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1. Introduction

Equivalences (including isomorphisms) and dualities between categories are seen as
important and fruitful forms of symmetry in pure mathematics. We extend Esakia Duality
to Heyting locally small spaces, which we introduce. This duality was originally proved
by Leo Esakia in [1] (see also [2]) for spaces that combine topology and order, which he
called hybrids (we are especially interested in strict hybrids). Then we provide a system of
concrete isomorphisms, equivalences and dual equivalences between our categories that
give a deeper understanding of locally small spaces and notions related to them.

Esakia Duality has been studied and used after L. Esakia by such authors as: Guram
and Nick Bezhanishvili ([3] and [4]) together with their collaborators ([5,6]) as well as S.A.
Celani and R. Jansana ([7]) and many others.

We also see Esakia Duality as a subcase of Stone Duality ([8]) or Priestley Duality
([9]). Many extensions of Stone Duality have been achieved in recent years. For example:
the locally compact Hausdorff case in [10], removing the zero-dimensionality and the
commutativity assumptions in [11], generalisations of Gelfand–Naimark–Stone Duality to
completely regular spaces in [12] and its application to the characterisation of normal, Lin-
delöf and locally compact Hausdorff spaces in [13]. There exist extensions of Stone Duality
that drop compactness completely: the paper [14] considers all zero-dimensional Hausdorff
spaces. Stone Duality has been also extended in [15] to (non-distributive) orthomodular
lattices (corresponding to spectral presheaves), in [16] to some non-distributive (implicative,
residuated, or co-residuated) lattices and applied to the semantics of substructural logics,
in [17] to a non-commutative case of left-handed skew Boolean algebras. Applications
of Stone Duality have appeared in [18] (canonical extensions of lattice-ordered algebras)
and [19] (the semantics of non-distributive propositional logics). Some recent applications
of Stone Duality have appeared in [20] in the theory of C∗-algebras.

The main objective of this paper is to extend our results from [21] by presenting a
version of Esakia Duality for Heyting locally small spaces (we try to follow the conventions
of [22]). The present paper continues the research from [23], [21] on some versions of Stone
Duality or Priestley Duality for locally small spaces as well as a version of Esakia Duality
for small spaces.

We are developing tame topology, postulated by Alexander Grothendieck in his scien-
tific programme [24]. Such an approach to topology is intended to eliminate pathological
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phenomena of usual topology. We are encouraged by the authors of [25] who concluded
that the tame topology suggested by A. Grothendieck had not been defined. Notice that
Grothendieck’s ideas on the notion of space interest some people concerned with physical
and philosophical questions (see Cruz Morales [26]). We develop the theory of tame spaces
such as small spaces or locally small spaces, as a way to realise Grothendieck’s postulate in
a purely topological context.

One important useful tool for us is the theory of up-spectral (called also almost-
spectral) spaces developed by M. Hochster ([27]) O. Echi together with his collaborators
([28,29]), L. Acosta and I.M. Rubio Perilla ([30]). Up-spectral spaces can be better understood
in the wider context of Balbes-Dwinger spaces, see [31] and [32].

Smopologies have appeared implicitly in real algebraic geometry (see [33] (Definition
7.1.14) or [34] (p. 12)), in o-minimality ([35–37]), and in more general contexts of model
theory ([38–40]). They should be helpful in such branches of mathematics as the generalisa-
tions of o-minimality, analytic geometry or algebraic geometry. While in the usual topology
we have only spectral reflections (see [22] (Chapter 11)), smopologies allow transferring
structural information without any losses between algebraic and topological structures
using dualities or equivalences. Transferring information between the topological and the
algebraic languages in new versions of Esakia Duality should give more understanding of
locally definable spaces over structures with (especially definable) topologies.

Regarding the set-theoretical foundations, we use (without mentioning this) Mac
Lane’s standard Zermelo–Fraenkel axioms with the Axiom of Choice and the existence of a
set which is a universe as in [41] (p. 23). Such a setting allows speaking about proper classes
of sets or categories while staying formally in the axiomatic system ZFC. (See “Axiomatic
assumptions” in [42] for the full explanation of our axiomatic system.)

2. Generalities about Locally Small Spaces

Notation. We shall use a special notation for operations on families of sets, for example
for family intersection

U∩1 V = {U ∩ V : U ∈ U, V ∈ V}, U∩1 V = U∩1 {V}

or for other operations

int1(A) = {int(A) : A ∈ A}, Gen1(A) = {Gen(A) : A ∈ A},

℧A = {
⋃

B : B ⊆ A}, ΩA = {
⋂

B : B ⊆ A}.

Let a family A of subsets of a set X be given. Define

ba(A) = the Boolean algebra generated by A in P(X)

Ao = {Y ⊆ X | Y ∩1 A ⊆ A}.

Elements of Ao are called the sets compatible with the family A, while elements of ba(A) are
the sets constructible from A.

Definition 1 ([23,43]). A locally small space is a pair (X,LX), where X is any set and LX ⊆
P(X) satisfies the following conditions:
(LS1) ∅ ∈ LX ,
(LS2) if A, B ∈ LX , then A ∩ B, A ∪ B ∈ LX ,
(LS3)

⋃
LX = X.

Elements of LX are also called smops (i.e., small open subsets of X). The family LX is called a
smopology. Assume (X,LX) and (Y,LY) are locally small spaces. Then a mapping f : X → Y is:

(a) bounded if LX refines f−1(LY), which means that each A ∈ LX admits B ∈ LY such that
A ⊆ f−1(B),

(b) continuous if f−1(LY) ∩1 LX ⊆ LX (i.e., f−1(LY) ⊆ Lo
X),
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(c) strongly continuous if f−1(LY) ⊆ LX .

We have the category LSS of locally small spaces and bounded continuous maps, called sometimes
also strictly continuous maps.

Definition 2. If X ∈ LX , then (X,LX) is called a small space. The full subcategory in LSS
generated by the small spaces is denoted by SS.

Remark 1. The isomorphisms of LSS are such bijections f : X → Y between locally small spaces
that f−1(Lo

Y) = Lo
X and the families LX and f−1(LY) refine each other. The latter condition means

that the bornologies generated by those families are equal. One can easily check that isomorphisms
are exactly those mappings that satisfy the condition f−1(LY) = LX. Such mappings are called
strict homeomorphisms.

Definition 3. We have the following additional families and types of subsets of X:

1. The family L′
X = X \1 LX is called a co-smopology and its members are called co-smops.

2. The family Con(X) = ba(LX) contains the constructible sets, which are the Boolean
combination of smops.

3. The family Lo
X contains subsets compatible with smops, which will be called (admissible)

open sets, and their complements that will be called (admissible) closed sets. The family of
all admissible open sets Lo

X in X will be usually denoted by AdOp(X), and the family of all
admissible closed sets will be denoted by AdCl(X) or Lc

X .
4. A subset of a smop that is a constructible set will be called a small constructible set. The

family of all small constructible sets will be denoted by sCon(X).
5. A subset of X whose traces on smops are constructible is a locally constructible set. The

family of all locally constructible sets will be denoted by LCon(X).

Remark 2. Notice that for a small space (i.e., if X ∈ LX) we have

LX = AdOp(X) and L′
X = AdCl(X).

In this case L′
X is also a smopology and the small space (X,L′

X) is called the inverse space of
(X,LX) and denoted by Xinv ([21]).

Fact 1 ([43]). We have the functor of smallification sm : LSS → SS given by sm : (X,LX) →
(X,Lo

X) and sm( f ) = f , which is a concrete reflector (see [44]).

Definition 4. We have the following important topologies in a locally small space:

1) The topology τ(LX) generated by the smops will be called the original topology and denoted
τorig. The closure, the interior and the exterior operations in the original topology will be
denoted by · (or by cl(·)), int(·), ext(·), respectively.

2) The topology τinv = τ(AdCl(X)) generated by the admissible closed sets will be called the
inverse topology. The closure and the interior operations in the inverse topology will be
denoted by · inv, intinv(·), respectively.

3) The topology τtinv = τ(L′
X), generated by the co-smops, which can be called the tiny inverse

topology.
4) The topology τ(LX \1 LX) generated by the differences of smops will be called the con-

structible topology. The closure and the interior operations in the constructible topology
will be denoted by · con, intcon(·), respectively.

Remark 3. While the family AdOp(X) usually properly contains LX, they generate the same
original topology τ(LX) = τ(AdOp(X)).
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Definition 5. Weakly open sets are the sets beloning to the original topology and their comple-
ments (=intersections of admissible closed sets) are the weakly closed sets. We can express this in
symbols as follows:

τorig = ℧LX = ℧AdOp(X), X \1 τorig = ΩL′
X = ΩAdCl(X).

Similarly, we have constructibly weakly open and constructibly weakly closed sets, inversely
weakly open and inversely weakly closed sets, etc. A mapping that is continuous in the
topologies of weakly open sets is called weakly continuous.

Proposition 1. For a locally small space (X,LX), we have

A =
⋃

V∈LX

A ∩ V, int(A) =
⋃

V∈LX

int(A ∩ V).

The topological operations on the right-hand side may be taken in X or in V.

Proof. We always have
⋃

V∈LX
A ∩ V ⊆ A. If x ∈ A, then there exists V ∈ LX such that

x ∈ A ∩ V. For any W ∈ LX if x ∈ W then W ∩ V ∈ LX and W ∩ V ∩ A ̸= ∅. That is why
x ∈ A ∩ V ∩ V, so x belongs to the set on the right-hand side of the first claim. For the non-
trivial inclusion int(A) ⊆ ⋃

V∈LX
int(A ∩ V) in the second claim, assume x ∈ int(A) ∩ V

for some V ∈ LX. Then x ∈ W ⊆ A for some W ∈ LX. Hence x ∈ W ∩ V ⊆ A ∩ V and
x ∈ int(A ∩ V).

Example 1. The tiny inverse topology is usually strictly smaller than the inverse topology. In
symbols: we usually have τtinv = ℧L′

X ⊂ τinv = ℧AdCl(X).
Indeed, consider an infinite set X and define LX = Fin(X). Then τ(L′

X) = Cofin(X)∪ {∅}
but the inverse topology equals τ(AdCl(X)) = AdCl(X) = P(X).

Example 2. The family ba(AdOp(X)) may be a proper subfamily of LCon(X). Indeed, take as
X the disjoint union

⊔
n∈NR2n

om of 2n-th powers of the o-minimal real line Rom ([43]) indexed by
n ∈ N. Then the smops of R2n

om are the finite unions of cartesian products of open intervals. Smops
in the disjoint union are the finite unions of smops in particular cartesian powers R2n

om. The locally
constructible set A =

⋃
n∈N An where An = {x ∈ R2n : #{k : xk = 0} is even} is not a Boolean

combination of admissible open sets. To see this, consider the closure algebra (LCon(X), · ) in the
sense of Definition 2.2.1 of [2]. If A were a Boolean combination of m admissible open sets, then
A would be a union of at most 2m locally closed sets in this closure algebra, hence, by Proposition
2.5.27 of [2], we would have ρ2m

(A) = ∅ where ρ(Z) = ∂(∂Z) and ∂Z = Z \ Z. For n > 2m, we
have ρn(An) = {0}2n ̸= ∅, so An is not a Boolean combination of m smops in R2n

om. Consequently,
ba(AdOp(X)) ⊂ LCon(X).

Example 3. Usually also the Boolean algebra Con(X) = ba(LX) is strictly smaller than the
Boolean algebra ba(AdOp(X)). Indeed, for the space from Example 1, we have Con(X) =
Fin(X) ∪ Cofin(X) and ba(AdOp(X)) = P(X).

Proposition 2. We have the following equality between topologies:

τ(LX \1 LX) = τ(ba(LX)) = τ(ba(AdOp(X))) = τ(sCon(X)) = τ(LCon(X)).

Hence we have the following descriptions of the constructible topology:

℧LCon(X) = ℧sCon(X) = ℧ba(AdOp(X)) = ℧ba(LX) = ℧(LX \1 LX).

Proof. The inclusions LX \1 LX ⊆ ba(LX) ⊆ ba(AdOp(X)) ⊆ LCon(X) are obvious. Each
locally constructible set is a union of a family of smop differences.
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Definition 6. For a locally small space (X,LX) and a subset Y ⊆ X, we have the induced
subspace (Y,LX ∩1 Y) of (X,LX). This subspace is called: open if Y ∈ AdOp(X), closed if
Y ∈ AdCl(X), decent if Y is constructibly dense, small if Y is a subset of a smop.

Lemma 1. Assume that X is a locally small space.

1. If V ∈ AdOp(X), then for the induced subspace (V,LX ∩1 V) we have AdOp(V) =
AdOp(X) ∩1 V.

2. If F ∈ AdCl(X), then for the induced subspace (F,LX ∩1 F) we have AdOp(F) =
AdOp(X) ∩1 F.

3. If S is a small subset of X, then for the induced subspace (S,LX ∩1 S) we have AdOp(S) =
AdOp(X) ∩1 S.

4. If Y ⊆ X is decent, then for the induced subspace (Y,LX ∩1 Y) we have AdOp(Y) =
AdOp(X) ∩1 Y.

Proof. 1. We check AdOp(X) ∩1 V ⊆ AdOp(V) first. For each W ∈ AdOp(X) we have
W ∩ V ∈ AdOp(X) ∩ P(V). For any A ∈ LX ∩1 V, we have W ∩ V ∩ A ∈ LX ∩
P(V) = LX ∩1 V. This proves W ∩ V ∈ AdOp(V). For the other inclusion assume
U ∈ AdOp(V). For each L ∈ LX, we have U ∩ L = U ∩ L ∩ V ∈ LX ∩1 V ⊆ LX.
This means U ∈ AdOp(X) ∩ P(V). Since U = U ∩ V ∈ AdOp(X) ∩1 V, we have
AdOp(V) ⊆ AdOp(X) ∩1 V.

2. Assume W ∈ AdOp(X). For any L ∈ LX, the set W ∩ (L ∩ F) = (W ∩ L) ∩ F ∈
LX ∩1 F. Since W ∩ F ∈ AdOp(F), the inclusions AdOp(X) ∩1 F ⊆ AdOp(F) and
AdCl(X) ∩1 F ⊆ AdCl(F) are clear. We now prove AdCl(F) ⊆ AdCl(X) ∩1 F. For
M ∈ AdCl(F), we have (F \ M) ∩1 (LX ∩1 F) ⊆ LX ∩1 F. Take L ∈ LX. Then
(X \ M) ∩ L = ((X \ F) ∩ L) ∪ ((F \ M) ∩ L). But (F \ M) ∩ L = F ∩ KL for some
KL ∈ LX and we may assume KL ⊆ L. We get (X \ M)∩ L = ((X \ F)∩ L)∪KL ∈ LX .
This proves X \ M ∈ AdOp(X), so M = M ∩ F ∈ AdCl(X) ∩1 F.

3. We know that S ⊆ L for some L ∈ LX. Since (S,LX ∩1 S) is a small space, we have
AdOp(S) = LS = LX ∩1 S = (LX ∩1 L)∩1 S = (AdOp(X)∩1 L)∩1 S = AdOp(X)∩1
S.

4. For the non-trivial inclusion AdOp(Y) ⊆ AdOp(X) ∩1 Y, assume W ∈ AdOp(Y).
Then for each L ∈ LX there exists WL ∈ LX ∩1 L such that W ∩ L = WL ∩Y. We check
if the set W̃ =

⋃
L∈LX

WL is admissible open in X. For any M ∈ LX, we conclude
W̃ ∩ M =

⋃
L∈LX

WL ∩ M is equal to WM ∈ LX since LX ∋ V 7→ V ∩ Y ∈ LY is an
isomorphism of lattices and, consequently, for each L ∈ LX we have M ∩ WL ⊆ WM.
Finally, W = W̃ ∩ Y.

3. Specialisation

Now we extend the facts from Section 4 of [21] about the relation of specialisation
to the case of locally small spaces. While we have not defined the inverse smopology in
this case, we have the inverse topology as well as the constructible topology which do not
change if we pass to the smallification (X,Lo

X) of the locally small space (X,LX). That is
why a series of facts passes to the locally small case.

Recall that for a topological space (X, τX) the point x specialises to y (we write x⇝ y)
if each neighbourhood containing y also contains x. In this situation x is a generalisation of
y, and y is a specialisation of x. For subsets A ⊆ X, we write:

Gen(A) = {x ∈ X : x ∈ Gen(a) for some a ∈ A},
Spez(A) = {x ∈ X : x ∈ Spez(a) for some a ∈ A}.
A specialisation relation is always a preorder (called also a quasi-order) on X and does

not depend on the ambient topological space (if Y ⊆ X and x, y ∈ Y, then x ⇝ y in X iff
x⇝ y in Y).
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Fact 2. For a locally small space (X,LX) and x, y ∈ X, the following conditions are equivalent for
the original topology on X:

1. x specialises to y (x⇝ y),
2. y ∈ {x},
3. y /∈ ext{x},
4. each smop containing y also contains x,
5. each admissible open set containing y also contains x,
6. each co-smop containing x also contains y,
7. y⇝inv x (read: y specialises to x in τinv.)

Fact 3. For each locally small space (X,LX) and A ⊆ X, we have:
Spez(A) ⊆ A and Gen(A) ⊆ Ainv.

Fact 4. In a pre-Boolean locally small space, x⇝ y iff x = y.

Fact 5. In any locally small space (X,LX), we have the following:
(1) If A ⊆ X is weakly closed (A ∈ ΩAdCl(X)), then Spez(A) = A.
(2) If A ⊆ X is weakly open (A ∈ ℧LX), then Gen(A) = A.

Recall that a subset Q ⊆ X is called saturated if it is an intersection of weakly open
sets, i.e., Q ∈ Ω℧LX . Moreover, a locally small space (X,LX) is called T0 (or Kolmogorov) if
the family LX separates points ([22, Reminder 1.1.4]), which means that for x, y ∈ X the
following condition is satisfied:

if x ∈ A ⇐⇒ y ∈ A for each A ∈ LX , then x = y.

By LSS0 we denote the full subcategory in LSS generated by T0 objects, while by SS0 we
denote the full subcategory in LSS generated by small T0 objects.

Fact 6. If (X,LX) is T0, then the specialisation relation⇝ is a partial order.

Fact 7. If (X,LX) is T0 and Q ⊆ X, then the following are equivalent:

1. Q is saturated,
2. Gen(Q) = Q.

4. Up-spectral Locally Small Spaces

Definition 7. For a topological space (X, τX), we have the following notation:

1. CO(X) = CO(X, τX) is the family of all compact open subsets of X,
2. ICO(X) = ICO(X, τX) is the family of all open subsets of X such that any intersection with

a compact open set is compact,
3. co-ICO(X) is the family of complements of sets from ICO(X),
4. ClOp(X) = ClOp(X, τX) is the family of clopen subsets of X.

Moreover, (X, τX) is called

1. semi-spectral if CO(X) ∩1 CO(X) ⊆ CO(X),
2. coherent if CO(X) forms a basis of the topology and X is semi-spectral.

Definition 8 ([30], [23], [29]). A topological space (X, τX) is up-spectral if it is (T0) sober and
coherent but not necessarily compact.

Fact 8 (compare [22, Corollary 1.5.5]). In an up-spectral topological space, the following holds
for any A ⊆ X:

1. A = Spez(Acon
) where τcon = ℧(CO(X) \1 CO(X)),

2. Ainv
= Gen(Acon

) where τinv = ℧ co-ICO(X).
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The importance of this class of spaces can be seen in the following theorem.

Theorem 1 ([27,28,30], characterisation of up-spectral spaces). For any topological space
(X, τX), the following conditions are equivalent:

1. X is almost-spectral,
2. X is open dense in a spectral space,
3. X is open in a spectral space,
4. X is a sober BD-space,
5. X is homeomorphic to the prime spectrum of a distributive lattice with minimum,
6. X is up-spectral,
7. X admits a trivial one-point spectralification,
8. X is semi-spectral and locally spectral,
9. X is the underlying topological space of a scheme,
10. X is the underlying topological space of an open subscheme in an affine scheme.

Proof. This is Theorems 7 and 8 in [30], Theorem 2.1 in [28] and Proposition 16 in [27].

Definition 9 ([23]). A mapping g : (X, τX) → (Y, τY) between up-spectral spaces is called
spectral if the following conditions are satisfied:

(1) g is bounded: g(CO(X)) refines CO(Y),
(2) g is s-continuous: g−1(ICO(Y)) ⊆ ICO(X).

Following [23], we shall denote by uSpec the category of up-spectral topological spaces and spectral
mappings between them.

Definition 10. An up-spectral locally small space is a locally small space (X,LX) where
(X,℧LX) is an up-spectral topological space and LX = CO(X). We get the category uSpLSS of
up-spectral locally small spaces and bounded continuous mappings.

Remark 4. For objects of uSpLSS we have (see [29] and [22]):

AdOp(X) = ICO(X), AdCl(X)=co-ICO(X), LCon(X) = ClOp(X, τcon).

Definition 11. An up-Priestley space is a system (X, σX ,≤X) where (X, σX) is a Boolean (i.e.
zero-dimensional Hausdorff locally compact, [45]) topological space and ≤X is a partial order on X
satisfying the Priestley separation axiom

if x ̸≤X y, then ∃ V ∈ CO(X) such that V =↑V, x ∈ V, y /∈ V.

A Priestley mapping between up-Priestley spaces is a continuous non-decreasing mapping. We
have the category uPri of up-Priestley spaces and Priestley mappings.

Definition 12. A Priestley locally small space is a system (X,Lσ
X,≤X) where (X,Lσ

X) is a
Boolean locally small space (Definition 16) and ≤X is a partial order on X satisfying the Priestley
separation axiom

if x ̸≤X y, then ∃ V ∈ Lσ
X such that V =↑V, x ∈ V, y /∈ V.

A Priestley morphism between Priestley locally small spaces is a strictly (equivalently: weakly)
continuous non-decreasing mapping. We have the category PLSS of Priestley locally small spaces
and Priestley morphisms.

Theorem 2. All the following categories are concretely isomorphic:

uSpec, uPri, PLSS, uSpLSS.
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Proof. We have four concrete functors:

1. the functor k1 : uSpec → uPri, k1(X, τX) = (X, τcon,⇝inv)
For an up-spectral space (X, τX), the constructible topology τcon is Boolean and the
generalisation relation⇝inv (as well as the specialisation relation⇝) clearly satisfies
the Priestley separation axiom.
Assume f : X → Y is bounded s-continuous. Then it is continuous in the constructible
topologies as well as in the original topologies, so non-decreasing in the generization
relation.

2. the functor k2 : uPri → PLSS, k2(X, σX ,≤) = (X, CO(X, σX),≤)
For an object (X, σX,≤) of uPri, the space (X, CO(X, σX)) is clearly locally small
(CO(X, σX) is a smopology) and Boolean since AdOp(X) = ClOp(X, σX) = AdCl(X).
Obviously, ≤ satisfies the Priestley separation axiom.
Assume f : X → Y is non-decreasing and continuous. Then

f−1(ICO(Y)) = f−1(ClOp(Y)) ⊆ ClOp(X) = ICO(X).

Hence f is continuous between the locally small spaces.
Since the image of a Hausdorff compact set is compact, it is also a subset of a compact
open set by local compactness. That is why f (CO(X)) is a refinement of CO(Y).
Hence f is bounded between the locally small spaces.

3. the functor k3 : PLSS → uSpLSS, k3(X,Lσ
X ,≤) = (X, Up≤ ∩Lσ

X)
The family Up≤ ∩Lσ

X is the compact-open basis of an up-spectral topology τX (com-
pare the characterisation of spectral topologies in Theorem 1.5.11 of [22]). This
compact-open basis in the up-spectral topology is, in particular, a smopology. Hence
(X, Up≤ ∩Lσ

X) is an up-spectral locally small space.
Assume f : X → Y is non-decreasing and bounded continuous in the constructible
smopologies Lσ

X,Lσ
Y. Each compact-open in τX is compact-open in σX so its image

under f is contained in a small constructible in τY, a subset of a compact-open in τY.
We also have f−1(ICO(Y, τY)) ⊆ ICO(X, τX) since the preimage of a clopen upset is a
clopen upset. Hence f is bounded continuous as the mapping between the up-spectral
locally small spaces.

4. the functor k4 : uSpLSS → uSpec, k4(X,LX) = (X,℧LX)
For an up-spectral locally small space (X,LX), the topological space (X,℧LX) is
up-spectral by Definition 10.
Assume f : X → Y is bounded continuous. Then f is spectral as a mapping between
the up-spectral topological spaces by Definition 9.

Moreover, k4k3k2k1, k1k4k3k2, k2k1k4k3, k3k2k1k4 are the identity functors since

τX = ℧(Up⇝inv ∩ CO(X, σX)), σX = τ(Up≤ ∩ CO(X, σX))con,

Lσ
X = CO(X, τ(Up≤ ∩Lσ

X)con), LX = Up⇝inv ∩ CO(X, τ(LX)con)

and ≤=⇝inv is the generalisation relation of the up-spectral topology τX .

We give an analogue of (1.3) in [22] and Example 3 in [21].

Proposition 3. For an up-spectral topological space (X, τX), the corresponding up-spectral locally
small space (X, CO(X)) has the property, that the small constructible weakly open sets are exactly
the compact open sets, so smops, i.e., LX = CO(X) and sCon(X) ∩℧LX = LX .

Proof. Small constructible sets are clopen in the constructible topology, so compact. If they
are additionally open in the original topology, then they are smops.

Remark 5. From [21], Examples 4–7, we know that:

1. A weakly open constructible set in a locally small space may not be a smop.
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2. A T0 locally small space may have all smops (topologically) compact but not be sober.
3. A T0 locally small space may be (topologically) sober but not compact.
4. A T0 locally small space may be sober and compact with not all smops compact.

Proposition 4. If X is a T0 sober locally small space with all smops compact, then X is an up-
spectral locally small space.

Proof. Since LX ⊆ CO(X), we have CO(X) = LX . The other conditions for up-spectrality
are obvious.

Proposition 5. If a locally small space has all smops compact, then:

(1) the ideals in LX are in a bijective correspondence with the weakly open sets, so also with the
weakly closed sets,

(2) the prime ideals of LX are in a bijective correspondence with the non-empty, irreducible, weakly
closed sets.

Proof. The proof is similar to that of Proposition 3 of [21].

Recall that if not all smops are compact, then by Example 8 from [21] it may happen
that I ⊂ i(s(I)), using notation from the above mentioned proof.

5. Stone Duality for Up-spectral Spaces

Corollary 1 (Stone Duality for spectral spaces). The categories Spec, SpSS, Pri, PSS are
dually equivalent to Lat.

Proof. Follows from Theorem 2 and the classical Stone Duality.

Definition 13. A bornology in a bounded lattice (L,∨,∧, 0, 1) is an ideal B ⊆ L such that∨
B = 1.

Recall that each distributive bounded lattice L corresponds to the spectral space (PF(L), τ(L̃))
where L̃ = {ã : a ∈ L}. Similarly, we define B̃ = {ã : a ∈ B}. A bornology B will be called
special if (B̃ ∩1

⋃
B̃)o = L̃ ∩1

⋃
B̃ as subsets of P(

⋃
B̃) and

⋃
B̃ is constructibly dense in PF(L).

Example 4. Let R̃ be the real spectrum SpecrR[Y] of the ring R[Y]. Consider the following families
of compact open sets in this spectral space:

CO(R̃) = finite unions of intervals of type [r+, s−] where r < s ∈ R

or [−∞, s−] or [r+,+∞],

B = finite unions of intervals [r+, s−] where r < s ∈ R.

Then B is a bornology in the distributive bounded lattice CO(R̃). Notice that CO(R̃) ⊂ Bo =

= locally finite unions of intervals [r+, s−], r < s ∈ R and singletons {−∞}, {+∞}.

Define Xs =
⋃
B̃ = R̃ \ {−∞,+∞}. Still

CO(R̃) ∩1 Xs ⊂ (Bo) ∩1 Xs = (B∩1 Xs)
o =

= the family of all locally finite unions of intervals [r+, s−], r < s ∈ R.

Hence the bornology B is not special.

Definition 14 ([23]). The category SpecB has
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1. as objects: systems ((X, τX), COs(X), Xs) where (X, τX) is a spectral topological space,
COs(X) is a special bornology in CO(X) and Xs =

⋃
COs(X),

2. as morphisms: spectral mappings g : X → Y such that g(Xs) ⊆ Ys and satisfying the
condition of boundedness: COs(X) is a refinement of g−1(COs(Y)).

Definition 15. 1. An object of LatB is a system (L, Ls) with L = (L,∨,∧, 0, 1) a bounded
distributive lattice and Ls a special bornology in L.

2. A morphism of LatB from (L, Ls) to (M, Ms) is such a homomorphism of bounded lattices
h : L → M that is dominating: ∀a ∈ Ms ∃b ∈ Ls a ≤ h(b).

Corollary 2 (Stone Duality for up-spectral spaces). The concretely isomorphic categories uSpec,
uSpLSS, uPri, PLSS are equivalent to SpecB and dually equivalent to LatB.

Proof. Follows from Theorem 2 and a special case (Xd = Xs) of the Stone Duality for locally
small spaces ([23], Theorem 1).

6. Boolean Locally Small Spaces

Proposition 6. For a locally small space, the following are equivalent:

1. AdOp(X) = AdCl(X),
2. AdOp(X) = LCon(X),
3. AdCl(X) = LCon(X)
4. AdOp(X) is a Boolean subalgebra of P(X).

Proof. Obviously, (2) or (3) are equivalent and imply (1). We prove that (1) implies (2).
If A ⊆ X is locally constructible, then it is locally a finite union of finite intersections of
smops due to (1). That is why it is admissible open. Moreover, (2) implies (4) implies (1) is
clear.

Definition 16.

1. If a locally small space satisfies the above conditions, then we will call it a pre-Boolean locally
small space.

2. A Hausdorff pre-Boolean locally small space with all smops compact will be called a Boolean
locally small space.

3. The category of Boolean locally small spaces and bounded (weakly) continuous maps will be
denoted by BLSS.

Definition 17. We have the following categories:

1) BoolSp is the category of zero-dimensional Hausdorff locally compact spaces and continuous
mappings (see Dimov [45]),

2) BAB is the category of Boolean algebras with special bornologies and dominating Boolean
homomorphisms.

Proposition 7. BLSS and BoolSp are concretely isomorphic categories. In particular, Boolean
locally small spaces are up-spectral.

Proof. For a Boolean topological space (X, σ) the family Lσ = CO(X, σ) is a smopology
for which Lσ ⊆ ClOp(X, σ) ⊆ AdOp(X,Lσ). On the other hand, AdCl(X) ⊆ AdOp(X) ⊆
ClOp(X), hence AdOp(X) = AdCl(X) = ClOp(X) and (X,Lσ) is a Boolean locally small
space.

For a Boolean locally small space (X,Lσ), each smop is compact, so Lσ ⊆ CO(X,℧Lσ)
and AdOp(X) = AdCl(X) ⊆ ClOp(X). The topology ℧Lσ is Hausdorff, locally compact
and has a clopen basis AdOp(X) = AdCl(X), hence it is a Boolean topology.

The morphisms are the (weakly) continuous mappings in both categories.
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In particular, each smop in a Boolean locally small space is spectral. The whole space
is semispectral and locally spectral, so up-spectral ([23]).

Theorem 3. BAB is dually equivalent to BoolSp, so also to BLSS.

Proof. The Dimov’s version of Stone Duality [45] says that BoolSp is dually equivalent to
his category ZLBA. One needs to notice that ZLBA is our category BAB since in Boolean
algebras the special bornologies are exactly the distinguished dense ideals (i.e., the dense
ideals I satisfying the condition: for each ideal J in I the supremum of J in the Boolean
algebra exists). We check this in four steps:

1. Each bornology in a Boolean algebra is a dense ideal.
Let A be a Boolean algebra and B a bornology in A. Take a ∈ A \ {0}. Then a′ ̸= 1 =∨

b∈B b. There exists b ∈ B such that b ̸≤ a′, so a ̸≤ b′. We have a = a ∧ (b ∨ b′) =
(a ∧ b) ∨ (a ∧ b′). Since a ∧ b′ < a, we have a ∧ b ̸= 0 and B is dense.

2. Each distinguished dense ideal is a bornology.
If

∨
A I = a ̸= 1 then a′ ̸= 0. Take i ∈ I such that 0 ̸= i ≤ a′. Then i = (i ∨ a) ∧ (i ∨

a′) = a ∧ a′ = 0. Contradiction proves that
∨

A I = 1.
3. Special bornologies are distinguished.

If B is a special bornology, then each clopen set in the constructibly dense open
⋃

B̃ is
of the form ãs = ã ∩⋃

B̃ where a ∈ A. It follows from Proposition 2.6 of [45] that B is
distinguished.

4. Each distinguished dense ideal is special.
If I is a distinguished dense ideal in a Boolean algebra A, then the dense set

⋃
Ĩ

is constructibly dense. The condition ( Ĩ ∩1
⋃

Ĩ)o = AdOp(
⋃

Ĩ) = LCon(
⋃

Ĩ) =
ClOp(

⋃
Ĩ) = L̃ ∩1

⋃
Ĩ is satisfied by Proposition 2.6 of [45].

In both cases the morphisms are the dominating Boolean homomorphisms.

7. The Standard Up-spectralification

We extend the facts from Section 5 of [21] about the standard spectralification of T0
small spaces to the locally small case.

Definition 18. An embedding of locally small spaces is an injective map e : X → Y such that
e(LX) = LY ∩1 e(X).

Definition 19 ([23]). An up-spectralification of a locally small space X is the pair (e, Y) where:
Y is an up-spectral locally small space and e : X → Y is an embedding between locally small spaces
with the image e(X) dense in the constructible topology of Y.

Definition 20. The standard up-spectralification of a T0 locally small space (X,LX) is the
locally small space (using notations from Theorem 1 of [23])

Xusp = (
⋃

L̃X , L̃X)

with the embedding X ∋ x 7→ x̂ ∈ X̂ ⊆ ⋃
L̃X .

Remark 6. Identifying X with X̂, we have:

1. CO(Xusp) ∩1 X = LXusp ∩1 X = LX ,
2. ICO(Xusp) ∩1 X = AdOp(Xusp) ∩1 X = AdOp(X),
3. ClOp(Xusp

con ) ∩1 X = LCon(Xusp) ∩1 X = LCon(X) = ClOp(Xcon).

Since X is constructibly dense in Xusp, we have the following bijection:

LCon(X) ∋ A 7→ Ausp ∈ LCon(Xusp),
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where Ausp is the only member of LCon(Xusp) such that Ausp ∩ X = A. One can see that
Ausp = Acon taken in Xusp and Ausp ∩ X = AX . By bijectivity, we have:

i) V ∈ AdOp(X) iff Vusp ∈ AdOp(Xusp),
ii) F ∈ AdCl(X) iff Fusp ∈ AdCl(Xusp).

Fact 9. If X is small, then Xusp = Xsp is an object of SpSS.

The following fact is purely topological.

Fact 10. If C is a non-empty, weakly closed set in the original topology of a locally small space X,
then the following conditions are equivalent:

1. C is irreducible in X,
2. the closure C in the standard up-spectralification Xusp is irreducible.

Remark 7. We have the functor usp : LSS0 → uSpLSS given by formulas

usp(X,LX) = (
⋃

L̃X , L̃X), usp( f ) = ((Lo f )•)s

where ((Lo f )•)s is the restriction of (Lo f )• to the standard up-spectralifications of the domain and
the codomain of f .

8. Heyting Locally Small Spaces

Definition 21. (1) A locally small space will be called pre-semi-Heyting if any of the following
equivalent conditions are satisfied:

1. the interior in the original topology of any admissible closed set is an admissible open set, i.e.,
int1 AdCl(X) ⊆ AdOp(X),

2. the closure in the original topology of any admissible open set is an admissible closed set, i.e.,
cl1 AdOp(X) ⊆ AdCl(X).

(2) A locally small space will be called pre-Heyting if any of the following equivalent conditions are
satisfied:

1. the interior in the original topology of any locally constructible set is an admissible open set,
i.e., we have int1LCon(X) ⊆ AdOp(X).

2. the closure in the original topology of any locally constructible set is an admissible closed set,
i.e., we have cl1LCon(X) ⊆ AdCl(X).

(3) A locally small space will be called Heyting if it is T0 and pre-Heyting.

Inspired by [22] and [21], we have the following propositions.

Proposition 8. Assume that X is a pre-semi-Heyting locally small space. Then:

1. the following maps are well defined:

(a) the open regularisation map N : AdOp(X) → AdOp(X) given by N(A) = intA,
(b) the closed regularisation map N : AdCl(X) → AdCl(X) given by N(F) = intF,

2. for each V ∈ AdOp(X), the subspace (V,LX ∩1 V) is pre-semi-Heyting.

Proof. (1) Obvious by definition.
(2) For A, V ∈ AdOp(X), we have that the set A ∩ VV

= V ∩ (A ∩ V) ∈ V ∩1 AdCl(X) =
AdCl(V) is a local co-smop in V. Notice that (V, τ(LX ∩1 V)) is a topological subspace of
(X, τ(LX)).

Proposition 9 (characterisation of pre-Heyting spaces). For a locally small space X = (X,LX),
the following conditions are equivalent:
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1. X is pre-Heyting,
2. for each B ∈ LX \1 LX , B ∈ AdCl(X),
3. for each A ∈ LCon(X), the subspace (A,LX ∩1 A) is pre-Heyting,
4. for each A ∈ LCon(X), the subspace (A,LX ∩1 A) is pre-semi-Heyting,
5. for each F ∈ AdCl(X), the subspace (F,LX ∩1 F) is pre-semi-Heyting.

Proof. (1) ⇔ (2) Of course, (2) follows from (1). Assume C ∈ LCon(X). Then, for each
A ∈ LX, we have C ∩ A = C ∩ A ∩ A. Since C ∩ A ∈ Con(A), this set is a finite union of
sets of the form B1 \ B2 with B1, B2 ∈ LA. Thus C ∩ A ∩ A ∈ AdCl(A) and C ∈ AdCl(X).
(1) ⇒ (3) For A ∈ LCon(X) and D ∈ LCon(A) = LCon(X) ∩1 A ⊆ LCon(X), we have
D ∈ AdCl(X). Now DA

= D ∩ A ∈ AdCl(A).
(3) ⇒ (4) Trivial.
(4) ⇒ (5) Trivial.
(5) ⇒ (2) Each element of LX \1 LX is of the form A ∩ F with A ∈ LX, F ∈ AdCl(X).
Since A ∩ F = A ∩ F ∩ F ∈ AdCl(X)∩1 F by (5), we have A ∩ F ∈ AdCl(X)∩1 AdCl(X) ⊆
AdCl(X).

Remark 8. There exist pre-semi-Heyting spectral small spaces that are not pre-Heyting. See
Example 8.3.11(iii) in [22].

Since the smallification does not change the original topology, we have

Fact 11. If the locally small space (X,LX) is (pre-)Heyting, then its smallification (X,Lo
X) is

(pre-)Heyting as a small space or a locally small space.

Definition 22 (Heyting maps). A map between pre-Heyting locally small spaces f : X →
Y will be called a Heyting (bounded continuous) map if it is bounded continuous and the
interior operation (equivalently: the closure operation) commutes with the preimage on the locally
constructible sets, that is, any of the equivalent conditions is satisfied

1. f−1(int(C)) = int( f−1(C)) for C ∈ LCon(Y),
2. f−1(C) = f−1(C) for C ∈ LCon(Y).

Definition 23. By HLSS we denote the category of Heyting locally small spaces and Heyting
bounded continuous maps.

Since HLSS is a full subcategory of LSS, we have

Fact 12. Strict homeomorphisms between Heyting locally small spaces are isomorphisms of HLSS.

9. Heyting Up-spectral Spaces

Definition 24 ([22, Section 8.3]). A topological up-spectral space X will be called Heyting if the
closure of any constructibly clopen [i.e., locally constructible] set is a co-ICO set. A map between
Heyting up-spectral spaces g : X → Y is called a Heyting spectral map if g is spectral and any of
the equivalent the conditions holds:

1. f−1(C) = f−1(C) for C ∈ LCon(Y) = ClOpcon(Y),
2. f−1(int(C)) = int( f−1(C)) for C ∈ LCon(Y) = ClOpcon(Y).

We have the category HuSpec of Heyting up-spectral (topological) spaces and Heyting spectral
mappings.

Corollary 3. Each homeomorphism between Heyting up-spectral spaces is an isomorphism in
HuSpec.
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Definition 25. We have the category HuSpLSS of Heyting up-spectral locally small spaces and
Heyting strictly continuous maps.

Proposition 10. If the standard up-spectralification Xusp of a locally small space X is Heyting,
then X is Heyting.

Proof. Assume ∀A ∈ LCon(Xusp) A ∈ AdCl(Xusp). Then by taking traces with X, we
have ∀B ∈ LCon(X) BX ∈ AdCl(X) (see Remark 6).

Proposition 11. If X is a Heyting locally small space (object of HLSS), then:

1. AdOp(X) is a Heyting algebra and (L̃o
X , L̃X , X̂) is an object of LatBD,

2. Xusp is a Heyting up-spectral locally small space (object of HuSpLSS).

Proof. (1) For U, V ∈ AdOp(X) define U → V = int(V ∪ (X \ U)). Then, by the Heyting
assumption on the locally small space X, we have U → V ∈ AdOp(X) and this set is the
largest element Z ∈ AdOp(X) with the property V ∩ Z ⊆ W. That (L̃o

X , L̃X , X̂) is an object
of LatBD was proved in Step 3 of the proof of Theorem 1 of [23].
(2) Since X is Heyting and the lattices AdOp(X) and ICO(Xusp) are isomorphic Heyting
algebras, Xusp is Heyting by Remark 6.

Remark 9. The functor usp from Remark 7 has a restriction that will be denoted by usp : HLSS →
HuSpLSS.

Definition 26. An up-Esakia space (X, σX ,≤X) is an up-Priestley space such that

for all C ∈ ClOp(X, σX) we have ↓C ∈ ClOp(X, σX).

An Esakia mapping between up-Esakia spaces is a Priestley mapping f : X → Y such that
f (↑x) =↑ f (x). We have the category uEsa of up-Esakia spaces and Esakia mappings.

Definition 27. An Esakia locally small space is such a Priestley locally small space (X,Lσ
X ,≤X)

that satisfies the condition

for all A ∈ LCon(X,Lσ
X) we have ↓A ∈ LCon(X,Lσ

X).

An Esakia morphism between Esakia locally small spaces is a Priestley morphism f : X → Y that
is a p-morphism, i.e., satisfies the condition f (↑x) =↑ f (x). We have the category ELSS of Esakia
(locally small) spaces and Esakia morphisms.

Corollary 4. The categories HuSpec, HuSpLSS, uEsa, ELSS are concretely isomorphic.

Proof. Follows from Theorem 2.

Definition 28. The category HSpecB has:

1. systems ((X, τX), COs(X), Xs) where (X, τX) is a Heyting spectral topological space, COs(X)
is a special bornology in CO(X) and Xs =

⋃
COs(X) (called the decent lump) as objects,

2. Heyting spectral mappings between spectral spaces satisfying the condition of boundedness
and respecting the decent lump as morphisms.

Definition 29. The category HAB has

1. systems (L, Ls) with L = (L,∨,∧,→, 0, 1) a Heyting algebra, Ls a special bornology in L as
objects,
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2. homomorphisms of Heyting algebras h : L → M that are dominating (i.e., ∀a ∈ Ms ∃b ∈
Ls a ≤ h(b)) and respect the decent lump (i.e., h•(

⋃
M̃s) ⊆ ⋃

L̃s) as morphisms from
(L, Ls) to (M, Ms).

10. Categories of Spaces with Decent Subsets

While the category SpecD was defined in [23] and the category ESSD was defined in
[21], we introduce similarly:

Definition 30. We have the following categories:

1. the category PriD whose objects are Priestley spaces with distinguished dense sets (called
decent sets) and whose morphisms are Priestley mappings respecting the decent sets,

2. the category EsaD whose objects are Esakia spaces with distinguished dense sets (called
decent sets) and whose morphisms are Esakia mappings respecting the decent sets,

3. the category PSSD whose objects are Priestley small spaces with decent sets and whose
morphisms are Priestley morphisms respecting the decent sets.

We have two consequences of Theorem 2.

Corollary 5. SpecD, PriD, PSSD are concretely isomorphic.

Corollary 6. HSpecD, EsaD, ESSD are concretely isomorphic.

Two versions of dualities follow.

Corollary 7 (Stone Duality for small spaces). The categories SpecD, SS0, PriD, PSSD are
dually equivalent to LatD.

Corollary 8 (Esakia Duality for small spaces). The categories HSpecD, HSS, EsaD, ESSD,
are dually equivalent to HAD.

Definition 31. We have the following categories:

1. the category uSpecD whose objects are up-spectral spaces with distinguished decent sets that
are dense in the constructible topology and whose morphisms are spectral mappings respecting
the decent sets,

2. the category uPriD whose objects are up-Priestley spaces with distinguished dense sets (called
decent sets) and whose morphisms are Priestley mappings respecting the decent sets,

3. the category uEsaD whose objects are up-Esakia spaces with distinguished dense sets (called
decent sets) and whose morphisms are Esakia mappings respecting the decent sets,

4. the category PLSSD whose objects are Priestley locally small spaces with decent sets and
whose morphisms are Priestley morphisms respecting the decent sets,

5. the category ELSSD whose objects are Esakia locally small spaces with decent sets and whose
morphisms are Esakia morphisms respecting the decent sets.

Corollary 9 (Stone Duality for locally small spaces). The categories LSS0, uSpecD, uPriD,
PLSSD, SpecBD are dually equivalent to LatBD.

Proof. Follows from Theorem 1 in [23] and Theorem 2.

Definition 32. 1. An object of HuSpecD is a system ((X, τX), Xd) where (X,LX) is a
Heyting up-spectral space and Xd ⊆ X is a constructibly dense subset.

2. A morphism from ((X, τX), Xd) to ((Y, τY), Yd) in HuSpecD is such a Heyting spectral
mapping between Heyting up-spectral spaces g : (X, τX) → (Y, τY) that g(Xd) ⊆ Yd.
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Definition 33. 1. An object of HSpecBD is a system ((X, τX), COs(X), Xd) where (X, τX)
is a Heyting spectral space, COs(X) is a bornology in the Heyting algebra CO(X) and
Xd ⊆ ⋃

COs(X) (a decent lump of X) is constructibly dense and such that CO(X)d =
(COs(X)d)

o ⊆ P(Xd).
2. A morphism from ((X, τX), COs(X), Xd) to ((Y, τY), COs(Y), Yd) in

HSpecBD is such a Heyting spectral mapping g : (X, τX) → (Y, τY) between Heyt-
ing spectral spaces that satisfies the condition of boundedness ∀A ∈ COs(X) ∃B ∈
COs(Y) g(A) ⊆ B, and respects the decent lump: g(Xd) ⊆ Yd.

Similarly to Lemma 3, we have

Lemma 2. The categories HuSpecD and HSpecBD are equivalent.

Proof. Theorem 5 of [23] gives us equivalence between uSpec and uSpLSS. Similarly,
uSpecD is equivalent to uSpLSSD, which is clearly equivalent to LSS0. Now Theorem
1 of [23] gives us equivalence between LSS0 and SpecBD. Restricting to Heyting objects
and Heyting morphisms, we get the equivalence between HuSpecD and HSpecBD.

Definition 34. 1. An object of HABD is a system (L, Ls, DL) with
L = (L,∨,∧,→, 0, 1) a Heyting algebra, Ls a bornology in L and DL ⊆ ⋃

L̃s ⊆ PF(L) a
constructibly dense set satisfying L̃ ∩1 DL = (L̃s ∩1 DL)

o ⊆ P(DL).
2. A morphism of HABD from (L, Ls, DL) to (M, Ms, DM) is such a homomorphism of

Heyting algebras h : L → M that is dominating (i.e., ∀a ∈ Ms ∃b ∈ Ls a ≤ h(b)) and
h•(DM) ⊆ DL.

Fact 13 ([21], Theorem 2). If h : A → B is a Heyting algebra homomorphism, then h• : PF(B) →
PF(A) is a Heyting spectral map between Heyting spectral spaces.

Proposition 12. If f : X → Y is a Heyting bounded continuous map between Heyting locally
small spaces, then Lo f : Lo

Y → LX is a homomorphism of Heyting algebras.

Proof. We only check up the condition with the intuitionistic implication. For V, W ∈ Lo
Y,

we have (Lo f )(W → V) = f−1(ext(W \ V)) = ext( f−1(W) \ f−1(V)) = (Lo f )(W) →
(Lo f )(V).

11. Esakia Duality for Locally Small Spaces

Corollary 10. Concretely isomorphic categories HuSpecD, uEsaD, ELSSD are equivalent to
HLSS.

Proof. Follows from Theorem 2.

Theorem 4 (Esakia Duality for locally small spaces). The categories HLSS, HuSpecD,
uEsaD, ELSSD and HSpecBD are dually equivalent to HABD.

Proof. By the corollary above, we need only to prove that HLSS and HSpecBD are dually
equivalent to HABD. Since our proof is about the restrictions of functors from the proof of
Theorem 1 in [23], we concentrate on objects and morphisms being Heyting. We shall use
the notations from that proof.

Step 1: The restriced functor R̄ : HSpecBD → HLSS.
Assume ((X, τX), COs(X), Xd) is an object of HSpecBD. Then COs(X) is a basis of

the induced topology on Xs and the original topology of (Xd, COs(X)d) is the topology
induced from (X, τX). We are to check the Heyting closure condition for the locally small
space (Xd, COs(X)d). Assume B ∈ LCon(Xd, COs(X)d). For V ∈ COs(X), we have B∩V ∈
sCon(Xd, COs(X)d) ⊆ Con(Xd, CO(X)d), so int(B∩V) ∈ CO(X)d ∩1 COs(X)d = COs(X)d.
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Since COs(X)d is a basis of the induced topology of Xd stable under finite intersections,
int(B) =

⋃
V∈COs(X) int(B ∩ V) ∈ AdOp(Xd, COs(X)d).

Assume f : X → Y is a morphism of HSpecBD. Since

∀C ∈ Con(Y, CO(Y)) f−1(C) = f−1(C),

we also have
∀D ∈ Con(Yd, CO(Y)d) f−1

d (Dd
) = f−1

d (D)
d
.

Indeed, for any D = C ∩ Yd ∈ Con(Yd, CO(Y)d), we have Dd
= C ∩ Yd ∩ Yd = C ∩ Yd.

Applying this to the Heyting mapping condition, we have f−1
d (Dd

) = f−1
d (C ∩ Yd) =

f−1(C) ∩ Xd = f−1(C) ∩ Xd = f−1(C) ∩ Xd ∩ Xd = f−1(D) ∩ Xd ∩ Xd = f−1
d (D)

d
.

Take now K ∈ LCon(Yd, COs(Y)d). We can express its topological closure in Yd
(omitting d) as K =

⋃{K ∩ V : V ∈ COs(Y)d}. That is why f−1
d (K) =

⋃{ f−1
d (K ∩ V) :

V ∈ COs(Y)d}. Each K ∩ V belongs to Con(Yd, COs(Y)d) ⊆ Con(Yd, CO(Y)d). Hence
f−1
d (K ∩ V) = f−1

d (K ∩ V). We get
⋃{ f−1

d (K ∩ V) : V ∈ COs(Y)d} =
⋃{ f−1

d (K ∩ V) : V ∈
COs(Y)d} =

⋃{ f−1
d (K) ∩ W : W ∈ COs(X)d} = f−1

d (K) and fd is a Heyting bounded
continuous mapping.
Step 2: The restricted functor S̄ : HABDop → HSpecBD.

By the classical Esakia Duality (see Remark 10 in [21]), the topological space PF(A)
is Heyting spectral for a Heyting algebra A. Moreover, h• : PF(M) → PF(L) a Heyting
spectral map for a morphism h : L → M of HABD.
Step 3: The restricted functor Ā : HLSS → HABDop.

For a Heyting locally small space (X,LX), the intuitionistic implication in the bounded
lattice Lo

X can be introduced by the formula U → V = ext(U \ V), making it a Heyting al-
gebra by Proposition 11. For a morphism f in HLSS, the mapping Lo f is a homomorphism
of Heyting algebras by Proposition 12.
Step 4: The functor R̄S̄Ā is naturally isomorphic to IdHLSS.

The mapping ηX : (X̂, L̃X
d
) → (X,LX) is a strict homeomorphism by Proposition 2 of

[23] and an isomorphism of HLSS by Fact 12.
Step 5: The functor S̄ĀR̄ is naturally isomorphic to IdHSpecBD.

Each θX is an isomorphism in SpecBD as well as an isomorphism of HSpec by Fact
11 in [21], so an isomorphism of HSpecBD.
Step 6: The functor ĀR̄S̄ is naturally isomorphic to IdHABDop .

Each κL : L → L̃d is an order isomorphism hence, by [32, Exercise IX.4.3], an isomor-
phism of Heyting algebras.

Corollary 11. Restrictions of Heyting bounded continuous maps between Heyting up-spectral
locally small spaces to decent locally small subspaces are Heyting bounded continuous.

Proof. Follows from Step 1 in the proof of Theorem 4.

Lemma 3. The categories HuSpec and HSpecB are equivalent and dually equivalent to HAB.

Proof. That HuSpec and HSpecB are equivalent follows from Theorem 5 in [23] by re-
stricting to Heyting objects and Heyting morphisms.

That HSpecB is dually equivalent to HAB follows from Theorem 4 by restricting to
the case Xd = Xs.

Corollary 12 (Esakia Duality for up-spectral spaces). The categories HuSpec, HuSpLSS,
uEsa, ELSS, HSpecB are dually equivalent to HAB.

Proof. Follows from Lemma 3 and Corollary 4.
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Corollary 13 (Esakia Duality for spectral spaces). The categories HSpec, HSpSS, Esa, ESS
are dually equivalent to HA.

12. Conclusions

We have proved many facts about concrete isomorphisms, equivalences and dual
equivalences between categories, summarised in the following two tables. (The main new
theorem is Theorem 4, followed by Theorem 2.) In each row of the first table, the first four
categories are concretely isomorphic, equivalent to the category in the fifth column and
dually equivalent to the category in the last column.

SpSS Spec Pri PSS Lat
HSpSS HSpec Esa ESS HA
uSpLSS uSpec uPri PLSS SpecB LatB

HuSpLSS HuSpec uEsa ELSS HSpecB HAB

In each row of the second table, the categories in second, third and fourth columns are
concretely isomorphic, equivalent to the category in the first and fifth columns and dually
equivalent to the category in the last column.

SS0 SpecD PriD PSSD LatD
HSS HSpecD EsaD ESSD HAD
LSS0 uSpecD uPriD PLSSD SpecBD LatBD
HLSS HuSpecD uEsaD ELSSD HSpecBD HABD

This makes another step, after [23] and [21], in developing tame topology. To do this,
we have introduced new notions and notations as well as proved many auxiliary facts
about locally small spaces and presented many examples illustrating the introduced notions.
Among the things worth mentioning are the notion of a special bornology (Definition 13) in
a distributive bounded lattice and Example 2 using the theory of closure algebras. Moreover,
we have shown (Theorem 3) how Dimov’s version (from [45]) of Stone Duality for Boolean
spaces with continuous mappings agrees with our versions of Stone Duality. We have also
introduced the standard up-spectralification (Definition 20) of a Kolmogorov locally small
space and extended many features of the theory of Heyting small spaces from our previous
paper [21] to the locally small context.
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39. Piękosz, A. On generalized topological spaces II. Ann. Polon. Math. 2013, 108, 185–214.
40. Pillay, A. On groups and fields definable in o-minimal structures. J. Pure Appl. Algebra 1988, 53, 239–255.
41. Mac Lane, S. Categories for the Working Mathematician; Springer: New York, NY, USA, 1998.
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