
Article

An Intelligent Bat Algorithm for Web Service Selection with QoS
Uncertainty
Abdelhak Etchiali 1* , Amina Bekkouche 1 and Fethallah Hadjila 1

1 Computer Science Department, University of Tlemcen, Tlemcen 13000, Algeria
* Correspondence: abdelhak.etchiali@univ-tlemcen.dz

Abstract: Nowadays, the selection of web services with uncertain quality of service (QoS) is gaining 1

a lot of attention in the service-oriented computing paradigm (soc). In fact, searching for a service 2

composition that fulfills a complex user’s request is known to be NP-Complete. The search time is 3

mainly dependent on the number of the requested tasks, the size the available services, and the size 4

of the QoS realizations (i.e., sample size). To handle this problem, we propose a two-stage approach 5

that reduces the search space using heuristics for ranking the tasks’ services and a bat algorithm 6

metaheuristic for selecting the final near optimal compositions. The fitness used by the metaheuristic 7

aims to fulfill all the global constraints of the user. The experimental study shows that the ranking 8

heuristics, termed “fuzzy pareto dominance” and "Zero-order stochastic dominance", are highly 9

effective than the other heuristics and most of the existing state-of-the-art methods. 10

Keywords: Web service selection; QoS uncertainty; Bat algorithm; Service-oriented computing 11

1. Introduction 12

With the advent of cloud computing and specifically the online services (SaaS), it 13

becomes more challenging to discover and select the best services with respect to user’s 14

requirements [1], [2]. Broadly speaking, we observe that a given functionality can be 15

fulfilled by numerous SaaS services with a variety of QoS levels. For complex user’s 16

requests (in terms of workflow) the task of selecting the best composition of services 17

that satisfies the user’s global constraints (e.g., the maximum cost of the composition of 18

services is less than a given budget) is time consuming and far from meeting the user’s 19

expectations. It is worth noting that the selection of service compositions is NP-complete 20

and exponentially depends on the number of tasks of the workflow (see the example of 21

Table I). In practice, we observe that the QoS of SaaS applications is inherently uncertain 22

and always changing; for instance, the cost of booking a hotel chamber or an airline 23

ticket is uncertain and depends on the period (such as the season or month), social events, 24

and other contextual Aspects. To compare the services of the same functionality class 25

while considering the different realizations of the QoS criteria, one can use statistical 26

measures such as the mean QoS value or the median value to derive the best alternatives. 27

Unfortunately, these measures may not be effective as it will be explained using the example 28

of Table 1. 29

In the same line of thought, we point out that the pertinence of service compositions 30

with respect to the user’s request is no longer a deterministic score, but it is rather specified 31

as a probability of satisfying the global QoS constraints; this score is termed Global QoS 32

Conformance (GQC) [3]. As a result, the complexity of the selection issue is dependent on 33

the number of tasks and also is impacted by both the size of each task and the size of the 34

QoS sample (i.e., the number of realizations per QoS attribute). 35

GQC can be also seen as the expected value of the a random variable termed Z, 36

where Z provides an outcome equal to 1 if the aggregated QoS satisfy the global constraint 37

bound; moreover, it is highly desirable to get service compositions that satisfy a maximum 38

number of global constraints in terms of median QoS (this means that 50% of the solution 39

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2023 doi:10.20944/preprints202306.0134.v1

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://www.mdpi.com
https://orcid.org/0000-0000-0000-000X
https://doi.org/10.20944/preprints202306.0134.v1
http://creativecommons.org/licenses/by/4.0/

2 of 20

Table 1. Motivating Example

G.C:AggregatedQoS(Sx, Sy) ≥ 45

Task T1 Task T2

S1 : S9 :

QoS(S1) =< 5, 15, 20, 30, 70 > QoS(S9) =< 10, 11, 15, 20, 22 >

S2 : S10 :

QoS(S2) =< 6, 18, 20, 40, 90 > QoS(S10) =< 15, 18, 26, 30, 40 >

S3 : S13 :

QoS(S3) =< 4, 15, 18, 25, 250 > QoS(S13) =< 3, 8, 10, 20, 30 >

realizations -of a single QoS attribute- will ensure the end-to-end bounds). This criterion is 40

denoted as the percentage of satisfied global constraints (PSGC). This latter measure can be 41

considered (sometimes) as an alternative to the GQC objective function, since it ensures 42

a high gain of computational cost. For instance, according to Table I, where the global 43

constraint (GC) is specified in the first line, we observe that only (s1,s10) and (S2,s10) will be 44

retained as feasible solutions since PSGC=100% (the example is comprised of a single QoS 45

attribute); however, the remaining compositions are not feasible, and therefore PSGC=0. 46

To summarize, our selection issue needs effective ranking heuristics for the workflow 47

tasks, as well as time-efficient approaches for exploring the service compositions. To 48

address these difficulties, we propose a two-stage approach that ensures high fitness service 49

compositions and acceptable responsiveness delay. 50

In the first step, we reduce the search space in each task by only retaining the TopK pertinent 51

services in terms of a given heuristic Hi. Consequently, the total search space is reduced 52

from mn candidate solutions to kn candidate solutions, where n stands for the number of 53

tasks and m stands for the number of services per task (see Table 2 for more details). 54

In the second step, we perform a heuristic global search (this means that our solution will 55

be a vector of n services) and retain the TopK compositions in terms of GQC. 56

Our contributions can be summarized as follows: 57

• We downsize our search space from mn to kn by retaining the most pertinent elements 58

of each task. To this end, we propose four ranking heuristics of the items of each 59

task. All these heuristics perform pairwise comparisons of services and select TopK 60

elements having the maximum number of wins. 61

– H1 is an efficient implementation of the fuzzy pareto dominance; it is inspired 62

from [33]. 63

– H2 (zero order stochastic dominance) is a stochastic dominance relationship 64

that uses the zero order terms of the QoS sample [34]. it directly uses the QoS 65

realizations during the comparisons. 66

– H3 (first order stochastic dominance) is a stochastic dominance relationship that 67

uses the first order terms of the QoS sample [34]; this means that H3 uses the 68

cumulative distribution of the sample to perform comparisons. 69

– H4 (the majority interval heuristic) is inspired from [19]. In this ranking, we 70

compute the median interval of each service and perform pairwise comparisons 71

of services using equation 27. the services having the highest number of wins are 72

retained in TopK elements. 73

• In the second step, we perform a global search on the retained TopK services using 74

a swarm intelligence-based algorithm termed "discrete bat algorithm (DBA)". This 75

metaheuristic is chosen because of its ability to leverage both global search operators 76

and local search operators during the exploration of candidate solutions (in contrast to 77

metaheuristics that only use one operator such as particle swarm optimization or ant 78

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2023 doi:10.20944/preprints202306.0134.v1

https://doi.org/10.20944/preprints202306.0134.v1

3 of 20

colony optimization). The coordinated use of these operators can achieve promising 79

results on NP-complete problems. 80

• At the end, We evaluate the effectiveness and the efficiency the approach using a 81

consolidated set of experiments. 82

The rest of this paper is organized as follows: Section 2 presents a literature overview 83

of the existing works. Section 3 specifies the problem statement. In Section 4, we introduce 84

the proposed approach as well as the selection algorithms. In section5, we present a set 85

of experimental evaluations and compare our method with existing works. Section 6 86

concludes the paper and presents future perspectives. 87

2. State of the Art 88

Selecting service compositions using QoS is a major topic in service-oriented comput- 89

ing (SOC), We mainly distinguish two categories: service selection with certain (determinis- 90

tic) QoS and service selection with uncertain (nondeterministic) QoS, we will review the to 91

parts in what follows. 92

2.1. Service Selection with Certain QoS 93

In this category, we assume that the QoS attributes are static and do not change 94

overtime, therefore the evaluation function of compositions is also deterministic. Many 95

works and reviews have been proposed to address this kind of issues ([1], [4], [5],[6]). In 96

what follows, we will discuss the most important ones. 97

[7] proposed a framework that first takes the skyline services of each task; then, a set 98

of service clusters (within each task) are hierarchically created using K-means to lower the 99

size of the search space. At the end, the solutions are explored using the combinations of 100

cluster-heads. The work by [8] decomposes global QoS constraints into local constraints 101

using culture genetic algorithm, then the top items are selected to aggregate the final 102

compositions. 103

[4] adopted both functional (the function signature) and nonfunctional attributes 104

(QoS, global constraints) to select the Top-K service compositions. The authors leveraged 105

harmony search to derive the compositions that best meet the complex requirements. 106

[9] used the multi-criteria decision method termed Topsis to search the most promising 107

services in terms of QoS. The proposal leveraged six QoS criteria with different workflow 108

patterns and constructs. 109

[10] leveraged both local and global search for tackling the selection of cloud services. 110

The local selection allows for downsizing the search space, while the global selection allows 111

for keeping near-optimal compositions. 112

[11] tackled the optimal selection of web services by adopting both PetriNet models 113

and skyline search; these authors also used the R- tree structure to accelerate the search for 114

Pareto-optimal solutions. 115

In [5], the authors used an optimized artificial bee colony (oabc) method for service 116

composition. Mainly, the authors introduced three ideas in the initial bee algorithm: the 117

first one is the diversification of the initial population; the second one is the dynamic 118

adjustment of the neighborhood size of the local search; the third one is the addition of 119

a global movement operator that aims to get closer to the global solution. The work by 120

[12] leverages fuzzy dominated scores to derive the TopK services that have more balanced 121

QoS (and which can be better than some skyline services with undesirable QoS values) in a 122

self-contained task. [13] considered self-organising migrating algorithm (SOMA) and fuzzy 123

dominance relationship to aggregate service workflows. The fuzzy dominance function is 124

used in the SOMA meta heuristic to compute the QoS aware distances between services. 125

[14] proposed a bio-inspired method termed enhanced flying ant colony optimisation 126

(EFACO). This approach constrains the flying activity and handles the execution time 127

problem by a modified local selection. Since this phase may degrade the selection quality, a 128

multi-pheromone approach is adopted to enhance the exploration through the pheromone 129

assignment to each QoS criterion. 130

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2023 doi:10.20944/preprints202306.0134.v1

https://doi.org/10.20944/preprints202306.0134.v1

4 of 20

[15] clustered the cloud services using a trust-oriented k-means, then they created 131

the composition of cloud services using honey bee mating. It is worth noting that the 132

proposed framework is not scalable for large datasets. The work by [16] tackled the service 133

selection problem by handling multiple users’ requirements. The approach is comprised 134

of two steps: firstly, an approximate pareto-optimal set is computed using approximate 135

dominance; secondly, the near optimal compositions are selected using artificial bee colony 136

algorithm. 137

2.2. Service Selection with Uncertain QoS 138

The work of [17] is one of the earliest works that addresses the service selection with 139

uncertain QoS. The authors proposed a excellent heuristic termed, P-dominant skyline, to 140

derive the best QoS aware services in a self-contained task. P-dominant skyline is consid- 141

ered to be resilient to QoS inconsistencies and noise. Moreover, this heuristic is accelerated 142

using R-trees. [18] adopted probability distributions to model the QoS uncertainty of service 143

workflows. To select the best compositions, the authors used both integer programming 144

and global constraints penalty cost functions. 145

[19] proposed a promising heuristic to derive the pertinent services of local tasks 146

using majority intervals. The main idea consists of computing the median interval of each 147

nondeterministic QoS attribute and comparing them using rectified linear unit functions 148

(RelU) [20]. After that, an exhaustive search is applied to get the final compositions. In 149

[21], the authors proposed a set of heuristics for ranking the services of the workflow tasks. 150

These propositions include probabilistic dominance relationships and fuzzy dominance 151

alternatives. Once the TopK elements are retained from each task, a constraint programming 152

approach is applied to retain the TopK optimal compositions of services. [22] addressed 153

the service composition issue by handling the QoS uncertainty and the location awareness. 154

They proposed a sophisticated approach that combines the firefly metaheuristic with a 155

fuzzy logic-based web service aggregation. 156

The framework proposed in [23] sorted the services of each task using both entropy 157

and variance of the QoS attributes, the services that have larger values in terms of entropy 158

and variance are discarded since they are considered as noisy or inconsistent services. Then, 159

the items having the lowest entropy/variance scores were retained to compose the final 160

solutions. 161

[3] is one of the first works that handled of QoS uncertainty and composition. Based 162

on ideas defined in [24], the strategy adopted by the authors consists of decomposing the 163

end-to-end constraints into local constraints; the local edges (entrances) are calculated by 164

dividing the end-to-end constraint bounds in proportion to the aggregated median QoS 165

of each class of the workflow. After that, an initial service composition is built using a 166

predefined utility function. If this latter one is not optimal, the method searches for alterna- 167

tive solutions using simulated annealing. In the same line of thought, [25] introduced a 168

proposition for Web service selection with presence of outliers. Contrary to the work of [3], 169

this method leverages a different heuristic to divide the end-to-end constraints into local 170

constraints. The proposed idea ensures a high resilience with respect to outliers (services 171

with noisy or unusual QoS). The work by [26] leverages stochastic dominance relationship 172

to sort the services of each task of the user’s workflow; after that, a backtracking search 173

is applied to the filtered tasks to derive optimal service compositions. [27] proposed an 174

interval-based multi-objective bee colony method to address the uncertain QoS-aware 175

service composition problem. The authors proposed an interval-oriented dominance rela- 176

tionship for comparing the services using intervals that represent the variation range of 177

QoS attributes. In addition an interval-valued utility function is introduced to assess the 178

quality of a composition with QoS uncertainty. Finally, an improved version of NSGA-II 179

is used to derive the non-dominated service compositions. The framework proposed in 180

[28] involves two steps: the first one retains the pertinent services of the local tasks using 181

majority grades, and the second step performs a constraint programming search to keep the 182

optimal compositions. In the same line of thought, the work by [29], proposes a heuristic 183

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2023 doi:10.20944/preprints202306.0134.v1

https://doi.org/10.20944/preprints202306.0134.v1

5 of 20

for filtering the desirable services of each local task using hesitant fuzzy sets and cross 184

entropy, then a metaheuristic termed grey wolves optimization is applied to retain the 185

TopK near optimal service compositions. 186

187

3. Problem Specification 188

In what follows, we introduce the formalism used in handling the selection of service 189

compositions with QoS uncertainty. 190

3.1. Parameters’ Notation 191

To tackle our problem, we use the notation shown in Table 2. We assume that the 192

user’s workflow is composed of n sequential tasks cl1, cl2,...,cln, each task is achieved by 193

a service si that has r QoS attributes. Each QoS criterion is materialized by a sample of l 194

realizations (see Table 2 and Figure 1).

Table 2. Notations

Parameter Semantic

n The number of Tasks (classes).

m The number of services per task.

r The number of QoS Criteria.

l The number of QoS realizations (i.e., or the
sample size).

cl1, cl2,...,cln
The set of Tasks, each tasks involves atomic SaaS

services with the same functionality and
different QoS.

s1 (resp. s2,...,sm) represents the id of the selected service related to
cl1 (resp. cl2,...,cln)

QoSpiju
The value of the pth QoS attribute related to the

uth instance of the service Si ∈ clj.

b1,b2,..br

The user’s global constraints (i.e., the bounds
that need to be satisfied by the QoS of the

composition).

w1,..wr
The weight of the QoS attributes, the default

value of each wp is 1
r .

k The size of the outcome list (of compositions).

195

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2023 doi:10.20944/preprints202306.0134.v1

https://doi.org/10.20944/preprints202306.0134.v1

6 of 20

Task1

....Task1Task1 Taskn

Inputs

Functional Requirement

Outputs

Figure 1. A general sequential workflow.

3.2. QoS model 196

In this work, we will only consider positive QoS attributes (i.e., those that need to be 197

maximized). For negative attributes, we will simply multiply them by -1 and treat the new 198

versions as positive ones. We note that our workflow is composed of n sequential tasks. 199

The aggregated QoS of a workflow (having different patterns such as sequence, loops, 200

parallelism, and choice) is presented in [7], [30]. 201

3.3. Global QoS Conformance 202

The measure of Global QoS Conformance (GQC) [3] is leveraged to rank the TOPK 203

compositions. GQC is the probability that the composition of services satisfy all global 204

constraints (see Equation 1). In particular, we say that a composition C is better than 205

another composition C
′

if the GQC of C is higher than that of C
′

with respect to Equation 1. 206

If C ties with C
′
, then we sort them according to the utility (U(.)) function that is shown in 207

Equation 4, the larger the score of U(.), the better the rank. 208

Our aim is to search the compositions C(sw1, ..., swn) such that GQC is maximized: 209

GQC((Sw1 , · · · , Swn), (b1, · · · , br)) = 210

r

∏
p=1

CC((Sw1 , · · · , Swn), bp) (1)

Since we assume that the QoS criteria are independent, the global QoS conformance is 211

defined as the product of constraint conformances (CC for short). 212

The criterion CC is defined as: 213

CC((Sw1 , · · · , Swn), bp) = 214

1
ln

l

∑
u1=1

...
l

∑
un=1

step(aggregate(QoSpw1u1 , · · · , QoSpwnun), bp) (2)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2023 doi:10.20944/preprints202306.0134.v1

https://doi.org/10.20944/preprints202306.0134.v1

7 of 20

The function CC computes the satisfaction degree of a single global constraint. Finally, the 215

binary function “Step” is defined as: 216

Step(Aggregate(QoSpw1u1 , · · · , QoSpwnun), bp) = 217{
1 if Aggregate(spw1u1 , · · · , QoSpwnun) ≥ bp
0 otherwise

(3)

U(C) =
r

∑
p=1

wp ∗
(MedianQ

′
p(C)−Qmin

′
(p))

(Qmax′(p)−Qmin′(p))
(4)

Qmin
′
(p) =

n

∑
j=1

Qmin(j, p) (5)

Qmin
′
(p) is the minimal aggregated QoS of the pth attribute for all possible compositions. 218

Qmax
′
(p) =

n

∑
j=1

Qmax(j, p) (6)

Qmax
′
(p) is the maximal aggregated QoS of the p th attribute for all possible compositions. 219

The Equations Qmin(j, p), Qmax(j, p) are defined as follows : 220

Qmin(j, p) = Minu∈{1,...,l},si∈clj
(QoSpiju) (7)

Qmin(j, p) is the minimal QoS value of the pth attribute of all services related to the ith task. 221

Qmax(j, p) = Maxu∈{1,...,l},si∈clj
(QoSpiju) (8)

Qmax(j, p) is the maximal QoS value of the pth attribute of all services related to the ith 222

task. 223

MedianQ
′
p(C) =

n

∑
j=1

Medianu∈{1,...,l}QoSpsj ju (9)

By assuming that the criterion p is positive, the global constraint with respect to the 224

median value is specified as: 225

MedianQ′p(C) ≥ bp; ∀p ∈ {1, ..., l} (10)

By assuming that the p th attribute is aggregated with a sum function, MedianQ
′
p(C) 226

represents the aggregated QoS of C with respect to the median QoS value of each component 227

of C (of the pth attribute). 228

Equation 10 is used to determine whether the global constraints are respected or not 229

by the composition C. 230

To clarify the computation of the previous equations, we continue with the example cited 231

in Table I: 232

• MedianQ′p(C =< s1, s10 >) = 20 + 26 = 46 ≥ 45. 233

234

• GQC(C) = 16/25 = 0.64 235

If Qmin(1, 1) = Qmin(2, 1) = 0 and Qmax(1, 1) = Qmax(2, 1) = 300, then 236

237

• U(C) = 46−0
(600−0) = 0.075 238

The composition C is feasible. 239

However, if the components of C′ are < s3, s13 > then: 240

241

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2023 doi:10.20944/preprints202306.0134.v1

https://doi.org/10.20944/preprints202306.0134.v1

8 of 20

• MedianQ′p(C′ =< s3, s13 >) = 18 + 10 = 28 ≤ 45. 242

243

• GQC(C′) = 9/25 = 0.36 244

245

• U(C′) = 28−0
(600−0) = 0.046. 246

The composition C′ is not feasible because it violates the global constraint. 247

4. Proposed Approach 248

In what follows, we present the architecture of the proposed solution as well as the 249

different implemented algorithms. (see Figure 2). 250

4.1. Overall Architecture 251

Storage of
QoS Data

QoSUpdate&Management

ServiceSelectionEngine

WorkflowBuilding&Update

Independent Monitors
Social Networks
Sensors
.......

User's Need:
-Workflow Structure
-Global Constraints

Selection Framework

Figure 2. Service selection architecture.

Our proposed framework involves three principal parts: 252

• The workflow building and update module: Its goal is to assign the new services to 253

their corresponding tasks (a task is a functionality available on the internet, e.g., hotel 254

booking). This component also updates the tasks by changing/removing the services. 255

• The QoS update and management module: It stores all the QoS realizations of all 256

services in a data-warehouse; The QoS information may stem from different sources 257

such as social networks (e.g., ratings, fidelity), third parties (e.g., throughput, latency), 258

and service providers (e.g., cost). 259

• The QoS aware service selection engine: Given a user’s workflow and the set of 260

global constraints, the selection module allows to search the Top-K pertinent service 261

compositions. As mentioned in the sequel, this engine achieve two steps: a local 262

optimization (or sorting) and a global optimization. The first phase (local optimization) 263

uses a set of heuristics (see Equations 15, 24, 20, and 28) to rank the services of each 264

task. The primordial goal is to downsize the search space by only keeping the first k 265

services in the next phases. 266

The second phase of the engine performs a global optimization on the previous results. 267

This step is realized using a discrete bat algorithm. 268

4.2. Local Optimization 269

In the following, we introduce four heuristics (H1, H2, H3, andH4) that retain a subset 270

(of size k) of each task. These services are the most promising items in terms of each Hi. In 271

this work, we assume that the higher the value of a QoS level, the better the service. 272

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2023 doi:10.20944/preprints202306.0134.v1

https://doi.org/10.20944/preprints202306.0134.v1

9 of 20

4.2.1. Fuzzy Pareto Dominance Heuristic (H1) 273

Many alternatives are available for implementing the fuzzy version of pareto domi- 274

nance [31], [21], [32], and [33]. To compare 02 r-dimensional vectors ud and vd, we use the 275

implementation specified in [33] since it is slightly effective than the remaining alternatives 276

and has zero hyper-parameters (in contrast to the others). Its definition is given in 12. The 277

elementary fuzzy dominance (EFD) compares two scalar QoS values using Equation 11. 278

EFD(ud(j), vd(j)) =

{
1 if ud(j) ≥ vd(j)

MIN(ud(j),vd(j))
vd(j) otherwise

(11)

FD(ud, vd) =
l

∏
i=1

EFD(ud(i), vd(i)) (12)

We assume that ud and vd, represent the values of the dth QoS attribute of two existing 279

services S and S’ (respectively). To compare S and S’ with respect to all QoS attributes, we 280

use Equation 13 (Aggregated fuzzy Dominance or AFD for short). 281

AFD(u, v) =
r

∏
d=1

EFD(ud, vd) (13)

The fuzzy contest function shown in Equation 14 (FC for short) inspects the fuzzy 282

dominance power of a service w with respect to another service q. 283

FC(Sw, Sq) =

{
1 if AFD(Sw), Sq) ≥ AFD(Sq, Sw)
0 otherwise

(14)

Equation 15 computes the sorting score of a service Sw by achieving a comparison 284

with the rest of candidate services of the current task (the larger the score, the better the 285

rank). 286

FD_SCORE(Sw) =
1

m− 1 ∑
w ̸=q

FC(Sw, Sq) (15)

In the experimental study, we will sort the services of each task according to the decreasing 287

order of Equation 15 and take first k elements. 288

We illustrate the principle of H1 by comparing the services S1 and S2 of Table I: 289

290

If we apply Equation 13, we get 291

AFD(QoS(S1), QoS(S2)) = FD(QoS(S1), QoS(S2)) =
5
6 ×

15
18 ×

30
40 ×

70
90 = 0.40. 292

On the other hand: AFD(QoS(S2), QoS(S1)) = 1 Consequently, FC(S1, S2) = 0, FC(S2, S1) = 293

1, FC(S2, S3) = 1, 294

FD_SCORE(S2) = 1. 295

4.2.2. Zero Order Stochastic Dominance (H2) 296

This heuristic compares the services using the raw QoS values [34] (see Equation 16). 297

ZSD(ud, vd) =
1
l

l

∑
i=1

Step(ud(i), vd(i)) (16)

Step(ud(i), vd(i)) =
{

1 if ud(i) ≥ vd(i)
0 otherwise

(17)

To compare two S and S’ with respect to all QoS attributes, we use Equation 18 298

(Aggregated zero order stochastic dominance or AZSD for short). 299

AZSD(u, v) =
r

∏
d=1

ZSD(ud, vd) (18)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2023 doi:10.20944/preprints202306.0134.v1

https://doi.org/10.20944/preprints202306.0134.v1

10 of 20

To perform the majority vote (within a task), we need to compare each pair of services. 300

To do so, we leverage the contest function shown in Equation 19, it is termed Aggregated 301

zero order stochastic dominance contest (AZSDC) AZSDC returns 1 if Sw dominates Sq (in 302

the sense of AZSD), otherwise, it returns 0. 303

AZSDC(Sw, Sq) =

{
1,
0, otherwise.

(19)

Equation 20 calculates the sorting score of a service Sw by achieving a comparison 304

with the rest of candidate services of a given task (the larger the score, the better the rank). 305

ZSD_SCORE(Sw) =
1

m− 1 ∑
w ̸=q

AZSDC(Sw, Sq) (20)

In the experiments, we will sort the services of each task according to the decreasing order 306

of Equation 20 and take first k elements. 307

4.2.3. First Order Stochastic Dominance (H3) 308

Like H2, the first order stochastic dominance (H3) performs the same steps, except 309

that it processes the cumulative distribution (CumulDistr) of the sample instead of the raw 310

QoS. If we assume that ud is the QoS sample of the dth attribute of a given service S, then 311

the cumulative distribution of ud is approximated as follows: 312

u′d(i) = CumulDistri(ud) = ∑i
t=1

1
l . 313

In addition, we increase the resolution (size) of u′d and set it to 2× l, the added entries (i’) 314

will have a score equal to ud(i−1)+ud(i)
2 ,∧i′ ∈ [i− 1, i]. 315

316

FSD(u′d, v′d) =ZSD(CumulDistr(ud), CumulDistr(vd))

=
1

2× l

2×l

∑
i=1

Step(u′d(i), v′d(i))
(21)

We have the same expressions mentioned in H2 for the rest of equations. 317

AFSD(u′, v′) =
r

∏
d=1

FSD(u′d, v′d) (22)

AFSDC(Sw, Sq) =

{
1,
0, otherwise.

(23)

FSD_SCORE(Sw) =
1

m− 1 ∑
w ̸=q

AFSDC(Sw, Sq) (24)

In the experiments, we will sort the services of each task according to the decreasing 318

order of Equation 24 and take first k elements. 319

4.2.4. Majority Interval Dominance (H4) 320

In this heuristic, we first compute the median interval for each QoS attribute of 321

each service (this means that the dth of each service Sx is represented with an interval 322

[lbx,d, ubx,d]). then, we rank the services by comparing these representative intervals. To 323

elucidate this idea, we consider the services S1 and S2 of Table I. The median interval of 324

S1 is [5,30], and the corresponding one of S2 is [18,40]. To compare the median intervals, 325

we use the function presented in [19]; this function is defined in Equation 24 and it is 326

termed majority interval dominance (MID). (we assume that the compared services Sxand 327

Sy belong to the task j, and the current QoS attribute is d, Sx is represented with [a1, a2] and 328

and Sy is represented with [b1, b2]). 329

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2023 doi:10.20944/preprints202306.0134.v1

https://doi.org/10.20944/preprints202306.0134.v1

11 of 20

MID([a1, a2], [b1, b2]) =
Relu(a1 − b1) + Relu(a2 − b2)

2× (Qmax(j, d)−Qmin(j, d))
(25)

Where Relu (Rectified linear unit) [20] is the activation function used in deep learning. 330

For instance, if we assume that Qmax(j, d) = 300, Qmin(j, d) = 0, then 331

MID(S1, S2) = MID([5, 30], [18, 40]) = 0, and MID(S2, S1) = MID([18, 40], [5, 30]) = 332

13+10
2×300 = 0.038. 333

The aggregated majority interval dominance is shown in Equation 26. 334

AMID(u, v) =
r

∏
d=1

MID(ud, vd) (26)

ud, vd represent the median intervals of the compared QoS attributes (having the dth rank). 335

Like H1, H2, and H3, the contest function is defined in Equation 27 336

AMIDC(Sw, Sq) =

{
1,
0, otherwise.

(27)

MID_SCORE(Sw) =
1

m− 1 ∑
w ̸=q

AMIDC(Sw, Sq) (28)

In the experiments, we will sort the services of each task according to the decreasing order 337

of Equation 28 and take first k elements. 338

4.3. Global Optimization 339

Once the n lists are given by the first step of the method, it is time now to perform a 340

global search by composing and assessing the service compositions. To do so, we leverage 341

a swarm intelligence metaheuristic that adapt the bat algorithm to our discrete context. 342

This discrete optimization algorithm is chosen because of its ability to combine local search 343

and global search in a harmonious way. Bat algorithm [35] is a promising metaheuristic for 344

continuous optimization. Its metaphor is based on the echolocation behaviour of micro- 345

bats, that can vary frequencies, loudness, and pulse rates of emission to capture the prey 346

(see Figure 3). 347

Figure 3. Bat metaphor

Before giving the pseudo-code of the discrete bat algorithm, we explain all its technical 348

parameters. 349

Pop: it is a matrix of PopSize*n dimensions, it represents all the virtual bats. Pop = 350

{Bat1, .., BatPopSize}. 351

352

Bat∗: the position of the best bat. 353

A: it stands for the loudness of the chirp; it is a vector of Popsize random numbers com- 354

prised in [0,1], it controls the neighborhood size of the local search. It is decreased along 355

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2023 doi:10.20944/preprints202306.0134.v1

https://doi.org/10.20944/preprints202306.0134.v1

12 of 20

the execution of the metaheuristic. 356

Freq: it stands for the frequencies of the bats. It is a matrix of PopSize*n dimensions, it 357

controls the size of the moving step during the global search phase. It is initialized with 358

random values between 0 and 1. 359

R: it stands for the pulse emission rate of each bat. Technically, it is a n-dimension vector of 360

random numbers (in [0,1]) that controls the execution of the local search. 361

Alpha: the factor of decreasing A. 362

Gamma: it is a factor that controls the increasing rate of the pulse emission rate R. 363

MaxIt: the maximum number of iterations of DBA. 364

Algorithm 1: Discrete Bat Algorithm (DBA)
Input:
< TopKList1, ..., TopKListn >: the input lists given by the local optimization
heuristics.
GC: the global constraints bounds.
k: the size of the result list
Output:
TopKCompositions: the Top-K compositions that best meet tall global constraints
in terms of GQC (it is initially empty).

1 A← ones(PopSize)
R← random(PopSize)
Alpha← 0.8
Gamma← 0.8
for i← 1 to PopSize do

Bati ← RandomPosition(TopKList1, .., TopKListn) Freqi ← random()
2 end
3 Bat∗ ← ArgMaxi∈{1,..,PopSize}(GQC(Bati))

4 while (it ≤ MaxIt) do
5 for i← 1 to PopSize do
6 Bati ← GlobalMovment(Bati, Freqi, Bat∗) Freqi ← random()

if (random() ≥ Ri) then
7 neighborhoodSize← round(k ∗meani∈{1,..,PopSize}(Ai)

NewPosition← neighbor(Bat∗, neighborhoodSize)
8 end
9 if (random() ≤ Ai and GQC(NewPosition) ≥ GQC(Bati)) then

10 Bati ← NewPosition Ai ← Alpha× Ai /*decrease the loudness rate*/ ;
11 Ri ← 0.01× (1− exp(−Gamma× it) /*increase the pulse emission

rate*/ ;
12 end
13 if GQC(Bati) ≥ GQC(Bat∗) then
14 Bat∗ ← Bati;
15 end
16 end
17 it← it + 1
18 end
19 TopKCompositions← update(TopKCompositions, {Bat∗, Bat1, Bat2, ..., Batn})

return TopKCompositions

The pseudo-code of DBA can be explained as follows: Line 1 : for each bat, we initialize 365

its loudness, pulse emission rate, and their updating rates Alpha and Gamma. 366

Line 2: for each bat, we randomly initialize its position and its frequency that it is used as a 367

step displacement in the GlobalMovment (of line 6). Freqi is a real value belonging to [0,1]. 368

Line 3: we compute the best bat position of the swarm in terms of GQC. we update the best 369

bat position of the swarm. 370

Lines 4-18 : this is the principal loop of the metaheuristic; it is constituted of MaxIt itera- 371

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2023 doi:10.20944/preprints202306.0134.v1

https://doi.org/10.20944/preprints202306.0134.v1

13 of 20

tions. 372

Lines 5-16 : this is the loop that explores all the bats. 373

Line 6: this function creates a new composition by moving toward the best solution with a 374

random step. More specifically, for each component (task) j of a given bat i, we replace it 375

with the corresponding value in bat∗ with a probability equal to Freqi(j) (Bati(j) = Bat∗(j), 376

with a probability= Freqi(j)). The frequency of each bat is changed after that. 377

Line7:with a probabiity 1− Ri, we create a neighborhood centered on the best bat Bat∗. 378

The width of this neighborhood is equal to k times the average of all the possible loud- 379

nesses Ai (this width is termed as spread); then, we create a new composition NewPosi- 380

tion= (component1, ..., componentn) as follows: 381

for each j ∈ {1, ..., n} componentj = successorTaskj
(Bat∗(j)) with a probability 382

= Gaussianmean,σ(|Rank(Bat∗(j))−Rank(successorTaskj
(Bat∗(j)))|). Knowing that Mean = 383

Rank(Bat∗(j)) and σ = spread/2. 384

For instance, if a task j is constituted of the following ranked services < S9, S15, S4, S20, S2 >, 385

and we assume that Bat∗(j) = S4, mean = Rank(Bat∗(j)) = 3 (it is ranked third in the 386

list), and σ = spread/2 = 1, then the neighborhood of S4, according to line 7, is equal 387

to {S15, S4, S20}. The probability of getting each of them as a value for componentj is 388

25%, 50%, 25%, respectively (since we approximate the Gaussian function for these three 389

observations). 390

In lines 9-12, we accept the aforementioned solution NewPosition (i.e., we update Bati), 391

with a probability Ai. In addition, NewPosition must have a fitness better than that of Bati. 392

We decrease the loudness Ai and increase the pulse emission rate Ri in order to reduce the 393

chances of performing the local search in the future (i.e., line 7). 394

In lines 13-15, we update the best solution if the actual bat has a better fitness. 395

Finally, we notice that DBA has a time complexity of O(PopSize + n× PopSize + PopSize× 396

r× ln + Maxit× PopSize(n + n× k + r× ln)). We notice that the complexity of the fitness 397

function GQC is O(r× ln)). 398

5. Experimental Study 399

Inspired from [3] and [25], we generate the QoS dataset using a random Gaussian 400

distribution. In particular, we use the following setting: mean=0 and standard-deviation=1. 401

The domain of each parameter is given in Table 3. 402

The experiments were implemented using a Window10 64 bit OS with Intel Core 403

i3-6006U CPU @ 2.0GHz processor and 32 GB RAM. The algorithms where developed with 404

netbeans IDE 12.0. 405

Before introducing the experimental results, we describe the theoretical complexity of 406

the proposed heuristics. The heuristic H1 (Equation 15) compares each candidate service 407

with the remaining components and each comparison step (Equation 13) is O(r.l); therefore, 408

the time complexity of H1 is O(m.r.l). Like H1, the complexity of H2 (Equation 20) is 409

O(m.r.l). In the same line of thought, the complexity of Equation 24 (H3) is O(m.r.l) and 410

the complexity of Equation 28 (H4) is O(l.logl + m.r). 411

In the experiments, we will only vary one parameter and keep the remaining set to 412

their default values (see Table 3). As regards the fuzzy dominance implementation of [21], 413

we preserve the same setting chosen by the authors for the parameter ε (which is equal to 414

0.1). For the sake of concise presentation, we only show the Top2 pertinent compositions 415

(in terms of GQC) for all the remaining experiments. 416

As shown in Figure 4, we observe that the behavior (time) of H1, H3, and the heuristic 417

of (21) is comparable. Additionally, we observe a slight rise of time for H3 since the curve 418

slope is proportional to 2× l instead of l. At the end, we note that H2 and H4 are the most 419

efficient heuristics since the slope of their curves is lower than the that of first ones. 420

421

422

The Figure 5 shows that the CPU time of H1, H3, and the heuristic of (21) is compa- 423

rable, but the slopes of their respective curves are different. Additionally, we observe a 424

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2023 doi:10.20944/preprints202306.0134.v1

https://doi.org/10.20944/preprints202306.0134.v1

14 of 20

Table 3. Parameters’ Range

Parameter Meaning Domain Default value
n The number of tasks {2,5,8} 2

m The number of
services per class {500,..,1000} 500

r The number of QoS
attributes {4,..,10} 4

l

The number of
realizations of a given
QoS attribute (i.e., the
number of instances)

{15,..,100} 21

k The size of the
returned list {2,5,10} 5

bi
The ith global

constraint bound
Positive real

For attributes
aggregated with:

an additive function:
n*0.6.

a multiplicative
function: 0.6n.

MAX/MIN functions:
0.6.

wi
The weight of the ith

QoS attribute
[0..1] 1/r

Figure 4. Average CPU time Vs. m
Average execution time Vs. m

CP
U

 t
im

e
(S

ec
)

0

10

20

30

40

50

Number of services (m)
400 500 600 700 800 900 1,000 1,100

Heuristic of (21)
 H1
 H2
 H3
 H4

slight rise of the time for the heuristic of (21) since its complexity is quadratic with respect 425

to l. We note that H4 is the most efficient one since the comparison of median intervals 426

does not depend on l (we assume that the sorting of QoS vectors is done in an offline way). 427

Like the previous experiments, Figure 6 shows that the fuzzy dominance implemen- 428

tation of (21), H1, and H3, have closer CPU times. On the other hand, the majority grade 429

heuristic (28) and H4 have a lower CPU time since their theoretical slope is not dependent 430

on l. We also note that the curve of H2 has an almost flat slope and this is mainly due to 431

the low overhead of Equation 16. It is worth noting that, the majority grade principle is 432

initially presented by [36] for ranking the candidates of an election. After that, it is adapted 433

by [28] to web service selection. 434

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2023 doi:10.20944/preprints202306.0134.v1

https://doi.org/10.20944/preprints202306.0134.v1

15 of 20

Figure 5. Average CPU time Vs. l
Average execution time Vs. l

CP
U

Ti
m

e
(S

ec
)

0

50

100

150

200

250

300

350

Number of realizations (l)
0 20 40 60 80 100 120

Heurist ic of (21)
 H1
 H2
 H3
 H4

Figure 6. Average CPU time Vs. r
Average execution time Vs. r

CP
U

 t
im

e
(S

ec
)

0

10

20

30

40

50

60

Number of QoS criteria (r)
3 4 5 6 7 8 9 10 11

H1
H2
H3
H4
Heuristic of (28)
Heuristic of (3)
Heuristic of (21)

According to Figure 7, we observe that all methods have almost the same CPU time 435

up to n=5. Behind this threshold, the time rises with different scales (according to each 436

alternative). We notice that the exhaustive search is the most prohibitive one since there is 437

an exponential number of candidate solutions; however, DBA (with all configurations) only 438

explores a polynomial number of candidate compositions (but GQC is still exponential). 439

As a result, the increase rate of time is less drastic for the three configurations of DBA. In 440

summary, we can state that a selection problem with less than 8 tasks can be efficiently 441

handled with DBA while using less than 100 bats. It is worth noting that the majority of 442

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2023 doi:10.20944/preprints202306.0134.v1

https://doi.org/10.20944/preprints202306.0134.v1

16 of 20

real-world workflows have less than 10 abstract tasks, and this fact highlights the suitability 443

of DBA to the QoS aware service selection problem. 444

Figure 7. Average CPU time for DBA and Exhaustive Search
DBA Vs. Exhaustive search

CP
U

 t
im

e
(S

ec
)

-5e+05

0

5e+05

1e+06

1.5e+06

2e+06

2.5e+06

Number of tasks (n)
1 2 3 4 5 6 7 8 9

Exhaustive search
DBA 50 particles
DBA 100 particles
DBA 200 particles

Table 4. GQC and Global Constraints Satisfiability Vs. r

r=4 r=8 r=10
Model GQC PSGC GQC PSGC GQC PSGC

H1 0.673 75% 0.484 50% 0.500 40%
0.646 75% 0.480 62.5% 0.480 20%

H2 0.721 100% 0.515 37.5% 0.570 30%
0.664 100% 0.515 37.5% 0.463 30%

H3 0.302 0% 0.393 0% 0.388 0%
0.253 0% 0.343 0% 0.356 0%

H4 0.562 50% 0.6628 12.5% 0.408 10%
0.486 50% 0.524 25% 0.388 20%

Fuzzy
dominance
heuristic of

(21)

0.673 75% 0.5155 37.5% 0.500 50%

0.633 50% 0.515 50% 0.441 10%

Table 5 shows the behavior of the heuristics with respect to the QoS sample size l. 445

Broadly speaking, we notice that both GQC and PSGC degrade as the l grows. This degra- 446

dation is logic since the satisfaction of tight global constraints will be rare as l increases.We 447

observe that H1 and H2 are more effective than the remaining heuristics; more specifically 448

H2 performs better than H1 for low values of l (we can even obtain 100% of PSGC), however 449

H1 performs better for medium and large values of l. In contrast to the heuristics H2, H3, 450

and H4, we observe that H1 has a stable and consistent performance for all values of l. 451

Table6 presents the performance of the heuristics with respect to m (the cardinal of 452

the task). We observe a slight degradation for both GQC and PSGC when the number of 453

services m increases, (for almost all heuristics). This observation may be due to the fact that 454

the new extended dataset have less promising QoS levels. We also notice that the heuristics 455

H1 and H2 are more effective than the rest of alternatives (for all values of m). 456

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2023 doi:10.20944/preprints202306.0134.v1

https://doi.org/10.20944/preprints202306.0134.v1

17 of 20

Table 5. GQC and Global Constraints Satisfiability Vs. l

l=15 l=21 l=100
Model GQC PSGC GQC PSGC GQC PSGC

H1 0.673 75% 0.655 100% 0.420 0%
0.646 75% 0.544 50% 0.414 0%

H2 0.721 100% 0.704 50% 0.408 0%
0.664 100% 0.655 100% 0.402 0%

H3 0.302 0% 0.343 0% 0.346 0%
0.253 0% 0.311 0% 0.324 0%

H4 0.562 50% 0.538 25% 0.392 0%
0.486 50% 0.467 25% 0.390 0%

Fuzzy
dominance
heuristic of

(21)

0.673 75% 0.665 75% 0.415 0%

0.633 50% 0.588 75% 0.411 0%

Table 6. GQC and Global Constraints Satisfiability Vs. m

m=500 m=800 m=1000
Model GQC PSGC GQC PSGC GQC PSGC

H1 0.673 75% 0.645 75% 0.549 50%
0.646 75% 0.626 75% 0.491 25%

H2 0.721 100% 0.604 50% 0.552 50%
0.664 100% 0.583 75% 0.486 75%

H3 0.302 0% 0.358 0% 0.379 0%
0.253 0% 0.311 0% 0.299 0%

H4 0.562 50% 0.638 50% 0.506 25%
0.486 50% 0.620 25% 0.474 25%

Fuzzy
dominance
heuristic of

(21)

0.673 75% 0.590 75% 0.551 50%

0.633 50% 0.583 75% 0.551 50%

Table7 demonstrates the performance of the heuristics with respect to the number 457

of tasks n. It is clearly shown that the scores given by all heuristics degrade with the 458

increasing of n, since it is more difficult to satisfy a constraint comprised of a larger sum 459

of random variables (according to the central limit theorem, this sum will follow – under 460

some conditions- a Gaussian probability distribution with a narrower standard deviation). 461

Like the precedent experiments, we notice that H1 performs better than the rest of heuristic 462

for all values of n. Additionnaly, we note that H2 has a better GQC and PSGC for low 463

values of n, but these scores drastically degrade when n increases. 464

Table 8 presents a comparison between our contributions (DBA with H1 and H2) and 465

some existing state-of-the-art approaches. It is clearly shown that GQC and PSGC of H1 466

and H2 are more effective than the works of the literature. We also observe that the work 467

of [3] gives the lowest values for GQC, and this means that the methods based on local 468

thresholds selection have worse performances on practical datasets. We also observe that 469

the fuzzy implementation of the pareto-dominance using [33] is better than that of [21], 470

since the experiments shown in tables 6, 5, 4,and 7 confirm the slight superiority of our 471

proposed formula. 472

6. Conclusion 473

We have presented in this paper a set of ranking heuristics coupled with a bat algorithm 474

metaheuristic for selecting service compositions with uncertain QoS. The main idea of 475

the proposition consists of lowering the size space by first retaining the most pertinent 476

services in each class (task) using well defined heuristics. In the second phase, we perform a 477

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2023 doi:10.20944/preprints202306.0134.v1

https://doi.org/10.20944/preprints202306.0134.v1

18 of 20

Table 7. GQC and Global Constraints Satisfiability Vs. n

n=2 n=5 n=8
Model GQC PSGC GQC PSGC GQC PSGC

H1 0.673 75% 0.665 50% 0.609 50%
0.646 75% 0.656 50% 0.592 75%

H2 0.721 100% 0.647 75% 0.224 0%
0.664 100% 0.640 50% 0.219 0%

H3 0.302 0% 0.163 0% 0.132 0%
0.253 0% 0.161 0% 0.126 0%

H4 0.562 50% 0.557 25% 0.512 25%
0.486 50% 0.541 25% 0.511 25%

Fuzzy
dominance
heuristic of

(21)

0.673 75% 0.563 50% 0.590 50%

0.633 50% 0.557 50% 0.580 50%

Table 8. Utility Score, Global Constraints Satisfiability, and GQC for all methods (default configura-
tion)

Heuristic GQC US PSGC
H1 0.655 0.531 75%

0.544 0.482 100%
H2 0.704 0.511 50%

0.655 0.531 100%
H3 0.342 0.387 0%

0.311 0.374 0%
H4 0.538 0.451 25%

0.467 0.427 25%
Majority grade with

constraint
programming (28)

0.703 0.519 75%

0.631 0.527 75%
Fuzzy dominance

heuristic of (21) 0.665 0.516 75%

0.588 0.514 75%
First assignment of (3) 0.302 0.398 0%

global search to get the best compositions in terms of global QOS conformance. The results 478

confirm the ability of both fuzzy pareto dominance relationship and stochastic dominance 479

(of order zero) to outperform the remaining heuristics. 480

In future works, we plan to test the framework on other types of workflows and compare 481

our bat algorithm method with recent metaheuristics such as Spider Monkey Optimization 482

and whale optimization algorithm. 483

References 484

1. Hayyolalam V, Kazem AA. A systematic literature review on QoS-aware service composition 485

and selection in cloud environment. Journal of Network and Computer Applications. 2018 May 486

15, 110:52-74. 487

2. Merzoug M, Etchiali A, Hadjila F, Bekkouche A. Effective Service Discovery based on Pertinence 488

Probabilities Learning. International Journal of Advanced Computer Science and Applications. 489

2021,12(9). 490

3. Hwang, S. Y., Hsu, C. C., and Lee, C. H. Service selection for web services with probabilistic 491

QoS. IEEE transactions on services computing, 2015,8(3): 467-480. 492

4. Bekkouche, A., Benslimane, S. M., Huchard, M., Tibermacine, C., Hadjila, F., and Merzoug, M. 493

QoS-aware optimal and automated semantic web service composition with user’s constraints. 494

Service Oriented Computing and Applications, 2017. 11(2): 183-201. 495

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2023 doi:10.20944/preprints202306.0134.v1

https://doi.org/10.20944/preprints202306.0134.v1

19 of 20

5. Zhang S, Shao Y, Zhou L. Optimized artificial bee colony algorithm for web service composition 496

problem. Int. J. Mach. Learn. Comput. 2021 Sep;11(5). 497

6. Mohammed, M., Chikh, M. A., and Fethallah, H. QoS-aware web service selection based on 498

harmony search. in IEEE ISKO-Maghreb: Concepts and Tools for knowledge Management 499

(ISKO-Maghreb), 4th International Symposium , 2014, pp. 1-6. 500

7. Alrifai, M., Risse, T., and Nejdl, W. A hybrid approach for efficient Web service composition 501

with end-to-end QoS constraints. ACM Transactions on the Web (TWEB),2012, 6(2): p7. 502

8. Liu, Z. Z., Jia, Z. P., Xue, X., An, J. Y. Reliable Web service composition based on QoS dynamic 503

prediction. Soft Computing, 2015, 19: 1409-1425. 504

9. Belouaar, H., Kazar, O., and Rezeg, K. Web service selection based on TOPSIS algorithm. in 2017 505

IEEE International Conference on Mathematics and Information Technology (ICMIT),2017. pp. 506

177-182. 507

10. Shetty, J., D’Mello, D. A. Global and local optimisation-based hybrid approach for cloud service 508

composition. in International Journal of Computational Science and Engineering,2018, 17(1): 509

1-14. 510

11. Chen, L., Ha, W. Reliability prediction and QoS selection for web service composition. In 511

International Journal of Computational Science and Engineering,2018, 16(2): 202-211. 512

12. Halfaoui A, Hadjila F, Didi F. QoS-aware web services selection based on fuzzy dominance. 513

InComputer Science and Its Applications: 5th IFIP TC 5 International Conference, CIIA 2015, 514

Saida, Algeria, May 20-21, 2015, Proceedings 5 2015 (pp. 291-300). Springer International 515

Publishing. 516

13. Halfaoui, A., Hadjila, F., et Didi, F. QoS-aware web service selection based on self-organising 517

migrating algorithm and fuzzy dominance. International Journal of Computational Science and 518

Engineering, 2018, 17(4): p. 377-389. 519

14. Dahan F, El Hindi K, Ghoneim A, Alsalman H. An enhanced ant colony optimization based 520

algorithm to solve QoS-aware web service composition. Ieee Access. 2021,9(2021):34098-111. 521

15. Zanbouri K, Jafari Navimipour N. A cloud service composition method using a trust-based 522

clustering algorithm and honeybee mating optimization algorithm. International Journal of 523

Communication Systems, 2020,33(5):e4259. 524

16. Zhu, W., Yin, B., Gong, S., Cai, K. Y. An Approach to Web Services Selection for Multiple Users, 525

2017, IEEE Access, 5:15093-15104. 526

17. Yu, Q., and Bouguettaya, A. Computing service skyline from uncertain qows. IEEE Transactions 527

on Services Computing, 2010, 3(1): 16-29. 528

18. Schuller, D., Lampe, U., Eckert, J., Steinmetz, R., and Schulte, S. (2012, June). Cost-driven 529

optimization of complex service-based workflows for stochastic QoS parameters. in 2012 IEEE 530

19th International Conference on Web Services (ICWS) ,2012, pp. 66-73. 531

19. Abdelhak E, Feth-Allah H, Mohammed M. QoS uncertainty handling for an efficient web 532

service selection. InProceedings of the 9th International Conference on Information Systems 533

and Technologies, 2019, pp. 1-7. 534

20. Brownlee J. A gentle introduction to the rectified linear unit (ReLU). Machine learning mastery. 535

2019 Jan 9;6. 536

21. Hadjila F, Belabed A, Merzoug M. Efficient web service selection with uncertain QoS. Interna- 537

tional Journal of Computational Science and Engineering. 2020, 21(3):470-82. 538

22. Rajeswari P, Jayashree K. Hybrid Metaheuristics Web Service Composition Model for QoS 539

Aware Services. Comput. Syst. Sci. Eng.. 2022 Jan 1;41(2):511-24. 540

23. Sun, L., Wang, S., Li, J., Sun, Q., Yang, F. QoS uncertainty filtering for fast and reliable web 541

service selection. In 2014 IEEE International Conference on Web Services, 2014, pp. 550-557. 542

24. Sun SX, Zhao J. A decomposition-based approach for service composition with global QoS 543

guarantees. Information Sciences. 2012 Sep 15;199:138-53. 544

25. Kim, M., Oh, B., Jung, J., and Lee, K. H. Outlier-robust web service selection based on a 545

probabilistic QoS model. International Journal of Web and Grid Services, 2016, 12(2): 162-181. 546

26. Yasmina RZ, Fethallah H, Fedoua D. Selecting web service compositions under uncertain QoS. 547

InComputational Intelligence and Its Applications: 6th IFIP TC 5 International Conference, CIIA 548

2018, Oran, Algeria, May 8-10, 2018, Proceedings 6 2018 (pp. 622-634). Springer International 549

Publishing. 550

27. Seghir F, Khababa A, Semchedine F. An interval-based multi-objective artificial bee colony 551

algorithm for solving the web service composition under uncertain QoS. The Journal of Super- 552

computing. 2019,75(2019):5622-66. 553

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2023 doi:10.20944/preprints202306.0134.v1

https://doi.org/10.20944/preprints202306.0134.v1

20 of 20

28. Zeyneb Yasmina R, Fethallah H, Fadoua L. Web service selection and composition based 554

on uncertain quality of service. Concurrency and Computation: Practice and Experience. 555

2022.34(1):e6531. 556

29. Yasmina RZ, Fethallah H. Uncertain service selection using hesitant fuzzy sets and grey wolf 557

optimisation. International Journal of Web Engineering and Technology. 2022,17(3):250-77. 558

30. Zheng, H., Zhao,W., Yang,J., Bouguettaya, A. QoS Analysis for Web Service Compositions with 559

Complex Structures. IEEE Trans. Services Computing, 2013, 6(3): 373-386. 560

31. Benouaret, K., Benslimane, D., Hadjali, A. On the use of fuzzy dominance for computing service 561

skyline based on qos. In 2011 IEEE International Conference on Web Services (ICWS), 2011, pp. 562

540-547. 563

32. Wang G, Jiang H. Fuzzy-dominance and its application in evolutionary many objective opti- 564

mization. In IEEE 2007 International conference on computational intelligence and security 565

workshops (CISW 2007), 2007,pp. 195-198. 566

33. Köppen M, Vicente-Garcia R, Nickolay B. Fuzzy-pareto-dominance and its application in 567

evolutionary multi-objective optimization. InEvolutionary Multi-Criterion Optimization: Third 568

International Conference, EMO 2005, Guanajuato, Mexico, March 9-11, 2005. Proceedings 3, 569

2005, pp. 399-412. Springer Berlin Heidelberg. 570

34. Bruni, R., Cesarone, F., Scozzari, A., Tardella, F. On exact and approximate stochastic dominance 571

strategies for portfolio selection. European Journal of Operational Research, 2017, 259(1), 572

322-329. 573

35. Yang XS. A new metaheuristic bat-inspired algorithm. Nature inspired cooperative strategies 574

for optimization (NICSO 2010). 2010:65-74. 575

36. Balinski M, Laraki R. A theory of measuring, electing, and ranking. Proceedings of the National 576

Academy of Sciences. 2007 May 22,104(21):8720-5. 577

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are 578

solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). 579

MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from 580

any ideas, methods, instructions or products referred to in the content. 581

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2023 doi:10.20944/preprints202306.0134.v1

https://doi.org/10.20944/preprints202306.0134.v1

	Introduction
	State of the Art
	Service Selection with Certain QoS
	Service Selection with Uncertain QoS

	Problem Specification
	Parameters' Notation
	QoS model
	Global QoS Conformance

	Proposed Approach
	Overall Architecture
	Local Optimization
	Fuzzy Pareto Dominance Heuristic (H1)
	Zero Order Stochastic Dominance (H2)
	First Order Stochastic Dominance (H3)
	Majority Interval Dominance (H4)

	Global Optimization

	Experimental Study
	Conclusion
	References

