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Abstract: The new technological developments have allowed the evolution of the industrial process
to this new concept called industry 4.0, which integrates power machines, robotics, smart sensors,
communication systems, and internet of things to have more reliable automation systems. However,
the electrical rotating machines like the Induction Motor (IM) is still widely used in several indus-
trial applications since their robust elements, high efficiency, and versatility in industrial applica-
tions. Nevertheless, the occurrence of faults in IMs is inherent to their operating conditions, hence,
Inter-turn short-circuit (ITSC) is one of the most common failures that affect IMs and its appearance
is due to electrical stresses leads to the degradation of the stator winding insulation. In this regard,
this work proposes a diagnosis methodology for the assessment and detection of incipient ITSC in
IMs, the proposed method is based on the processing of vibration, stator currents and magnetic
stray-flux signals. Certainly, the novelty and contribution include the characterization of different
physical magnitudes by estimating a set of statistical time domain features, as well as, their fusion
and reduction through the Linear discriminant Analysis technique within a feature-level fusion ap-
proach. Furthermore, the fusion and reduction of information from different physical magnitudes
leads to perform the automatic fault detection and identification by a simple Neural-Network (NN)
structure. The proposed method is evaluated under a complete set of experimental data and the
obtained results demonstrate that the fusion of information from different sources (physical magni-
tudes) allows to improve the accuracy during the detection of ITSC in IMs, the results make this
proposal feasible to be incorporated as a part of condition-based maintenance programs in the in-
dustry.

Keywords: condition monitoring, induction motor, inter-turn short-circuit, machine learning, sta-
tistical features

1. Introduction

In recent years, the advent of the industry 4.0 has been possible due to the evolution
of the technologies together with the integration of advanced communication systems
[1,2] and smart sensors [3]. Despite this technological growth, the induction motor (IM)
remains as the medullar column to provide to the industrial processes with mechanical
rotative power, linear motion, and to propel mechanisms in general [4]. The typical appli-
cations of this machine are as pumps, fans, compressors, manufacturing, materials pro-
cessing, refrigeration, transportation, conveyors, shredders, etc., [5]. The electrical rotat-
ing machines are electromechanical systems used in industry because of its benefits such
as low cost, high efficiency, high output torque ratio, high power to weight ratio, easiness
of maintenance, reliability, applicability, low noise emissions, among others [6,7]. Accord-
ing to the reported literature, the induction machines are one of the most common and
widespread motors over the globe in industry, constituting around the 80% from the total
industrial equipment [8], and they consume approximately between the 40% and the 80%
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of the total energy generated for these companies [9-11]. Therefore, considering this in-
formation, any industrial process downtime due to motor failures would impact directly
in aspects like overall costs, maintenance planning, equipment damage or replacement,
possibility of user risks or injuries, and even environmental effects (because energy con-
sumed by IMs is generated majorly through conventional fuels) [12]. Now, typically the
ensemble of an IM considers several components that allow its proper operations being
the principal ones the stator, the rotor, the windings, the rolling bearings, and the fan [13].
Recently, several scientific reviews have analyzed and concluded that, in relation with the
motor components the most typical faults and their corresponding percentages ranges of
occurrence are the following [14-16]: bearing faults between 40% to 50%, stator winding
faults between 28% to 38%, rotor related faults between 5% to 10%, and other associated
faults between 12% to 28%. From previous information, it can be noted that the faults
associated with the stator windings are the second major problems that appear in the com-
ponents of the IM. But also, in turn, a specific failure related to the stator circuit are the
inter-turn short-circuits (ITSC) faults [17] that affect the IM performance with high prob-
ability of severe equipment damage, and for this reason they are still a topic of interest.

Particularly speaking about the ITSC faults in electric rotative machines, in the liter-
ature much research has been carried out addressing this phenomenon. It has been re-
ported that ITSC faults are the most common and frequent electrical problems, and they
represent approximately between 30% and 40% of all types of stator circuit damages [18].
These faults are understood as damage in the winding insulation and they can occur at
different locations of the coil turns in a single phase [19]. The general circumstances that
cause failures in the electric motors are harsh environments at industry like high temper-
atures, humidity, mechanical tension due to overloads, contamination, grease, vibrations,
electric discharges and over voltages, among others [20]. However, for the particular case
of the ITSC the causes are, for example, flows of current with an intensity that exceeds the
nominal operating conditions, generating in consequence a release of energy in the form
of heat and mechanical stress, or the use of fast switching PWM inverters that accelerates
the insulation degradation [19,21]. Some effects of the ITSC faults in the motors are of
course malfunctioning on its operation, performance reduction, local magnetic saturation,
asymmetric behavior of the motor, to mention some [20,22]. With the purpose of better
understand the inter-turn short circuits, several investigations have developed models of
these faults, such as the case of the finite element models (FEM) [18,23], parametric math-
ematical models based on electrical circuits [24,25], and combined FEM-parametric mod-
els [26,27]. The objective of such models is the development of methodologies for detect-
ing such faults in simulation environments, but assuming or omitting other conditions
that could happen in real systems.

Regarding the classical methodologies, there exist several works that have developed
approaches addressing ITSC detection. For example, in [6] the implementation of an im-
proved wavelet packet transform (WPT) was done over the rotor current and the motor
vibration signals in LabVIEW for permanent magnet synchronous motors (PMSM). In
other works, like in [28], a Kalman filter excludes the frequency components correspond-
ing to the 3rd, 5th, and 7th harmonics in the current signal measured from an IM, then the
time-frequency spectrogram of the signal is used to obtain a gray level image and its cor-
responding histogram. With this information, the considerable deviations of the histo-
grams distributions from a normal distribution are used for the detection of the ITSC. On
the other hand, some works focused their efforts on the development of methodologies
based on non-intrusive signal like magnetic flux in motor for detecting ITSC faults. Such
as the case of the research in [29], that present a statistical methodology for detecting ITSC
faults that uses a correlation coefficient between two external magnetic field signals meas-
ured by two sensors located symmetrically in the motor vicinity. The correlation obtained
is based on the Pearson correlation coefficient applied on induction and synchronous ma-
chines. In this same area, the approach described in [30] also makes use of non-invasive
stray magnetic field sensors for discriminating ITSC on salient pole synchronous genera-
tors (SPSG). To achieve the discrimination of the fault, the system model is developed by
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means of finite element method (FEM), and by introducing a unique pattern observed on
the time-frequency domain signal processing through the short time Fourier transform
(STFT). By its part, an online approach for detecting ITSC in PMSM is developed in [31]
using stray magnetic field measured from the stator yoke. For this purpose, the inter-turn
short-circuits dynamic, and the stray magnetic flux dynamic are implemented through
FEM considering 24 sensitive tunneling magnetoresistive (TMR) sensor units. In other
work, the harmonic analysis of different electric signal is performed in [32] for detecting
ITSCs in the stator windings of squirrel cage IMs. The signals considered are stator phase
current, external magnetic flux, and electromagnetic torque at different load levels. The
validation of this proposal was through simulation by means of FEM. Meanwhile, in [33]
is presented a methodology for diagnosing ITSC faults for line start PMSM through the
frequency analysis of acoustic signals. The acoustic signals are decomposed through the
fast Fourier transform (FFT) analyzing their amplitudes. It is worth mentioning that many
works address the ITSC faults diagnosis on motors through infrared thermographic anal-
ysis, such as the work in [34] that develops an online non-intrusive algorithm which ex-
tracts features from the infrared histogram of the images profile taken from the hottest
region of the machine surface. In this same line, the research in [35] describes an online
non-invasive technique that detects the ITSC fault and its severity through two methods.
The first method uses transient thermal monitoring during motor starting, and the second
method implements pseudo coloring technique on infrared image of the motor on the
steady state. On the same line, the work in [36] presents a methodology for diagnosing
ITSC faults in the stator winding based on an infrared thermopile sensor array (IRSA) and
a hall-effect sensor array (HESA). With these arrays direct contactless measurements of
temperature and magnetic flux distribution along the end-winding region is done. Later,
deviations in thermal and magnetic symmetries induced by the faults are assessed for
detection. By its part, the work presented in [37] develops a metal-coated fiber Bragg grat-
ing (FBG) sensor to monitor the temperature and magnetic field around the end winding
of IMs. The sensor measurements are decoupled by a filtering stage and the separated
data is analyzed in the time-frequency domain for detecting the ITSC. From previous
works discussion it is notorious the effort done for diagnosing the inter-turn short circuits
on electric motors in what can be defined as classical ways acquiring signals and pro-
cessing them by means of space transformations. However, they are mostly validated
through model simulations omitting some real operating condition, and they do not con-
sider data fusion to improve the detection reliability.

Recently, some methodologies addressed the use of data driven, machine learning,
and deep learning techniques for detecting and diagnosing motor faults associated to
ITSC with high accuracy. For example, an online fault detection framework is developed
in [38] by collecting data from IMs, performing multiple extraction/selection of features,
finding the most sensitive ones, and enhancing the classification task by integrating mul-
tiple classifiers. Meanwhile, in [39] a methodology for incipient ITSC diagnosis on PMSM
based on data driven digital twins is described. For this purpose, a theoretical analysis of
the three-phase current residuals under ITSC is carried out, and a digital twin model of a
healthy target motor is defined through nonlinear auto-regressive model with exogenous
inputs (NARX) network, at last the incipient faults are detected through current residual.
Now, in relation to the machine learning (ML) approaches, several works have developed
methodologies, such as in [40], where the support vector machines (SVM) and the convo-
lutional neural networks (CNN) techniques are implemented for diagnosing ITSC on
PMSM. In such work, it was demonstrated that SVM have more efficient training than
CNN considering that the first technique requires much fewer data. In the same context,
an developed algorithm combines the discrete wavelet transform (DWT) for multiresolu-
tion analysis (MRA), the statistical features extraction, and ML techniques, processes volt-
age signals generated by axial leakage flux from an IM for detecting incipient ITSC [41].
In other case, a fault diagnosis method applied on PMSM is presented in [42], where a
sparse representation is used for extracting the first and second largest sparse coefficient
of current and vibration signals, and for composing four-dimensional feature vectors.
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Then, the feature vectors are input to the SVM for final diagnosis of ITSC, this is conven-
ient for small samples sets. Similarly, the study presented in [43] explores the potential of
several ML classifiers and the signal processing for the online condition monitoring of
ITSC in the field winding of SPSG. In that work the data set for the ML is generated by
applying the FFT on the power spectral density of the air gap magnetic field, DWT ener-
gies, and time series feature extraction based on hypothesis test. At last, but not least, the
deep learning techniques are also present in the ITSC faults diagnosis. For instance, in [44]
is described an approach based on the conditional generative adversarial net (CGAN) and
an optimized sparse auto encoder (OSAE) applied on PMSM, an important attribute of
this approach is the use of small samples sets. Other work explores the use of neural net-
works as efficient diagnosing tools for estimating the percentage of stator winding shorted
turns on three-phase IMs. The implementation was done in MATLAB under different load
conditions [45]. From the previous discussion of the works reported in the literature, it
can be noted that data-driven, machine learning, and deep learning are techniques and
schemes that provide reliable approaches for detecting ITSC. Mostly of them use the anal-
ysis of two measured signals, such as current and vibration, or current and stray magnetic
flux form the motor. But it would be interesting to explore the potential of using currents,
vibrations, and stray magnetic flux signals of different sensor channels (or sensor axes),
perform features extraction, and make data fusion and classification.

The contribution of this work is with an integrated methodology based on a statistical
machine learning strategy and data fusion of several physical signals measured from an
induction motor for detecting the early occurrence of ITSC faults. At first place, the phys-
ical signals from the motor corresponding to the phase currents, the vibrations, and the
external magnetic stray flux are acquired. Next, several statistical features are extracted
from the time-domain signals to compose sets of sensitive matrices of features related to
the fault condition, which will integrate a general high dimension matrix providing mean-
ingful information about the fault not directly from the time-domain signals but consid-
ering its statistical data patterns. Posteriorly, a feature level fusion is carried out through
the linear discriminant analysis, which will reduce the matrix of features of high dimen-
sionality to a two-dimensional representation having those significant features for being
used in the last classification stage. Finally, a classifier with simple structure based on the
neural networks is implemented for performing the final diagnosis. The proposed meth-
odology is capable of detecting different machine conditions, and for this case four condi-
tions are considered: the healthy state of the motor and three fault conditions with differ-
ent severities of ITSC (2, 4, and 6 coil turns in short circuit). The experimental tests con-
sidered the motor operation under four operating frequencies (15 Hz, 30Hz, 50Hz and
60Hz). The obtained results demonstrate the reliability and efficiency of the proposed
methodology.

2. Materials and Methods

Electrical rotating machines like the induction motor (IM) is subjected to electrical
stresses that can lead to the sudden occurrence of faults, in this sense, the stator inter-turn
short-circuits (ITSC) are common faults caused by problems associated with the stator
winding insulation. Consequently, an amplitude increase is produced in the harmonic
component of the stator current signature when IMs are operating under the influence of
ITSC, similarly, the air-gap flux density is also modified when ITSC occur. In this regard,
classical approaches based on MCSA perform the detection of ITSC by analyzing the spec-
tra of stator currents and/or magnetic stray-flux through Equation (1).

(1-5)
firsc = fs <k v * m) 1)
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Where f; represents the supply frequency, s is the per unit slip, p is the pair of poles in
theIM and k and m are integers that can be defined as k = 1,2,3,... and m =1,3,5, ...

On the other side, although electrical problems such as ITSC produce direct affections
over those electrical patterns like stator currents or magnetic stray flux, the abnormal ap-
pearance of vibrations is additionally produced since the magnetic field asymmetry being
altered by the three-phase asymmetry of the IM windings. Theoretically, a characteristic
fault-related vibrations frequency component of the stator appears at 2f;; moreover, the
occurrence of vibrations due to ITSC leads also to characteristic harmonic components
that can be located at 4f; and 8f; in a vibration spectrum. Accordingly, regardless that
ITSC in IMs can be detected through different physical magnitudes like stator currents,
magnetic flux and vibrations, the accurate assessment depends on the considered signal
processing. Hence, processing techniques achieved in the time domain, frequency domain
and time-frequency domain are commonly used to analyze signals and to extract charac-
teristic fault-related patterns produced by the occurrence of faults.

Aiming to contribute to the field of condition monitoring and fault detection, in this
work is proposed a diagnosis methodology for detecting the incipient occurrence of ITSC
in IMs through the estimation of a set of statistical time-based domain features from dif-
ferent physical magnitudes such as stator currents, magnetic stray-flux and vibrations.
Additionally, the computed statistical features are then pooled to carry out a feature-level
fusion by means of the linear discriminant analysis (LDA) technique. Finally, the auto-
matic identification of incipient ITSC in IMs is achieved by a proposed neural network
(NN) classifier. The flow chart of the proposed method is shown in Figure 1 and consists
of five main steps: i) Electromechanical pulley-belt system, ii) Data acquisition, iii) Feature
calculation, iv) Feature fusion-reduction, and v) Automatic fault classification.
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Figure 1. Flow chart of the proposed methodology based on the acquisition of differ-
ent signals for identifying the incipient occurrence of ITSCs in IMs.

2.1. Electromechanical pulley-belt system

The electromechanical pulley-belt system is the system under evaluation and is com-
posed by an IM coupled to an automotive alternator (AA) by means of a pulley-belt sys-
tem. Particularly, in the IM are tested four different conditions comprising the healthy
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state (HLT) and three incipient conditions of ITSC such as 2-SCTs, 4-SCTs and 6-SCTs.
Each one of the aforementioned conditions is iteratively tested in the IM under different
operating conditions in order to monitor its behavior through multiple sensors that allow
the measurement of vibrations, stator currents, and magnetic stray flux.

2.2. Data acquisition

The data acquisition is carried out by a self-designed and proprietary data acquisition
system (DAS) based on a field programmable gate array (FPGA), hence, the proprietary
DAS allows the continuous monitoring of the IM operation by means of the measurement
of vibrations, stator currents, and magnetic stray flux signals. Specifically, the vibrations
are measured from the radial (V}) and tangential (V;) axes of the IM, the stator currents
belong to the three lines currents (Cy, C, and C3) of the IM, and the magnetic stray flux
comprises the measurement of the axial (M,) and radial (M,) components. In this regard,
for each performed test, the aforementioned signals are continuously recorded and stored
in a personal computer for further analysis; moreover, the acquisition of the signals is
carried out during 150 seconds of the continuous operation of the IM.

2.3. Feature calculation

The feature calculation is achieved with the aim of characterizing the previously ac-
quired signals and it is mainly based on the estimation of a set of statistical time-domain
features. The features calculation is individually applied to each one of the acquired sig-
nals, thereby, a signal § composed by n samples is first segmented into equal parts of
one second, where every second of the signals has a length L as Equation (2) depicts:

L

S — I:Sil:L’ Sf,+1:2L’ "”SE((H/L)—l)n)H:n] ?)

Once the signal segmentation is carried out, from each segmented part is estimated
a meaningful set of five statistical time-domain features leading to obtain a characteristic
feature matrix for each considered physical magnitude. Certainly, from the vibration sig-
nals are estimated V, € R® and V, € R® for the radial and tangential axis, respec-
tively; from the stator signatures are estimated C; € R®, C, € R® and C; € R® cor-
respondingly for each current line and, from the axial and radial magnetic stray-flux com-
ponents are estimated M, € R® and M, € R®, respectively. The set of statistical time-
domain features as well as the corresponding mathematical expressions are summarized
in Table 1, Equations (3) to (7). These statistical features are proposed due to their capa-
bility to model trends, distributions, asymmetries, forms, dispersion, and changes in sig-
nals; additionally, their low computational cost can lead to quick responses when imple-
mented.

Table 1. Considered set of statistical time-domain features for the characterization of the acquired

signals.
Name Mathematical equation
Maximum value, X = (3)
Root mean square, xgys 4)
Standard deviation, x, (5)
Shape factor, xsp (6)



https://doi.org/10.20944/preprints202306.0180.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2023

d0i:10.20944/preprints202306.0180.v1

X
Xep = —— 7
T 02 7

Where x is the input vector of data; and x;, is the k-th individual sample.

Crest factor, x.p

2.4. Feature fusion-reduction

The feature fusion is performed within a feature-level fusion approach in which all
previously estimated feature matrices (V,, V;, C;, C;, C3, M, and M) are then pooled
into a single set. Thus, the single data set considers the fusion of information since all
characteristic feature matrices are concatenated as Figure 2 shows. In this sense, it should
be clarified that three global features matrices V, C and M are considered for represent-
ing each one of the physical magnitudes within the feature-level fusion approach. After-
ward, the pooled single dataset ([V € M] € R®%) are subsequently subjected to a re-
duction and space transformation procedure, in which, a new set of extracted features are
obtained by means of applying the LDA techniques. The space transformation allows to
achieve a dimensionality reduction from RG% to R@), in fact, the new achieved repre-
sentation into the 2D space facilitates the visualization of all evaluated conditions due to
the resulting features representing the linear combination (in different weights) of the
original feature space.

Features from sensor 1

Features from sensor 2
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I_ th—>

Pooling of features
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Feature reduction
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Y
Figure 2. Representation of the feature-level fusion approach performed in this work for fusioning
information from different physical magnitudes.

Features from sensor 7

2.5. Automatic fault classification

The automatic fault classification of incipient ITSC in IMs is carried out by a NN-
based classifier with a simple structure, the main objective of this stage is to evaluate the
set of features extracted by the LDA technique. In this sense, the proposed NN classifier
consists of three main layers such as input, hidden and output, where, the input layer is
represented by two neurons in order to represent each one of the extracted features in the
2D space, the hidden layer has ten neurons as is recommended in the literature [46] and,
four neurons in the output layer representing each one of the evaluated conditions. In
addition, the NN-based classifier is trained and tested under a five-fold cross-validation
scheme with the aim of obtaining statistically significant results, during the training are
considered fifty epochs and a back-propagation algorithm. Moreover, the NN classifier
considers a sigmoid function as the activation function allowing to evaluate the percent-
age of correspondence with each membership function in the output layer. A representa-
tion of the proposed NN structure is presented in Figure 3.
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Figure 3. Schematic representation of the simple structure considered in the pro-
posed NN-based classifier for carrying out the automatic fault detection and identification
of incipient ITSCs in IMs.

3. Experimental test bench

In order to verify the performance of the proposed methodology for the detection of
the incipient occurrence of ITSC in IMs, experimentation is performed using a 1.49kW
(2HP) three-phase induction motor from WEG. The main specifications of the motor are
summarized in the Table 2.

Table 2. Specifications of the 2HP WEG induction motor under test.

Specification Value
Rated Power 1.49 kW
Rated Voltage 220V
Rated Current 5.6 A
Pole Pairs 2

To feed the IM it is used a variable frequency drive (VFD) so the rotational speed can
be controlled. In this work, a total of four different frequencies are achieved by using the
VFD: 15 Hz, 30 Hz, 50 Hz and 60 Hz. This way it is possible to demonstrate the effective-
ness of the proposed approach regardless the frequency of the power supply. Also, with
the purpose of providing the motor with a load, it is coupled to a 12 V alternator by means
of a pulley-belt system that represents between the 15% and the 25% of the nominal load.
To produce the occurrence of ITSC in the IM, three different severities of ITSC are artifi-
cially induced in a single stator winding. The first severity considers 2-short circuit turns
(2-SCTs), the second one 4-SCTs, whereas the third comprises 6-SCTs. Since the motor
under test contains a total of 141 turns per phase winding, these severities represent 1.42%,
2.85% and 4.28% of damage, respectively. Therefore, a total of four operating conditions
are assessed in this work: the healthy condition (HLT) and three ITSC severities (2-SCT,
4-SCT and 6-SCTs). Moreover, every condition is also tested using the four operating fre-
quencies generated by means of the VED (15 Hz, 30 Hz, 50 Hz and 60 Hz). To achieve the
different ITSC severities, three taps are located at the points where the faults were in-
duced. Each tap can be selected by closing a switch connected to an external resistor R,
so the short circuit current can be limited to avoid catastrophic damage of the motor (see
Figure 4).
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Figure 4. Schematic representation of the different severities of the ITSC fault.

The proposed method considers the use of three different physical magnitudes: vi-
brations, stator currents and stray-flux. The vibration signals are measured using a three
axes accelerometer (LIS3LL02AS4) that is configured to work in the range of +6 g. This
sensor is located at the top of the IM as shown in Figure 5, the measurement of vibration
belongs to the perpendicular plane of the IM axis (radial and tangential axes). Addition-
ally, to carry out the stator current measurements, three hall-effect sensors LOSP050D15
are placed in the power lines that go from the VFD to the IM. Finally, a proprietary board
that uses hall sensors A1325 from ALLEGRO is used to obtain the IM stray flux. This board
is also located on the top of the motor, next to the accelerometer as shown in Figure 5 and
it can sense the radial flux and the axial flux simultaneously.

Alternator

Accelerometer Stray flux

sensor

External resistor

Figure 5. Main components of the experimental test bench.

All the data delivered by the sensors are collected using a proprietary data acquisi-
tion system (DAS) that is based on a field programmable gate array (FPGA) technology.
The DAS includes two 4-channel analog-to-digital converters with 12-bit resolution
(ADS7841 from Texas Instruments). This way, it is possible to acquire the occurrence of
vibrations, the stator current consumption and the magnetic stray-flux in the IM at a single
run; also, each acquired physical magnitude is acquired with a sampling frequency of 3000
Hz, 6000 Hz and 4000 Hz, respectively. During each performed test the aforementioned
signals are collected during 150 seconds of the steady-state operation of the IM and then
are sent to a personal computer where they are stored to be processed off-line.

4. Results and discussion
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The proposed diagnosis methodology is validated under a real data set acquired
from several experiments that are performed in a laboratory test bench, thus, as the pro-
posed method describes, the acquisition of two vibrations signals (V. and V;), three stator
currents signatures (Cy, €, and C3) and two magnetic stray-flux signals (M, and M,) are
continuously measured during the experimental evaluation of the healthy condition
(HLT) and three incipient conditions of ITSC (2-SCTs, 4-SCTs and 6-SCTs). In addition,
each one of the conditions under study is tested under different operating frequencies in
the VFD (15 Hz, 30 Hz, 50 Hz and 60 Hz), consequently, during each test are acquired
approximately 450 kSamples for each vibration signal, 900 kSamples for each stator cur-
rent signature, and 600 kSamples for each magnetic stray flux signal.

Subsequently, the feature estimation is carried out in order to characterize the ac-
quired signal for each performed test, in this regard, Equation (2) is applied to each one
of the stored physical magnitudes in order to segment them in equal parts of one second;
hence, for vibrations signals the length L used in Equation (2) is equal to L, = 3000,
meanwhile, L isequalto L, = 6000 and L, = 4000 for the stator currents and magnetic
stray flux, respectively. Once the segmentation of the signals is accomplished, the estima-
tion of the meaningful set of five statistical time domain features is individually estimated
from each segmented part for each acquired signal. Then, for each studied condition is
estimated a set of characteristic feature matrices V., V,, C{, C;, C3, M, and M,, where
each feature matrix has five statistical features with 150 consecutive samples. Due to each
condition under study is tested at different operating frequencies, a Global Feature Matrix
(GFM) is generated for the HLT condition and for the three incipient conditions of ITSC
(2-SCTs, 4-SCTs and 6-SCTs); thus, in such GFM are considered the pooling of all feature
matrices for all physical magnitudes and all operating frequencies; i.e., the GFM for the
HLT condition is generated following Equation (8) as GFMypy, whereas GFMjscr,
GFM,scr, GFMggcr are the SCT for the faulty conditions of 2-SCTs, 4-SCTs and 6-SCTs. It
should be mentioned that each GFM is composed by 35 statistical time domain features
estimated from different physical magnitudes with 600 consecutive samples, 150 samples
per operating frequency.

Vr@15Hz Vt@15Hz C1@15Hz C2@15Hz C3@15Hz Ma@15Hz MT@15Hz
Vr@30Hz Vt@soyz Cl@30Hz CZ@30Hz C3@30Hz Ma@301~1z MT@30Hz
VT@SOHz Vt@soyz Cl@SOHz CZ@SOHZ C3@50Hz Ma@SOHz Mr@SOHz
Vr@eon Vt@soyz Cl@soyz C2@60Hz C3@60Hz Ma@601~1z Mr@eoyz

Next, the GFMs for all considered conditions are then subjected to the dimensionality
reduction procedure through the application of the LDA technique, thereby, the GFMs
are then grouped following Equation (9) and during the reduction procedure is performed
a space transformation from R®% to R®. Consequently, the use of the LDA allows the
visualization of all considered conditions into a 2D plane, in Figure 6 is shown the result-
ing projection in which it is possible to appreciate that all studied conditions appear sep-
arated from each other. Additionally, it must be highlighted that the extracted features
(Feature 1 and Feature 2) that are projected into the 2D plane also represent the linear
combination, in different weights, of all considered features. In this regard, in Table 3 are
summarized the weights assigned by the LDA during the feature reduction process, from
Table 3 it can be analyzed the importance and contribution of each estimated feature; pre-
cisely, large absolute values mean a high-importance whereas small absolute values can
be understood as non-relevant features.
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Figure 6. Visual representation achieved by the LDA technique into 2D plane when considering the

vibration signals, stator currents and magnetic stray-flux for all considered conditions.

Table 3. Weights assigned by the LDA during the feature reduction procedure when transforming the original feature
space (RG%) into a lower space (R®).

Physical magni- Projected fea- [Maximum value| Root mean square | Standard devia- | Shape Factor | Crest Fac-

tude ture (%) (RMS) tion (o) (SF) tor(CF)
Vibration (V) Feature 1 -0.1332 0.0495 -0.0073 -0.0060 0.1320
Feature 2 -0.2201 0.0257 0.0350 0.0220 0.2133

Vibration (V) Feature 1 0.4306 0.0380 -0.0221 0.0047 -0.4204
Feature 2 -0.4763 0.0566 -0.4186 0.3326 0.4828

Current (C,) Feature 1 -0.3922 0.0395 -0.0321 0.0185 0.3900
Feature 2 -0.1997 0.0500 0.0217 -0.0188 0.2023

Current (C,) Feature 1 -0.3085 0.0485 -0.0495 0.0124 0.3104
Feature 2 0.1472 0.0361 -0.0669 -0.0147 -0.1489

Current (C,) Feature 1 0.2123 0.0295 0.0176 0.0144 -0.2065
Feature 2 -0.0175 -0.0943 -0.0196 -0.0064 0.0241

Stray-flux (M) Feature 1 -0.0217 -0.0110 0.0388 -0.0005 0.0139
Feature 2 0.0200 0.0064 0.0122 0.0010 -0.0085

Stray-flux (M) Feature 1 -0.0251 -0.0147 0.0074 -0.0143 0.0191
Feature 2 -0.0551 0.0316 0.0673 -0.0107 0.0345

Later, the extracted features by the LDA technique are then evaluated under a five-
fold cross-validation scheme through the proposed NN-based classifier with the aim of
carrying out the final diagnosis outcome; thereby, for each considered condition, 480 sam-
ples are used for training purposes and 120 samples are used for validation purposes. The
training of the NN is achieved under a back-propagation approach during 70 epochs and,
as an activation function is used a sigmoid function. Hence, the global classification ratio
achieved during the training is 100%, whereas, a 99.4 % is reached during the validation;
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in addition, in Table 4 are summarized the individual classifications. From Table 4 it can
be appreciated that the proposed methodology leads to a high-performance classification
avoiding positive falses which is a critical issue that may lead to the machine breakdown.
On the other side, the use of the proposed NN classifier also facilitates the estimation of
the decision regions on the 2D plane, hence, the decision regions for each tested conditions
are shown in Figure 7, from the modeled classification regions in Figure 7 it can be ob-
served that a specific regions has been assigned for each particular condition and, the as-
sessment of new or unknown samples can be carried out in order to determinate the actual
condition of IMs that suddenly operates under ITSC.

Table 4. Achieved classification ratios through the proposed NN-based classifier for the evaluation the extracted features
by the LDA for all assessed conditions.

True Class
Training Test
Assigned class Healthy 2-SCTs 4-SCTs  6-SCTs Healthy  2-SCTs  4-SCTs  6-SCTs
Healthy 480 0 0 0 120 0 0 0
2-SCTs 0 480 0 0 0 117 0 0
4-SCTs 0 0 480 0 0 3 120 0
6-SCTs 0 0 0 480 0 0 0 120

1-

0.9 -
0.8 -
0.7 -

0.6

Feature 2
= o™

0.5
Feature 1
Figure 7. Resulting decision regions carried out by the proposed NN-based classifier
when the 2D extracted features are evaluated.

Finally, in order to highlight that the use of different physical magnitudes such as
vibrations, stator currents and magnetic stray-flux leads to an accurate detection of incip-
ient ITSCs in IMs, the characteristic feature matrices estimated from different signals are
combined between them whit the objective of analyze their performance. In this regard, a
first combination considers only vibrations and stator currents, in a second combination
are used vibrations and magnetic stray-flux and, the third combination includes stator
currents with magnetic stray-flux. Then, each one of these combinations are subjected to
the feature reduction procedure through the LDA and the resulting 2d projections are
shown from Figure 8a to Figure 8¢, respectively for each combination. As appreciated, the
most critical case is when vibrations and magnetic stray-flux are combined since samples
of all considered conditions appear to overlap between them; on the other hand, an im-
provement is obtained when the combinations of vibrations and stator currents as well as
stator currents with magnetic stray-flux; however, for these combinations, the classifier
may produce misclassifications between the HLT and 2-SCTs conditions. To finish the
validation, the extracted features from Figure 8a to Figure 8c are also evaluated under the
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same NN structure and the global classification rations achieved during the training and
validations are summarized in Table 5. The obtained results show that this proposal can
lead to an accurate identification of ITSCs in IMs, moreover, the characterization of vibra-
tions, stator currents and magnetic stray-flux by means of statistical features offers a trade-

off between simplicity efficiency when trends and changes are modeled from raw time-
domain signals.

| * HLT #* 2-5CTs O 4-SCTs + 6-SCTs]

Feature 2

-0.5 0 0.5 1 1.5 2
Feature 1

(@)

* HLT * 2-SCTs O 4-SCTs + 6-SCTS‘

Feature 2

Feature 1

(b)

* HLT % 2.SCTs O 4-S8CTs + 6-SCTs]

Feature 2

925 . . . .
-3 2.5 -2 1.5 -1

Feature 1

(©)

Figure8. 2D projection achieved by the LDA technique when the physical magnitudes are combined

as a) vibrations + stator currents, b) vibrations + magnetic stray-flux and c) stator currents + mag-
netic stray-flux.
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Table 5. Achieved classification ratios performed by the proposed NN-based classifier when different combinations of
physical magnitudes are considered.

Considered approach Training Test
Vibrations + stator currents 92.7% 86.7%
Vibrations + magnetic stray-flux 86.0% 82.7%
Stator currents + magnetic stray-flux 98.4% 96.9%
Proposed approach: 100% 9949

Vibrations + stator currents + magnetic stray-flux

5. Conclusions

The ITSC are common faults in IMs and they can produce catastrophic damage with
consequences not only on the machinery but also in the safety of the personnel in the
surroundings. Therefore, the development of strategies and methodologies for the proper
identification of these faults becomes important for the industrial sector. In this sense, this
work presented an approach based on data fusion and statistical machine learning that
allows to address the occurrence of ITSC and it is also capable of identifying different
severities of these faults. While most of the methodologies reported so far only use
simulated signals, in this work is carried out experimentation with real signals from an
induction motor with different damage severities. The results show that the selection of
the physical variables to be used for the detection of the fault is not a trivial task. In this
sense, the fusion of vibration, stator current, and magnetic stray flux data improves the
results compared with the use of only one or two of these magnitudes. This situation
results in a detection accuracy higher than 98%, proving that the proposed methodology
is a helpful and reliable tool for identifying and classifying ITSC faults in IM. Moreover,
it is worth noting that one of the major drawbacks of the machine learning approaches
relies on the use of big amounts of data, a situation that results in complex processing and
classification tasks that require a high computational burden. To overcome this issue, in
this work is used the LDA technique to perform a dimensionality reduction, projecting all
the data in a 2-dimensional space without losing relevant information. This way, it is

possible to implement a simple classifier based on artificial neural networks.

Author Contributions: Conceptualization, ].].S.-D., A.Y.].-C., and D.A.E.-O.; methodology, A.Y.J-C.
and D.A.E.-O,; software, ].].S.-D.; validation, ].].S.-D., A.Y.].-C., and D.A.E.-O,; formal analysis, J.J.S.-
D.; investigation, A.Y.].-C.; resources, J.]J.S.-D.; data curation, D.A.E.-O.; writing—original draft
preparation, A.Y.J.-C.; writing—review and editing, A.Y.J.-C.; visualization, D.A.E.-O.; supervision,
AY].-C.and ].].S.-D.; project administration, J.J.5.-D.; funding acquisition, J.J.5.-D. All authors have
read and agreed to the published version of the manuscript.

Funding: This project has been partially supported by “Fondo para el Desarrollo del Conocimiento”
(FONDEC-UAQ-2022) under project number 20205007071601.

Conflicts of Interest: The authors declare no conflict of interest.


https://doi.org/10.20944/preprints202306.0180.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2023 d0i:10.20944/preprints202306.0180.v1

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Hajoary, P.K. Industry 4.0 Maturity and Readiness- A Case of a Steel Manufacturing Organization. Procedia Computer Science
2023, 217, 614-619, d0i:10.1016/j.procs.2022.12.257.

Faheem, M,; Fizza, G.; Ashraf, M.W.; Butt, R.A.; Ngadi, Md.A.; Gungor, V.C. Big Data Acquired by Internet of Things-Enabled
Industrial Multichannel Wireless Sensors Networks for Active Monitoring and Control in the Smart Grid Industry 4.0. Data in
Brief 2021, 35, 106854, doi:10.1016/j.dib.2021.106854.

Soori, M.; Arezoo, B.; Dastres, R. Internet of Things for Smart Factories in Industry 4.0, a Review. Internet of Things and Cyber-
Physical Systems 2023, 3, 192-204, doi:10.1016/j.iotcps.2023.04.006.

Singh, A.; Grant, B.; DeFour, R.; Sharma, C.; Bahadoorsingh, S. A Review of Induction Motor Fault Modeling. Electric Power
Systems Research 2016, 133, 191-197, doi:10.1016/j.epsr.2015.12.017.

Torrent, M.; Blanqué, B.; Monjo, L. Replacing Induction Motors without Defined Efficiency Class by IE Class: Example of Energy,
Economic, and Environmental Evaluation in 1.5 KW —IE3 Motors. Machines 2023, 11, 567, doi:10.3390/machines11050567.
Liang, H.; Chen, Y.; Liang, S.; Wang, C. Fault Detection of Stator Inter-Turn Short-Circuit in PMSM on Stator Current and
Vibration Signal. Applied Sciences 2018, 8, 1677, d0i:10.3390/app8091677.

Garcia-Calva, T.; Morinigo-Sotelo, D.; Fernandez-Cavero, V.; Romero-Troncoso, R. Early Detection of Faults in Induction
Motors— A Review. Energies 2022, 15, 7855, doi:10.3390/en15217855.

Rangel-Magdaleno, J.; Peregrina-Barreto, H.; Ramirez-Cortes, J.; Cruz-Vega, I. Hilbert Spectrum Analysis of Induction Motors
for the Detection of Incipient Broken Rotor Bars. Measurement 2017, 109, 247-255, doi:10.1016/j.measurement.2017.05.070.
Singh, G.; Anil Kumar, T.Ch.; Naikan, V.N.A. Efficiency Monitoring as a Strategy for Cost Effective Maintenance of Induction
Motors for Minimizing Carbon Emission and Energy Consumption. Reliability Engineering & System Safety 2019, 184, 193-201,
doi:10.1016/j.ress.2018.02.015.

Lu, S.-M. A Review of High-Efficiency Motors: Specification, Policy, and Technology. Renewable and Sustainable Energy Reviews
2016, 59, 1-12, doi:10.1016/j.rser.2015.12.360.

Ghosh, P.K.; Sadhu, P.K.; Basak, R.; Sanyal, A. Energy Efficient Design of Three Phase Induction Motor by Water Cycle
Algorithm. Ain Shams Engineering Journal 2020, 11, 1139-1147, doi:10.1016/j.asej.2020.01.017.

Burgos Payan, M.; Roldan Fernandez, ].M.; Maza Ortega, ].M.; Riquelme Santos, ].M. Techno-Economic Optimal Power Rating
of Induction Motors. Applied Energy 2019, 240, 1031-1048, doi:10.1016/j.apenergy.2019.02.016.

Kim, S.-H. Chapter 3 - Alternating Current Motors: Synchronous Motor and Induction Motor. In Electric Motor Control; Kim, S.-
H., Ed.; Elsevier, 2017; pp. 95-152 ISBN 978-0-12-812138-2.

Skowron, M.; Wolkiewicz, M.; Orlowska-Kowalska, T.; Kowalski, C.T. Application of Self-Organizing Neural Networks to
Electrical Fault Classification in Induction Motors. Applied Sciences 2019, 9, 616, doi:10.3390/app9040616.

Gangsar, P.; Tiwari, R. Signal Based Condition Monitoring Techniques for Fault Detection and Diagnosis of Induction Motors:
A State-of-the-Art Review. Mechanical Systems and Signal Processing 2020, 144, 106908, d0i:10.1016/j.ymssp.2020.106908.
Terron-Santiago, C.; Martinez-Roman, J.; Puche-Panadero, R.; Sapena-Bano, A. A Review of Techniques Used for Induction
Machine Fault Modelling. Sensors 2021, 21, 4855, d0i:10.3390/s21144855.

Faiz, J.; Keravand, M.; Ghasemi-Bijan, M.; Cruz, S.M.A.: Bandar-Abadi, M. Impacts of Rotor Inter-Turn Short Circuit Fault upon
Performance of Wound Rotor Induction Machines. Electric Power Systems Research 2016, 135, 48-58, d0i:10.1016/j.epsr.2016.03.007.
Qiu, H.;; Zhao, X.,; Yang, C.; Ran, Y.; Wei, Y. Influence of Inter-Turn Short-Circuit Fault Considering Loop Current on
Electromagnetic Field of High-Speed Permanent Magnet Generator with Gramme Ring Windings. J. Electr. Eng. Technol. 2019,
14, 701-710, doi:10.1007/s42835-019-00122-z.

Pietrowski, W.; Gérny, K. Analysis of Torque Ripples of an Induction Motor Taking into Account a Inter-Turn Short-Circuit in

a Stator Winding. Energies 2020, 13, 3626, d0i:10.3390/en13143626.


https://doi.org/10.20944/preprints202306.0180.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2023 d0i:10.20944/preprints202306.0180.v1

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Ullah, Z.; Hur, J. A Comprehensive Review of Winding Short Circuit Fault and Irreversible Demagnetization Fault Detection in
PM Type Machines. Energies 2018, 11, 3309, doi:10.3390/en11123309.

Moosavi, 5.-M.M.; Faiz, J.; Abadi, M.B.; Cruz, SM.A. Comparison of Rotor Electrical Fault Indices Owing to Inter-Turn Short
Circuit and Unbalanced Resistance in Doubly-Fed Induction Generator. IET Electric Power Applications 2019, 13, 235-242,
doi:10.1049/iet-epa.2018.5528.

Forstner, G.; Kugi, A.; Kemmetmiiller, W. Fault-Tolerant Torque Control of a Three-Phase Permanent Magnet Synchronous
Motor  with  Inter-Turn  Winding Short  Circuit. Control Engineering  Practice 2021, 113, 104846,
doi:10.1016/j.conengprac.2021.104846.

Adouni, A.; J. Marques Cardoso, A. Thermal Analysis of Low-Power Three-Phase Induction Motors Operating under Voltage
Unbalance and Inter-Turn Short Circuit Faults. Machines 2021, 9, 2, d0i:10.3390/machines9010002.

Yuan, X.-H.; He, Y.-L.; Liu, M.-Y.; Wang, H.; Wan, S.-T.; Vakil, G. Impact of the Field Winding Interturn Short-Circuit Position
on Rotor Vibration Properties in Synchronous Generators. Mathematical Problems in Engineering 2021, 2021, €9236726,
doi:10.1155/2021/9236726.

Yang, J.; Dou, M.; Dai, Z. Modeling and Fault Diagnosis of Interturn Short Circuit for Five-Phase Permanent Magnet
Synchronous Motor. Journal of Electrical and Computer Engineering 2015, 2015, e168786, doi:10.1155/2015/168786.

He, Y.-L,; Xu, M.-X,; Zhang, W.; Wang, X.-L.; Lu, P.; Gerada, C.; Gerada, D. Impact of Stator Interturn Short Circuit Position on
End Winding Vibration in Synchronous Generators. IEEE Transactions on Energy Conversion 2021, 36, 713-724,
doi:10.1109/TEC.2020.3021901.

Im, S.-H.; Gu, B.-G. Study of Induction Motor Inter-Turn Fault Part I: Development of Fault Models with Distorted Flux
Representation. Energies 2022, 15, 894, doi:10.3390/en15030894.

Ghanbari, T.; Mehraban, A.; Farjah, E. Inter-Turn Fault Detection of Induction Motors Using a Method Based on Spectrogram
of Motor Currents. Measurement 2022, 205, 112180, doi:10.1016/j.measurement.2022.112180.

Irhoumah, M.; Pusca, R.; Lefevre, E.; Mercier, D.; Romary, R. Detection of the Stator Winding Inter-Turn Faults in Induction and
Synchronous Machines through the Correlation Between Harmonics of the Voltage of Two Magnetic Flux Sensors. IEEE
Transactions on Industry Applications 2019, 55, doi:10.1109/TIA.2019.2899560.

Ehya, H.; Nysveen, A. Pattern Recognition of Interturn Short Circuit Fault in a Synchronous Generator Using Magnetic Flux.
IEEE Transactions on Industry Applications 2021, 57, 3573-3581, doi:10.1109/TIA.2021.3072881.

Liu, X.; Miao, W.; Xu, Q.; Cao, L.; Liu, C.; Pong, P.W.T. Inter-Turn Short-Circuit Fault Detection Approach for Permanent Magnet
Synchronous Machines Through Stray Magnetic Field Sensing. IEEE Sensors Journal 2019, 19, 7884-7895,
doi:10.1109/JSEN.2019.2918018.

Zorig, A.; Hedayati Kia, S.; Chouder, A.; Rabhi, A. A Comparative Study for Stator Winding Inter-Turn Short-Circuit Fault
Detection Based on Harmonic Analysis of Induction Machine Signatures. Mathematics and Computers in Simulation 2022, 196, 273—
288, doi:10.1016/j.matcom.2022.01.019.

Maraaba, L.S.; Twaha, S.; Memon, A.; Al-Hamouz, Z. Recognition of Stator Winding Inter-Turn Fault in Interior-Mount
LSPMSM Using Acoustic Signals. Symmetry 2020, 12, 1370, doi:10.3390/sym12081370.

Eftekhari, M.; Moallem, M.; Sadri, S.; Hsieh, M.-F. A Novel Indicator of Stator Winding Inter-Turn Fault in Induction Motor
Using Infrared Thermal Imaging. Infrared Physics & Technology 2013, 61, 330-336, doi:10.1016/j.infrared.2013.10.001.

Singh, G.; Anil Kumar, T.Ch.; Naikan, V.N.A. Induction Motor Inter Turn Fault Detection Using Infrared Thermographic
Analysis. Infrared Physics & Technology 2016, 77, 277-282, doi:10.1016/j.infrared.2016.06.010.

Kumar, P.S,; Xie, L.; Halick, M.S.M.; Vaiyapuri, V. Stator End-Winding Thermal and Magnetic Sensor Arrays for Online Stator
Inter-Turn Fault Detection. IEEE Sensors Journal 2021, 21, 5312-5321, doi:10.1109/JSEN.2020.3029041.

Wu, Y.-H,; Liu, M.-Y,; Song, H.; Li, C,; Yang, X.-L. A Temperature and Magnetic Field-Based Approach for Stator Inter-Turn
Fault Detection. IEEE Sensors Journal 2022, 22, 17799-17807, doi:10.1109/JSEN.2022.3198146.


https://doi.org/10.20944/preprints202306.0180.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2023 d0i:10.20944/preprints202306.0180.v1

38.

39.

40.

41.

42.

43.

44.

45.

46.

Xu, Z.; Hu, C; Yang, F.; Kuo, S.-H.; Goh, C.-K,; Gupta, A.; Nadarajan, S. Data-Driven Inter-Turn Short Circuit Fault Detection
in Induction Machines. IEEE Access 2017, 5, 25055-25068, doi:10.1109/ACCESS.2017.2764474.

Chen, Z; Liang, D.; Jia, S.; Yang, L.; Yang, S. Incipient Interturn Short Circuit Fault Diagnosis of Permanent Magnet Synchronous
Motors Based on the Data-Driven Digital Twin Model. IEEE Journal of Emerging and Selected Topics in Power Electronics 2023, 1-1,
doi:10.1109/JESTPE.2023.3255249.

Shih, K.-J.; Hsieh, M.-F.; Chen, B.-J.; Huang, S.-F. Machine Learning for Inter-Turn Short-Circuit Fault Diagnosis in Permanent
Magnet Synchronous Motors. IEEE Transactions on Magnetics 2022, 58, 1-7, d0i:10.1109/TMAG.2022.3169173.

Guerreiro Carvalho Cunha, R; da Silva, E.T.; Marques de Sa Medeiros, C. Machine Learning and Multiresolution Decomposition
for Embedded Applications to Detect Short-Circuit in Induction Motors. Computers in Industry 2021, 129, 103461,
doi:10.1016/j.compind.2021.103461.

Liang, S.; Chen, Y.; Liang, H.; Li, X. Sparse Representation and SVM Diagnosis Method for Inter-Turn Short-Circuit Fault in
PMSM. Applied Sciences 2019, 9, 224, doi:10.3390/app9020224.

Ehya, H.; Skreien, T.N.; Nysveen, A. Intelligent Data-Driven Diagnosis of Incipient Interturn Short Circuit Fault in Field Winding
of Salient Pole Synchronous Generators. IEEE Transactions on Industrial Informatics 2022, 18, 3286-3294,
doi:10.1109/TI1.2021.3054674.

Li, Y.; Wang, Y.; Zhang, Y.; Zhang, ]. Diagnosis of Inter-Turn Short Circuit of Permanent Magnet Synchronous Motor Based on
Deep Learning and Small Fault Samples. Neurocomputing 2021, 442, 348-358, doi:10.1016/j.neucom.2020.04.160.

Maraaba, L.; Al-Hamouz, Z.; Abido, M. An Efficient Stator Inter-Turn Fault Diagnosis Tool for Induction Motors. Energies 2018,
11, 653, d0i:10.3390/en11030653.

Duda, R.O,; Hart, P.E.; Stork, D.G. Pattern Classification; 2nd ed.; Wiley: New York, 2001; ISBN 978-0-471-05669-0.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-
thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.20944/preprints202306.0180.v1

