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Abstract: In this paper we exploit concepts from Information Theory to improve the classical 1

Chvatal’s greedy algorithm for the Set Covering Problem. In particular, we develop a new greedy 2

procedure, called Surprisal-Based Greedy Heuristic (SBH), incorporating the computation of a 3

“surprisal” measure when selecting the solution columns. Computational experiments, performed on 4

instances from the OR-Library, show that SBH yields a 2.5% improvement in terms of the objective 5

function value over the Chvatal’s algorithm while retaining similar execution times, making it 6

suitable for real-time applications. The new heuristic was also compared with Kordalewski’s greedy 7

algorithm, obtaining similar solutions with much lower times on large instances, and Grossmann 8

and Wool’s algorithm for unicost instances, where SBH obtained better solutions. 9

Keywords: set covering; greedy; heuristic; real-time applications 10

1. Introduction 11

The Set Covering Problem (SCP) is a classical combinatorial optimization problem 12

defined as follows. Let I be a set of m items and J = {S1, S2. . . , Sn} a collection of n subsets 13

of I where each subset Sj (j = 1, . . . , n) is associated to a non-negative cost cj. The SCP 14

amounts to find a minimum cost subcollection of J that covers all the elements of I at 15

minimum cost, the cost being defined as the sum of subsets cost. 16

The SCP finds applications in many fields. One of the most important is Crew Scheduling, 17

where SCP provides a minumum-cost set of crews in order to cover a given set of trips. 18

These problems include Airline Crew Scheduling (see, e.g., Rubin [1] and Marchiori [2]) 19

and Railway Crew Scheduling (see, e.g., Caprara [3]). Other applications are the Winner 20

Determination Problem in combinatorial auctions, a class of sales mechanisms (Abrache et 21

al. [4]) and Vehicle Routing (Foster et al. [5], Cacchiani et al. [6] and Bai et al. [7]). The SCP 22

is also relevant in a number of Production Planning Problems, as described by Vemuganti 23

in [8], where it has often to be solved in real-time. 24

Garey and Johnson in [9] have proven that the SCP is NP-hard in the strong sense. Ex- 25

act algorithms are mostly based on branch-and-bound and branch-and-cut techniques. 26

Etcheberry [10] utilizes sub-gradient optimization in a branch-and-bound framework. 27

Balas and Ho [11] present a procedure based on cutting planes from conditional bounds, 28

i.e., valid lower bounds if the constraint set is amended by certain inequalities. Beasley 29

[12] introduces an algorithm which blends dual ascent, subgradient optimization and 30

linear programming. In [13], Beasley and Jornsten incorporate the [12] algorithm into a 31

Lagrangian heuristic. Fisher and Kedia [14] use continuous heuristics applied to the dual 32

of the linear programming relaxation, obtaining lower bounds for a branch and bound 33

algorithm. Finally, we mention Balas and Carrera [15] with their procedure based on a 34

dynamic subgradient optimization and branch and bound. These algorithms were tested 35

on instances involving up to 200 rows and 2000 columns in the case of Balas and Fisher’s 36

algorithms and 400 rows and 4000 columns in [12], [13] and [15]. Among these algorithms 37

the fastest one is the Balas and Carrera’s algorithm, with an average time in the order of 38

100 seconds on small instances and 1000 seconds on largest ones (on a Cray-1S computer). 39
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Caprara [16] compared these methods with the general-purpose ILP solvers CPLEX 4.0.8 40

and MINTO 2.3, observing that the latter ones have execution times competitive with that 41

of the best exact algorithms for the SCP in literature. 42

In most industrial applications it is important to rely on heuristic methods, in order to 43

obtain “good” solutions quickly enough to meet the expectations of decision-makers. To 44

this purpose, many heuristics have been presented in the literature. The classical greedy 45

algorithm proposed by Chvatal [17] sequentially inserts the set with a minimum score 46

in the solution. Chvatal proved that the worst case performance ratio does not exceed 47

H(d) = ∑d
i=1

1
i , where d is the size of the largest set. More recently Kordalewski [18] 48

described a new approximation heuristics for the SCP. His algorithm involves the same 49

scheme of Chvatal’s procedure, but modifies the score by including a new parameter 50

named difficulty. Wang et al. [19] presented the TS-IDS algorithm designed for deep web 51

crawling and then Singhania [20] tested it in a resource management application. Feo and 52

Resende [21] present a Greedy Randomized Adaptive Procedure (GRASP), in which they 53

first construct an initial solution through an adaptive randomized greedy function and 54

then apply a local search procedure. Haouari and Chaouachi [22] introduce PROGRES, 55

a probabilistic greedy search heuristic which uses diversification schemes along with a 56

learning strategy. 57

Regarding Lagrangian heuristics, we mention the algorithm developed by Beasley [23] 58

and then improved by Haddadi [24], which consists of a subgradient optimization proce- 59

dure coupled with a greedy algorithm and Lagrangian cost fixing. A similar procedure 60

is designed by Caprara et al. [25], which includes three phases, subgradient, heuristic and 61

column fixing, followed by a refining procedure. Beasley and Chu [26] propose a genetic 62

algorithm in which a variable mutation rate and two new operators are defined. Similarly 63

Aickelin [27] describes an indirect genetic algorithm. In this procedure actual solutions are 64

found by an external decoder function and then an another indirect optimization layer is 65

used to improve the result. Lastly, we mention Meta-Raps, introduced by Lan et al. [28], 66

an iterative search procedure that uses randomness as a way to avoid local optima. All 67

the mentioned heuristics present calculation times not compatible with real contexts. For 68

example Caprara’s algorithm [25] produces solutions with an average computing time of 69

about 400 seconds (on a DECstation 5000/240 CPU), if executed on non-unicost instances 70

from Beasley’s OR Library, with 500× 5000 and 1000× 10000 as matrix sizes. Indeed, the 71

difficulty of the problem leads to very high computational costs, which has led academics 72

to research heuristics and meta-heuristics capable of obtaining good solutions, as close as 73

possible to the optimal, in a very short time, in order to tackle real-time applications. To 74

this respect, it is worth noting the paper by Grossman and Wool [29] in which a compar- 75

ative study of eight approximation algorithms for the unicost SCP is proposed. Among 76

these there were several greedy variants, fractional relaxations and randomized algorithms. 77

Other investigations have been carried out over the years are: Galinier et al. [30], who 78

study a variant of SCP, called the Large Set Covering Problem (LSCP), in which sets are pos- 79

sibly infinite; Lanza-Gutierrez et al. [31], which are interested in the difficulty of applying 80

metaheuristics designed for solving continuous optimization problem to the SCP; Sundar 81

et al. [32] who propose another algorithm to solve the SCP by combining an artificial bee 82

colony (ABC) algorithm with local search. 83

In this paper, we exploit concepts from Information Theory (see Borda [33]) to improve the 84

Chvatal’s greedy algorithm. Our purpose is to devise a heuristic able to improve the quality 85

of the solution while retaining similar execution times to those of Chvatal’s algorithm, 86

making it suitable for real-time applications. In particular, our algorithm, named Surprisal- 87

Based Greedy Heuristic (SBH), introduces a surprisal measure, also known as self-information, 88

to account partly for the problem structure while constructing the solution. We compare 89

the proposed heuristic with three other greedy algorithms, namely the Chvatal’s greedy 90

procedure [17], the Kordalewski’s algorithm [18] and the Altgreedy procedure [29] for 91

unicost problems. We emphasize that SBH improves the classical Chvatal’s greedy algo- 92

rithm [17] in terms of objective function and has the same scalability in computation time 93

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 June 2023                   doi:10.20944/preprints202306.0193.v1

https://doi.org/10.20944/preprints202306.0193.v1


Version May 29, 2023 submitted to Algorithms 3 of 11

while the Kordalewski’s algorithm produces slightly better solutions but its computation 94

times are much higher than those of the SBH algorithm, making it impractical for real-time 95

applications. 96

The reminder of the article is organized as follows: in the Section 2 we describe the three 97

algorithms involved in our analysis and illustrate SBH. Section 3 presents an experimental 98

campaign which compares the greedy algorithms mentioned above. Finally, Section 4 99

reports some conclusions. 100

2. Surprisal-based greedy heuristic 101

2.1. Problem formulation 102

The SCP can be formulated as follows. In addition to the notation introduced in
Section 1, let aij be a constant equal to 1 if item i is covered by subset j and 0 otherwise.
Moreover, let xj denote a binary variable defined as follows:

xj =

{
1 if column j is selected,
0 otherwise.

An SCP formulation is:

minimize ∑
j∈J

cjxj (1)

∑
j∈J

aijxj ≥ 1 i ∈ I, (2)

xj ∈ {0, 1} j ∈ J, (3)

where (1) aims to minimize the total cost of the selected columns and (2) imposes that every 103

row is covered by at least one column.

Algorithm 1 Chvatal’s greedy algorithm

1: S← ∅ ▷ initially empty set
2: while I ̸= ∅ do

3: j∗ ← arg min
j∈J

cj

|Ij|
▷ selection of the best column

4: add j∗ to S
5: I ← I \ Ij∗

6: for j ∈ J do ▷ remove the already covered rows
7: Ij ← Ij \ Ij∗

104

2.2. Greedy algorithms 105

As we explained in the previous section, we are interested in greedy procedures in 106

order to produce good solutions in a very short time, suitable for real-time applications. 107

SCP greedy algorithms are sequential procedure that identify the best unselected column 108

w.r.t. to a given score and then insert it in the solution set. 109

Let Ij be the set of rows covered by column j and Ji the set of columns covering row i. 110

Figure 1 shows the pseudocode of the Chvatal’s greedy algorithm [17]. Each column j is 111

given a score equal to the column cost cj divided by the number of rows Ij covered by j. At 112

each step the algorithm inserts the column j∗ with the minimum score in the solution set. 113

A variant of the Chvatal’s procedure for unicost problems was suggested by Grossman 114

and Wool [29] with the name of Altgreedy. This algorithm is composed by two main steps: 115

in a first phase, the column with the highest number of covered rows is inserted in the 116

solution; then some columns are removed from the solution set according to lexicographic 117

order as long as the number of the new uncovered rows remains smaller than the last 118

number of new rows covered. 119
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More recently, Kordalewski [18] proposed a new greedy heuristic which is a recursive
procedure that introduces two new terms: valuation and difficulty. In the first step, valuation
is computed for all columns j by dividing the number of rows, covered by j, by the column
cost, like in Chvatal’s score. For each row i is defined a parameter, difficulty, which is the
inverse of the sum of the valuations of the sets covering i, used to indicate how difficult it
might be to cover that row. This is based on the observation that a low valuation implies a
low probability of selection. Valuation v can be computed as:

vj =
∑i∈Ij

di

cj

while difficulty d will be only updated with the new valuations. 120

2.3. The SBH algorithm 121

In this section, we describe the Surprisal-Based Greedy Heuristic SBH, that constitutes 122

an improvement on the classic Chvatal’s greedy procedure. As illustrated in Section 2.2, 123

Chvatal’s algorithm assigns each column j a score equal to the unit cost to cover the rows in 124

Ij. Then it inserts iteratively the columns with the lowest score in the solution set. However, 125

this approach is flawed when rows in Ij are poorly covered. Indeed it does not consider 126

the probability that rows i ∈ Ij are covered by other columns j′ ∈ Ji. Our algorithm aims 127

to correct this by introducing an additional term expressing the “surprisal” that a column 128

j is selected. Therefore our score considers two aspects: the cost of a column j and the 129

probability that the rows in Ij can be covered by other columns. 130

To describe formally our procedure, we introduce some concepts from Information 131

Theory. The term information refers to any message which gives details in an uncertain 132

problem and is closely related with the probability of occurrence of an uncertain event. 133

Information is an additive and non-negative measure which is equal to 0 when the event is 134

certain and it grows when its probability decreases. More specifically, given an event A 135

with probability to occur pA, the self-information IA is defined as: 136

IA = − log(pA). (4)

Self-information is also called surprisal because it expresses the “surprise” of seeing event 137

A as the outcome of an experiment. In the SBH algorithm, at each stage we compute the 138

surprisal of each column. The columns containing row i are considered independent of 139

each other, so the probability of selecting one of them (denoted as event Ā) is 140

pĀ =
1
|Ji|

. (5)

Therefore the opposite event, i.e. select row i with a column different from the current one, 141

is: 142

pA = 1− 1
|Ji|

=
|Ji| − 1
|Ji|

. (6)

The self-information measure contained in this event is: 143

Ii = − log
(
|Ji| − 1
|Ji|

)
. (7)

Thanks to the additivity of the self-information measure, surprisal of a column j can be 144

written as: 145

Ij = ∑
i∈Ij

Ii = ∑
i∈Ij

− log
(
|Ji| − 1
|Ji|

)
. (8)
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We modify Chvatal’s cost of column j, i.e.
cj

|Ij|
, by introducing the surprisal of j to the 146

denominator, in order to favour columns with a high self-information. In particular, at each 147

step we select the column that minimizes: 148

min
j∈J

cj

|Ij| · Ij
, (9)

which is equivalent to 149

min
j∈J

cj

|Ij|∏i∈Ij

|Ji| − 1
|Ji|

. (10)

This formulation is the same of minimizing the probability of the intersection of indepen- 150

dent events, each of which is to select a column, other than the current one, covering row i. 151

Two extreme cases can occur: 152

• if column j is the only one covering a row i ∈ Ij, there is no surprise that it will be 153

selected: in this case Ij will be high and the modified cost (9) of column j will be 0 so 154

that column j will be included in the solution; 155

• if, on the other hand, all rows i ∈ Ij are covered by a high number of other columns 156

j′ ∈ Ji, surprisal Ij will be very low. In this case, the cost attributed to column j will be 157

greater than its Chvatal’s cost. 158

To illustrate this concept, we now present a numerical example. Let 159

(aij) =


1 1 0 0
0 0 0 1
1 1 1 0
1 0 1 1

, (cj) = [3 1 2 5]

be the coverage matrix and the column cost vector. We denote by CHi
score and SBHi

score
Chvatal and SBH score vectors, respectively, at the i-th iteration, where a hyphen is inserted
to indicate that the corresponding column has already been selected. The three iterations of
the Chvatal’s algorithm produce:

CH1
score =

[
1;

1
2

; 1;
5
2
]

CH2
score =

[
3; −; 2;

5
2
]

CH3
score =

[
−; −; −; 5

]
and columns 2, 3, 4 are selected with a total cost equal to 8. On the other hand, our SBH
algorithm gives:

SBH1
score =

[2
9

;
1
6

;
4
9

; 0
]

SBH2
score =

[1
2

;
1
6

;
4
3

; −
]

Hence, our algorithm selects only two columns (4 and 2), with a total cost of 6. Therefore, 160

SBH outperforms Chvatal’s procedure because the latter cannot recognize the column that 161

must necessarily be part of the solution. 162

3. Experimental results 163

The aim of our computational experiments has been to assess the performance of the 164

SBH heuristic procedure with respect to the other greedy heuristics proposed in literature. 165

We implemented the heuristics in C++ and performed our experiments on a stand-alone 166

Linux machine with 4 cores processor clocked at 3 GHz and equipped with 16 GB of RAM. 167
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Table 1. Instances features: sets 4-6, A-E and NRE-NRH

Set |I| |J| Density Range Count
4 200 1000 2% 1-100 10
5 200 2000 2% 1-100 10
6 200 1000 5% 1-100 5
A 300 3000 2% 1-100 5
B 300 3000 5% 1-100 5
C 400 4000 2% 1-100 5
D 400 4000 5% 1-100 5
E 50 500 20% 1-100 5

NRE 500 5000 10% 1-100 5
NRF 500 5000 20% 1-100 5
NRG 1000 10000 2% 1-100 5
NRH 1000 10000 5% 1-100 5

Table 2. Instances features: rail sets

Instance |I| |J| Range Density
rail516 516 47311 1-2 1.3%
rail582 582 55515 1-2 1.2%
rail2536 2536 1081841 1-2 0.4%
rail507 507 63009 1-2 1.3%
rail2586 2586 920683 1-2 0.3%
rail4284 4284 1092610 1-2 0.2%
rail4872 4872 968672 1-2 0.2%

Table 3. Results for instance sets 4− 6

Instance BS CH KORD SBH SBH vs CH SBH vs KORDSOL TIME GAP SOL TIME GAP SOL TIME GAP
4.1 429 463 0.002 7.93% 458 0.011 6.76% 471 0.002 9.79% 1.73% 2.84%
4.2 512 582 0.002 13.67% 569 0.010 11.13% 587 0.002 14.65% 0.86% 3.16%
4.3 516 598 0.002 15.89% 576 0.011 11.63% 577 0.003 11.82% -3.51% 0.17%
4.4 494 548 0.002 10.93% 540 0.009 9.31% 542 0.002 9.72% -1.09% 0.37%
4.5 512 577 0.002 12.70% 572 0.009 11.72% 571 0.003 11.52% -1.04% -0.17%
4.6 560 615 0.002 9.82% 603 0.008 7.68% 599 0.002 6.96% -2.60% -0.66%
4.7 430 476 0.003 10.70% 480 0.008 11.63% 474 0.002 10.23% -0.42% -1.25%
4.8 492 533 0.003 8.33% 520 0.009 5.69% 553 0.002 12.40% 3.75% 6.35%
4.9 641 747 0.003 16.54% 721 0.010 12.48% 723 0.003 12.79% -3.21% 0.28%
4.10 514 556 0.002 8.17% 551 0.010 7.20% 548 0.002 6.61% -1.44% -0.54%
5.1 253 289 0.005 14.23% 289 0.016 14.23% 289 0.005 14.23% 0.00% 0.00%
5.2 302 348 0.005 15.23% 345 0.019 14.24% 337 0.006 11.59% -3.16% -2.32%
5.3 226 246 0.004 8.85% 246 0.017 8.85% 243 0.005 7.52% -1.22% -1.22%
5.4 242 265 0.004 9.50% 264 0.016 9.09% 266 0.004 9.92% 0.38% 0.76%
5.5 211 236 0.004 11.85% 228 0.016 8.06% 230 0.004 9.00% -2.54% 0.88%
5.6 213 251 0.004 17.84% 249 0.016 16.90% 245 0.004 15.02% -2.39% -1.61%
5.7 293 326 0.004 11.26% 314 0.017 7.17% 322 0.004 9.90% -1.23% 2.55%
5.8 288 323 0.004 12.15% 316 0.016 9.72% 315 0.005 9.38% -2.48% -0.32%
5.9 279 312 0.004 11.83% 304 0.015 8.96% 304 0.005 8.96% -2.56% 0.00%
5.10 265 293 0.003 10.57% 285 0.016 7.55% 286 0.008 7.92% -2.39% 0.35%
6.1 138 159 0.004 15.22% 156 0.010 13.04% 156 0.006 13.04% -1.89% 0.00%
6.2 146 170 0.004 16.44% 164 0.009 12.33% 167 0.007 14.38% -1.76% 1.83%
6.3 145 161 0.004 11.03% 152 0.009 4.83% 163 0.006 12.41% 1.24% 7.24%
6.4 131 149 0.004 13.74% 147 0.009 12.21% 138 0.007 5.34% -7.38% -6.12%
6.5 161 196 0.004 21.74% 190 0.009 18.01% 194 0.006 20.50% -1.02% 2.11%
Average 0.003 12.65% 0.012 10.42% 0.004 11.03% -1.42% 0.59%

The algorithm has been tested on 77 instances from Beasley’s OR Library [34]. Table 1 168

describes the main features of the test instances and, in particular, the column density, i.e. 169

the percentage of ones in matrix a and column range, i.e. the minimum and maximum value 170

of objective function coefficients. The remaining column headings are self-explanatory. 171

Instances are divided into sets having sizes ranging from 200× 1000 to 1000× 10000. Set E 172

contains small unicost instances of size 50× 500. Sets 4, 5 and 6 were generated by Balas 173

and Ho [11] and consist of small instances with low density while sets A to E come from 174

Beasley [12]. The remaining instances (sets NRE to NRH) are from [23]. Such instances 175

are significantly larger and optimal solutions are not available. Similarly, Table 2 reports 176

features of seven large scale real-word instances derived from crew-scheduling problem 177

[25]. 178

We compare SBH with the Chvatal’s procedure [17] (CH) and the heuristic by Ko- 179

rdalewski [18] (KORD). Tables 3 - 5 report the computational results for each instance under 180

the following headings: 181
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• Instance: the name of the instance where the string before “dot” refers to the set which 182

the instance belongs to; 183

• BS: objective function value of the best known solution; 184

• SOL: the objective function value of the best solution determined by the heuristic; 185

• TIME: the execution time in seconds; 186

• GAP: percentage gap between BS and the SOL value, i.e.

GAP = 100× SOL− BS
BS

Columns “SBH vs CH” and “SBH vs KORD” report the percentage improvement of SBH 187

w.r.t. CH and KORD, respectively. Regarding Table 3 it is worth noting that our heuristic, 188

compared to Chvatal’s greedy procedure, has a smaller gap ranging from 12.65% to 11.03%, 189

with an average improvement of 1.42%. Among these instances, SBH provides a better 190

solution than [17] in 19 out of 24 instances problems. We point out that the best objective 191

function value is given by the Kordalewski’s algorithm which is slightly better than our 192

SBH procedure (by only 0.59%), but is slower. 193

Similar observations can be done for Table 4. Here, SBH performs better even though it 194

differs from the Kordalewski algorithm only by 0.07%. Comparing SBH with CH, it is 195

worth noting that only in 4 instances out of 45 SBH obtained a worse solution. SBH comes 196

close to the optimal solution with an average gap of 10.69% and is better than CH by 2.62%. 197

Execution time of all these instances averages 0.113 seconds for CH, 0.230 seconds for the 198

Kordalewski procedure and 0.564 seconds for SBH. Increasing the size of the instances 199

(which is the case of the rail problems), the Kordalewski’s algorithm becomes much slower. 200

Consequently, on these instances we compare only the CH and SBH heuristics. On these 201

instances, our SBH algorithm provides an average objective function improvement of 5.82% 202

with comparable execution times. 203

We now compare the algorithms on unicost instances, obtained by setting the cost of all 204

columns equal to 1, like in Grossman and Wool’s paper [29]. Results are showed in Tables 205

6-8, where the subdivision of instances is the same as before. The additional column “SBH 206

vs ALTG” reports the percentage improvement of SBH w.r.t. ALTG algorithm. Looking at 207

Tables 6, it worth noting that the heuristic which performs better is that of Kordalewski. 208

Indeed, our heuristic SBH is worst than KORD of about 3.49% while it is better then 209

the other two greedy procedures with a gap of 1.15%. Here, computation times are all 210

comparable and range between 0.002 and 0.007 seconds. SBH improves its performance on 211

larger instances, as shown in Tables 7 and 8. In particular, it yields an average improvement 212

of 1.50% on CH and ALTG ([29]) on scp instances, and respectively 1.39% and 12.97% on 213

rail instances. Comparing SBH and KORD on the scp instances, we observe that they are 214

very similar with a 0.07% improvement. On the largest instances (Table 8) it emerges that 215

the computational time of KORD makes it impractical for real-time applications. 216

4. Conclusions 217

In this paper, we have proposed a new greedy heuristic, SBH, an improvement of the 218

classical greedy algorithm proposed by Chvatal [17]. We showed that in the vast majority 219

of the test instances SBH generates better solutions then other greedy algorithms such as 220

the Kordalewski’s algorithm [18] and Altgreedy [29]. Computational tests have also shown 221

that the Kordalewski’s algorithm is not suitable for real-time application since it presents 222

very large execution times while our SBH algorithm runs in few seconds even on very large 223

instances. 224
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Table 4. Results for instance sets scp

Instance BS CH KORD SBH SBH vs CH SBH vs KORDSOL TIME GAP SOL TIME GAP SOL TIME GAP
A.1 253 288 0.008 13.83% 279 0.033 10.28% 281 0.012 11.07% -2.43% 0.72%
A.2 252 284 0.008 12.70% 276 0.035 9.52% 282 0.011 11.90% -0.70% 2.17%
A.3 232 270 0.008 16.38% 253 0.037 9.05% 253 0.012 9.05% -6.30% 0.00%
A.4 234 278 0.008 18.80% 265 0.037 13.25% 273 0.012 16.67% -1.80% 3.02%
A.5 236 271 0.008 14.83% 255 0.033 8.05% 258 0.012 9.32% -4.80% 1.18%
B.1 69 77 0.019 11.59% 75 0.044 8.70% 75 0.034 8.70% -2.60% 0.00%
B.2 76 86 0.018 13.16% 84 0.036 10.53% 86 0.051 13.16% 0.00% 2.38%
B.3 80 89 0.019 11.25% 85 0.039 6.25% 85 0.038 6.25% -4.49% 0.00%
B.4 79 89 0.021 12.66% 89 0.046 12.66% 87 0.035 10.13% -2.25% -2.25%
B.5 72 78 0.019 8.33% 78 0.037 8.33% 79 0.052 9.72% 1.28% 1.28%
C.1 227 258 0.014 13.66% 254 0.059 11.89% 255 0.028 12.33% -1.16% 0.39%
C.2 219 258 0.017 17.81% 251 0.061 14.61% 249 0.023 13.70% -3.49% -0.80%
C.3 243 276 0.014 13.58% 271 0.059 11.52% 270 0.021 11.11% -2.17% -0.37%
C.4 219 257 0.014 17.35% 252 0.059 15.07% 256 0.030 16.89% -0.39% 1.59%
C.5 215 233 0.013 8.37% 229 0.060 6.51% 230 0.026 6.98% -1.29% 0.44%
D.1 60 74 0.049 23.33% 68 0.066 13.33% 71 0.086 18.33% -4.05% 4.41%
D.2 66 74 0.042 12.12% 70 0.070 6.06% 71 0.088 7.58% -4.05% 1.43%
D.3 72 83 0.037 15.28% 81 0.081 12.50% 79 0.104 9.72% -4.82% -2.47%
D.4 62 71 0.042 14.52% 67 0.071 8.06% 65 0.085 4.84% -8.45% -2.99%
D.5 61 69 0.037 13.11% 70 0.070 14.75% 74 0.098 21.31% 7.25% 5.71%
E.1 5 5 0.002 0.00% 5 0.001 0.00% 5 0.005 0.00% 0.00% 0.00%
E.2 5 5 0.003 0.00% 6 0.002 20.00% 5 0.003 0.00% 0.00% -16.67%
E.3 5 5 0.002 0.00% 5 0.002 0.00% 5 0.003 0.00% 0.00% 0.00%
E.4 5 6 0.002 20.00% 5 0.001 0.00% 5 0.005 0.00% -16.67% 0.00%
E.5 5 5 0.002 0.00% 5 0.002 0.00% 5 0.003 0.00% 0.00% 0.00%

NRE.1 29 30 0.150 3.45% 32 0.217 10.34% 30 0.772 3.45% 0.00% -6.25%
NRE.2 30 36 0.163 20.00% 34 0.202 13.33% 35 0.836 16.67% -2.78% 2.94%
NRE.3 27 31 0.145 14.81% 31 0.204 14.81% 30 0.661 11.11% -3.23% -3.23%
NRE.4 28 32 0.153 14.29% 33 0.211 17.86% 31 0.622 10.71% -3.13% -6.06%
NRE.5 28 33 0.151 17.86% 31 0.202 10.71% 32 0.579 14.29% -3.03% 3.23%
NRF.1 14 16 0.324 14.29% 15 0.312 7.14% 16 2.216 14.29% 0.00% 6.67%
NRF.2 15 16 0.316 6.67% 16 0.369 6.67% 16 2.544 6.67% 0.00% 0.00%
NRF.3 14 17 0.318 21.43% 15 0.328 7.14% 16 2.346 14.29% -5.88% 6.67%
NRF.4 14 17 0.322 21.43% 16 0.318 14.29% 16 2.510 14.29% -5.88% 0.00%
NRF.5 13 16 0.320 23.08% 15 0.312 15.38% 15 2.465 15.38% -6.25% 0.00%
NRG.1 176 203 0.120 15.34% 197 0.545 11.93% 197 0.287 11.93% -2.96% 0.00%
NRG.2 154 182 0.136 18.18% 176 0.512 14.29% 171 0.297 11.04% -6.04% -2.84%
NRG.3 166 192 0.123 15.66% 186 0.549 12.05% 186 0.322 12.05% -3.13% 0.00%
NRG.4 168 191 0.137 13.69% 191 0.518 13.69% 193 0.307 14.88% 1.05% 1.05%
NRG.5 168 194 0.120 15.48% 188 0.528 11.90% 190 0.312 13.10% -2.06% 1.06%
NRH.1 63 76 0.330 20.63% 74 0.826 17.46% 72 1.453 14.29% -5.26% -2.70%
NRH.2 63 74 0.340 17.46% 72 0.824 14.29% 74 1.432 17.46% 0.00% 2.78%
NRH.3 59 65 0.335 10.17% 71 0.785 20.34% 67 1.516 13.56% 3.08% -5.63%
NRH.4 58 69 0.322 18.97% 65 0.784 12.07% 65 1.610 12.07% -5.80% 0.00%
NRH.5 55 63 0.327 14.55% 61 0.779 10.91% 61 1.399 10.91% -3.17% 0.00%

Average 0.113 13.78% 0.230 10.83% 0.564 10.69% -2.62% -0.07%

Table 5. Results for instance set rail.

Instance BS CH SBH SBH vs CHSOL TIME GAP SOL TIME GAP
rail507 174 216 0.193 24.14% 199 0.277 14.37% -7.87%
rail516 182 204 0.160 12.09% 196 0.211 7.69% -3.92%
rail582 211 251 0.214 18.96% 240 0.310 13.74% -4.38%
rail2536 691 894 7.276 29.38% 828 10.206 19.83% -7.38%
rail2586 952 1166 5.521 22.48% 1089 8.224 14.39% -6.60%
rail4284 1065 1376 8.284 29.20% 1311 12.165 23.10% -4.72%
rail4872 1538 1902 7.318 23.67% 1790 10.199 16.38% -5.89%

Average 4.138 22.84% 5.942 15.64% -5.82%
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Table 6. Results for unicost instance sets 4− 6

Instance CH ALTG KORD SBH SBH vs CH SBH vs ALTG SBH vs KORDSOL TIME SOL TIME SOL TIME SOL TIME
4.1 41 0.003 41 0.001 41 0.005 42 0.003 2.44% 2.44% 2.44%
4.2 41 0.002 41 0.001 38 0.004 42 0.002 2.44% 2.44% 10.53%
4.3 43 0.002 43 0.001 39 0.004 43 0.002 0.00% 0.00% 10.26%
4.4 44 0.002 44 0.001 42 0.005 45 0.002 2.27% 2.27% 7.14%
4.5 44 0.002 44 0.001 40 0.004 41 0.002 -6.82% -6.82% 2.50%
4.6 43 0.003 43 0.001 40 0.006 42 0.002 -2.33% -2.33% 5.00%
4.7 43 0.002 43 0.001 41 0.005 43 0.003 0.00% 0.00% 4.88%
4.8 42 0.002 42 0.001 40 0.005 39 0.003 -7.14% -7.14% -2.50%
4.9 42 0.002 42 0.001 42 0.005 42 0.003 0.00% 0.00% 0.00%

4.10 43 0.002 43 0.001 41 0.006 41 0.002 -4.65% -4.65% 0.00%
5.1 37 0.007 37 0.002 37 0.009 38 0.005 2.70% 2.70% 2.70%
5.2 38 0.005 38 0.004 36 0.008 37 0.007 -2.63% -2.63% 2.78%
5.3 37 0.004 37 0.003 35 0.012 38 0.005 2.70% 2.70% 8.57%
5.4 39 0.003 39 0.002 36 0.008 37 0.004 -5.13% -5.13% 2.78%
5.5 37 0.004 37 0.002 37 0.008 37 0.007 0.00% 0.00% 0.00%
5.6 40 0.004 40 0.002 36 0.008 37 0.005 -7.50% -7.50% 2.78%
5.7 38 0.005 38 0.002 37 0.008 36 0.006 -5.26% -5.26% -2.70%
5.8 39 0.005 39 0.002 37 0.010 39 0.005 0.00% 0.00% 5.41%
5.9 38 0.003 38 0.002 37 0.009 39 0.005 2.63% 2.63% 5.41%

5.10 39 0.003 39 0.002 36 0.009 38 0.004 -2.56% -2.56% 5.56%
6.1 23 0.004 23 0.002 22 0.005 23 0.006 0.00% 0.00% 4.55%
6.2 22 0.005 22 0.003 21 0.005 21 0.006 -4.55% -4.55% 0.00%
6.3 23 0.005 23 0.002 23 0.005 23 0.007 0.00% 0.00% 0.00%
6.4 22 0.004 22 0.002 22 0.005 23 0.008 4.55% 4.55% 4.55%
6.5 23 0.005 23 0.002 22 0.006 23 0.006 0.00% 0.00% 4.55%

Average 0.003 0.002 0.007 0.004 -1.15% -1.15% 3.49%

Table 7. Results for unicost instance sets scp

Instance CH ALTG KORD SBH SBH vs CH SBH vs ALTG SBH vs KORDSOL TIME SOL TIME SOL TIME SOL TIME
A.1 42 0.009 42 0.004 41 0.019 43 0.011 2.38% 2.38% 4.88%
A.2 42 0.008 42 0.005 41 0.020 42 0.011 0.00% 0.00% 2.44%
A.3 43 0.009 43 0.004 41 0.020 42 0.011 -2.33% -2.33% 2.44%
A.4 41 0.008 41 0.005 39 0.018 41 0.011 0.00% 0.00% 5.13%
A.5 43 0.007 43 0.004 41 0.017 41 0.011 -4.65% -4.65% 0.00%
B.1 24 0.019 24 0.010 23 0.027 23 0.044 -4.17% -4.17% 0.00%
B.2 23 0.020 23 0.013 24 0.028 22 0.038 -4.35% -4.35% -8.33%
B.3 23 0.019 23 0.011 23 0.026 23 0.036 0.00% 0.00% 0.00%
B.4 24 0.024 24 0.011 23 0.031 23 0.037 -4.17% -4.17% 0.00%
B.5 25 0.021 25 0.011 24 0.029 24 0.038 -4.00% -4.00% 0.00%
C.1 47 0.015 47 0.008 46 0.041 46 0.023 -2.13% -2.13% 0.00%
C.2 47 0.018 47 0.009 47 0.037 45 0.023 -4.26% -4.26% -4.26%
C.3 47 0.017 47 0.007 46 0.038 46 0.023 -2.13% -2.13% 0.00%
C.4 46 0.013 46 0.008 45 0.036 46 0.023 0.00% 0.00% 2.22%
C.5 47 0.013 47 0.012 46 0.040 46 0.023 -2.13% -2.13% 0.00%
D.1 27 0.036 27 0.020 26 0.047 27 0.078 0.00% 0.00% 3.85%
D.2 26 0.037 26 0.021 26 0.048 27 0.082 3.85% 3.85% 3.85%
D.3 27 0.040 27 0.020 27 0.049 26 0.077 -3.70% -3.70% -3.70%
D.4 26 0.038 26 0.020 26 0.048 27 0.080 3.85% 3.85% 3.85%
D.5 27 0.039 27 0.020 26 0.050 27 0.091 0.00% 0.00% 3.85%
E.1 5 0.002 5 0.001 5 0.001 5 0.003 0.00% 0.00% 0.00%
E.2 5 0.002 5 0.001 6 0.001 5 0.004 0.00% 0.00% -16.67%
E.3 5 0.002 5 0.001 5 0.001 5 0.003 0.00% 0.00% 0.00%
E.4 6 0.002 6 0.001 5 0.001 5 0.004 -16.67% -16.67% 0.00%
E.5 5 0.002 5 0.001 5 0.001 5 0.003 0.00% 0.00% 0.00%

NRE.1 18 0.144 18 0.089 18 0.178 18 0.577 0.00% 0.00% 0.00%
NRE.2 18 0.150 18 0.088 18 0.188 18 0.570 0.00% 0.00% 0.00%
NRE.3 18 0.145 18 0.089 18 0.172 18 0.560 0.00% 0.00% 0.00%
NRE.4 18 0.142 18 0.087 18 0.174 18 0.552 0.00% 0.00% 0.00%
NRE.5 18 0.148 18 0.088 18 0.180 18 0.551 0.00% 0.00% 0.00%
NRF.1 11 0.311 11 0.201 11 0.321 11 2.513 0.00% 0.00% 0.00%
NRF.2 11 0.309 11 0.214 11 0.315 11 2.609 0.00% 0.00% 0.00%
NRF.3 11 0.307 11 0.211 11 0.309 11 2.560 0.00% 0.00% 0.00%
NRF.4 11 0.299 11 0.203 11 0.339 11 2.313 0.00% 0.00% 0.00%
NRF.5 11 0.309 11 0.204 11 0.306 11 2.320 0.00% 0.00% 0.00%
NRG.1 65 0.116 65 0.077 64 0.463 64 0.262 -1.54% -1.54% 0.00%
NRG.2 65 0.115 65 0.125 65 0.402 65 0.258 0.00% 0.00% 0.00%
NRG.3 66 0.125 66 0.110 64 0.442 64 0.273 -3.03% -3.03% 0.00%
NRG.4 66 0.124 66 0.136 65 0.437 65 0.279 -1.52% -1.52% 0.00%
NRG.5 66 0.115 66 0.076 64 0.490 64 0.271 -3.03% -3.03% 0.00%
NRH.1 36 0.340 36 0.217 36 0.712 35 1.460 -2.78% -2.78% -2.78%
NRH.2 36 0.327 36 0.247 35 0.658 35 1.424 -2.78% -2.78% 0.00%
NRH.3 36 0.323 36 0.236 35 0.640 35 1.458 -2.78% -2.78% 0.00%
NRH.4 36 0.334 36 0.216 35 0.653 35 1.436 -2.78% -2.78% 0.00%
NRH.5 36 0.324 36 0.211 35 0.644 35 1.427 -2.78% -2.78% 0.00%

Average 0.110 0.075 0.193 0.544 -1.50% -1.50% -0.07%
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Table 8. Results for unicost instance sets rail

Instance CH ALTG KORD SBH SBH vs CH SBH vs ALTG SBH vs KORDSOL TIME SOL TIME SOL TIME SOL TIME
rail2536 894 7.263 975 5.561 821 126.091 847 10.030 -5.26% -13.13% 3.17%
rail2586 1166 5.562 1253 4.539 1112 172.448 1139 7.300 -2.32% -9.10% 2.43%
rail4284 1376 8.372 1563 6.637 1285 260.187 1339 12.740 -2.69% -14.33% 4.20%
rail4872 1902 7.399 2137 6.178 1848 315.863 1860 11.312 -2.21% -12.96% 0.65%
rail507 216 0.193 237 0.144 211 1.276 211 0.267 -2.31% -10.97% 0.00%
rail516 204 0.156 259 0.121 232 1.432 211 0.218 3.43% -18.53% -9.05%
rail582 251 0.215 289 0.148 265 1.729 255 0.300 1.59% -11.76% -3.77%

Average 4.166 3.333 125.575 6.024 -1.39% -12.97% -0.34%
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