmetric and positive semi-definite are critical requirements 

for this analysis. 

 

3. Chaotic Dual Annealing Optimization 

In recent times, optimization problems have grown in terms of complexity – i.e., 

nonlinearity, nonconvexity, multilevel and uncertainty in parameters. This directly results 

in stagnation in the solution method upon implementation – where the algorithmic tech-

nique gets trapped in a local optimum. This causes the task of optimizing such problems 

to become exceedingly difficult. An effective approach to tackle such issues is the utiliza-

tion of stochastic optimization approaches. One such approach is simulated annealing (SA) 

[31]. SA is based on the idea of the physical concept of annealing where a solid is repeat-

edly heated and cooled until reaches a configurational state of minimal energy. In this 

work we use the dual annealing optimization approach - which is a coupled technique 
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inspired by the classical simulated annealing as well as the fast simulated annealing ap-

proaches [32]. The dual annealing optimization approach used in this work implements a 

distorted Cauchy-Lorentz visiting distribution, 𝑔(∆𝑥(𝑡))  with 𝑞  (the distribution’s 

shape controlling parameter):  

𝑔(∆𝑥(𝑡)) = 𝑘 [
𝑇(𝑡)−𝐴1

(1+(𝑞−1)𝐴2)𝐴3
] , 𝐴1 = [

𝐷

(3−𝑞)
],𝐴2 = [

∆𝑥(𝑡)2

(𝑇(𝑡)
2

3−𝑞)

],       𝐴3 =
1

𝑞−1
+

𝐷−1

2
                     (10)                                                                                     

where 𝑘 and 𝐷 are constants, 𝑡 is artificial time, 𝛥𝑥(𝑡) is the trial jump distance and 

𝑇(𝑡) is the artificial temperature. The candidate solution’s acceptance probability is set by 

defining an acceptance parameter, 𝑞′ < 1 is determined as follows: 

𝑃 = min{1, 𝑓(𝑞′)}    where  𝑓(𝑞)  =  |1 − (1 − 𝑞′)𝛽𝛥𝐸|
1

1−𝑞′     (11) 

The decrements of the artificial temperature, 𝑇(𝑡) is given by the following relation: 

𝑇(𝑡) = 𝑇(1) [
2𝑞−1−1

(1+𝑡)𝑞−1−1
]                       (12) 

In this work, the dual annealing technique is coupled with coupled map lattices (CML) to 

enhance its optimization capability by simulating chaotic non-linear dynamics. CMLs have 

applications in diverse fields of research and implementation: system identification, 

process modeling, design optimization, internet of things (IoT) and cryptography 

[24],[33],[34],[35]. For a specific discreet-time dynamical map, CMLs consist of discreet 

interacting elements. These elements make up a multidimensional dynamical system. 

Hence, the CML model could be designed to simulate a dynamical system - where its 

macroscopic field variables are defined on a lattice. Independent processes then 

decompose the dynamical system. In this sense, each process represents a procedure in the 

CML. Nonlinear transformations are generated using each state variable (i.e., Lattice 

points) and coupling terms, which are executed iteratively. Since CMLs commonly 

generate chaotic behavior, a logistic map is introduced in this work to induce such 

dynamics by setting the constant,  𝜃 > 3.57. The logistic map is given as follows: 

𝑥𝑖+1 = 𝜃𝑥𝑖(1 − 𝑥𝑖)                                                                                                                                     (13) 

where 𝑖 ∈ [1, 𝑚] is the iteration count. The recursive map for CML is as follows: 

𝑥𝑖+1 = 휀|𝑟𝑥𝑖(1 − 𝑥𝑖)|𝑗 + (1 − 휀)|𝑟𝑥𝑖(1 − 𝑥𝑖)|𝑗−1                    (14) 

where s is the index for the vertices on the lattice and the coupling parameter, 휀 ∈ [0,1] .  

The second term in CML recursive map is for the neighboring lattice points. In this work 

a unidirectional coupling approach is taken with the convex map. The proposed 

techniques that combine the CML and the dual annealing optimization approaches is 

given in the algorithm below: 

 

Algorithm: Combined Coupled Map Lattice and Dual Annealing Optimization Approach 

START 

1. Initialize dual annealing parameters: maximum iterations, 𝑇(1), 𝑞, 𝑞′. 

2. Initialize CML parameters: Logistic map parameter, 𝜃 number of lattice vertices (N),   

  coupling parameter (휀).  

3. Solve 𝑃(𝛿) using dual annealing algorithm to find optimal quantum state, 𝜌𝐴′𝐵′
𝑇   
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  and Choi states: �̂�1,𝐴′ and �̂�1,𝐵′ 

4. Initiate and run CML simulation. 

      5. IF Iteration=1: 

                Randomly initialize lattice values, 𝑥(𝑖 = 1) 

      6. IF Iteration>1 and fitness function = 1: 

                Back-substitute the improved computed lattice values 

      7. IF Iteration>1 and fitness function = 0: 

                Back-substitute the lattice values from the previous iteration (𝑖 − 1) 

                (so it does not lead the CML algorithm towards non-optimal regions) 

      8. Compute new lattice values (𝑥) using CML (with logistic map) 

      9. Check fitness of solution candidates (binary decision function) 

      10.  IF Candidate solution is improved: 

                10.1. Fitness function is Satisfied: 

                     Fitness  = 1, HALT PROGRAM 

                10.2. Fitness function is NOT Satisfied: 

                     Fitness  = 1, Repeat Step 4 

11. IF Candidate solution is NOT improved:  

                11.1. Fitness is Satisfied: 

                     Fitness function = 0, HALT PROGRAM 

                11.2. Fitness is NOT Satisfied:  

                     Fitness function = 0, Repeat Step 5 

12. Determine statistical moments on CML simulation data – mean and variance. 

13. Using statistical moments on a Gaussian distribution, simulate random values for   

quantum state 𝜌𝐴′𝐵′
𝑇 . 

14. Using standard PRNG, simulate random values for Choi states: �̂�1,𝐴𝐴′ and �̂�1,�̂�𝐵′. 

15. Solve for F in the upper-level problem. 

16. Re-initialize Stackelberg game framework until fitness function cannot be further 

improved.  

END 

  

The bilevel optimization problem presented in Equation (3) is solved within a 

Stackelberg game-theoretic framework [34]. The fidelity objective function, F is the upper 

level/leader while the probability of success, 𝑃(𝛿) lower level/follower. The leader’s strat-

egy is to optimize the objective of the sub-problem (𝑃(𝛿). This influences the follower’s 

strategy – optimizing the objective (F). The numerical framework iteratively solves every 

level of the optimization problem as a Stackelberg game reaches the optimal solution. In 

this work, the entanglement distillation problem was solved using: Combined Coupled 

Map Lattice and Dual Annealing technique (CML-DA) technique and dual annealing 

method using pseudo-random number generators (PRNG-DA). The sub-problem problem 

is solved using DA-PRNG approach by searching for the optimal dimension, d that max-

imizes, 𝑃(𝛿). The quantum state, 𝜌𝐴′𝐵′
𝑇  and the Choi states: �̂�1,𝐴′  and �̂�1,𝐵′  are gener-

ated using the PRNG. Consequently, using the obtained dimension, d, the density state 

𝜌𝐴′𝐵′ 
𝑇 and 𝑃(𝛿), the upper-level problem is solved by searching for the best Choi states: 
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�̂�1,𝐴𝐴′ and �̂�1,�̂�𝐵′ using the PRNG. As for the proposed CML-DA technique, the Stackel-

berg framework is employed, and each level of the problem is solved iteratively. In the 

CML-DA approach, the quantum state of the qubit before conversion (𝜌𝐴′𝐵′ 
𝑇 ) is estimated 

using the CML and PRNG techniques. The parameter settings employed for the numerical 

experiments in this work for both the CML and DA techniques are given in Tables 1 and 

2: 

 

Table 1: Parameter settings for the DA technique 

Parameter Value 

Initial Temperature, 𝑇(1) 15 

Restart temperature ratio 0.0002 

Shape controlling parameter, 𝑞 2.62 

Acceptance parameter, 𝑞′ -5 

Maximum iterations 100 

 

Table 2: Parameter settings for the CML 

Parameter Value 

Logistic map parameter, 𝜃 3.7 

Maximum iteration 100 

Lattice vertex count (N) 100 

Coupling parameter (휀) 0.5 

Parametric interval (Δ𝑟) 0.05 

 

4. Computational Analysis 

The Stackelberg game-theoretic framework was utilized for the entanglement distilla-

tion problem with a QST using fuzzy relations to estimate the quantum state. The pseu-

dolikelihood measurements were simulated and the optimization problem was then 

solved using: the combined CML and dual annealing technique (CML-DA) and the con-

ventional dual annealing approach with pseudo-random number generators (PRNG-DA). 

The numerical experiments were performed using the Python programming language on 

Google Collaboratory platform on a cloud with Python 3 Google Compute Engine (RAM 

12.68 GB and Disk space:107.72 GB). Each technique was executed with a total of 40 times 

- where each time the technique was run 3 times and the best solution was taken for each 

execution. Therefore, both techniques were individually executed a total of 120 times. The 

computational results obtained using both techniques were measured using the weighted 

hypervolume indicator for the bilevel problem: 

𝑤𝐻𝑉𝐼 = 𝑤1(𝑥∗ − 𝑥) + 𝑤2(𝑥𝑜
∗ − 𝑥𝑜)                          (15) 

where the optimal solution candidate is (𝑥∗, 𝑥0
∗)  and the nadir point is (𝑥, 𝑥𝑜 ). The 

weights 𝑤1 and 𝑤2 enables the relative importance of the contribution of the upper-level 

problem (1) and lower-level problem (2). In these experiments the weights: 𝑤1 = 0.7 and 

𝑤1 = 0.3. The nadir point is for the upper-level problem (or fidelity objective) (1) and 

lower-level subproblem (or probability of success) (2) is(𝑥 = 1 and 𝑥𝑜 = 1. The larger the 
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value of the wHVI metric, the better the optimization performance. The rated individual 

solutions obtained using the PRNG-DA approach is given in Table 3 and the optimal 

quantum state of the best solution (pure state density matrix) is shown in Figure 1: 

 

Table 3: Rated individual solutions obtained using the PRNG-DA approach. 

Parameters Best Median Worst 

     d 4 4 4 

𝑃(𝛿) 0.9897 0.9878 0.9839 

𝐹 0.8873 0.5201 0.1218 

Iterations 341 397 557 

     𝜌𝐴′𝐵′
𝑇  

 

[0.10023951, 

0.18421193, 

0.02052628, 

0.69502228] 

[0.1290744, 

0.46015852, 

0.36462488, 

0.0461422] 

[0.07538315, 

0.81589332, 

0.07227743, 

0.0364461] 

wHVI 0.918 0.6604 0.3805 

 

 

Figure 1: The quantum state, 𝜌𝐴′𝐵′
𝑇  for the best individual solution generated using the PRNG-DA 

approach. 

The individual solutions obtained using the CML-DA technique is ranked and shown 

in Table 4. The generated optimal quantum state (pure density matrix) for the individual 

best solution is given in Figure 2: 

 

 

 

 

Table 4: Rated individual solutions obtained using the CML-DA approach. 

Parameters Best Median Worst 

     d 9 9 4 

𝑃(𝛿) 0.9745 0.9813 0.9699 

𝐹 0.9991 0.5105 0.0435 

Iterations 315 495 443 

  𝜌𝐴′𝐵′
𝑇  

 

[5.91809983e-03, 

2.26849719e-04, 

[0.00190849, 0.05472652, 

0.03569338, 0.23633382, 

0.34003655, 0.20481441,   

[0.33783083, 

0.09176041, 
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2.75340776e-02, 

1.54353405e-01, 

  

5.56746335e-02, 

4.33851377e-01, 

4.06979776e-03, 

3.17812492e-01, 

  

5.59267748e-04] 

0.00174142, 0.08249384, 

0.04225155]] 

0.19728488, 

0.37312388] 

wHVI 

               

0.9917 0.6517 0.3214 

 

 

Figure 2: The quantum state, 𝜌𝐴′𝐵′
𝑇  for the best individual solution generated using the CML-DA 

approach. 

 

The best individual solutions reached by the PRNG-DA and CML-DA techniques have a 

quantum state,  𝜌𝐴′𝐵′
𝑇  with the dimensions:  𝑑 = 4  and 𝑑 = 8  respectively. The 

difference in terms of the level of optimality reached by the individual best solutions 

measured using the wHVI was about 7.722%. The scatter plot in Figure 3 shows the 

spread of the individual solutions generated using the PRNG-DA and CML-DA: 

 

         

Figure 3: Spread objective values for individual solutions generated using the PRNG-DA and 

CML-DA 
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In Figure 3, it can be seen the shaded area highlights the optimal region in the ob-

jective space – where the optimality of the fidelity objective is given more importance as 

compared to the cascaded objective function: probability of success. Thus, more solutions 

generated by the CML-DA technique fall into the optimal region as compared to the 

PRNG-DA approach. This is reflected in the value of the overall optimality of the solutions 

measured using the weighted HVI. The overall optimality of the CML-DA and PRNG-DA 

approaches are 27.109 and 25.718 respectively. The CML-DA outperforms the PRNG-DA 

in terms of overall optimization performance by approximately 5.267%. The key factor in-

fluencing the techniques in this study is the CML component. The chaotic dynamics exhib-

ited by the CML enables wide-range dynamical behavior as compared the standard PRNG. 

This boosts the performance of the CML-DA approach enabling it to perform a more thor-

ough search of the objective landscape as compared to standard techniques (PRNG-based 

approaches). The CML is thus able to adapt better to the multilevel structure of the opti-

mization problem and avoiding scenarios that may cause stagnation. In other words, the 

CML manages to escape local optima traps in the objective space. The programs developed 

using the mentioned computational techniques did not encounter convergent issues and 

performed smoothly during execution. The execution time taken for overall solution gen-

eration using the CML-DA technique was 156.804 seconds while the PRNG-DA approach 

took about 27 seconds. Thus, the trade-off experienced by the CML-DA in terms of opti-

mization efficiency is the execution time as compared to the PRNG-DA approach. The ad-

ditional algorithmic complexity embedded in the CML chaotic simulator comes with an 

additional computational cost. Nevertheless, both techniques showed stable performance 

when solving the entanglement distillation problem with the fuzzy relations for QST. 

5. Conclusions & Recommendations 

In this work, the entanglement distillation optimization was formulated in a bilevel 

structure. Using fuzzy relations, the quantum state of the system (density matrix, 𝜌𝐴′𝐵′
𝑇 ) 

represented as a symmetric positive semidefinite matrix was estimated using pseudo-like-

lihood measurements. A scale-independent partial differential equation (PDE) was de-

rived (see equation (7)). The solution to the PDE was employed for the QST of the quantum 

state. This multilevel optimization formulation was then solved using the CML-DA and 

PRNG-DA approaches within a Stackelberg game theoretic-framework. Comparative 

analysis showed that the CML-DA technique proved more efficient as compared to the 

PRNG-DA approach. Due to the CML-DAs capacity for wide-range chaotic behavior, it 

was able to navigate the objective space efficiently as compared to conventional techniques 

such as the PRNG-DA.  

Future works could be directed on testing the performance of other novel meta-heu-

ristics or evolutionary algorithms for practical entanglement distillation. In addition, re-

search efforts could also be focused on reformulating the practical entanglement distilla-

tion problem using pseudo-likelihood measurements; to include environmental factors in-

fluencing the density matrix estimation in QST. This could be done by considering the 
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quantum Liouville equation or the Gorini–Kossakowski–Sudarshan–Lindblad equation 

[36], [37].  

6. Conflict of Interest Statement 

On behalf of all authors, the corresponding author states that there is no conflict of interest. 

References 

1. Kalb, N., Reiserer, A.A., Humphreys, P.C., Bakermans, J.J., Kamerling, S.J., Nickerson, N.H., Benjamin, S.C., Twitchen, D.J., 

Markham, M. and Hanson, R., 2017. Entanglement distillation between solid-state quantum network nodes. Science, 356(6341), 

pp.928-932. 

2. Li, M., Fei, S. and Li-Jost, X., 2011. Bell inequality, separability and entanglement distillation. Chinese Science Bulletin, 56(10), 

pp.945-954. 

3. Ruan, L., Dai, W. and Win, M.Z., 2018. Adaptive recurrence quantum entanglement distillation for two-Kraus-operator chan-

nels. Physical Review A, 97(5), p.052332. 

4. Ecker, S., Sohr, P., Bulla, L., Huber, M., Bohmann, M. and Ursin, R., 2021. Experimental single-copy entanglement distillation. 

Physical Review Letters, 127(4), p.040506. 

5. Liu, C., Tu, T., Li, P.Y., Liu, X., Zhu, X.Y., Zhou, Z.Q., Li, C.F. and Guo, G.C., 2022. Towards entanglement distillation between 

atomic ensembles using high-fidelity spin operations. Communications Physics, 5(1), pp.1-9. 

6. Lin, Y.Y., Sun, J.R. and Sun, Y., 2021. Bit thread, entanglement distillation, and entanglement of purification. Physical Review 

D, 103(12), p.126002. 

7. Qian, L., Chen, L., Chu, D. and Shen, Y., 2021. A matrix inequality for entanglement distillation problem. Linear Algebra and 

its Applications, 616, pp.139-177. 

8. Kondra, T.V., Datta, C. and Streltsov, A., 2021. Catalytic transformations of pure entangled states. Physical Review Letters, 

127(15), p.150503. 

9. He, M., Malaney, R. and Burnett, B.A., 2021. Noiseless linear amplifiers for multimode states. Physical Review A, 103(1), 

p.012414. 

10. Gour, G. and Scandolo, C.M., 2021. Entanglement of a bipartite channel. Physical Review A, 103(6), p.062422. 

11. Yan, P.S., Zhou, L., Zhong, W. and Sheng, Y.B., 2022. Measurement-based logical qubit entanglement purification. Physical 

Review A, 105(6), p.062418. 

12. Shchukin, E. and van Loock, P., 2022. Optimal entanglement swapping in quantum repeaters. Physical Review Letters, 128(15), 

p.150502. 

13. Riera-Sàbat, F., Sekatski, P., Pirker, A. and Dür, W., 2021. Entanglement-assisted entanglement purification. Physical Review 

Letters, 127(4), p.040502. 

14. Gyongyosi, L. and Imre, S., 2020. Optimizing high-efficiency quantum memory with quantum machine learning for near-term 

quantum devices. Scientific reports, 10(1), pp.1-24. 

15. Gyongyosi, L., 2020. Quantum state optimization and computational pathway evaluation for gate-model quantum computers. 

Scientific reports, 10(1), pp.1-12. 

16. Brand, S., Coopmans, T. and Elkouss, D., 2020. Efficient computation of the waiting time and fidelity in quantum repeater 

chains. IEEE Journal on Selected Areas in Communications, 38(3), pp.619-639. 

17. Sahu, A., Sreeram, P.G. and Madhok, V., 2022. Effect of chaos on information gain in quantum tomography. Physical Review 

E, 106(2), p.024209. 

18. Schmale, T., Reh, M. and Gärttner, M., 2022. Efficient quantum state tomography with convolutional neural networks. npj 

Quantum Information, 8(1), pp.1-8. 

19. Farooq, A., Khalid, U., ur Rehman, J. and Shin, H., 2022. Robust Quantum State Tomography Method for Quantum Sensing. 

Sensors, 22(7), p.2669. 

20. Ahmad, S.T., Farooq, A. and Shin, H., 2022. Self-guided quantum state tomography for limited resources. Scientific Reports, 

12(1), pp.1-8.  

21. Choi, M.S., 2022. Single-qubit reaped quantum state tomography. Scientific reports, 12(1), pp.1-9. 

22. Lu, Q.C., Zhang, L., Xu, P.C., Cui, X. and Li, J., 2022. Modeling network vulnerability of urban rail transit under cascading 

failures: A Coupled Map Lattices approach. Reliability Engineering & System Safety, 221, p.108320. 

23. Stenzinger, R.V. and Tragtenberg, M.H.R., 2022. Cardiac reentry modeled by spatiotemporal chaos in a coupled map lattice. 

The European Physical Journal Special Topics, pp.1-12. 

24. Wang, X. and Liu, P., 2021. A new full chaos coupled mapping lattice and its application in privacy image encryption. IEEE 

Transactions on Circuits and Systems I: Regular Papers, 69(3), pp.1291-1301. 

25. Xie, X., Li, J., Huang, Z., Yang, Q. and Kwak, K.S., 2022. Coupled-Map-Lattices-Based Vulnerability Assessment of UAV Net-

work in Interference Scenarios. Wireless Communications and Mobile Computing, 2022. 

26. Xu, F., Ma, X., Zhang, Q., Lo, H.K. and Pan, J.W., 2020. Secure quantum key distribution with realistic devices. Reviews of 

Modern Physics, 92(2), p.025002. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 June 2023                   doi:10.20944/preprints202306.0209.v1

https://doi.org/10.20944/preprints202306.0209.v1


 

27. Rozpędek, F., Schiet, T., Elkouss, D., Doherty, A.C. and Wehner, S., 2018. Optimizing practical entanglement distillation. Phys-

ical Review A, 97(6), p.062333. 

28. Lukens, J.M., Law, K.J., Jasra, A. and Lougovski, P., 2020. A practical and efficient approach for Bayesian quantum state esti-

mation. New Journal of Physics, 22(6), p.063038. 

29. Quek, Y., Fort, S. and Ng, H.K., 2021. Adaptive quantum state tomography with neural networks. npj Quantum Information, 

7(1), pp.1-7. 

30. Recasens, J., 2022. On the relationship between positive semi-definite matrices and t-norms. Fuzzy Sets and Systems, 446, pp.26-

37. 

31. Guilmeau, T., Chouzenoux, E. and Elvira, V., 2021, July. Simulated annealing: A review and a new scheme. In 2021 IEEE Statis-

tical Signal Processing Workshop (SSP) (pp. 101-105). IEEE. 

32. Xiang, Y., Gubian, S. and Martin, F., 2017. Generalized simulated annealing. Computational Optimization in Engineering-Par-

adigms and Applications, pp.25-46. 

33. Zia, U., McCartney, M., Scotney, B., Martinez, J. and Sajjad, A., 2022. A novel pseudo-random number generator for IoT based 

on a coupled map lattice system using the generalised symmetric map. SN Applied Sciences, 4(2), pp.1-17. 

34. Ganesan, T., Vasant, P. and Litvinchev, I., 2022. Chaotic simulator for bilevel optimization of virtual machine placements in 

cloud computing. Journal of the Operations Research Society of China, 10(4), pp.703-723. 

35. Wang, X., Wang, X., Teng, L. and Jiang, D., 2022. A novel meaningful image encryption algorithm based on newly-designed 

coupled map lattice and adaptive embedding. Optik, 270, p.170073. 

36. Kim, H.W. and Rhee, Y.M., 2020. Two-oscillator mapping modification of the Poisson bracket mapping equation formulation 

of the quantum–classical Liouville equation. The Journal of Chemical Physics, 153(21), p.214103. 

37. Manzano, D., 2020. A short introduction to the Lindblad master equation. Aip Advances, 10(2), p.025106. 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 June 2023                   doi:10.20944/preprints202306.0209.v1

https://doi.org/10.20944/preprints202306.0209.v1

