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Abstract: Coastal areas situated at lower elevations are becoming more vulnerable to flooding as a 

result of the accelerating global sea level rise. As the sea level rises, so does the groundwater. 

Barriers designed to shield against marine flooding do not provide protection against flooding 

caused by rising groundwater. Despite the increasing threat of groundwater flooding, there is 

limited knowledge about the relationship between sea level rise and groundwater fluctuations. This 

hinders the ability to adequately consider sea level rise induced groundwater flooding in adaptation 

initiatives. This study aims to investigate how local groundwater in Juelsminde, Denmark, responds 

to changes in sea level and to evaluate the predictability of these changes using a machine learning 

model. The influence of the sea on the shallow groundwater level has been investigated using six 

groundwater loggers located between 45 and 210 m from the coast. An initial manual analysis of 

the data revealed a systematic delay in the rise of water levels from the coast to inland areas, with a 

delay of approximately 15–17 hours per 50 m of distance. Subsequently, a support vector regression 

model was used to predict groundwater levels 24 hours into the future. This study shows how the 

groundwater level in Juelsminde is affected by sea level fluctuations. Results suggest a need for 

increased emphasis on this topic. 

Keywords: global sea level rise; groundwater fluctuations; machine learning model; predictability; 

loggers 

 

1. Introduction 

The global sea level rise is accelerating due to the melting of ice sheets and the thermal expansion 

of the oceans as a result of climate change [1–3]. This will affect millions of people living in low-lying 

coastal areas worldwide [1,4,5] and many coastal urban areas are already experiencing the 

consequences of increased precipitation, more frequent storm events and sea level rise SLR [6].  

While SLR poses direct challenges to coastal areas, such as flooding and erosion [7–9], 

groundwater inundation (GWI) is an indirect and increasingly problematic consequence of SLR [8]. 

Ground water level (GWL), especially in the permeable ground, responds to tidal forces. This 

narrowing of the unsaturated space between the GWL and infrastructure may lead to GWI. 

Extremely high tides and SLR will intensify these floods due to a higher groundwater table and 

reduced unsaturated space to store water from storm events [6,10–13]. There may be many 

contributors that can influence GWI. It may consist of a single parameter or multiple parameters 

coinciding, such as rainfall and high tides during a storm event. Furthermore, low-lying coastal zones 

are prone to compound flooding, where marine and/or surface flooding can happen simultaneously 

with GWI [4,9]. Coastal barriers designed to protect against surface water are not effective in 

preventing flooding from below, making GWI especially problematic. This leaves buildings, 

basements and both underground and surface infrastructure at risk of flooding [6,8,11,12,14,15]. 

Consequently, it can lead to contamination of the surface and groundwater with sewage [10]. 
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The role of groundwater is important to fully understand the effect of SLR in coastal areas; 

however, it is often inadequately addressed in studies related to this topic. The effects of SLR are 

often assessed using numerical modelling, but there are few studies on modelling and forecasting 

GWI. This lack of information on GWI in coastal areas means that it is not being adequately 

considered in planning or adaptation initiatives [6,8,9,12,16]. Modelling GWI requires consideration 

of all parameters that may influence the GWL during extreme weather events, as well as the risk of 

compound flooding [9]. So far, many of the models used to investigate these systems have been based 

on physical principles. However, these models require substantial amounts of information about the 

system, and even when the data is available, they can be difficult to calibrate. Therefore, machine 

learning models are gaining popularity among hydrologists because they perform well and require 

less data input [6]. 

Existing research papers on the effects of SLR on GWL portray a variety of methods and 

perspectives, reflecting the complexity of the topic. 

Habel et al. 2017 [10] used a groundwater flow model to assess the impact of SLR and high tides 

on GWI in Waikiki, Honolulu, Hawaii and concluded that an SLR of only approximately 1 m would 

result in a significant increase in the surface area experiencing GWI and its corresponding 

ramifications. Bjerkelie et al. 2012 [12] also found that SLR causes groundwater rise (GWR). Using a 

3D groundwater flow model, researchers discovered that in New Haven, Connecticut, a 0.91 m SLR 

scenario resulted in a corresponding 0.91 m increase in the near coast GWL. Furthermore, the model 

indicated that even a GWL ranging from 5.2–7.3 m above sea level responded to the SLR. Results 

from Knott et al. 2019 [15] using a groundwater flow model showed that, in coastal New Hampshire, 

USA, there is an estimated mean rise in GWL of 66% of SLR between 0 and 1 km from the coastline. 

Additionally, the study found that there is a response in GWL up to 5 km inland (3% of SLR) from 

the coastline. Similar among these three studies is the conclusion that the models must include more 

parameters and/or data to enhance their reliability [10,12,15]. 

In Bowes et al.’s 2019 [6] study, two machine learning models, namely long-short-term memory 

(LSTM) and recurrent neural networks (RNN), were investigated for their effectiveness in forecasting 

and modelling GWL in Norfolk, Virginia. A comparison of the models showed that LTSM networks 

are useful in real-time operational forecasts, and the authors predict that GWL forecasting will 

become a valuable tool in the future management and modelling of coastal flooding.  

Although the described studies have addressed this topic in different localities around the 

world, no systematic research has been conducted on the impact of SLR on GWL in Denmark. 

Therefore, this study aims to investigate how the local groundwater table responds to 

fluctuations in sea level and to uncover regional variations in the dependence on sea level and 

precipitation in a small town in Denmark. Finally, the predictability of groundwater fluctuations will 

be tested using a simple machine-learning model based on the information mentioned above.  

2. Materials and Methods 

2.1. Study Area and Geological Setting 

Juelsminde is located on the eastern coast of Jutland, Denmark, on a peninsula bordered by the 

Kattegat Sea to the east and Vejle Fjord to the south (Figure 1). Juelsminde is prone to flooding and 

has been identified as one of the top 10 cities in Denmark that are most at risk of flooding. The 

nearshore areas are dominated by vacation homes, while the harbour is located in the northern part 

of the city. Further inland, residential houses dominate. A dike with an elevation of 2.6 m above sea 

level (masl) protects the buildings located south of the harbour from flooding caused by storm surges. 

The groundwater level is only 0 to 1 m below the ground surface (mbgs), and large parts of the city 

are drained through a series of ditches, from which water is pumped over the dike into the Kattegat 

Sea.  
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Figure 1. Overview map showing the Juelsminde area, the soil types, the position of the wells in Fig. 

2 and the location of the dataloggers. 

In Figure 1, the near-surface soil types are shown. The Juelsminde area is characterised by glacial 

sediments in an elevated area to the west, covered by postglacial sediments in a lower lying area to 

the east. Figure 2 displays a geological cross-section based on well data. The glacial till observed in 

drilling B2 and towards the west in Figure 1 was deposited during the Pleistocene glaciations when 

the area was repeatedly covered by ice sheets [17]. The postglacial sediments are dominated by 

marine sand and, to a lesser extent, organic clay (Gyttja). The marine sand was deposited during the 

Holocene period, when ice melted and retreated, following the latest glaciation. The sea level rose, 

causing low-lying areas in Denmark to flood, by the combined effect of sea level rise, and the land 

still being depressed from the weight of the ice sheets. The land has a much slower response to 

reaching equilibrium than the ocean. The flooding peaked during the Littorina transgression, which 

occurred approximately 7,500 years ago. This event is responsible for the lower marine sand layer 

observed in drilling B2. Marine conditions were established and the gyttja layer found in drilling B2 

was deposited. The thickness of the lower marine sand is approximately 1 m, but it may be greater 

in areas where no organic clay is present and a distinct boundary between the upper and lower 

marine sand can be distinguished. The organic clay layer has a thickness of 3 m and is composed of 

silt (Gyttja) containing plant remains and shells.  

As the land rose following the ice retreat, the shoreline shifted towards its current position. 

During this regression, the upper layer of marine sand was deposited. It is up to 10 m thick and 

described as fine- to medium-grained, well-sorted sand containing shells. 

Anthropogenic fillings in the area, typically 1–4 m thick, are expected to be local occurrences 

related to constructions, and as expected the greatest thickness is found in the harbour area. 
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Figure 2. Cross section through Juelsminde showing borehole lithologies. 

2.2. Data  

Since 2017, six Rotek loggers have been measuring the GWL every 10 minutes. They are located 

along to coast-perpendicular profiles, with distances from the coastline between 45 and 210 m (Figure 

3). 

 

Figure 3. Location of the different logger types installed in the Juelsminde area. 

The northernmost profile is located in an open area devoid of significant buildings, whereas the 

southern profile extends from the beach just south of the harbour and into the urbanised region 
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behind the dike. In the last quarter of 2021, 14 additional IoT groundwater loggers were installed to 

investigate the dynamics along the coastline and gain a more comprehensive understanding of spatial 

variation. The tide gauges were installed along the coastline and in residential areas near the coast, 

as shown in Figure 3. The Danish Meteorological Institute (DMI) conducts sub-hourly measurements 

of sea level in Juelsminde harbour. Precipitation amounts in Juelsminde are also recorded by DMI. 

The data is freely available. 

2.3. Data Preparation 

The various sources of data require different levels of data processing, as shown in Figure 4. The 

data obtained from the six Rotek loggers were all corrected for barometric pressure by 100%. Where 

only a few values were missing, they were calculated using linear interpolation. Major outliers were 

removed, and staggered sections were aligned with the rest of the data series. The sources of sudden 

jumps (offsets of sections) in the data are unknown, which means that there is a risk of correcting the 

wrong section of the data. This uncertainty is one of the reasons why this study focuses on the relative 

changes in the groundwater table. Therefore, the mean of the data series has been subtracted. The 

data retrieved from the 14 IoT loggers were corrected based on the terrain, and significant outliers 

were removed by the company that provided the groundwater loggers. The sea level and 

precipitation data from the DMI required very little correction. Only a few outliers were removed. 

All data series that were compared were first standardised to the same resolution before analysis, 

using either linear interpolation or downscaling.  

In this study, two different analyses were carried out. (1) A manual analysis was conducted to 

examine the groundwater responses to high tide and storm events separately. Based on the results of 

the manual analysis (2), a machine learning model is constructed to assess the predictability of the 

groundwater response. 
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Figure 4. Workflow of the data treatment, analysis and model process. 
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Manual Analysis of Sea Level and Groundwater Interaction 

Rises in shallow groundwater levels resulting from large, sudden changes in sea level are 

typically more distinct and easier to identify and separate from each other than minor variations 

caused by tidal fluctuations. Additionally, they can be traced further inland, making them ideal for 

evaluating the systemic response of shallow groundwater to sea level rises. The most significant sea 

level rises are identified and extracted for analyses.  

The analysis was conducted on the six data loggers (Rotek), with the longest available time 

series, placed in two profiles perpendicular to the coast. The sea level rise is determined by 

subtracting the mean sea level from the level recorded over the past two days. Through automated 

peak identification, time periods with a peak prominence over 1.2m and SL above 0.5m are selected 

and listed in Table 1. Information regarding the scale of the SLR and the time interval covering the 

period of five days before the peak sea level and the subsequent seven days was gathered. This 

selection resulted in 30 high tide events with relative amplitudes ranging from 1,22m to 1.96m. An 

example of automatic selection of high-sea-level events is shown in Figure 5. 

Table 1. An overview of the data sources used in this study. 

Logger Type Logger No.  Parameter LON LAT Distance to Coast [m] Start Time 

Rotek  

loggers 

1 Barometer 55,719466 9,997424 139 2017-09-27  

2 GWL 55,719519 9,997907 139 2018-08-01  

3 GWL 55,719519 9,998589 101 2017-09-27  

4 GWL 55,712096 10,01651 52,5 2017-09-27  

5 GWL 55,712857 10,018334 210 2017-09-27  

6 GWL 55,713039 10,019108 91 2017-09-27  

7 GWL 55,715592 10,016333 45,5 2017-09-27  

IoT  

loggers 

8 GWL 55,700241 10,019238 25 2021-11-09  

9 GWL 55,700759 10,019567 85 2021-11-09  

10 GWL 55,701656 10,021771 237 2021-11-09  

11 GWL 55,702416 10,023098 166 2021-11-09  

12 GWL 55,702576 10,024219 95 2021-11-09  

13 GWL 55,708428 10,019977 93 2021-11-09  

14 GWL 55,70956 10,019282 93 2021-12-07  

15 GWL 55,710447 10,018632 111 2021-12-07  

16 GWL 55,711681 10,01765 153 2021-12-07  

17 GWL 55,712459 10,018539 90 2021-11-10  

18 GWL 55,714725 10,012991 106 2021-11-10  

19 GWL 55,716101 10,008804 75 2021-11-09  

20 GWL 55,716932 9,999464 122 2021-12-07  

21 GWL 55,717932 10,001148 67 2021-12-07  

DMI  

loggers 

100 Sea level 55,7156 10,0163 - 2017-09-27 

101 Precipitation 55,7102 9,9962 - 2017-09-27 
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Figure 5. An example of the automatic selection of high sea level events. The blues crosses 

representing the peak levels exceeding the the minimum criterias. 

The minimum threshold of 1.2 m for relative water level change ensures a high enough signal-

to-noise ratio inland while also including a sufficient number of high tide events to evaluate possible 

correlations. The process of peak selection and subsequent analysis methods were inspired by Bowes 

et al., 2019 [6]. Modified versions of the available code have been used. 

Table 2. The selected SLR events and the corresponding peak values. 

Event 

No.  
Start Datetime Peak Datetime End Datetime 

Peak 

Prominence 
SL at Peak 

1 2017-10-07 20:00:00 2017-10-13 02:20:00 2017-10-19 18:40:00 131 79 

2 2017-10-13 14:10:00 2017-10-18 21:20:00 2017-10-25 12:50:00 128 76 

3 2017-11-14 03:40:00 2017-11-19 10:00:00 2017-11-26 02:20:00 131 88 

4 2017-12-06 11:40:00 2017-12-11 17:20:00 2017-12-18 10:20:00 143 89 

5 2017-12-30 04:40:00 2018-01-04 10:10:00 2018-01-11 03:20:00 138 87 

6 2018-01-11 12:00:00 2018-01-16 21:10:00 2018-01-23 10:40:00 164 91 

7 2018-01-23 12:10:00 2018-01-28 20:30:00 2018-02-04 10:50:00 135 74 

8 2018-02-07 11:20:00 2018-02-12 20:30:00 2018-02-19 10:00:00 166 68 

9 2018-02-11 02:00:00 2018-02-16 10:20:00 2018-02-23 00:40:00 142 60 

10 2018-02-22 16:10:00 2018-02-27 20:40:00 2018-03-06 14:50:00 142 60 

11 2018-03-11 17:20:00 2018-03-16 22:50:00 2018-03-23 16:00:00 142 60 

12 2018-11-13 13:30:00 2018-11-18 19:30:00 2018-11-25 12:10:00 134 55 

13 2018-11-29 14:00:00 2018-12-04 20:00:00 2018-12-11 12:40:00 175 109 

14 2019-01-03 15:20:00 2019-01-08 23:50:00 2019-01-15 14:00:00 165 136 

15 2019-01-13 01:30:00 2019-01-18 07:40:00 2019-01-25 00:10:00 124 74 

16 2019-02-06 04:35:00 2019-02-11 15:25:00 2019-02-18 03:15:00 148 79 

17 2019-03-03 01:55:00 2019-03-08 22:15:00 2019-03-15 00:35:00 162 104 

18 2019-03-11 13:05:00 2019-03-16 17:45:00 2019-03-23 11:45:00 123 71 

19 2019-03-13 13:15:00 2019-03-18 20:45:00 2019-03-25 11:55:00 134 76 

20 2019-09-10 14:55:00 2019-09-15 23:45:00 2019-09-22 13:35:00 156 108 

21 2019-10-23 09:35:00 2019-10-28 21:05:00 2019-11-04 08:15:00 123 79 

22 2019-11-24 11:35:00 2019-11-29 11:55:00 2019-12-06 10:15:00 164 111 

23 2019-12-02 11:35:00 2019-12-07 18:25:00 2019-12-14 10:15:00 122 102 

24 2019-12-07 03:35:00 2019-12-12 08:15:00 2019-12-19 02:15:00 136 86 

25 2020-01-30 07:35:00 2020-02-04 19:35:00 2020-02-11 06:15:00 139 93 
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26 2020-02-04 18:25:00 2020-02-10 22:55:00 2020-02-16 17:05:00 196 136 

27 2020-02-18 07:45:00 2020-02-23 10:05:00 2020-03-01 06:25:00 149 102 

28 2020-03-08 18:05:00 2020-03-14 01:35:00 2020-03-20 16:45:00 124 79 

29 2020-03-24 07:25:00 2020-03-29 14:05:00 2020-04-05 06:05:00 124 75 

30 2020-09-11 23:15:00 2020-09-17 09:15:00 2020-09-23 21:55:00 126 78 

2.4. Response Time from Sea Level Rise 

To determine the lag time between the rise of sea level and groundwater, an automated 

algorithm was used to calculate the time from the peak of sea level rise to the peak of groundwater 

level rise. Each storm event was analysed by extracting the time interval from both sea level and 

groundwater level data, with the sea level data being interpolated to match the higher resolution of 

the groundwater data. The raw data was compared to two filtered datasets using two different 

methods: (1) a Butterworth low-pass filter and (2) a running mean. These methods were employed to 

eliminate high frequencies, such as tidal changes, from the data. However, filtering affects the peak 

amplitude and, therefore, was only used to determine the signal delay. Applying a running mean 

proved to perform best on this dataset. The delay was found using cross correlation of single loggers 

with the sea level data. All the results were verified manually. 

2.5. Attenuation of Groundwater Peak  

The inland amplitude damping of the sea level rise indicates the extent to which a storm surge 

of a certain size affects the groundwater table. This attenuation was calculated for each event by 

determining the relative increase in groundwater levels at each logger location. The relative increase 

in GWL was calculated by subtracting the average GWL measured from 48 to 24 hours prior to the 

GWL peak from the GWL at peak time.  

2.6. Predictive Model 

A delayed signal from the SLR and corresponding GWR enables the prediction of the GWL 

based on the sea level. The approach was to use a quick and simple model to gain insight into its 

predictive capabilities.  

The primary objective of developing a predictive model is to estimate future increases in 

groundwater levels by considering current and forecasted changes in sea levels. The aim was to 

construct a model that could provide precise forecasts, and thus, the focus was primarily on 

calculating changes in groundwater levels one day in advance.  

Before developing the model, a specific model type was selected. Based on initial tests using the 

same input in several simple machine learning models, support vector regression (SVR) provided the 

most accurate results. An SVR-model is a regression model which determines the best fit based on a 

defined, acceptable error [18]. The model presented in this article is based on a linear kernel.  

The model was partly based on historical and real-time data, with sea level and groundwater 

observations used as input. Precipitation and sea level forecast data provided by the DMI were used. 

DMI creates weather and sea level forecasts up to five days in advance. These forecasts can be utilised 

to generate predictions for groundwater levels, and based on these predictions, a warning system can 

be developed for areas at risk. 

The model was trained on data from each of the six loggers individually, and the results were 

calculated separately for each logger. Hence, in this study, the model functions as six separate models. 

The model’s predictive capabilities include 24-hour, 3-day and 5-day forecasts. The input parameters 

were selected in part based on the initial manual analysis of the data and the response of the 

groundwater.  

In the final model, the input parameters are as follows: 

• Groundwater level from the past 4 days  

• Sea level from the past 4 days and 1 day into the future (using the DMI 1-day forecast) 

• Precipitation from the past 24 hours and 1 day into the future (using the DMI 1-day forecast) 
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• Sine and cosine curve representing seasonality 

The model is trained on 60% of the available data, while the validation and cross-validation data 

each consist of 20%. 

3. Results and Discussion  

3.1. Groundwater Wave Characteristics 

In a homogeneous medium, we expect to find a linear relationship between distance and time 

for the propagation of a wave peak. Figure 6 displays a box plot representing the observed delay 

times at the loggers.  

 

Figure 6. Boxplot (25% and 75% quartiles) visualising the lag times for the delayed responses in the 

groundwater table initiated by a sudden rise in sea level in the northern (black) and the southern 

(grey) profiles. 

The loggers along the northern area, which are not affected by dikes or buildings, appear to 

exhibit a linear relationship. The two most coastal positions on the southern profile also appear to 

reasonably follow the trend, while the farthest logger on the southern profile seems to be influenced 

by other factors. This can be explained by the natural, high variation in the time lag response of the 

GWL, as the lag time is expected to be dependent on the magnitude of the sea level rise. The peak 

response in the GWL is clearly visible in the coastal loggers, but the algorithm had difficulty 

identifying the resulting rise in the loggers located further away from the coast. This is due to a low 

signal-to-noise ratio in the logger data, which makes it difficult to identify. Moreover, the further 

inland the loggers are placed, the greater the possibility that the signal from the SLR is drowned out 

by responses from precipitation events. Furthermore, the further inland, the more likely that local 

pumping and drainage may also affects the local groundwater level. 

Figures 7 and 8 shows that the amplitude of the groundwater level increases as the distance from 

the coast increases, while the sea level rise decreases. We expect the amplitude damping in a free 

aquifer to follow a logarithmic function [19]. With a logarithmic time-axis, the relationship can be 

estimated by fitting a straight line. However, there are outliers, especially when very large sea level 
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rises occur, resulting in extra high amplitudes. Note that event 14 and 25 have outliers caused by 

possible mispicks. However, there has not been sufficient arguments to exclude them from the 

dataset. Figure 9, indicates a semi-linear relationship between the rise in sea level and the 

corresponding increase in the GWL. This relationship is particularly evident in the most prominent 

SLR events and in Logger 7, which is closest to the coast. Although, the relationship is also detectable 

in Logger 3 and Logger 6, it is generally significantly less well defined in the two farthest loggers due 

to signal reduction. 

 

Figure 7. The relative rise in ground water level monitored in the wells for each of the 30 SLR events. 
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Figure 8. The relative rise in groundwater level registered in the wells during 30 SLR events. 

However, these trends are not entirely straightforward. There is significant variation among 

different events in terms of both the determination of phase shift and the change in amplitude. This 

is due to the simplification of the groundwater system in Juelsminde and the expectation of complete 

reliance on the ocean, particularly as the distance from the coast increases. The farther from the coast, 

the greater the influence of additional factors. 

 

Figure 9. The relative rise in GWL plotted against the SLR peak prominence for the six wells from 2017. 

3.2. Sensitivity and Dependency Analysis 

The 14 new loggers did not have time series long enough to contain sufficient events for the 

previous analysis. However, the data were used to conduct an overview analysis of the 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 June 2023                   doi:10.20944/preprints202306.0133.v1

https://doi.org/10.20944/preprints202306.0133.v1


 13 

 

groundwater’s dependency and sensitivity to sea level rises and precipitation events (Figure 10). The 

dependence on sea level fluctuations is determined not only by the storm surge responses but also 

by the trace of tidal changes in the loggers. In these cases, precipitation has a reinforcing effect on the 

signal, but it is not the primary cause (blue circles). When the GWL cannot be correlated with sea 

level changes but mainly responds to precipitation, it belongs in the red (triangle) category. In 

general, loggers located closer to the coast tend to be more vulnerable to the impacts of sea level 

changes compared to those situated further inland. However, in certain areas, this principle may not 

apply to individual loggers, and it is presumed that local conditions may influence which parameters 

have the greatest impact on the groundwater level in a logger. Therefore, it may be difficult to 

determine exactly how much different parameters affect the various wells, but it can be generally 

stated that precipitation affects the GWL in all wells to varying degrees, while the impact of sea level 

is highly dependent on the distance to the coast. The sea level’s dependence is also an indication of 

the hydraulic connection between the well location and the ocean. Well no. 20 is located relatively far 

inland, but it clearly responds to tidal changes. It is located adjacent to a wetland that is connected to 

the ocean, which explains the rapid response. 

 

Figure 10. The classification result for the GWL in each wells dependency of SLR and precipitation 

events. 

3.3. Predictability of Groundwater Fluctuations 

Results from the 24-hour predictions are displayed in Figures 11 and 12, with the distance to the 

coast increasing downward. The time period depicted covers a high-water event and the consequent 

rise in GWL in six wells. The solid grey line represents the observed change in GWL, while the dotted 
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blue line represents the model’s prediction for 1 day ahead. In addition, precipitation and SL 

fluctuations are visualised below. 

The average correlation coefficient for this high-water event is approximately 90%, which 

indicates the percentage of variations that can be accounted for by the model. The model also 

performs well, with a high accuracy rate of 78%, in predicting groundwater levels. The average mean 

deviation is just below 1cm. 

 

Figure 11. The modelled and observed GWR in the well 2,3 and 4 during a SLR event. 
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Figure 12. The modelled and observed GWR in the well 5,6 and 7 during a SLR event. 

The model, however, has its challenges. Three of the major issues are: (1) an overestimation of 

the contribution of precipitation; and (2) challenges in predicting the extent of extreme GWL rises 

and (3) relying heavily on the previous groundwater measurements to calibrate the level in the 

current well. Overestimating the effect of precipitation on the signal can result in periods of a few 

hours with significantly higher modelled values than those observed. On the contrary, the inability 

to model extreme events results in modelled values that are lower than the observed values. Both of 

these factors result in a significant deviation between the predicted and measured GWL. The 

reliability on previous measurements results in delayed replications of sudden changes and adjust 

the level retroactively. 

Table 3 provides a brief summary of the model’s overall performance in predicting changes in 

groundwater levels, specifically for 1, 3 and 5 days ahead.  

The indicators adjusted R2 (R2adj) and predicted R2 (R2pred) are used to compare the model 

performance. R2adj indicates how well terms fit a curve or line, but it adjusts for the number of 

parameters in a model. This means that if a parameter is included in the model but does not 
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contribute to the model, the R2adj will decrease. If the parameter contributes to the model, R2adj will 

increase. R2adj will always be less than or equal to R2. R2 is the residual sum of squared errors divided 

by the total sum of squared errors. 

𝑅2 =  1 −
𝑆𝑆𝑅𝐸𝑆

𝑆𝑆𝑇𝑂𝑇
= 1 −

∑ (𝑦𝑖 − ŷ
i
)

2
𝑖

∑ (𝑦𝑖 −  ȳ
i
)

2
𝑖

 (1) 

where yi is the dependent variable for observation i.  

𝑅𝑎𝑑𝑗
2 = 1 −

(1 − 𝑅2)(𝑛 − 1)

𝑛 − 𝑘 − 1
 (2) 

where n is the sample size and k is the number of variables in the model.  

R2pred is also known as PRESS statistics and is used to determine how well a regression model 

makes predictions. If the data consists of a lot of noise, then R2pred will be low as it is not possible to 

predict random noise. R2pred is useful to avoid overfitting. 

𝑅𝑝𝑟𝑒𝑑
2 =  1 − (

𝑃𝑅𝐸𝑆𝑆

𝑆𝑆𝑇𝑂𝑇
) ∗ 100 =  1 −

∑ (𝑦𝑖 − ŷ
−i

)
2

𝑖

∑ (𝑦𝑖 −  ȳ
i
)

2
𝑖

 (3) 

where ŷ(-i) is the predicted value of the response variable for this observation found from the fitted 

regression equation [20,21]. 

The numbers show that the modelled values correspond well with the observed values (R2adj), 

but there are still difficulties with making independent predictions (R2pred). However, the low average 

is due to a few data anomalies that arise from error correction rather than a rising water table. In 

addition, the average deviation from the observed values is only a few centimetres. When attempting 

to predict groundwater changes three days into the future, the R2adj decreases while the ability to 

make accurate predictions (R2pred) increases. This may be because the model was originally slightly 

overfitted, resulting in a greater deviation from the observed data but a less constrained fit of the 

model when calculating the predicted values. On the other hand, it seems unlikely that the model 

can generate valuable outcomes when trying to forecast groundwater fluctuations five days ahead. 

Here, both correlation coefficients are negative. 

Table 3. The main outcomes of the SVR model predictions of the groundwater level 1, 3 and 5 days 

ahead using data from Logger 4. 

 1 Day 3 Days 5 Days 

 Average Std. dev. Average Std. dev. Average Std. dev. 

R2adj 0.76 0.19 0.43 0.37 -0.27 0.78 

R2pred 0.10 0.99 0.23 0.51 -0.65 1.12 

MAE 1.30 0.56 3.14 1.06 4.90 1.67 

RMSE 1.99 1.07 6.94 2.45 13.02 4.29 

4. Conclusions 

Comparing sea level and groundwater data has demonstrated a need for greater emphasis on 

addressing flooding caused by groundwater following sea levels rise. Especially in countries with 

extensive coastlines and low-lying coastal infrastructure. Although the impact of a storm surge is 

most noticeable in the wells located closest to the coast, the response to the strongest storm surges 

were recorded in a well located 210 m from the coastline, with four rows of houses between its 

location and the ocean. The response signal experiences a delay that ranges from 16 hours and 45 m 

near the coast to more than 30 hours 210 m away from the coast. In several cases, it has been difficult 

to identify the high-water signal in the loggers located far inland, possibly because the signal weakens 

logarithmically as it moves away from the coast. This means that the impact of factors such as rainfall 

becomes significant enough to have a comparable amplitude, which can mask the signal from the 

sea. Meanwhile, the groundwater level closer to the coast is more heavily influenced by the impact 
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of the sea. The greater the magnitude of a sea level rise, the greater the corresponding, but delayed, 

rise in the groundwater table.   

The delayed response allows for the calculation of the predicted response of the shallow 

groundwater ahead of its onset. The support vector regression model shows promising results when 

predicting the groundwater response in a logger 24 hours in advance using sea level and rainfall data. 

However, it would be interesting to introduce further improvements and move from single-step 

prediction to predicting entire time sequences. Additionally, expanding the model to a multi-output 

model calculating the groundwater table in all wells simultaneously would eliminate the need for 

calibrating for each well.  

This study highlights the significance of incorporating the influence of sea level on groundwater 

variations in the development of predictive models and the examination of future groundwater 

levels. In certain regions, the interaction between the sea and the shallow groundwater table 

intensifies, underscoring the relevance of including this factor in analyses. Furthermore, when 

determining appropriate climate adaptation strategies, it is crucial to account for the natural 

dynamics associated with these phenomena. 
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