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Abstract: A well-known result of Posner’s second theorem states that if the commutator of each

element in a prime ring and its image under a nonzero derivation is central, then the ring is

commutative. In the present paper, we extend this bluestocking theorem to an arbitrary ring with

involution involving prime ideals. Further, apart from proving several other interesting and exciting

results, we establish ∗-version of Vukman’s theorem [[48], Theorem 1]. Precisely, we describe the

structure of quotient ring A/L , where A is an arbitrary ring and L is a prime ideal of A. Further, by

taking advantage of the ∗-version of Vukman’s theorem, we show that if a 2-trosion free semipring A

with involution admits a nonzero ∗-centralizing derivation, then A contains a nonzero central ideal.

This result is in a spirit of the classical result due to Bell and Martindale [[19], Theorem 3]. As the

applications, we extends and unify several classical theorems proved in [6],[25], [42] and [48]. Finally,

we conclude our paper with a direction for further research.

Keywords: Derivation; ∗-centralizing derivation; ∗-commuting derivation; involution; prime ideal;

prime ring; semiprime ring
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1. Introduction

The motivation for this paper lies in an attempt to extend in some way the famous results due to

Posner [46], Vukman [48] and Ali-Dar [6]. A number of authors have generalized these theorems in

several ways (see, for example, [16],[20], [33],[35], [39], [42], [50], [51], where further references can be

found). Throughout this article, A will represent an associative ring with center Z(A). The standard

polynomial identity s4 in four variables is defined as s4(ℓ1, ℓ2, ℓ3, ℓ4) = ∑σ∈s4
(−1)σℓσ(1)ℓσ(2)ℓσ(3)ℓσ(4),

where (−1)σ is +1 or −1 according to σ being an even or odd permutation in symmetric group s4. For

any s, t ∈ A, the symbol [s, t] = st − ts stands for commutator, while the symbol s ◦ t will stand for the

anti-commutator st + ts. The higher order commutator is define as follows: for any s, t ∈ A,

[s, t]0 = s, [s, t]1 = [s, t] = st − ts and [s, t]2 = [[s, t], t],

and inductively, we write [s, t]k = [[s, t]k−1, t], (where k > 1 is a fixed integer), is called commutator

of order k or simply kth-commutator. It is also known as Engel condition in literature (viz.; [35]).

Analogously, we define the higher order anit-commutator, and set

s ◦0 t = s, s ◦1 t = st + ts and s ◦2 t = (s ◦1 t) ◦ t,

and inductively, we set s ◦k t = (s ◦k−1 t) ◦ t for k > 1, is called anti-commutator of order k.

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 June 2023                   doi:10.20944/preprints202306.0163.v1

©  2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://orcid.org/0000-0001-5162-7522
https://orcid.org/0000-0001-7856-2861
https://orcid.org/0000-0003-4414-1932
https://orcid.org/
https://orcid.org/
https://orcid.org/0000-0002-5525-6658
https://doi.org/10.20944/preprints202306.0163.v1
http://creativecommons.org/licenses/by/4.0/


2 of 21

“Recall that a ring A is called prime if, for a, b ∈ A, aAb = (0) implies a = 0 or b = 0. By a prime

ideal of a ring A, we mean a proper ideal L and for ℓ, ϑ ∈ A, ℓAy ⊆∈ L implies that ℓ ∈ L or ϑ ∈ L. We

note that for a prime ring A, (0) is the prime ideal of A and A/L is a prime ring. An ideal L of a ring A

is called semiprime if it is the intersection of prime ideals or alternatively, if aAa ⊆ L implies that a ∈ L

for any a ∈ A. A ring A is said to be n-torsion free if nℓ = 0, ℓ ∈ A implies ℓ = 0. An additive mapping

ℓ 7→ ℓ∗ satisfying (ℓy)∗ = (ϑ)∗ℓ∗ and (ℓ∗)∗ = ℓ is called an involution. A ring equipped with an

involution is known as ring with involution or ∗-ring. An element ℓ in a ring with involution ∗ is said

to be hermitian if ℓ∗ = ℓ and skew-hermitian if ℓ∗ = −ℓ. The sets of all hermitian and skew-hermitian

elements of A will be denoted by H(A) and S(A), respectively. If A is 2-torsion free then every ℓ ∈ A

can be uniquely represented in the form 2ℓ = h + k where h ∈ H(A) and k ∈ S(A). The involution is

said to be of the first kind if H(A) ⊆ Z(A), otherwise it is said to be of the second kind. We refer the

reader to [32] for justification and amplification for the above mentioned notations and key definitions.

A map e : A → A is a derivation of a ring A if e is additive and satisfies e(ℓϑ) = e(ℓ)ϑ + ℓe(ϑ) for

all ℓ, ϑ ∈ A. A derivation e is called inner if there exists a ∈ A such that e(ℓ) = [a, ℓ] for all ℓ ∈ A. An

additive map F : A → A is called a generalized derivation if there exists a derivation e of A such that

F(ℓϑ) = F(ℓ)ϑ + ℓe(ϑ) for all ℓ, ϑ ∈ A (see [14] for details). For a nonempty subset S of A, a mapping

ξ : S → A is called commuting (resp. centralizing) on S if [ξ(ℓ), ℓ] = 0 (resp. [ξ(ℓ), ℓ] ∈ Z(A)) for all

ℓ ∈ S. The study of commuting and centralizing mappings goes back to 1955 when Divinsky [31]

proved that a simple artinian ring is commutative if it has a commuting automorphism different from

the identity mapping. Two years later Posner [46] showed that a prime ring must be commutative

if it admits a nonzero centralizing derivation. In 1970, Luh [38] generalized Divinsky’s result for

prime rings. Later Mayne [44] established the analogous result of Posner for nonidentity centralizing

automorphisms. The culminating results in this series can be found in [19], [20],[21], [33,35], [43]

and [48,49]. In [48], Vukman generalized Posner’s second theorem for second order commutator and

established that if a prime ring of characteristic different from 2 admits a nonzero derivation e such

that [e(ℓ), ℓ]2 = 0 for all ℓ ∈ A, then A is commutative. Most classical and elegant generalization of

Posner’s second theorem is due to Lanski [34]. Precisely, he proved that if a prime ring A admits a

nonzero derivation e such that [e(ℓ), ℓ]k = 0 for all ℓ ∈ L, where L is a non-commutative Lie ideal of

A and k > 0 a fixed integer, then char(A) = 2 and A ⊆ M2(F) for a field F. These results have been

extended in various ways (viz; [3], [23], [26], [30], [50], [51] and references therein). The goal of this

paper is to study these results in the setting of arbitrary rings with involution involving prime ideals

and describe the structure of a quotient ring A/L, where A is an arbitrary ring and L is a prime ideal

of A.

Let A be a ring with involution ∗ and S be a nonempty subset of A. Following [6,25], a mapping φ

of A into itself is called ∗-centralizing on S if φ(ℓ)ℓ∗ − ℓ∗φ(ℓ) ∈ Z(A) for all ℓ ∈ S, in the special case

where φ(ℓ)ℓ∗ − ℓ∗φ(ℓ) = 0 for all ℓ ∈ S, the mapping φ is said to be ∗-commuting on S. In [6,25], the

first author together with Dar initiated the study of these mappings and proved that the existence of a

nonzero ∗-centralizing derivation of a prime ring with second kind involution forces the ring to be

commutative. Apart from the characterizations of these mappings of prime and semiprime rings with

involution, they also proved ∗-version of Posner’s second theorem and its related problems. Precisely,

they established that : Let A be a prime ring with involution ∗ such that char(A) ̸= 2. Let e be a

nonzero derivation of A such that [e(ℓ), ℓ∗] ∈ Z(A) for all ℓ ∈ A and e(S(A) ∩ Z(A)) ̸= (0). Then A is

commutative. Futher, they showed that every ∗-commuting map f : A → A on semiprine ring with

involution of characteristic different from two is of the form f (ℓ) = λℓ∗ + µ′(ℓ) for all ℓ ∈ A, λ ∈ C

(the extended centroid of A) and µ′ : A → C is an additive mapping. In the sequel, recently Nejjar et

al. [42, Theorem 3.7] established that if a 2-torsion free prime ring with involution of the second kind

admits a nonzero derivation e such that e(ℓ)ℓ∗ − ℓ∗e(ℓ) ∈ Z(A) for all ℓ ∈ A, then A is commutative.

In 2020, Alahmadi et al. [2] extend the above mentioned result for generalized derivations. Over the

last few years the interest on this topic has been increased and numerous papers concerning these

mappings on prime rings have been published (see [1], [2], [7], [8], [9], [10], [13], [39], [42], [45] and
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references therein). In [24], Creedon studied the action of derivations of prime ideals and proved that

if e is a derivation of a ring A and L is a semiprime ideal of A such that A/L is characteristic-free and

ek(L) ⊆ L, then e(L) ⊆ L for some positive integer k.

In view of the above observations and motivation, the aims of the present paper is to prove the

following main theorems.

Theorem-A Let A be a ring with involution ∗ of the second kind and L a prime ideal of A such that

S(A) ∩ Z(A) ̸⊆ L. If e1 and e2 are derivations of A such that e1(ℓ)ℓ
∗ − ℓ∗e2(ℓ) ∈ L for all ℓ ∈ A, then

one of the following holds:

1. char(A/L) = 2
2. e1(A) ⊆ L and e2(A) ⊆ L

3. A/L is a commutative integral domain.

Theorem-B Let A be a ring with involution ∗ of the second kind and L a prime ideal of A such that

S(A) ∩ Z(A) ̸⊆ L. If e1 and e2 are derivations of A such that [e1(ℓ), ℓ
∗] + [ℓ, e2(ℓ

∗)] + [ℓ, ℓ∗] ∈ L for all

ℓ ∈ A, then one of the following holds:

1. char(A/L) = 2
2. A/L is a commutative integral domain.

Theorem-C Let A be a ring with involution ∗ of the second kind and L a prime ideal of A such that

S(A) ∩ Z(A) ̸⊆ L. If A admits a derivation e such that e(ℓℓ∗)− e(ℓ∗)e(ℓ) ∈ L for all ℓ ∈ A, then one of

the following holds:

1. char(A/L) = 2
2. e(A) ⊆ L.

Theorem-D Let A be a ring with involution ∗ of the second kind and L a prime ideal of A such that

S(A) ∩ Z(A) ̸⊆ L. If A admits a derivation e such that [[e(ℓ), ℓ∗], ℓ∗] ∈ L for all ℓ ∈ A, then one of the

following holds:

1. char(A/L) = 2
2. e(A) ⊆ L

3. A/L is a commutative integral domain.

Theorem-E Let A be a 2-torsion free semiprime ring with involution ∗ of the second kind. If A admits

a nonzero ∗-centralizing derivation e, i.e., [e(ℓ), ℓ∗] ∈ Z(A) for all ℓ ∈ A, then A contains a nonzero

central ideal.

In view of ∗-centralizing mappings, Theorem-e and Theorem-E recognized as the ∗-versions of

well known theorems due to Posner [46] and Vukman [48]. As the applications of Theorems A to E

just mentioned above, we extends and unify several classical theorems proved in [6], [7], [25], [42], [46]

and [48,49]. Since these results are in new direction, so there are various interesting open problems

related to our work. Hence, we conclude our paper with a direction for further research in this new

and exciting area of theory rings with involution.

We shall do a great deal of calculation with commutators and anti-commutators, routinely using

the following basic identities: For all s, t, w ∈ A;

[st, w] = s[t, w] + [s, w]t and [s, tw] = t[s, w] + [s, t]w

s ◦ (tw) = (s ◦ t)w − t[s, w] = t(s ◦ w) + [s, t]w

(st) ◦ w = s(t ◦ w)− [s, w]t = (s ◦ w)t + s[t, w].
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2. Preliminary Results

Let A be ∗-ring. Following [8,47], an additive mapping e : R → R is called a ∗-derivation of

A if e(ℓϑ) = e(ℓ)ϑ∗ + ℓd(ϑ) for all ℓ, ϑ ∈ A. An additive mapping e : A → A is called a Jordan

∗-derivation of A if e(ℓ2) = e(ℓ)ℓ∗ + ℓe(ℓ) for all ℓ ∈ A. In [21], Brešar showed that if a prime ring

A admit nonzero derivations e1 and e2 of A such that e1(ℓ)ℓ− ℓe2(ℓ) ∈ Z(A) for all ℓ ∈ I, where I is

a nonzero left ideal of A, then A is commutative. Further, this result was extended by Argac [12] as

follows: Let A be a semiprime ring and e1, e2 are derivations of A such that at least one is nonzero. If

e1(ℓ)ℓ− ℓe2(ℓ) ∈ Z(A) for all ℓ ∈ A , then A contains a nonzero central ideal. Motivated by the above

mentioned results, first author together with Alhazmi et al. [10] studied more general problem in the

setting of rings with involution. Prescisely, they proved that if a (m + n)!-torsion free prime ring with

involution of the second kind admit Jordan ∗-derivations e and g of A such that e(ℓm)ℓn ± ℓng(ℓm) = 0

for all ℓ ∈ A (where m and n are fixed positive integers), then e = g = 0 or A is commutative. In the

sequel, very recently Nejjar et al. [42, Theorem 3.7] established that if a 2-torsion free prime ring with

involution of the second kind admits a nonzero derivation e such that e(ℓ)(ℓ)∗ − (ℓ)∗e(ℓ) ∈ Z(A) for

all ℓ ∈ A, then A is commutative. The goal of this section is to initiate the study of a more general

concept than ∗-centralizing mappings are; that is, we consider the situation when the mappings φ and

ξ of a ring A satisfy φ(ℓ)(ℓ)∗ − (ℓ)∗ξ(ℓ) ∈ L for all ℓ ∈ A, where A is an arbitrary ring and L is a prime

ideal of A. Precisely, we prove the following theorem.

Theorem 1. Let A be a ring with involution ∗ of the second kind and L a prime ideal such that S(A)∩Z(A) ̸⊆ L.

If e1 and e2 are derivations of A such that e1(ℓ)(ℓ)
∗ − (ℓ)∗e2(ℓ) ∈ L for all ℓ ∈ A, then one of the following

holds:

1. char(A/L) = 2
2. e1(A) ⊆ L and e2(A) ⊆ L

3. A/L is a commutative integral domain.

Following are the immediate consequences of Theorem 1. In fact, Corollary 1 is in sprit of the

result due to Posner’s second theorem.

Corollary 1. Let A be a ring with involution ∗ of the second kind and L a prime ideal of A such that

S(A) ∩ Z(A) ̸⊆ L. If A admits a derivation e such that [e(ℓ), (ℓ)∗] ∈ L for all ℓ ∈ A, then one of the

following holds:

1. char(A/L) = 2
2. e(A) ⊆ L

3. A/L is a commutative integral domain.

Corollary 2. Let A be a ring with involution ∗ of the second kind and L a prime ideal of A such that

S(A) ∩ Z(A) ̸⊆ L. If A admits a derivation e such that e(ℓ) ◦ (ℓ)∗ ∈ L for all ℓ ∈ A, then one of the

following holds:

1. char(A/L) = 2
2. e(A) ⊆ L.

Corollary 3. Let A be a prime ring with involution ∗ of the second kind such that char(A) ̸= 2. If A admits a

∗-commuting derivation e, then e = 0 or A is a commutative integral domain.

Corollary 4. Let A be a prime ring with involution ∗ of the second kind such that char(A) ̸= 2. If A admits a

derivation e such that e(ℓ) ◦ (ℓ)∗ = 0 for all ℓ ∈ A, then e = 0.

For the proof of Theorem 1, we need the following lemmas, some of which are of independent

interest. We begin our discussions with the following.
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Lemma 1. [5, Lemma 2.1] Let A be a ring, L be a prime ideal of A. If e is a derivation of A satisfying the

condition [e(ℓ), ℓ] ∈ L for all ℓ ∈ A, then e(A) ⊆ L or A/L is a commutative.

Lemma 2. [41, Lemma 1] Let A be a ring, L a prime ideal of A, e1 and e2 derivations of A. Then e1(ℓ)ℓ−

ℓe2(ℓ) ∈ L for all ℓ ∈ A if and only if (e1(A) ⊆ L and e2(A) ⊆ L) or A/L is a commutative integral domain."

Lemma 3. Let A be a ring with involution ∗ of the second kind and L a prime ideal of A such that S(A) ∩

Z(A) ̸⊆ L. If [ℓ, (ℓ)∗] ∈ L for all ℓ ∈ A, then one of the following holds:

1. char(A/L) = 2
2. A/L is a commutative integral domain.

Proof. We assume that char(A/L) ̸= 2. By the assumption, we have

[ℓ, (ℓ)∗] ∈ L (1)

for all ℓ ∈ A. Direct linearization of relation (1) gives

[ℓ, ϑ∗] + [ϑ, (ℓ)∗] ∈ L (2)

for all ℓ, ϑ ∈ A. Replacing ℓ by ℓk in (2), where 0 ̸= k ∈ S(A) ∩ Z(A), we get

k[ℓ, (ϑ)∗]− k[ϑ, (ℓ)∗] ∈ L

for all ℓ, ϑ ∈ A. Since S(A) ∩ Z(A) ⊈∈ L, it follows that

[ℓ, (ϑ)∗]− [ϑ, (ℓ)∗] ∈ L (3)

for all ℓ, ϑ ∈ A. Combining (2) and (3), we obtain

2[ℓ, (ϑ)∗] ∈ L

for all ℓ, ϑ ∈ A. This implies that

[ℓ, ϑ] ∈ L (4)

for all ℓ, ϑ ∈ A. Since elements of A/L are cosets and notice that ℓ ∈ L implies ℓ+ L = L. Therefore,

the above equation gives

ℓϑ − ϑℓ+ L = L (5)

for all ℓ, ϑ ∈ A and hence, we infer that

ℓϑ + L = ϑℓ+ L (6)

for all ℓ, ϑ ∈ A. This can be written as

(ℓ+ L)(ϑ + L) = (ϑ + L)(ℓ+ L) (7)

for all ℓ, ϑ ∈ A. This implies that A/L is commutative. Now we show that A/L is integral domain. We

suppose that

(ℓ+ L)(ϑ + L) = L

for all ℓ, ϑ ∈ A. This is equivalent to the expression

ℓϑ + L = L
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for all ℓ, ϑ ∈ A. This implies that ℓϑ ∈ L for all ℓ, ϑ ∈ A. For any r ∈ A, we have r(ℓϑ) ∈ L for all

ℓ, ϑ ∈ A. This gives ℓrϑ ∈ L. Hence, ℓAϑ ⊆∈ L. Thus, we get ℓ ∈ L or ϑ ∈ L. This further implies that

ℓ+ L = L or ϑ + L = L. This shows that A/L is an integral domain. Consequently, we conclude that

A/L is a commutative integral domain. This proves the lemma.

In view of Lemmas 2.6 & 2.8, we conclude the following result.

Lemma 4. Let A be a ring, L be a prime ideal of A. If e is a derivation of A satisfying the condition [e(ℓ), ℓ] ∈ L

for all ℓ ∈ A, then e(A) ⊆ L or A/L is a commutative integral domain.

We are now ready to prove our first main theorem.

Proof of Theorem 1. We assume that char(A/L) ̸= 2. By the assumption, we have

e1(ℓ)(ℓ)
∗ − (ℓ)∗e2(ℓ) ∈ L for all ℓ ∈ A. (8)

Linearizing (8), we have

e1(ℓ)(ϑ)
∗ + e1(ϑ)(ℓ)

∗ − (ℓ)∗e2(ϑ)− (ϑ)∗e2(ℓ) ∈ L for all ℓ, ϑ ∈ A. (9)

Replacing ℓ by ℓh in (9), where 0 ̸= h ∈ H(A) ∩ Z(A), we get

(e1(ℓ)(ϑ)
∗ + e1(ϑ)(ℓ)

∗ − (ℓ)∗e2(ϑ)− (ϑ)∗e2(ℓ))h + ℓ(ϑ)∗e1(h)− (ϑ)∗ℓe2(h) ∈ L for all ℓ, ϑ ∈ A.

Application of (9) yields

ℓ(ϑ)∗e1(h)− (ϑ)∗ℓe2(h) ∈ L for all ℓ, ϑ ∈ A.

This gives that

ℓϑe1(h)− ϑℓe2(h) ∈ L for all ℓ, ϑ ∈ A. (10)

Replace h by k2 in (10), where 0 ̸= k ∈ S(A) ∩ Z(A) ̸⊆ L, to get

ℓϑe1(k)− ϑℓe2(k) ∈ L for all ℓ, ϑ ∈ A. (11)

Substituting ℓk in place of ℓ in (9), where 0 ̸= k ∈ S(A) ∩ Z(A), we arrive at

e1(ℓ)(ϑ)
∗k + ℓ(ϑ)∗e1(k)− e1(ϑ)(ℓ)

∗k + (ℓ)∗e2(ϑ)k − (ϑ)∗ℓe2(k)− (ϑ)∗e2(ℓ)k ∈ L (12)

for all ℓ, ϑ ∈ A. From (9), we have

e1(ℓ)(ϑ)
∗k + e1(ϑ)(ℓ)

∗k − (ℓ)∗e2(ϑ)k − (ϑ)∗e2(ℓ)k ∈ L for all ℓ, ϑ ∈ A. (13)

Adding (12) and (13), we obtain

2e1(ℓ)(ϑ)
∗k − 2(ϑ)∗e2(ℓ)k + ℓ(ϑ)∗e1(k)− (ϑ)∗ℓe2(k) ∈ L for all ℓ, ϑ ∈ A

this impels

2e1(ℓ)ϑk − 2ϑe2(ℓ)k + ℓϑe1(k)− ϑℓe2(k) ∈ L (14)

for all ℓ, ϑ ∈ A. Using (11) in (14), we have

2e1(ℓ)ϑk − 2ϑe2(ℓ)k ∈ L for all ℓ, ϑ ∈ A.
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Since char(A/L) ̸= 2 and S(A) ∩ Z(A) ⊈∈ L, we have

e1(ℓ)ϑ − ϑe2(ℓ) ∈ L for all ℓ, ϑ ∈ A. (15)

In particular, for ϑ = ℓ, we get e1(ℓ)ℓ− ℓe2(ℓ) ∈ L for all ℓ ∈ A. Therefore, from Lemma 2, we conclude

that (e1(A) ⊆ L and e2(A) ⊆ L) or A/L is a commutative integral domain. □

Corollary 5. Let A be a prime ring with involution ∗ of the second kind such that char(A) ̸= 2. If A admit

derivations e1 and e2 such that e1(ℓ)(ℓ)
∗− (ℓ)∗e2(ℓ) = 0 for all ℓ ∈ A, then e1 = e2 = 0 or A is a commutative

integral domain.

We now prove another theorem in this vein.

Theorem 2. Let A be a ring with involution ∗ of the second kind and L a prime ideal of A such that S(A) ∩

Z(A) ̸⊆ L. If A admits a derivation e such that [e(ℓ), (ℓ)∗] + [ℓ, (ℓ)∗] ∈ L for all ℓ ∈ A, then one of the

following holds:

1. char(A/L) = 2
2. A/L is a commutative integral domain.

Proof. Suppose that char(A/L) ̸= 2. By the assumption, we have

[e(ℓ), (ℓ)∗] + [ℓ, (ℓ)∗] ∈ L (16)

for all ℓ ∈ A. First we assume that e(A) ⊆ L. Then, result follows by Lemma 3. Henceforward, we

suppose that e(A) ̸⊆ L. Linearizing (16), we get

[e(ℓ), (ϑ)∗] + [d(ϑ), (ℓ)∗] + [ℓ, (ϑ)∗] + [ϑ, (ℓ)∗] ∈ L (17)

for all ℓ, ϑ ∈ A. Replacing ℓ by ℓh in (17), where 0 ̸= h ∈ H(A) ∩ Z(A), we get

e(h)[ℓ, (ϑ)∗] ∈ L

for all ℓ, ϑ ∈ A. Replacing h by k2 in the last relation, where 0 ̸= k ∈ S(A) ∩ Z(A) ̸⊆ L and using the

hypotheses, we arrive at

e(k)[ℓ, (ϑ)∗] ∈ L (18)

for all ℓ, ϑ ∈ A. Replacing ℓ by ℓk in (17), where 0 ̸= k ∈ S(A) ∩ Z(A) ̸⊆ L, we find that

d(k)[ℓ, (ϑ)∗] + k[e(ℓ), (ϑ)∗]− k[d(ϑ), (ℓ)∗] + k[ℓ, (ϑ)∗]− k[ϑ, (ℓ)∗] ∈ L (19)

for all ℓ, ϑ ∈ A. Using (18) and the condition S(A) ∩ Z(A) ̸⊆ L in (19), we obtain

[e(ℓ), (ϑ)∗]− [d(ϑ), (ℓ)∗] + [ℓ, (ϑ)∗]− [ϑ, (ℓ)∗] ∈ L (20)

for all ℓ, ϑ ∈ A. Addition of (17) and (20) gives that

2([e(ℓ), (ϑ)∗] + [ℓ, (ϑ)∗]) ∈ L

for all ℓ, ϑ ∈ A. This implies

[e(ℓ), ϑ] + [ℓ, ϑ] ∈ L

for all ℓ, ϑ ∈ A. In particular, for ϑ = ℓ, we have

[e(ℓ), ℓ] ∈ L
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for all ℓ ∈ A. In view of Lemma 4, we conclude that A/L is a commutative integral domain.

The following result is interesting in itself.

Theorem 3. Let A be a ring with involution ∗ of the second kind and L a prime ideal of A such that S(A) ∩

Z(A) ̸⊆ L. If e1 and e2 are derivations of A such that [e1(ℓ), (ℓ)
∗] + [ℓ, e2((ℓ)

∗)] + [ℓ, (ℓ)∗] ∈ L for all ℓ ∈ A,

then one of the following holds:

1. char(A/L) = 2
2. A/L is a commutative integral domain.

Proof. Assume that char(A/L) ̸= 2. By the assumption, we have

[e1(ℓ), (ℓ)
∗] + [ℓ, e2((ℓ)

∗)] + [ℓ, (ℓ)∗] ∈ L (21)

for all ℓ ∈ A. We divide the proof in three cases.

Case (i): First we assume that e2(A) ⊆ L. Then, relation (21) reduces to

[e1(ℓ), (ℓ)
∗] + [ℓ, (ℓ)∗] ∈ L

for all ℓ ∈ A. In view of Theorem 2, we get the required result.

Case (ii): Now we assume that e1(A) ⊆ L. Then, relation (21) reduces to

[ℓ, e2((ℓ)
∗)] + [ℓ, (ℓ)∗] ∈ L

for all ℓ ∈ A. This can be further written as

[e2((ℓ)
∗), ℓ] + [(ℓ)∗, ℓ] ∈ L (22)

for all ℓ ∈ A. If e2(A) ⊆ L, then result follows by Lemma 3. Henceforward, we suppose that e2(A) ̸⊆ L.

Linearizing (22), we get

[e2((ℓ)
∗), ϑ] + [e2((ϑ)

∗), ℓ] + [(ℓ)∗, ϑ] + [(ϑ)∗, ℓ] ∈ L (23)

for all ℓ, ϑ ∈ A. Replacing ℓ by ℓh in (23), where 0 ̸= h ∈ H(A) ∩ Z(A), we get

e2(h)[(ℓ)
∗, ϑ] ∈ L

for all ℓ, ϑ ∈ A. This implies that

e2(h)[ℓ, ϑ] ∈ L

for all ℓ, ϑ ∈ A. Replacing h by k2 in the last relation, where 0 ̸= k ∈ S(A) ∩ Z(A), we arrive at

2e2(k)[ℓ, ϑ]k ∈ L

for all ℓ, ϑ ∈ A. Since char(A/L) ̸= 2, the last relation gives

e2(k)[ℓ, ϑ]k ∈ L (24)

for all ℓ, ϑ ∈ A. Replacing ℓ by ℓk in (23), where 0 ̸= k ∈ S(A) ∩ Z(A), we find that

−e2(k)[(ℓ)
∗, ϑ]− k[e2((ℓ)

∗), ϑ] + k[e2((ϑ)
∗), ℓ]− k[(ℓ)∗, ϑ] + k[(ϑ)∗, ℓ] ∈ L (25)
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for all ℓ, ϑ ∈ A. Left multiplying in (23) by k, we obtain

k[e2((ℓ)
∗), ϑ] + k[e2((ϑ)

∗), ℓ] + k[(ℓ)∗, ϑ] + k[(ϑ)∗, ℓ] ∈ L (26)

for all ℓ, ϑ ∈ A. Combining (25) and (26), we get

−e2(k)[(ℓ)
∗, ϑ] + 2k[e2((ϑ)

∗), ℓ] + 2k[(ϑ)∗, ℓ] ∈ L (27)

for all ℓ, ϑ ∈ A. Replacing ϑ by ϑk in (27) and using (24), where 0 ̸= k ∈ S(A) ∩ Z(A), we get

2k2([e2(ϑ), ℓ] + [ϑ, ℓ]) ∈ L

for all ℓ, ϑ ∈ A. Using the assumption char(A/L) ̸= 2, we find that

k2([e2(ϑ), ℓ] + [ϑ, ℓ]) ∈ L (28)

for all ℓ, ϑ ∈ A. Application of the primeness of L yields k2 ∈ L or [e2(ϑ), ℓ] + [ϑ, ℓ] ∈ L. The first case

k2 ∈ L implies k ∈ L, which gives a contradiction. Thus, we have

[e2(ϑ), ℓ] + [ϑ, ℓ] ∈ L

for all ℓ, ϑ ∈ A. In particular for ϑ = ℓ, we have [e2(ℓ), ℓ] ∈ L for all ℓ ∈ A. Therefore, in view of

Lemma 4, we conclude that A/L is a commutative integral domain.

Case (iii): Finally, we assume that e1(A) ̸⊆ L and e2(A) ̸⊆ L. Then direct linearization of (21) gives

[e1(ℓ), (ϑ)
∗] + [e1(ϑ), (ℓ)

∗] + [ℓ, e2((ϑ)
∗)] + [ϑ, e2((ℓ)

∗)] + [ℓ, (ϑ)∗] + [ϑ, (ℓ)∗] ∈ L (29)

for all ℓ, ϑ ∈ A. Replacing ℓ by ℓh in (29), where 0 ̸= h ∈ H(A) ∩ Z(A) and using it, we get

e1(h)[ℓ, (ϑ)∗] + e2(h)[ϑ, (ℓ)∗] ∈ L (30)

for all ℓ, ϑ ∈ A. Replacing ℓ by ℓk in (30), where 0 ̸= k ∈ S(A) ∩ Z(A) ⊈∈ L, we obtain

e1(h)[ℓ, (ϑ)∗]− e2(h)[ϑ, (ℓ)∗] ∈ L (31)

for all ℓ, ϑ ∈ A. Combination of (30) and (31) yields that

2e1(h)[ℓ, (ϑ)∗] ∈ L for all ℓ, ϑ ∈ A,

which implies

e1(h)[ℓ, ϑ] ∈ L for all ℓ, ϑ ∈ A.

Replacing h by k2 in the last relation and using the hypotheses of theorem, we get

e1(k)[ℓ, ϑ] ∈ L for all ℓ, ϑ ∈ A.

This implies either e1(k) ∈ L or [ℓ, ϑ] ∈ L. If [ℓ, ϑ] ∈ L, then by Lemma 3, A/L is a commutative

integral domain. On the other hand, we have e1(k) ∈ L. Similarly, we can find e2(k) ∈ L. Writing

ℓk instead of ℓ in (29), where 0 ̸= k ∈ S(A) ∩ Z(A) ⊈∈ L and using the fact that e1(k), e2(k) ∈ L, we

arrive at

[e1(ℓ), (ϑ)
∗]− [e1(ϑ), (ℓ)

∗] + [ℓ, e2((ϑ)
∗)]− [ϑ, e2((ℓ)

∗)] + [ℓ, (ϑ)∗]− [ϑ, (ℓ)∗] ∈ L (32)
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for all ℓ, ϑ ∈ A. Comparing (29) and (32), we obtain

2([e1(ℓ), (ϑ)
∗] + [ℓ, e2((ϑ)

∗)] + [ℓ, (ϑ)∗]) ∈ L for all ℓ, ϑ ∈ A.

This implies

[e1(ℓ), ϑ] + [ℓ, e2(ϑ)] + [ℓ, ϑ] ∈ L for all ℓ, ϑ ∈ A.

Now, replacing ℓ by ℓr in the above expression, we obtain

e1(ℓ)[r, ϑ] + [ℓ, ϑ]e1(A) ∈ L for all ℓ, ϑ, r ∈ A.

In particular, for ϑ = ℓ we have e1(ℓ)[r, ℓ] ∈ “L for all ℓ, r ∈ A. This gives e1(ℓ)A[r, ℓ] ⊆∈ L for

all ℓ, r ∈ A. The primeness of L infers that e1(ℓ) ∈ L or [r, ℓ] ∈ L. Set A = {ℓ ∈ A | e1(ℓ) ∈ L} and

A = {ℓ ∈ A | [r, ℓ] ∈ L}. Clearly, A and B are additive subgroups of A such that A ∪ B = A. But, a

group cannot be written as a union of its two proper subgroups, consequently A = A or B = A. The

first case contradicts our suppostion that e1(A) ̸⊆ P. Thus, we have [r, ℓ] ∈ L for all r, ℓ ∈ A. Therefore,

in view of Lemma 3, A/L is a commutative integral domain. This completes the proof of theorem.

Using similar approach with necessary variations, one can establish the following result.

Theorem 4. Let A be a ring with involution ∗ of the second kind and L a prime ideal of A such that S(A) ∩

Z(A) ̸⊆ L. If e1 and e2 are derivations of A such that [e1(ℓ), (ℓ)
∗] + [ℓ, e2((ℓ)

∗)]− [ℓ, (ℓ)∗] ∈ L for all ℓ ∈ A,

then one of the following holds:

1. char(A/L) = 2
2. A/L is a commutative integral domain.

In view of Theorems 3 & 4, we have the following corollaries:

Corollary 6. Let A be a prime ring with involution ∗ of the second kind such that char(A) ̸= 2. If A

admit derivations e1 and e2 such that [e1(ℓ), (ℓ)
∗] + [ℓ, e2((ℓ)

∗)]± [ℓ, (ℓ)∗] = 0 for all ℓ ∈ A, then A is a

commutative integral domain.

Corollary 7. Let A be a ring with involution ∗ of the second kind and L a prime ideal of A such that

S(A) ∩ Z(A)) ̸⊆ L. If A admits a derivation e such that e([ℓ, (ℓ)∗]) ± [ℓ, (ℓ)∗] ∈ L for all ℓ ∈ A, then

one of the following holds:

1. char(A/L) = 2
2. A/L is a commutative integral domain.

Corollary 8. Let A be a ring with involution ∗ of the second kind and L a prime ideal of A such that

S(A) ∩ Z(A)) ̸⊆ L. If A admits a derivation e such that e(ℓ(ℓ)∗) ± ℓ(ℓ)∗ ∈ L for all ℓ ∈ A, then one

of the following holds:

1. char(A/L) = 2
2. A/L is a commutative integral domain.

Corollary 9 ([25], Theorem 3.4). Let A be a prime ring with involution ∗ of the second kind such that

char(A) ̸= 2. If A admits a derivation e such that e([ℓ, (ℓ)∗]) ± [ℓ, (ℓ)∗] = 0 for all ℓ ∈ A, then A is a

commutative integral domain.

We leave the open question whether or not the assumption S(A) ∩ Z(A) ̸⊆ L (where L is prime

ideal of an arbitray ring A) can be removed in Theorems 1 and 3. In view of Theorem 1 and Theorem

4.4 of [10], we conclude this section with the following conjecture.
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Conjecture: Let m and n be fixed positive integers. Next, let A be a ∗-ring with suitable torsion

restrictions and L be a prime ideal of A. If A admit Jordan ∗-derivations e and g of A such that

e(ℓ)(m)(ℓ)∗n ± (ℓ)∗ng(ℓm) ∈ L for all ℓ ∈ A. Then, what we can say about the structure of A and the

forms of e, g ?

3. Derivations act as homomorphisms and anti-homomorphisms on prime ideals

Ring homomorphisms are mappings between two rings that preserve both addition and

multiplication. In particular, we are concerned with ring homomorphisms between two rings. If A is the

real number field, then the zero map and the identity are typical examples of ring homomorphisms on

A. Let S be a nonempty subset of A and e a derivation on A. If e(ℓϑ) = e(ℓ)e(ϑ) or e(ℓϑ) = e(ϑ)e(ℓ) for

all ℓ, ϑ ∈ S, then e is said to be a derivation which acts as a homomorphism or an anti-homomorphism

on S, respectively. Of course, derivations which acts as an endomorphisms or anti-endomorphisms of

a ring A may behave as such on certain subsets of A, for example, any derivation e behaves as the zero

endomorphism on the subring T consisting of all constants (i.e., elements ℓ for which e(ℓ) = 0). In fact,

in a semiprime ring A, e may behave as an endomorphism on a proper ideal of A. As an example of

such A and e, let S be any semiprime ring with a nonzero derivation δ, take A = S ⊕ S and define e by

e(r1, r2) = (δ(r1), 0). However in case of prime rings, Bell and Kappe [18] showed that the behaviour

of e is some what more restricted. By proving that if A is a prime ring and e is a derivation of A which

acts as a homomorphism or an anti-homomorphism on a nonzero right ideal of A, then e = 0 on A.

Further, Ali et al. obtained [4] the above mentioned result for Lie ideals. Recently, Mamouni et al. [40]

studied the above mentioned problem for prime ideals of an arbitrary ring by cosidering the identity

e(ℓϑ)− e(ℓ)e(ϑ) ∈ L for all ℓ, ϑ ∈ A or e(ℓϑ)− e(ϑ)e(ℓ) ∈ L for all ℓ, ϑ ∈ A, where L is prime ideal

of A. In the present section, our objective is to extend the above study in the setting of rings with

involution involving prime ideals. In fact, we prove the following result:

Theorem 5. Let A be a ring with involution ∗ of the second kind and L a prime ideal of A such that S(A) ∩

Z(A) ̸⊆ L. If A admits a derivation e such that e(ℓ(ℓ)∗)− e((ℓ)∗)e(ℓ) ∈ L for all ℓ ∈ A, then one of the

following holds:

1. char(A/L) = 2
2. e(A) ⊆ L.

Proof. Assume that char(A/L) ̸= 2. By the hypothesis, we have

e(ℓ(ℓ)∗)− e((ℓ)∗)e(ℓ) ∈ L (33)

for all ℓ ∈ A. Linearization of (33) gives that

e(ℓ(ϑ)∗) + e(ϑ(ℓ)∗)− e((ℓ)∗)e(ϑ)− e((ϑ)∗)e(ℓ) ∈ L (34)

for all ℓ, ϑ ∈ A. Replacing ℓ by ℓh in (34), where 0 ̸= h ∈ H(A) ∩ Z(A), we get

e(h)(ℓ(ϑ)∗ + ϑ(ℓ)∗ − (ℓ)∗e(ϑ)− e((ϑ)∗)ℓ) ∈ L (35)

for all ℓ, ϑ ∈ A. Taking h = k2 in (35), where 0 ̸= k ∈ S(A) ∩ Z(A) ̸⊆ L and using the hypotheses of

theorem, we obtain

e(k)(ℓ(ϑ)∗ + ϑ(ℓ)∗ − (ℓ)∗e(ϑ)− e((ϑ)∗)ℓ) ∈ L

for all ℓ, ϑ ∈ A. Invoking the primeness of A yields that e(k) ∈ L or ℓ(ϑ)∗ + ϑ(ℓ)∗ − (ℓ)∗e(ϑ) −

e((ϑ)∗)ℓ) ∈ L for all ℓ, ϑ ∈ A. Consider the case when

ℓ(ϑ)∗ + ϑ(ℓ)∗ − (ℓ)∗e(ϑ)− e((ϑ)∗)ℓ ∈ L (36)
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for all ℓ, ϑ ∈ A. Replacing ℓ by ℓk in (36) and combining with the obtained relation, we get

2(ℓ(ϑ)∗ − e((ϑ)∗)ℓ) ∈ L

for all ℓ, ϑ ∈ A. This implies that

ℓϑ − e(ϑ)ℓ ∈ L (37)

for all ℓ, ϑ ∈ A. In particular for ℓ = k, where k ∈ S(A) ∩ Z(A), we have ϑ − e(ϑ) ∈ L for all ϑ ∈ A.

Substituting ϑr for ϑ in the last relation, we obtain ϑe(A) ∈ L. This yields e(A)Ae(A) ⊆ L for all

r ∈ A. Since L is a prime ideal of A, we have e(A) ⊆ L. On the other hand, consider the case e(k) ∈ L.

Replacing ℓ by ℓk in (34), where 0 ̸= k ∈ S(A) ∩ Z(A) ̸⊆ L, we get

e(ℓ(ϑ)∗)− e(ϑ(ℓ)∗) + e((ℓ)∗)d(ϑ)− e((ϑ)∗)e(ℓ) ∈ L (38)

Combination of (34) and (38) gives that

2(e(ℓ(ϑ)∗)− e((ϑ)∗)e(ℓ)) ∈ L

for all ℓ, ϑ ∈ A. This implies that

e(ℓϑ)− e(ϑ)e(ℓ) ∈ L

for all ℓ, ϑ ∈ A. Taking ϑ = k in the above relation and using e(k) ∈ L, we get ke(ℓ) ∈ L for all ℓ ∈ A.

Since S(A) ∩ Z(A) ̸⊆ L, one can conclude that e(A) ⊆ L.

Applying an analogous argument, we have the following result.

Theorem 6. Let A be a ring with involution ∗ of the second kind and L a prime ideal of A such that S(A) ∩

Z(A)) ̸⊆ L. If A admits a derivation e such that e(ℓ(ℓ)∗)− e(ℓ)e((ℓ)∗) ∈ L for all ℓ ∈ A, then one of the

following holds:

1. char(A/L) = 2
2. e(A) ⊆ L.

Corollary 10. Let A be a prime ring with involution ∗ of the second kind such that char(A) ̸= 2. If A admits a

derivation e such that e(ℓ(ℓ)∗) = e((ℓ)∗)e(ℓ) or e(ℓ(ℓ)∗) = e(ℓ)e((ℓ)∗) for all ℓ ∈ A, then e = 0.

Theorem 7. Let A be a 2-torsion free semiprime ring with involution ∗ of the second kind. If A admits a

derivation e such that e(ℓ(ℓ)∗)− e((ℓ)∗)e(ℓ) = 0 for all ℓ ∈ A, then e = 0.

Proof. Assume that char(A/L) ̸= 2. By the assumption, we have

e(ℓ(ℓ)∗)− e((ℓ)∗)e(ℓ) = 0 for all ℓ ∈ A.

By the semiprimeness of A, there exists a family L = {Lα : α ∈ ∧} of prime ideals such that
⋂

α
Lα = (0)

(see [11] for details). For each Lα in L, we have

e(ℓ(ℓ)∗)− e((ℓ)∗)e(ℓ) ∈ Lα for all ℓ ∈ A.

Invoking Theorem 5, we conclude that e(A) ⊆ Lα. Consequently, we get e(A) ⊆
⋂

α
Lα = (0) and hence

result follows. Thereby the proof is completed.

Analogusly, we can prove the following result.

Theorem 8. Let A be a 2-torsion free semiprime ring with involution ∗ of the second kind. If A admits a

derivation e such that e(ℓ(ℓ)∗)− e(ℓ)e((ℓ)∗) = 0 for all ℓ ∈ A, then e = 0.
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4. Applications

In this section, we present some applications of the results proved in Section 2. Vukman [48,

Theorem 1] generalizes the classical result due to Posner (Posner’s second theorem) [46] and proved

that if e is a derivation of a prime ring A of characteristic different from 2, such that [[e(ℓ), ℓ], ℓ] =

[e(ℓ), ℓ]2 = 0 for all ℓ ∈ A, then e = 0 or A is commutative. In fact, in view of Posner’s second

theorem, he merely showed that e is commuting, that is, [e(ℓ), ℓ] = 0 for all ℓ ∈ A. In [29], Deng and

Bell extended the above mentioned result for semiprime ring and established that if a 6-torsion free

semiprime ring admits a derivation e such that [[e(ℓ), ℓ], ℓ] = 0 for all ℓ ∈ I with e(I) ̸= (0) where I is

a nonzero left ideal of A, then A contains a nonzero central ideal. These results were further refined

and extended by a number of algebraists (see for example, [3], [23], [26], [30], [33], [36] and [50]). It is

our aim in this section to study and extend Vukman’s and Posner’s results for arbitrary rings with

involution involving prime ideals. In fact, we prove the ∗-versions of these theorems. Moreover,

our approach is somewhat different from those employed by other authors. Precisely, we prove the

following result.

Theorem 9. Let A be a ring with involution ∗ of the second kind and L a prime ideal of A such that S(A) ∩

Z(A) ̸⊆ L. If A admits a derivation e such that [[e(ℓ), (ℓ)∗], (ℓ)∗] ∈ L for all ℓ ∈ A, then one of the following

holds:

1. char(A/L) = 2
2. e(A) ⊆ L

3. A/L is a commutative integral domain."

A derivation e : A → A is said to be ∗-centralizing if [e(ℓ), (ℓ)∗] ∈ Z(A) for all ℓ ∈ A. The last

expression can be written as [[e(ℓ), (ℓ)∗], (ℓ)∗] = [e(ℓ), (ℓ)∗]2 = 0 for all ℓ ∈ A. Consequently, Theorem

9 regarded as the ∗-version of Vukman’s theorem [48]. Applying Theorem 9, we also prove that if a

2-torsion free semiprime ring A with involution ∗ of the second kind admiting a nonzero ∗-centralizing

derivation, then A must contains a nonzero central ideal. In fact, we prove the following result.

Theorem 10. Let A be a 2-torsion free semiprime ring with involution ∗ of the second kind. If A admits a

nonzero ∗-centralizing derivation e, i.e., [e(ℓ), (ℓ)∗] ∈ Z(A) for all ℓ ∈ A, then A contains a nonzero central

ideal.

As an immediate consequence of Theorem 10, we obtain the following result.

Corollary 11. Let A be a 2-torsion free semiprime ring with involution ∗ of the second kind. If A admits a

nonzero ∗-commuting derivation e, i.e., [e(ℓ), (ℓ)∗] = 0 for all ℓ ∈ A, then A contains a nonzero central ideal.

In order to prove of Theorem 10, we need the proof of Theorem 9.

Proof of Theorem 9. Assume that char(A/L) ̸= 2. By the hypothesis, we have

[[e(ℓ), (ℓ)∗], (ℓ)∗] ∈ L for all ℓ ∈ A. (39)

A linearization of (39) yields that

[[e(ℓ), (ϑ)∗], (ϑ)∗] + [[e(ℓ), (ϑ)∗], (ℓ)∗] + [[e(ϑ), (ϑ)∗], (ℓ)∗] + [[e(ϑ), (ℓ)∗], (ℓ)∗] (40)

+[[e(ℓ), (ℓ)∗], (ϑ)∗] + [[e(ϑ), (ℓ)∗], (ϑ)∗] ∈ L
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for all ℓ, ϑ ∈ A. Putting ℓ = −ℓ in (40), we get

−[[e(ℓ), (ϑ)∗], (ϑ)∗] + [[e(ℓ), (ϑ)∗], (ℓ)∗]− [[e(ϑ), (ϑ)∗], (ℓ)∗] + [[e(ϑ), (ℓ)∗], (ℓ)∗] (41)

+[[e(ℓ), (ℓ)∗], (ϑ)∗]− [[e(ϑ), (ℓ)∗], (ϑ)∗] ∈ L

for all ℓ, ϑ ∈ A. Combining (40) and (41), we obtain

[[e(ℓ), (ϑ)∗], (ℓ)∗] + [[e(ϑ), (ℓ)∗], (ℓ)∗] + [[e(ℓ), (ℓ)∗], (ϑ)∗] ∈ L (42)

for all ℓ, ϑ ∈ A. Replacing ϑ by ϑh in (42), where h ∈ H(A) ∩ Z(A), we deduce that

e(h)[[ϑ, (ℓ)∗], (ℓ)∗] ∈ L for all ℓ, ϑ ∈ A.

Taking h = k2, where k ∈ S(A) ∩ Z(A) ⊈∈ L and using the hypothesis, we have

e(k)[[ϑ, (ℓ)∗], (ℓ)∗] ∈ L for all ℓ, ϑ ∈ A. (43)

Now, substituting ϑk in place of ϑ in (42), where k ∈ S(A) ∩ Z(A), we get

−k[[e(ℓ), (ϑ)∗], (ℓ)∗] + k[[e(ϑ), (ℓ)∗], (ℓ)∗] + e(k[[ϑ, (ℓ)∗], (ℓ)∗])− k[[e(ℓ), (ℓ)∗], (ϑ)∗] ∈ L

for all ℓ, ϑ ∈ A. Application of (43) and the condition S(A) ∩ Z(A) ⊈∈ L yields

−[[e(ℓ), (ϑ)∗], (ℓ)∗] + [[e(ϑ), (ℓ)∗], (ℓ)∗]− [[e(ℓ), (ℓ)∗], (ϑ)∗] ∈ L (44)

for all ℓ, ϑ ∈ A. From (42) and (44), we can obtain

2([[e(ϑ), (ℓ)∗], (ℓ)∗]) ∈ L for all ℓ, ϑ ∈ A.

This implies

[[e(ϑ), ℓ], ℓ] ∈ L for all ℓ, ϑ ∈ A.

Writing ℓ+ z instead of ℓ, we get

[[e(ϑ), ℓ], z] + [[e(ϑ), z], ℓ] ∈ L for all ℓ, ϑ, z ∈ A. (45)

Replacing z by zr in (45), we find that

[z, ℓ][e(ϑ), r] + [e(ϑ), z][r, ℓ] ∈ L for all r, ℓ, ϑ, z ∈ A.

In particular for r = ℓ, we have

[z, ℓ][e(ϑ), ℓ] ∈ L for all ℓ, ϑ, z ∈ A.

This gives

[z, ℓ]A[e(ϑ), ℓ] ⊆ L for all ℓ, ϑ, z ∈ A. (46)

Since L is a prime ideal of A, we have [z, ℓ] ∈ L for all z ∈ A or [e(ϑ), ℓ] ∈ L for all ϑ ∈ A. Let us set

A = {ℓ ∈ A | [ℓ, z] ∈ L} and B = {ℓ ∈ A | [e(ϑ), ℓ] ∈ L}. Clearly, A and B are additive subgroups of A

whose union is A. But a group cannot be written as a union of its two proper subgroups, it follows that

either A = A or B = A. In the first case, A/L is a commutative integral domain from Lemma 3. On the

other hand, if [e(ϑ), ℓ] ∈ L for all ℓ, ϑ ∈ A, then we get [e(ℓ), (ℓ)∗] ∈ L for all ℓ ∈ A. Hence, in view of

Corollary 1, we conclude that e(A) ⊆ L or A/L is a commutative integral domain. This completes the
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proof of theorem. □

Proof of Theorem 10. We are given that e : A → A is ∗-centralizing derivation, that is, [e(ℓ), (ℓ)∗] ∈ Z(A)

for all ℓ ∈ A. This implies that [[e(ℓ), (ℓ)∗], ϑ] = 0 for all ℓ, ϑ ∈ A. This gives

[[e(ℓ), (ℓ)∗], (ℓ)∗] = 0 for all ℓ ∈ A.

In view of semiprimeness of A, there exists a family P = {Lα : α ∈ ∧} of prime ideals such that
⋂

α
Lα = (0) (see [11] for more details). Let L denote a fixed one of the Lα. Thus, we have

[[e(ℓ), (ℓ)∗], (ℓ)∗] ∈ L for all ℓ ∈ A and for all L ∈ L.

From the proof of Theorem 9, we observe that for each ℓ, either

[z, ℓ] ∈ L for all z ∈ A (I)

or

[e(ϑ), ℓ] ∈ L for all ϑ ∈ A (I I)

Define AI to be the set of z ∈ A for which (I) holds and AI I the set of ϑ ∈ A for which (I I) holds. Note

that both are additive subgroups of A and their union is equal to A. Thus either AI = A or AI I = A,

and hence L satisfies one of the following:

[z, ℓ] ∈ L for all ℓ, z ∈ A (I′)

or

[e(ϑ), ℓ] ∈ L for all ℓ, ϑ ∈ A (I I′)

Call a prime ideal in P a type-one prime if it satisfies (I′), and call all other members of P type-two

primes. Define L1 and L2 respectively as the intersection of all type-one primes and the intersection of

all type-two primes, and note that

L1L2 = L2L1 = L1 ∩ L2 = {0}.

Clearly, from both the cases, we can conclude that [e(ℓ), ℓ] ∈ L for all ℓ ∈ A for all L ∈ T . This implies

that [e(ℓ), ℓ] ∈
⋂

L∈T
L = {0} for all ℓ ∈ A. That is, [e(ℓ), ℓ] = 0 for all ℓ ∈ A. Hence, in view of [19,

Theorem 3], A contains a nonzero central ideal. □

Jordan product version of Theorem 9 is the following.

Theorem 11. Let A be a ring with involution ∗ of the second kind and L a prime ideal of A such that

S(A) ∩ Z(A) ̸⊆ L. If A admits a derivation e such that (e(ℓ) ◦ (ℓ)∗) ◦ (ℓ)∗ ∈ L for all ℓ ∈ A, then one of the

following holds:

1. char(A/L) = 2
2. e(A) ⊆ L.

Proof. Assume that char(A/L) ̸= 2. By the hypothesis, we have

(e(ℓ) ◦ (ℓ)∗) ◦ (ℓ)∗ ∈ L for all ℓ ∈ A. (47)
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A linearization of (47) yields that

(e(ℓ) ◦ (ϑ)∗) ◦ (ϑ)∗ + (e(ℓ) ◦ (ϑ)∗) ◦ (ℓ)∗ + (e(ϑ) ◦ (ϑ)∗) ◦ (ℓ)∗ + (e(ϑ) ◦ (ℓ)∗) ◦ (ℓ)∗ (48)

+(e(ℓ) ◦ (ℓ)∗) ◦ (ϑ)∗ + (e(ϑ) ◦ (ℓ)∗) ◦ (ϑ)∗ ∈ L

for all ℓ, ϑ ∈ A. Putting ℓ = −ℓ in (48), we get

−((e(ℓ) ◦ (ϑ)∗) ◦ (ϑ)∗) + ((e(ℓ) ◦ (ϑ)∗) ◦ (ℓ)∗)− ((e(ϑ) ◦ (ϑ)∗) ◦ (ℓ)∗) (49)

+((e(ϑ) ◦ (ℓ)∗) ◦ (ℓ)∗) + ((e(ℓ) ◦ (ℓ)∗) ◦ (ϑ)∗)− ((e(ϑ) ◦ (ℓ)∗) ◦ (ϑ)∗) ∈ L

for all ℓ, ϑ ∈ A. Combining (48) and (49), we obtain

(e(ℓ) ◦ (ϑ)∗) ◦ (ℓ)∗ + (e(ϑ) ◦ (ℓ)∗) ◦ (ℓ)∗ + (e(ℓ) ◦ (ℓ)∗) ◦ (ϑ)∗ ∈ L (50)

for all ℓ, ϑ ∈ A. Substitution of ϑh for ϑ in (50), where h ∈ H(A) ∩ Z(A) produce that

e(h)((ϑ ◦ (ℓ)∗) ◦ (ℓ)∗) ∈ L for all ℓ, ϑ ∈ A.

Taking h = k2, where k ∈ S(A) ∩ Z(A) ⊈∈ L and using the hypothesis, we have

e(k)((ϑ ◦ (ℓ)∗) ◦ (ℓ)∗) ∈ L for all ℓ, ϑ ∈ A. (51)

Next, substitute ϑk in place of ϑ in (50), where k ∈ S(A) ∩ Z(A), we get

−k((e(ℓ) ◦ (ϑ)∗) ◦ (ℓ)∗) + k((e(ϑ) ◦ (ℓ)∗) ◦ (ℓ)∗) + e(k)((ϑ ◦ (ℓ)∗) ◦ (ℓ)∗))− k((e(ℓ) ◦ (ℓ)∗) ◦ (ϑ)∗) ∈ L

for all ℓ, ϑ ∈ A. Application of (51) and the condition S(A) ∩ Z(A) ⊈∈ L yields

−((e(ℓ) ◦ (ϑ)∗) ◦ (ℓ)∗) + ((e(ϑ) ◦ (ℓ)∗) ◦ (ℓ)∗)− ((e(ℓ) ◦ (ℓ)∗) ◦ (ϑ)∗) ∈ L (52)

for all ℓ, ϑ ∈ A. From (50) and (52), we can obtain

2((e(ϑ) ◦ (ℓ)∗) ◦ (ℓ)∗) ∈ L for all ℓ, ϑ ∈ A.

That is,

(e(ϑ) ◦ ℓ) ◦ ℓ ∈ L (53)

for all ℓ, ϑ ∈ A. A linearization for ℓ in (53) yields that

(e(ϑ) ◦ ℓ) ◦ t + (e(ϑ) ◦ t) ◦ ℓ ∈ L (54)

for all ℓ, ϑ, t ∈ A. Replacing ℓ by ℓt in (54), we have

((e(ϑ) ◦ ℓ)t − ℓ[e(ϑ), t]) ◦ t + ((e(ϑ) ◦ t) ◦ ℓ)t − ℓ[e(ϑ) ◦ t, t] ∈ L for all ℓ, ϑ, t ∈ A,

which can be written as

((e(ϑ) ◦ ℓ) ◦ t)t − (ℓ[e(ϑ), t]) ◦ t + ((e(ϑ) ◦ t) ◦ ℓ)t − ℓ[e(ϑ) ◦ t, t] ∈ L for all ℓ, ϑ, t ∈ A.

Using (54), we have

−(ℓ[e(ϑ), t]) ◦ t − ℓ[e(ϑ) ◦ t, t] ∈ L for all ℓ, ϑ, t ∈ A.
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This impels that

ℓ([e(ϑ), t] ◦ t + [e(ϑ) ◦ t, t])− [ℓ, t][e(ϑ), t] ∈ L for all ℓ, ϑ, t ∈ A. (55)

Replacing ℓ by ℓr in the last relation, we have

ℓr([e(ϑ), t] ◦ t + [e(ϑ) ◦ t, t])− ℓ[r, t][e(ϑ), t]− [ℓ, t]r[e(ϑ), t] ∈ L for all ℓ, ϑ, t, r ∈ A.

Application of (55) gives that

[ℓ, t]r[e(ϑ), t] ∈ L for all ℓ, ϑ, t, r ∈ A.

That is,

[ℓ, t]A[e(ϑ), t] ⊆ L for all ℓ, ϑ, t ∈ A. (56)

The above relation is same as (46). Therefore using the same arguments as we have used after (46), we

get e(A) ⊆ L or A/L is a commutative integral domain. If e(A) ⊆ L, then proof is done. On the other

hand, if A/L is a commutative integral domain, then (54) reduces as

8ℓte(ϑ) ∈ L for all ℓ, ϑ, t ∈ A.

Since char(A/L) ̸= 2, the above relation becomes

e(ϑ)Ae(ϑ) ⊆ L for all ϑ ∈ A.

The primeness of L forces that e(A) ⊆ L. Thus the proof is completed now.

The following results are immediate corollaries of Theorems 9 & 10.

Corollary 12. Let A be a ring with involution ∗ of the second kind and L a prime ideal of A such that

S(A) ∩ Z(A) ̸⊆ L. If A admits a derivation e such that [[e(ℓ), (ℓ)∗], ϑ] ∈ L for all ℓ, ϑ ∈ A, then one of the

following holds:

1. char(A/L) = 2
2. e(A) ⊆ L

3. A/L is a commutative integral domain.

Corollary 13. [42, Theorem 3.7] Let A be a prime ring with involution ∗ of the second kind such that

char(A) ̸= 2. If A admits a derivation e such that [e(ℓ), (ℓ)∗] ∈ Z(A) for all ℓ ∈ A, then e = 0 or A is a

commutative integral domain.

Corollary 14. Let A be a prime ring with involution ∗ of the second kind such that char(A) ̸= 2. If A admits a

derivation e such that (e(ℓ) ◦ (ℓ)∗) ◦ (ℓ)∗ = 0 for all ℓ ∈ A, then e = 0.

Theorem 12. Let A be a 2-torsion free semiprime ring with involution ∗ of the second kind. If A admits a

derivation e such that (e(ℓ) ◦ (ℓ)∗) ◦ (ℓ)∗ = 0 for all ℓ ∈ A, then e = 0.

Proof. Given that

(e(ℓ) ◦ (ℓ)∗) ◦ (ℓ)∗ = 0 for all ℓ ∈ A.

By the semiprimeness of A, there exists a family L = {Lα : α ∈ ∧} of prime ideals such that
⋂

α
Lα = (0).

For each Lα in L, we have

(e(ℓ) ◦ (ℓ)∗) ◦ (ℓ)∗ ∈ Lα for all ℓ ∈ A.
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Application of Theorem 11 gives that e(A) ⊆ Lα. Thus, e(A) ⊆
⋂

α
Lα = (0) and hence e = 0. Thereby

the proof is completed.

We feel that Theorem 9 (resp. Theorem 11) can be proved without the assumption S(A) ∩ Z(A) ̸⊆

L for any prime ideal L of an arbitray ring A, but unfortunately we are unable to do it. Hence, Theorem

9 leads the following conjecture.

Conjecture: Let A be a ring with involution ∗ of the second kind and L a prime ideal of A. If A

admits a derivation e such that [[e(ℓ), (ℓ)∗], (ℓ)∗] ∈ L for all ℓ ∈ A, then one of the following holds:

1. char(A/L) = 2
2. e(A) ⊆ L

3. A/L is a commutative integral domain.

5. A direction for further research

Throughout this section, we assume that k1, k2, m and n are fixed positive integers. Several papers

in the literature evidence how the behaviour of some additive mappings is closely related to the

structure of associative rings and algebras (cf.; [2], [6], [9], [16], [20], [21] [28], [30], [33] and [39]. A

well-known result proved by Posner’s [46] states that a prime ring must be commutative if [e(ℓ), ℓ] = 0

for all ℓ ∈ A, where e is a nonzero derivation of A. In [48,49], Vukman extended Posner’s theorem

for commutators of order 2, 3 and described the structure of prings rings whose characteristic is not

two and satisfying [[e(ℓ), ℓ], ℓ] = 0 for every ℓ ∈ A. The most famous and classical generalization of

Posner’s and Vukman’s results are the following theorem due to Lanski [35] for kth-commutators:

Theorem 13. [35, Theorem 1] Let m, n and k are fixed positive integers and A is prime ring. If a derivation e

of A satisfies [e(ℓm), ℓm]k = 0 for all ℓ ∈ I, where I is a nonzero left ideal of A, then e = 0 or A is commutative.

In [37], Lee and Shuie studied that if a noncommutative prime ring A admitting a derivation

e such that [e(ℓm)ℓn, ℓr]k = 0 for all ℓ ∈ I, where I is a non zero left ideal, then e = 0 except when

A ∼= M2(GF(2)). In the year 2000, Carini and De Filippis [23] studied Posner’s classical result for

power central values. In particular, they discussed this situation for A of characteristic not two and

proved that if ([e(ℓ), ℓ])n ∈ Z(A) for all ℓ ∈ L, a noncentral Lie ideal of A, then A satisfies s4. In 2006,

Wang and You [51] mentioned that the restriction of characteristic need not necessary in Theorem 1.1

of [23]. More precisely, they proved the following result.

Theorem 14. Let A be a noncommutative prime ring and L be a noncentral Lie ideal of A. If A admits a

derivation e satisfies ([e(ℓm), ℓm])n ∈ Z(A) for all ℓ ∈ L, then A satisfies s4, the standard identity in 4 variables.

Motivated by these two results, Wang [50] studied the similar condition for A of characteristic

not two and obtained the same conclusion. In fact, he proved the following results.

Theorem 15. Let A be a noncommutative prime ring of characteristic not two. If A admits a nonzero derivation

e satisfies ([e(ℓm), ℓm]n)k ∈ Z(A) for all ℓ ∈ A, then A satisfies s4, the standard identity in 4 variables.

In our main results (Theorems 1, 3, 5, 9 and 10), we investigate the structure of the qutiont

rings A/L, where A is an arbitrary ring and L is a prime ideal of A. Nevertheless, there are various

interesting open problems related to our work. In this final section, we will propose a direction for

future further research. In view of the above mentioned results and our main theorems, the following

problems remains unanswered.

Problem 1. Let A be a ring of suitable characteristic with involution ∗ of the second kind and L a prime ideal of

A such that S(A) ∩ Z(A) ̸⊆ L. Next, let f : A → A be a mapping satisfying [ f (ℓ), ((ℓ)∗)m]n ∈ Z(A) or ∈ L

for all ℓ ∈ A. Then, what we can say about the structure of A and f ?
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Problem 2. Let A be a ring of suitable characteristic with involution ∗ of the second kind and L a prime ideal of

A such that S(A) ∩ Z(A) ̸⊆ L. Next, let e : A → A be a derivation satisfying [e(ℓ), (ℓ)∗]n ∈ Z(A) or ∈ L for

all ℓ ∈ A. Then, what we can say about the structure of A and e?

Problem 3. Let A be a ringof suitable characteristic with involution ∗ of the second kind and L a prime ideal of

A such that S(A) ∩ Z(A) ̸⊆ L. Next, let e : A → A be a derivation satisfying ([e(xk1), ((ℓ)∗)k2 ]n)m ∈ Z(A)

or ∈ L for all ℓ ∈ A. Then, what we can say about the structure of A and e?

Problem 4. Let A be a ring of suitable characteristic with involution ∗ of the second kind and L a prime ideal of

A such that S(A) ∩ Z(A) ̸⊆ L. Next, let e : A → A be a derivation satisfying (e(ℓk1) ◦n ((ℓ)∗))k2)m ∈ Z(A)

or ∈ L for all ℓ ∈ A. Then, what we can say about the structure of A and e?
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