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Abstract: The new technological developments have allowed the evolution of the industrial process 

to this new concept called industry 4.0, which integrates power machines, robotics, smart sensors, 

communication systems, and internet of things to have more reliable automation systems. However, 

the electrical rotating machines like the Induction Motor (IM) is still widely used in several indus-

trial applications since their robust elements, high efficiency, and versatility in industrial applica-

tions. Nevertheless, the occurrence of faults in IMs is inherent to their operating conditions, hence, 

Inter-turn short-circuit (ITSC) is one of the most common failures that affect IMs and its appearance 

is due to electrical stresses leads to the degradation of the stator winding insulation. In this regard, 

this work proposes a diagnosis methodology for the assessment and detection of incipient ITSC in 

IMs, the proposed method is based on the processing of vibration, stator currents and magnetic 

stray-flux signals. Certainly, the novelty and contribution include the characterization of different 

physical magnitudes by estimating a set of statistical time domain features, as well as, their fusion 

and reduction through the Linear discriminant Analysis technique within a feature-level fusion ap-

proach. Furthermore, the fusion and reduction of information from different physical magnitudes 

leads to perform the automatic fault detection and identification by a simple Neural-Network (NN) 

structure. The proposed method is evaluated under a complete set of experimental data and the 

obtained results demonstrate that the fusion of information from different sources (physical magni-

tudes) allows to improve the accuracy during the detection of ITSC in IMs, the results make this 

proposal feasible to be incorporated as a part of condition-based maintenance programs in the in-

dustry. 

Keywords: condition monitoring, induction motor, inter-turn short-circuit, machine learning, sta-

tistical features 

 

1. Introduction 

In recent years, the advent of the industry 4.0 has been possible due to the evolution 

of the technologies together with the integration of advanced communication systems 

[1,2] and smart sensors [3]. Despite this technological growth, the induction motor (IM) 

remains as the medullar column to provide to the industrial processes with mechanical 

rotative power, linear motion, and to propel mechanisms in general [4]. The typical appli-

cations of this machine are as pumps, fans, compressors, manufacturing, materials pro-

cessing, refrigeration, transportation, conveyors, shredders, etc., [5]. The electrical rotat-

ing machines are electromechanical systems used in industry because of its benefits such 

as low cost, high efficiency, high output torque ratio, high power to weight ratio, easiness 

of maintenance, reliability, applicability, low noise emissions, among others [6,7]. Accord-

ing to the reported literature, the induction machines are one of the most common and 

widespread motors over the globe in industry, constituting around the 80% from the total 

industrial equipment [8], and they consume approximately between the 40% and the 80% 
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of the total energy generated for these companies [9–11]. Therefore, considering this in-

formation, any industrial process downtime due to motor failures would impact directly 

in aspects like overall costs, maintenance planning, equipment damage or replacement, 

possibility of user risks or injuries, and even environmental effects (because energy con-

sumed by IMs is generated majorly through conventional fuels) [12]. Now, typically the 

ensemble of an IM considers several components that allow its proper operations being 

the principal ones the stator, the rotor, the windings, the rolling bearings, and the fan [13]. 

Recently, several scientific reviews have analyzed and concluded that, in relation with the 

motor components the most typical faults and their corresponding percentages ranges of 

occurrence are the following [14–16]: bearing faults between 40% to 50%, stator winding 

faults between 28% to 38%, rotor related faults between 5% to 10%, and other associated 

faults between 12% to 28%. From previous information, it can be noted that the faults 

associated with the stator windings are the second major problems that appear in the com-

ponents of the IM. But also, in turn, a specific failure related to the stator circuit are the 

inter-turn short-circuits (ITSC) faults [17] that affect the IM performance with high prob-

ability of severe equipment damage, and for this reason they are still a topic of interest. 

Particularly speaking about the ITSC faults in electric rotative machines, in the liter-

ature much research has been carried out addressing this phenomenon. It has been re-

ported that ITSC faults are the most common and frequent electrical problems, and they 

represent approximately between 30% and 40% of all types of stator circuit damages [18]. 

These faults are understood as damage in the winding insulation and they can occur at 

different locations of the coil turns in a single phase [19]. The general circumstances that 

cause failures in the electric motors are harsh environments at industry like high temper-

atures, humidity, mechanical tension due to overloads, contamination, grease, vibrations, 

electric discharges and over voltages, among others [20]. However, for the particular case 

of the ITSC the causes are, for example, flows of current with an intensity that exceeds the 

nominal operating conditions, generating in consequence a release of energy in the form 

of heat and mechanical stress, or the use of fast switching PWM inverters that accelerates 

the insulation degradation [19,21]. Some effects of the ITSC faults in the motors are of 

course malfunctioning on its operation, performance reduction, local magnetic saturation, 

asymmetric behavior of the motor, to mention some [20,22]. With the purpose of better 

understand the inter-turn short circuits, several investigations have developed models of 

these faults, such as the case of the finite element models (FEM) [18,23], parametric math-

ematical models based on electrical circuits [24,25], and combined FEM-parametric mod-

els [26,27]. The objective of such models is the development of methodologies for detect-

ing such faults in simulation environments, but assuming or omitting other conditions 

that could happen in real systems. 

Regarding the classical methodologies, there exist several works that have developed 

approaches addressing ITSC detection. For example, in [6] the implementation of an im-

proved wavelet packet transform (WPT) was done over the rotor current and the motor 

vibration signals in LabVIEW for permanent magnet synchronous motors (PMSM). In 

other works, like in [28], a Kalman filter excludes the frequency components correspond-

ing to the 3rd, 5th, and 7th harmonics in the current signal measured from an IM, then the 

time-frequency spectrogram of the signal is used to obtain a gray level image and its cor-

responding histogram. With this information, the considerable deviations of the histo-

grams distributions from a normal distribution are used for the detection of the ITSC. On 

the other hand, some works focused their efforts on the development of methodologies 

based on non-intrusive signal like magnetic flux in motor for detecting ITSC faults. Such 

as the case of the research in [29], that present a statistical methodology for detecting ITSC 

faults that uses a correlation coefficient between two external magnetic field signals meas-

ured by two sensors located symmetrically in the motor vicinity. The correlation obtained 

is based on the Pearson correlation coefficient applied on induction and synchronous ma-

chines. In this same area, the approach described in [30] also makes use of non-invasive 

stray magnetic field sensors for discriminating ITSC on salient pole synchronous genera-

tors (SPSG). To achieve the discrimination of the fault, the system model is developed by 
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means of finite element method (FEM), and by introducing a unique pattern observed on 

the time-frequency domain signal processing through the short time Fourier transform 

(STFT). By its part, an online approach for detecting ITSC in PMSM is developed in [31] 

using stray magnetic field measured from the stator yoke. For this purpose, the inter-turn 

short-circuits dynamic, and the stray magnetic flux dynamic are implemented through 

FEM considering 24 sensitive tunneling magnetoresistive (TMR) sensor units. In other 

work, the harmonic analysis of different electric signal is performed in [32] for detecting 

ITSCs in the stator windings of squirrel cage IMs. The signals considered are stator phase 

current, external magnetic flux, and electromagnetic torque at different load levels. The 

validation of this proposal was through simulation by means of FEM. Meanwhile, in [33] 

is presented a methodology for diagnosing ITSC faults for line start PMSM through the 

frequency analysis of acoustic signals. The acoustic signals are decomposed through the 

fast Fourier transform (FFT) analyzing their amplitudes. It is worth mentioning that many 

works address the ITSC faults diagnosis on motors through infrared thermographic anal-

ysis, such as the work in [34] that develops an online non-intrusive algorithm which ex-

tracts features from the infrared histogram of the images profile taken from the hottest 

region of the machine surface. In this same line, the research in [35] describes an online 

non-invasive technique that detects the ITSC fault and its severity through two methods. 

The first method uses transient thermal monitoring during motor starting, and the second 

method implements pseudo coloring technique on infrared image of the motor on the 

steady state. On the same line, the work in [36] presents a methodology for diagnosing 

ITSC faults in the stator winding based on an infrared thermopile sensor array (IRSA) and 

a hall-effect sensor array (HESA). With these arrays direct contactless measurements of 

temperature and magnetic flux distribution along the end-winding region is done. Later, 

deviations in thermal and magnetic symmetries induced by the faults are assessed for 

detection. By its part, the work presented in [37] develops a metal-coated fiber Bragg grat-

ing (FBG) sensor to monitor the temperature and magnetic field around the end winding 

of IMs. The sensor measurements are decoupled by a filtering stage and the separated 

data is analyzed in the time-frequency domain for detecting the ITSC. From previous 

works discussion it is notorious the effort done for diagnosing the inter-turn short circuits 

on electric motors in what can be defined as classical ways acquiring signals and pro-

cessing them by means of space transformations. However, they are mostly validated 

through model simulations omitting some real operating condition, and they do not con-

sider data fusion to improve the detection reliability. 

Recently, some methodologies addressed the use of data driven, machine learning, 

and deep learning techniques for detecting and diagnosing motor faults associated to 

ITSC with high accuracy. For example, an online fault detection framework is developed 

in [38] by collecting data from IMs, performing multiple extraction/selection of features, 

finding the most sensitive ones, and enhancing the classification task by integrating mul-

tiple classifiers. Meanwhile, in [39] a methodology for incipient ITSC diagnosis on PMSM 

based on data driven digital twins is described. For this purpose, a theoretical analysis of 

the three-phase current residuals under ITSC is carried out, and a digital twin model of a 

healthy target motor is defined through nonlinear auto-regressive model with exogenous 

inputs (NARX) network, at last the incipient faults are detected through current residual. 

Now, in relation to the machine learning (ML) approaches, several works have developed 

methodologies, such as in [40], where the support vector machines (SVM) and the convo-

lutional neural networks (CNN) techniques are implemented for diagnosing ITSC on 

PMSM. In such work, it was demonstrated that SVM have more efficient training than 

CNN considering that the first technique requires much fewer data. In the same context, 

an developed algorithm combines the discrete wavelet transform (DWT) for multiresolu-

tion analysis (MRA), the statistical features extraction, and ML techniques, processes volt-

age signals generated by axial leakage flux from an IM for detecting incipient ITSC [41]. 

In other case, a fault diagnosis method applied on PMSM is presented in [42], where a 

sparse representation is used for extracting the first and second largest sparse coefficient 

of current and vibration signals, and for composing four-dimensional feature vectors. 
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Then, the feature vectors are input to the SVM for final diagnosis of ITSC, this is conven-

ient for small samples sets. Similarly, the study presented in [43] explores the potential of 

several ML classifiers and the signal processing for the online condition monitoring of 

ITSC in the field winding of SPSG. In that work the data set for the ML is generated by 

applying the FFT on the power spectral density of the air gap magnetic field, DWT ener-

gies, and time series feature extraction based on hypothesis test. At last, but not least, the 

deep learning techniques are also present in the ITSC faults diagnosis. For instance, in [44] 

is described an approach based on the conditional generative adversarial net (CGAN) and 

an optimized sparse auto encoder (OSAE) applied on PMSM, an important attribute of 

this approach is the use of small samples sets. Other work explores the use of neural net-

works as efficient diagnosing tools for estimating the percentage of stator winding shorted 

turns on three-phase IMs. The implementation was done in MATLAB under different load 

conditions [45]. From the previous discussion of the works reported in the literature, it 

can be noted that data-driven, machine learning, and deep learning are techniques and 

schemes that provide reliable approaches for detecting ITSC. Mostly of them use the anal-

ysis of two measured signals, such as current and vibration, or current and stray magnetic 

flux form the motor. But it would be interesting to explore the potential of using currents, 

vibrations, and stray magnetic flux signals of different sensor channels (or sensor axes), 

perform features extraction, and make data fusion and classification. 

The contribution of this work is with an integrated methodology based on a statistical 

machine learning strategy and data fusion of several physical signals measured from an 

induction motor for detecting the early occurrence of ITSC faults. At first place, the phys-

ical signals from the motor corresponding to the phase currents, the vibrations, and the 

external magnetic stray flux are acquired. Next, several statistical features are extracted 

from the time-domain signals to compose sets of sensitive matrices of features related to 

the fault condition, which will integrate a general high dimension matrix providing mean-

ingful information about the fault not directly from the time-domain signals but consid-

ering its statistical data patterns. Posteriorly, a feature level fusion is carried out through 

the linear discriminant analysis, which will reduce the matrix of features of high dimen-

sionality to a two-dimensional representation having those significant features for being 

used in the last classification stage. Finally, a classifier with simple structure based on the 

neural networks is implemented for performing the final diagnosis. The proposed meth-

odology is capable of detecting different machine conditions, and for this case four condi-

tions are considered: the healthy state of the motor and three fault conditions with differ-

ent severities of ITSC (2, 4, and 6 coil turns in short circuit). The experimental tests con-

sidered the motor operation under four operating frequencies (15 Hz, 30Hz, 50Hz and 

60Hz). The obtained results demonstrate the reliability and efficiency of the proposed 

methodology. 

2. Materials and Methods 

Electrical rotating machines like the induction motor (IM) is subjected to electrical 

stresses that can lead to the sudden occurrence of faults, in this sense, the stator inter-turn 

short-circuits (ITSC) are common faults caused by problems associated with the stator 

winding insulation. Consequently, an amplitude increase is produced in the harmonic 

component of the stator current signature when IMs are operating under the influence of 

ITSC, similarly, the air-gap flux density is also modified when ITSC occur. In this regard, 

classical approaches based on MCSA perform the detection of ITSC by analyzing the spec-

tra of stator currents and/or magnetic stray-flux through Equation (1). 

 

𝑓𝐼𝑇𝑆𝐶 = 𝑓𝑠 (𝑘
(1 − 𝑠)

𝑝
± 𝑚) (1) 
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Where 𝑓𝑠 represents the supply frequency, 𝑠 is the per unit slip, 𝑝 is the pair of poles in 

the IM and 𝑘 and 𝑚 are integers that can be defined as 𝑘 = 1, 2, 3, … and 𝑚 = 1, 3, 5, …  

 

On the other side, although electrical problems such as ITSC produce direct affections 

over those electrical patterns like stator currents or magnetic stray flux, the abnormal ap-

pearance of vibrations is additionally produced since the magnetic field asymmetry being 

altered by the three-phase asymmetry of the IM windings. Theoretically, a characteristic 

fault-related vibrations frequency component of the stator appears at 2𝑓𝑠; moreover, the 

occurrence of vibrations due to ITSC leads also to characteristic harmonic components 

that can be located at 4𝑓𝑠 and 8𝑓𝑠 in a vibration spectrum. Accordingly, regardless that 

ITSC in IMs can be detected through different physical magnitudes like stator currents, 

magnetic flux and vibrations, the accurate assessment depends on the considered signal 

processing. Hence, processing techniques achieved in the time domain, frequency domain 

and time-frequency domain are commonly used to analyze signals and to extract charac-

teristic fault-related patterns produced by the occurrence of faults. 

Aiming to contribute to the field of condition monitoring and fault detection, in this 

work is proposed a diagnosis methodology for detecting the incipient occurrence of ITSC 

in IMs through the estimation of a set of statistical time-based domain features from dif-

ferent physical magnitudes such as stator currents, magnetic stray-flux and vibrations. 

Additionally, the computed statistical features are then pooled to carry out a feature-level 

fusion by means of the linear discriminant analysis (LDA) technique. Finally, the auto-

matic identification of incipient ITSC in IMs is achieved by a proposed neural network 

(NN) classifier. The flow chart of the proposed method is shown in Figure 1 and consists 

of five main steps: i) Electromechanical pulley-belt system, ii) Data acquisition, iii) Feature 

calculation, iv) Feature fusion-reduction, and v) Automatic fault classification. 

 

 

Figure 1. Flow chart of the proposed methodology based on the acquisition of differ-

ent signals for identifying the incipient occurrence of ITSCs in IMs. 

2.1. Electromechanical pulley-belt system 

The electromechanical pulley-belt system is the system under evaluation and is com-

posed by an IM coupled to an automotive alternator (AA) by means of a pulley-belt sys-

tem. Particularly, in the IM are tested four different conditions comprising the healthy 
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state (HLT) and three incipient conditions of ITSC such as 2-SCTs, 4-SCTs and 6-SCTs. 

Each one of the aforementioned conditions is iteratively tested in the IM under different 

operating conditions in order to monitor its behavior through multiple sensors that allow 

the measurement of vibrations, stator currents, and magnetic stray flux. 

2.2. Data acquisition 

The data acquisition is carried out by a self-designed and proprietary data acquisition 

system (DAS) based on a field programmable gate array (FPGA), hence, the proprietary 

DAS allows the continuous monitoring of the IM operation by means of the measurement 

of vibrations, stator currents, and magnetic stray flux signals. Specifically, the vibrations 

are measured from the radial (𝑉𝑟) and tangential (𝑉𝑡) axes of the IM, the stator currents 

belong to the three lines currents (𝐶1, 𝐶2 𝑎𝑛𝑑 𝐶3) of the IM, and the magnetic stray flux 

comprises the measurement of the axial (𝑀𝑎) and radial (𝑀𝑟) components. In this regard, 

for each performed test, the aforementioned signals are continuously recorded and stored 

in a personal computer for further analysis; moreover, the acquisition of the signals is 

carried out during 150 seconds of the continuous operation of the IM. 

2.3. Feature calculation 

The feature calculation is achieved with the aim of characterizing the previously ac-

quired signals and it is mainly based on the estimation of a set of statistical time-domain 

features. The features calculation is individually applied to each one of the acquired sig-

nals, thereby, a signal 𝐒 composed by 𝑛 samples is first segmented into equal parts of 

one second, where every second of the signals has a length 𝐿 as Equation (2) depicts: 

 

𝐒𝑖 = [𝐒𝑖
1:𝐿, 𝐒𝑖

𝐿+1:2𝐿, … , 𝐒𝑖

(((𝑛 𝐿⁄ )−1)𝑛)+1:𝑛] (2) 

 

Once the signal segmentation is carried out, from each segmented part is estimated 

a meaningful set of five statistical time-domain features leading to obtain a characteristic 

feature matrix for each considered physical magnitude. Certainly, from the vibration sig-

nals are estimated 𝐕𝐫 ∈  ℝ(5)  and 𝐕𝐭 ∈  ℝ(5)  for the radial and tangential axis, respec-

tively; from the stator signatures are estimated 𝐂𝟏 ∈  ℝ(5), 𝐂𝟐 ∈  ℝ(5) and 𝐂𝟑 ∈  ℝ(5) cor-

respondingly for each current line and, from the axial and radial magnetic stray-flux com-

ponents are estimated 𝐌𝐚 ∈  ℝ(5) and 𝐌𝐫 ∈  ℝ(5), respectively. The set of statistical time-

domain features as well as the corresponding mathematical expressions are summarized 

in Table 1, Equations (3) to (7). These statistical features are proposed due to their capa-

bility to model trends, distributions, asymmetries, forms, dispersion, and changes in sig-

nals; additionally, their low computational cost can lead to quick responses when imple-

mented. 

Table 1. Considered set of statistical time-domain features for the characterization of the acquired 

signals. 

Name Mathematical equation  

Maximum value, 𝑥̂ =  𝑥̂ = 𝑚𝑎𝑥(𝑥) (3) 

Root mean square, 𝑥𝑅𝑀𝑆 𝑥𝑅𝑀𝑆 = √
1

𝑛
∙ ∑ (𝑥𝑘)

2
𝑛

𝑘=1
 (4) 

Standard deviation, 𝑥𝜎  𝑥𝜎 = √
1

𝑛
∙ ∑ (𝑥𝑘 − 𝑥̅)2

𝑛

𝑘=1
 (5) 

Shape factor, 𝑥𝑆𝐹  𝑥𝑆𝐹 =
√1

𝑛
∙ ∑ (𝑥𝑘)

2𝑛
𝑘=1

1
𝑛

∙ ∑ |𝑥𝑘|
𝑛
𝑘=1

 (6) 
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Crest factor, 𝑥𝐶𝐹  
𝑥𝐶𝐹 =

𝑥̂

√1
𝑛

∙ ∑ (𝑥𝑘)
2𝑛

𝑘=1

 
(7) 

 

Where 𝑥 is the input vector of data; and 𝑥𝑘 is the k-th individual sample. 

2.4. Feature fusion-reduction 

The feature fusion is performed within a feature-level fusion approach in which all 

previously estimated feature matrices (𝐕𝐫, 𝐕𝐭, 𝐂𝟏, 𝐂𝟐, 𝐂𝟑, 𝐌𝐚 and 𝐌𝐫) are then pooled 

into a single set. Thus, the single data set considers the fusion of information since all 

characteristic feature matrices are concatenated as Figure 2 shows. In this sense, it should 

be clarified that three global features matrices 𝐕, 𝐂 and 𝐌 are considered for represent-

ing each one of the physical magnitudes within the feature-level fusion approach. After-

ward, the pooled single data set ([𝐕 𝐂 𝐌] ∈  ℝ(35)) are subsequently subjected to a re-

duction and space transformation procedure, in which, a new set of extracted features are 

obtained by means of applying the LDA techniques. The space transformation allows to 

achieve a dimensionality reduction from ℝ(35) to ℝ(2), in fact, the new achieved repre-

sentation into the 2D space facilitates the visualization of all evaluated conditions due to 

the resulting features representing the linear combination (in different weights) of the 

original feature space. 

 

 

Figure 2. Representation of the feature-level fusion approach performed in this work for fusioning 

information from different physical magnitudes. 

2.5. Automatic fault classification 

The automatic fault classification of incipient ITSC in IMs is carried out by a NN-

based classifier with a simple structure, the main objective of this stage is to evaluate the 

set of features extracted by the LDA technique. In this sense, the proposed NN classifier 

consists of three main layers such as input, hidden and output, where, the input layer is 

represented by two neurons in order to represent each one of the extracted features in the 

2D space, the hidden layer has ten neurons as is recommended in the literature [46] and, 

four neurons in the output layer representing each one of the evaluated conditions. In 

addition, the NN-based classifier is trained and tested under a five-fold cross-validation 

scheme with the aim of obtaining statistically significant results, during the training are 

considered fifty epochs and a back-propagation algorithm. Moreover, the NN classifier 

considers a sigmoid function as the activation function allowing to evaluate the percent-

age of correspondence with each membership function in the output layer. A representa-

tion of the proposed NN structure is presented in Figure 3. 
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Figure 3. Schematic representation of the simple structure considered in the pro-

posed NN-based classifier for carrying out the automatic fault detection and identification 

of incipient ITSCs in IMs. 

3. Experimental test bench 

In order to verify the performance of the proposed methodology for the detection of 

the incipient occurrence of ITSC in IMs, experimentation is performed using a 1.49kW 

(2HP) three-phase induction motor from WEG. The main specifications of the motor are 

summarized in the Table 2. 

Table 2. Specifications of the 2HP WEG induction motor under test. 

Specification Value 

Rated Power 1.49 kW 

Rated Voltage 220 V 

Rated Current 5.6 A 

Pole Pairs 2 

 

To feed the IM it is used a variable frequency drive (VFD) so the rotational speed can 

be controlled. In this work, a total of four different frequencies are achieved by using the 

VFD: 15 Hz, 30 Hz, 50 Hz and 60 Hz. This way it is possible to demonstrate the effective-

ness of the proposed approach regardless the frequency of the power supply. Also, with 

the purpose of providing the motor with a load, it is coupled to a 12 V alternator by means 

of a pulley-belt system that represents between the 15% and the 25% of the nominal load. 

To produce the occurrence of ITSC in the IM, three different severities of ITSC are artifi-

cially induced in a single stator winding. The first severity considers 2-short circuit turns 

(2-SCTs), the second one 4-SCTs, whereas the third comprises 6-SCTs. Since the motor 

under test contains a total of 141 turns per phase winding, these severities represent 1.42%, 

2.85% and 4.28% of damage, respectively. Therefore, a total of four operating conditions 

are assessed in this work: the healthy condition (HLT) and three ITSC severities (2-SCT, 

4-SCT and 6-SCTs). Moreover, every condition is also tested using the four operating fre-

quencies generated by means of the VFD (15 Hz, 30 Hz, 50 Hz and 60 Hz). To achieve the 

different ITSC severities, three taps are located at the points where the faults were in-

duced. Each tap can be selected by closing a switch connected to an external resistor 𝑅𝑒 

so the short circuit current can be limited to avoid catastrophic damage of the motor (see 

Figure 4). 
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Figure 4. Schematic representation of the different severities of the ITSC fault. 

The proposed method considers the use of three different physical magnitudes: vi-

brations, stator currents and stray-flux. The vibration signals are measured using a three 

axes accelerometer (LIS3LL02AS4) that is configured to work in the range of ±6 g. This 

sensor is located at the top of the IM as shown in Figure 5, the measurement of vibration 

belongs to the perpendicular plane of the IM axis (radial and tangential axes). Addition-

ally, to carry out the stator current measurements, three hall-effect sensors L08P050D15 

are placed in the power lines that go from the VFD to the IM. Finally, a proprietary board 

that uses hall sensors A1325 from ALLEGRO is used to obtain the IM stray flux. This board 

is also located on the top of the motor, next to the accelerometer as shown in Figure 5 and 

it can sense the radial flux and the axial flux simultaneously. 

 

 

Figure 5. Main components of the experimental test bench. 

All the data delivered by the sensors are collected using a proprietary data acquisi-

tion system (DAS) that is based on a field programmable gate array (FPGA) technology. 

The DAS includes two 4-channel analog-to-digital converters with 12-bit resolution 

(ADS7841 from Texas Instruments). This way, it is possible to acquire the occurrence of 

vibrations, the stator current consumption and the magnetic stray-flux in the IM at a single 

run; also, each acquired physical magnitude is acquired with a sampling frequency of 3000 

Hz, 6000 Hz and 4000 Hz, respectively. During each performed test the aforementioned 

signals are collected during 150 seconds of the steady-state operation of the IM and then 

are sent to a personal computer where they are stored to be processed off-line. 

4. Results and discussion 
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The proposed diagnosis methodology is validated under a real data set acquired 

from several experiments that are performed in a laboratory test bench, thus, as the pro-

posed method describes, the acquisition of two vibrations signals (𝑉𝑟  and 𝑉𝑡), three stator 

currents signatures (𝐶1, 𝐶2 and 𝐶3) and two magnetic stray-flux signals (𝑀𝑎 and 𝑀𝑟) are 

continuously measured during the experimental evaluation of the healthy condition 

(HLT) and three incipient conditions of ITSC (2-SCTs, 4-SCTs and 6-SCTs). In addition, 

each one of the conditions under study is tested under different operating frequencies in 

the VFD (15 Hz, 30 Hz, 50 Hz and 60 Hz), consequently, during each test are acquired 

approximately 450 kSamples for each vibration signal, 900 kSamples for each stator cur-

rent signature, and 600 kSamples for each magnetic stray flux signal. 

Subsequently, the feature estimation is carried out in order to characterize the ac-

quired signal for each performed test, in this regard, Equation (2) is applied to each one 

of the stored physical magnitudes in order to segment them in equal parts of one second; 

hence, for vibrations signals the length 𝐿 used in Equation (2) is equal to 𝐿𝑉 = 3000, 

meanwhile, 𝐿 is equal to 𝐿𝐶 = 6000 and 𝐿𝑀 = 4000 for the stator currents and magnetic 

stray flux, respectively. Once the segmentation of the signals is accomplished, the estima-

tion of the meaningful set of five statistical time domain features is individually estimated 

from each segmented part for each acquired signal. Then, for each studied condition is 

estimated a set of characteristic feature matrices 𝐕𝐫, 𝐕𝐭, 𝐂𝟏, 𝐂𝟐, 𝐂𝟑, 𝐌𝐚 and 𝐌𝐫, where 

each feature matrix has five statistical features with 150 consecutive samples. Due to each 

condition under study is tested at different operating frequencies, a Global Feature Matrix 

(𝐆𝐅𝐌) is generated for the HLT condition and for the three incipient conditions of ITSC 

(2-SCTs, 4-SCTs and 6-SCTs); thus, in such 𝐆𝐅𝐌 are considered the pooling of all feature 

matrices for all physical magnitudes and all operating frequencies; i.e., the 𝐆𝐅𝐌 for the 

HLT condition is generated following Equation (8) as 𝐆𝐅𝐌𝐇𝐋𝐓 , whereas 𝐆𝐅𝐌𝟐𝐒𝐂𝐓 , 

𝐆𝐅𝐌𝟒𝐒𝐂𝐓, 𝐆𝐅𝐌𝟔𝐒𝐂𝐓 are the 𝐒𝐂𝐓 for the faulty conditions of 2-SCTs, 4-SCTs and 6-SCTs. It 

should be mentioned that each 𝐆𝐅𝐌 is composed by 35 statistical time domain features 

estimated from different physical magnitudes with 600 consecutive samples, 150 samples 

per operating frequency. 

 

𝐆𝐅𝐌𝐇𝐋𝐓 =
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Next, the 𝐆𝐅𝐌s for all considered conditions are then subjected to the dimensionality 

reduction procedure through the application of the LDA technique, thereby, the 𝐆𝐅𝐌𝐬 

are then grouped following Equation (9) and during the reduction procedure is performed 

a space transformation from ℝ(35) to ℝ(2). Consequently, the use of the LDA allows the 

visualization of all considered conditions into a 2D plane, in Figure 6 is shown the result-

ing projection in which it is possible to appreciate that all studied conditions appear sep-

arated from each other. Additionally, it must be highlighted that the extracted features 

(Feature 1 and Feature 2) that are projected into the 2D plane also represent the linear 

combination, in different weights, of all considered features. In this regard, in Table 3 are 

summarized the weights assigned by the LDA during the feature reduction process, from 

Table 3 it can be analyzed the importance and contribution of each estimated feature; pre-

cisely, large absolute values mean a high-importance whereas small absolute values can 

be understood as non-relevant features. 
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Figure 6. Visual representation achieved by the LDA technique into 2D plane when considering the 

vibration signals, stator currents and magnetic stray-flux for all considered conditions. 

Table 3. Weights assigned by the LDA during the feature reduction procedure when transforming the original feature 

space (ℝ(35)) into a lower space (ℝ(2)). 

Physical magni-

tude 

Projected fea-

ture 

Maximum value 

(𝑥̂) 

Root mean square 

(𝑅𝑀𝑆) 

Standard devia-

tion (𝜎) 

Shape Factor 

(𝑆𝐹) 

Crest Fac-

tor(𝐶𝐹) 

Vibration (𝑉𝑟) 
Feature 1 -0.1332 0.0495 -0.0073 -0.0060 0.1320 

Feature 2 -0.2201 0.0257 0.0350 0.0220 0.2133 

Vibration (𝑉𝑡) 
Feature 1 0.4306 0.0380 -0.0221 0.0047 -0.4204 

Feature 2 -0.4763 0.0566 -0.4186 0.3326 0.4828 

Current (𝐶1) 
Feature 1 -0.3922 0.0395 -0.0321 0.0185 0.3900 

Feature 2 -0.1997 0.0500 0.0217 -0.0188 0.2023 

Current (𝐶2) 
Feature 1 -0.3085 0.0485 -0.0495 0.0124 0.3104 

Feature 2 0.1472 0.0361 -0.0669 -0.0147 -0.1489 

Current (𝐶3) 
Feature 1 0.2123 0.0295 0.0176 0.0144 -0.2065 

Feature 2 -0.0175 -0.0943 -0.0196 -0.0064 0.0241 

Stray-flux (𝑀𝑎) 
Feature 1 -0.0217 -0.0110 0.0388 -0.0005 0.0139 

Feature 2 0.0200 0.0064 0.0122 0.0010 -0.0085 

Stray-flux (𝑀𝑟) 
Feature 1 -0.0251 -0.0147 0.0074 -0.0143 0.0191 

Feature 2 -0.0551 0.0316 0.0673 -0.0107 0.0345 

 

Later, the extracted features by the LDA technique are then evaluated under a five-

fold cross-validation scheme through the proposed NN-based classifier with the aim of 

carrying out the final diagnosis outcome; thereby, for each considered condition, 480 sam-

ples are used for training purposes and 120 samples are used for validation purposes. The 

training of the NN is achieved under a back-propagation approach during 70 epochs and, 

as an activation function is used a sigmoid function. Hence, the global classification ratio 

achieved during the training is 100%, whereas, a 99.4 % is reached during the validation; 
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in addition, in Table 4 are summarized the individual classifications. From Table 4 it can 

be appreciated that the proposed methodology leads to a high-performance classification 

avoiding positive falses which is a critical issue that may lead to the machine breakdown. 

On the other side, the use of the proposed NN classifier also facilitates the estimation of 

the decision regions on the 2D plane, hence, the decision regions for each tested conditions 

are shown in Figure 7, from the modeled classification regions in Figure 7 it can be ob-

served that a specific regions has been assigned for each particular condition and, the as-

sessment of new or unknown samples can be carried out in order to determinate the actual 

condition of IMs that suddenly operates under ITSC. 

Table 4. Achieved classification ratios through the proposed NN-based classifier for the evaluation the extracted features 

by the LDA for all assessed conditions. 

 True Class 

 Training Test 

Assigned class Healthy 2-SCTs 4-SCTs 6-SCTs Healthy 2-SCTs 4-SCTs 6-SCTs 

Healthy 480 0 0 0 120 0 0 0 

2-SCTs 0 480 0 0 0 117 0 0 

4-SCTs 0 0 480 0 0 3 120 0 

6-SCTs 0 0 0 480 0 0 0 120 

 
Figure 7. Resulting decision regions carried out by the proposed NN-based classifier 

when the 2D extracted features are evaluated. 

 

Finally, in order to highlight that the use of different physical magnitudes such as 

vibrations, stator currents and magnetic stray-flux leads to an accurate detection of incip-

ient ITSCs in IMs, the characteristic feature matrices estimated from different signals are 

combined between them whit the objective of analyze their performance. In this regard, a 

first combination considers only vibrations and stator currents, in a second combination 

are used vibrations and magnetic stray-flux and, the third combination includes stator 

currents with magnetic stray-flux. Then, each one of these combinations are subjected to 

the feature reduction procedure through the LDA and the resulting 2d projections are 

shown from Figure 8a to Figure 8c, respectively for each combination. As appreciated, the 

most critical case is when vibrations and magnetic stray-flux are combined since samples 

of all considered conditions appear to overlap between them; on the other hand, an im-

provement is obtained when the combinations of vibrations and stator currents as well as 

stator currents with magnetic stray-flux; however, for these combinations, the classifier 

may produce misclassifications between the HLT and 2-SCTs conditions. To finish the 

validation, the extracted features from Figure 8a to Figure 8c are also evaluated under the 
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same NN structure and the global classification rations achieved during the training and 

validations are summarized in Table 5. The obtained results show that this proposal can 

lead to an accurate identification of ITSCs in IMs, moreover, the characterization of vibra-

tions, stator currents and magnetic stray-flux by means of statistical features offers a trade-

off between simplicity efficiency when trends and changes are modeled from raw time-

domain signals. 

 
(a) 

 
(b) 

 
(c) 

Figure8. 2D projection achieved by the LDA technique when the physical magnitudes are combined 

as a) vibrations + stator currents, b) vibrations + magnetic stray-flux and c) stator currents + mag-

netic stray-flux. 
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Table 5. Achieved classification ratios performed by the proposed NN-based classifier when different combinations of 

physical magnitudes are considered. 

Considered approach Training Test 

Vibrations + stator currents 92.7% 86.7% 

Vibrations + magnetic stray-flux 86.0% 82.7% 

Stator currents + magnetic stray-flux 98.4% 96.9% 

Proposed approach: 

Vibrations + stator currents + magnetic stray-flux 
100% 99.4% 

5. Conclusions 

The ITSC are common faults in IMs and they can produce catastrophic damage with 

consequences not only on the machinery but also in the safety of the personnel in the 

surroundings. Therefore, the development of strategies and methodologies for the proper 

identification of these faults becomes important for the industrial sector. In this sense, this 

work presented an approach based on data fusion and statistical machine learning that 

allows to address the occurrence of ITSC and it is also capable of identifying different 

severities of these faults. While most of the methodologies reported so far only use 

simulated signals, in this work is carried out experimentation with real signals from an 

induction motor with different damage severities. The results show that the selection of 

the physical variables to be used for the detection of the fault is not a trivial task. In this 

sense, the fusion of vibration, stator current, and magnetic stray flux data improves the 

results compared with the use of only one or two of these magnitudes. This situation 

results in a detection accuracy higher than 98%, proving that the proposed methodology 

is a helpful and reliable tool for identifying and classifying ITSC faults in IM. Moreover, 

it is worth noting that one of the major drawbacks of the machine learning approaches 

relies on the use of big amounts of data, a situation that results in complex processing and 

classification tasks that require a high computational burden. To overcome this issue, in 

this work is used the LDA technique to perform a dimensionality reduction, projecting all 

the data in a 2-dimensional space without losing relevant information. This way, it is 

possible to implement a simple classifier based on artificial neural networks. 
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