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Abstract Analytical mechanics is the most basic discipline. The basic principles of analytical me-

chanics should also be applicable to general deformed objects. However, the virtual displacement 

principle proposed by analytical mechanics is only applicable to particle systems and rigid body 

systems, but not to general deformed objects. In this paper, the generalized virtual displacement 

principle of general deformed objects (such as, elastic objects, plastic objects, elasto-platic objects 

and flexible objects etc ) is derived by the method of analytical mechanics, which is also applicable 

to particle systems and rigid body systems. First of all, according to the method of analytical me-

chanics, the external force, internal force, constraint reaction force and elastic recovery force of the 

deformed object system under the equilibrium state are analyzed, and the concepts of virtual dis-

placement, ideal constraint and virtual work are introduced, and the generalized virtual displace-

ment principle (also called generalized virtual work principle) of deformed objects is proposed; sec-

ondly, vector form, coordinate component form and generalized coordinate form of generalized 

virtual displacement principle of deformed object are given; thirdly, as the application of the prin-

ciple, the virtual displacement principle of deformed objects in plane polar coordinate system, space 

cylindrical coordinate system and spherical coordinate system is given; finally, a brief conclusion is 

drawn. This work unifies the virtual displacement principle of elastic object, plastic, elastoplastic 

etc deformed object systems and rigid object systems with the basic method of analytical mechanics. 

It is a basic principle for dealing with the static problems of deformed objects. This work also lays a 

foundation for the further study of the dynamics of deformed object systems. 

Keywords: virtual displacement principle; deformed object; constitutive relationship; analytical 

mechanics 
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1. Introduction. 

Analytical mechanics is a mechanical system suitable for studying macro object. 

However, now his research objects are the particle system, and the number of particles 

can be from one to infinity. Particle system can be regarded as an ideal model of mechanical 

system composed of macro objects, such as rigid body, elastomeric, elastic-plastic, contin-

uous medium and their complex. These rigid bodies and deformed objects can be studied 

by the method of analytical mechanics. Analytical mechanics uses generalized coordi-

nates, puts forward ideal constraints, and studies the motion of macro objects from the 

perspective of finding the energy of the system[1,2]. Analytical mechanics puts forward 

two basic principles of constraint mechanics system, namely, virtual displacement princi-

ple and d'Alembert-Lagrange principle (also known as general dynamic equation). Using 

the virtual displacement principle, we can solve the static problems of the constrained 
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object system. Using the D’alamber-Lagrange principle, we can further derive various 

forms of dynamic equations and solve the dynamic problems of the constrained dynam-

ical system. [3] The important concept of virtual displacement of an object is put forward 

in analytical mechanics. The virtual displacement of an object must meet the constraints 

of the object. It is a collection of infinitesimal displacements that may occur in the space 

region at a certain instant or at a certain position. There can be an infinite number of virtual 

displacements, which are independent of the motion of the object. The two basic princi-

ples of analytical mechanics are based on this concept[4,5]. We should point out that the 

most basic virtual displacement principle given by analytical mechanics should be appli-

cable to rigid bodies and deformed objects, while analytical mechanics only gives the vir-

tual displacement principle of rigid objects and their combinations, which solves the static 

problems of rigid objects [1-4]. Obviously, the virtual displacement principle given previ-

ously in analytical mechanics is limited in application. 

  We can divide macroscopic objects into rigid bodies and deformed objects. The 

static and dynamic problems of rigid bodies and their combinations have been compre-

hensively and deeply studied in existing theories of analytical mechanics, which has been 

formed. [5,7,8,] Deformable objects can be divided into elastic objects and elastic-plastic 

objects. The principle of virtual displacement of deformed objects has been given in struc-

tural mechanics, which is a basic principle of deformed objects[9,10]. The principle of vir-

tual displacement of deformed objects is that the virtual work done directly by external 

forces (including volume force and area force) is equal to the strain energy required of 

deformed objects, or the principle of virtual displacement is obtained by using the second 

law of thermodynamics. However, in these studies, the important concepts of virtual dis-

placement and ideal constraint are rarely discussed. In fact, the virtual displacement of 

deformation object must meet the constraint condition, and the constraints are the ideal 

constraint. Elastic-plastic objects are deformable objects that can be elastic or plastic in 

different environments. Elastoplasticity is a basic property in material forming. The vir-

tual displacement principle of elastic-plastic objects is of great value in the research of 

material forming. The establishment of the virtual displacement principle of elastic-plastic 

deformable body is also based on the fact that the virtual work of the external force on the 

deformable body is equal to the virtual strain energy of the elastic body. We should point 

out that the virtual displacement principle of elastic-plastic objects must also be limited 

by ideal constraints. It can be seen that the virtual displacement principle of deformed 

objects in structural mechanics and elasticity rarely involves the concept of ideal con-

straints, nor is it based on the balance of deformed objects under external forces. 

In the history of scientific development, people always try to unify the basic theories 

of mechanics, elastic mechanics, continuum mechanics, thermodynamics, electromagnet-

ics, solids and deformed objects to better reveal the development laws of nature. At the 

turn of the 20th century, attempts to unify laws of mechanics and laws of reversible ther-

modynamics were made successfully by Hadamard [11] for thermal expansion of ideal 

gas. Efforts to unify two laws continued and was extended to irreversible thermodynamic 

law recently [12,13]. In 1973, Germain [14] extended the principle of virtual work in clas-

sical continuum mechanics for continua to multipolar media, called principle of Virtual 

Power, which was further extended by Maugin to couple the thermo-mechanical field 

with electro-magnetic field [15]. At the end of 20th century, many research works of the 

irreversible thermodynamic that included irreversible thermodynamics done by Maugin 

[16] and others afterwards have been summarized in a major research monograph. A uni-

fied procedure for constructing theories of thermomechanics of multipolar media was in-

itiated by Green and Rivlin[17] and then extended to include thermodynamics by Green 

and Naghdi[18,19]. Attempts were made by Sieniutycz and Berry [20] to define a Lagran-

gian in an action-type integral for the deformation of continuum with dissipation, and by 

Maugin [21] to develop the analytical mechanics of dissipative materials. In all these major 

works except the one by Biot, the constitutive equations of material must still be supple-

mented from the laws of thermodynamics or other postulates. In 2011, Pao et al unify the 

principle of virtual power of thermomechanics for fluids and solids with dissipation[22]. 
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In recent years, the principle of virtual displacement has been widely used in science and 

engineering technology, and many good results have been achieved [23,24,25,26]. For the 

deformed object system, the key to solve the problem is to consider the physical properties 

(constitutive relations) of the object materials. 

In this paper, the generalized principle of virtual displacement of constrained de-

formed objects is proposed by using the method of analytical mechanics. For the deformed 

object in equilibrium, based on the concept of ideal constraint, under the action of volume 

external force and area external force, the virtual displacement satisfying the constraint 

conditions of the deformed object is introduced, and the virtual displacement principle of 

the general deformed object is proposed. The generalized virtual displacement principle 

proposed by is general, which is not only suitable for elastic objects, plastic objects and 

flexible material objects, but also suitable for rigid objects. 

  The research of this paper is divided into the following parts: Section 1, introduc-

tion; section 2, in this part, the generalized principle of virtual displacement of deformed 

objects is proposed using the method of analytical mechanics; section 3, several forms of 

virtual displacement principle of deformed object are given; section 4, virtual displace-

ment principle of deformed objects is applied in plane polar coordinate, space cylindrical 

and spherical coordinates; section 5, a simple conclusion is given. 

2. Generalized Virtual Displacement Principle of the Deformation Objects 

The generalized virtual displacement principle of deformed object is a basic principle 

of deformed object dynamics. It can solve the static problems of deformed object, includ-

ing the deformation problem when the system is in equilibrium or uniform motion under 

the action of external force. In this section, we only study the deformation problem in 

equilibrium, and the conclusion is also suitable for the deformation problem in uniform 

motion. 

2.1. Establishing of Virtual Displacement Principle                                                         

  For a deformed volume element ΔVi in equilibrium state, it is affected by external 

force including the volume force V

if distributed in the region V and the area force S

if  act-

ing on the area ΔSi，the other are internal forces 
i

if  （namely gravitation between par-

ticles），elastic restoring force 
I

if  and constraint force iR ， the resultant force is equal 

to zero, namely 

                          

0V S i I

i i i i i+ + + + =f f f f R .                        (1) 

At a certain time t, it is assumed that the deformed volume element has a virtual 

displacement i r , then the virtual work of the forces on the deformed object is written in 

the form 

1 1 1

1 1

0

N N N
V S i

i i i i i i i i i

i i i

N N
I

i i i i i i

i i

W V S V

V S

  

 

= = =

= =

 =   +   +  

+   +   =

  

 

f r f r f r

f r R r

        (2) 

where ΔSi is the deformed area element.  

Since the gravitation between particles is a pair of forces and reactions, so 

                       
1

0
N

i

i i i

i

V
=

  = f r .  
                                 

(3)
 
 

Assumption based on the concept of ideal constraints, one has  

                        
1

0
N

i i i

i

V
=

  =R r .                                 (4) 

Substitution of Eqs.( 3) , (4) into Eq.(2) ,we have  
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1 1 1

0
N N N

V S I

i i i i i i i i i

i i i

W V S V  
= = =

 =   +   +   =  f r f r f r ,          (5) 

then the virtual work of deformable body under the virtual displacement i r  can be 

written the following form 

            d d d 0V S I

V V V
W V S V   =  +  +  =  f r f r f r            (6) 

It is well known that the relationship of between the virtual work of elastic resilience 

and the virtual strain energy of defamation object is the flowing form 

                      d dI

ij ij
V V

U f V V   = −  = r                     (7) 

Substitution of the Eq.(7) into the Eq.(6), one has 

                  d dV S

V S
U V S W   =  +  = f r f r ,               (8) 

or 

                 

( )d d d dv s V S

ij ij
V V S V

U V V S V     = =  +  = +    f r f r f f r .        (9)  

The Eq.(8) or Eq. (9) are called the generalized virtual displacement principle of de-

formation object in the equilibrium. Where the volume force V
f is a force there are pro-

portional to the mass of each particle of a deformed object, such as gravity, magnetic force 

and S
f the inertial force, reaction force and friction force etc. We call 

V S+  =f f f  

equivalent volume force. 

2.2. Formulation of generalized virtual displacement principle  

Generalized virtual displacement principle: the sufficient and necessary condition 

for the balance of an object is the sum of the virtual work on the virtual displacement of 

the active force acting on the defamation object, under the ideal constraint, including the 

external force and the elastic restoring force, is equal to zero. That is the sum of virtual 

works of the external force equal the strain energy of defamation object.   

   We proposed that the virtual displacement principle of defamation object, which 

it is a generalized principle on body balance. Using this principle, we can obtain the virtual 

displacement principles of elastic object, plastic object, elastic-plastic object and flexible 

object etc. we can also obtain the virtual displacement principles of the particle, the rigid 

object, the multibody. 

3. Several Forms on the Virtual Displacement Principle 

In this section, we give the several different expressions of virtual displacement prin-

ciple of deformed objects. 

3.1. Vector Form on the Virtual Displacement Principle 

A deformed object as shown in Fig. 1: Let an elastic body consist of N flexible volume 

elements, which deform under the action of external force. The inertial coordinate system 

is established at the bottom of the elastic body, the unit vectors of the coordinate axis are 

(e1, e2, e3), and the other end is the free end. 
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Figure 1. Elastic body consist of N flexible volume elements  . 

 

Figure 2. Position vector representation. 

Different from the rigid body system, the deformation of body under the action of 

external force, and the relative position of each point in the system also changes. In order 

to accurately describe the motion and deformation of the body, the fixed inertial coordi-

nate system (e1, e2 e3) and the moving coordinate system (b1, b2, b3) are established. For any 

point in the deformable body, the position vector is expressed in Fig.2.    

   For a deformed object, the radius vector r of volume element is written as 

              ( )A A A   = + + = + = +，r R x u X u X R x                 (10) 

whereR is the virtual displacement of centroid of deformed object, A is the coordi-

nate transformation matrix, X is the virtual displacement of rigid body time, andu is 

the virtual displacement of deformation object. The Eq. (6) is expressed in the form 

       

d d

d d d 0

V S

V S

V S I

V S V

W V S

A V A S A V

  

  

=  + 

+  +  +  =

 

   ，

f X f X

f u f u f u
       （11） 

we should points out that the Eq.(11) is the generalized virtual displacement princi-

ple of deformable object in equilibrium state. That is the sum of the virtual work done by 

the volume force, area force and elastic restoring force of deformable object equal to zero 

in equilibrium state. At this time, the spatial motion of the deformable object is in states of 

static or uniform motion, and the virtual displacement principle of rigid object in equilib-

rium state needs to be satisfied, that is 

 d d 0V S

V S
V S  +  = f X f X ,                             (12) 

then the deformation motion of the object must also be in the state of static or uniform 

motion, which satisfies the virtual displacement principle, namely 

d d d 0V S I

V S V
V S V   +  +  =  f u f u f u ,                 (13) 

namely       

( )d d d d dV S V S

V S V V V
V S V V V     +  = +  =  =    f u f u f f u f u  . 

(14) 

The Eq.(11) are called the vector forms of generalized virtual displacement principle 

for defamation objects. We are also Eq.(14) the vector forms of virtual displacement prin-

ciple of defamation objects and the Eq.(12) the virtual displacement principle of the parti-

cle system and Rigid objects.  

Now we give the following conclusions: for the deformed object in equilibrium or 

static state, its overall motion satisfies the virtual displacement principle (12) of rigid body, 

and the deformation motion satisfies the virtual displacement principle (14) of deformed 

object. 

If 0 =u , the Eq.(11) express the vector forms of virtual displacement principle (12) 

of the rigid objects.  

If we focus of the deformation of objects on the equilibrium problem, then the Eq.(14) 

expresses the vector forms of virtual displacement principle of defamation objects.  
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3.2. Coordinate component form of virtual displacement principle: 

   Take the inertial coordinate system, the unit vectors of their coordinate axis are 

(e1, e2, e3), and we express the external forces
V

f and
S

f , elastic restoring force
I

f and 

virtual displacement in the form of inertial coordinate system. The external force 

, ,
SV If ff  and  r  are written the component forms respectively 

           
1 2 3 1 2 3

1 2 3

, ,V V V V S S S S

x y z x y z

I I I I

i x y z

f f f f f f

f f f

= + + = + +

= + +

f e e e f e e e

f e e e
   (15) 

and 

   
( )

1 2 3 1 2 3

A A

A x A y A z A u A v A w

 

     

= + =

+ + + + + + .

r x u

e e e e e e
              (16) 

where A is a transformation matrix between two coordinate systems. 

Then the virtual displacement principle is expressed the following coordinate com-

ponent forms  

( ) ( ) ( )

( ) ( )

d

d

d d 0

V V V

x y z
V

V I V I V I

x x y y z z
V

S S S S S S

x y z x y z
S S

A f x f y f z V

f f A u f f A v f f A w V

f x f y f z S f A u f A v f A w S

  

  

     

 + + 

 + + + + + +
 

+ + + + + + =





  ，
     (17) 

namely  

     ( )d d 0V V V S S S

x y z x y z
V S

f x f y f z V f x f y f z S      + + + + + =        (18)  

( ) ( ) ( )

( )

d

d 0.

V I V I V I

x x y y z z
V

S S S

x y z
S

f f A u f f A v f f A w V

f A u f A v f A w S

  

  

 + + + + +
 

+ + + =



       (19) 

the Eq.(18) is also written as 

          
( )

( )

d

d d .

V V V

x y z
V

S S S

x y z ij ij
S V

f A u f A v f A w V

f A u f A v f A w S V

  

    

+ +

+ + + =



 
           (20) 

We should point out Eq.(18) is the coordinate component form of generalized virtual 

displacement principle of the deformed object considering the overall motion (rigid body) 

in the equilibrium state, and Eq.(20) is the coordinate component form of generalized vir-

tual displacement principle of the deformed object in the equilibrium state. 

3.3. Generalized coordinate form of the virtual displacement principle.  

The virtual displacement principle is the most common principle of statics and it is 

widely used to solve the statics problems. The virtual displacement principle on general-

ized coordinates is expressed by: Under the double-sided, ideal, Holonomic and stable 

constraints, the necessary and sufficient condition for the equilibrium of deformation 

body is that the sum of the element work in any virtual displacement of the volume force, 

area force and elastic resilience acting on the system is equal to zero. 

   In the deformation body composed of N units, we take any unit body dVi and its 

area dSi  , which it affected by  the external force
V

if , the area force
S

if , elastic restoring 

force
I

if  and constraint force iR . 

Supposing the deformation body suffering l holonomic constraints, and the number 

of independent variables describing the system is n=3N-l, then the system described by n 

generalized coordinates q1, q2,,qn. The position of a point of deformed object is repre-

sented as 

( ) ( )1 2 1 2, , , , , , , , 1, 2,3n i i nq q q q q q i=  =  =r r x x
     (21) 
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the position of a point of a deformed object is represented. This deformation displace-

ment can be expressed as 

         ( ) ( )1 2 3 1 2( ), ( ), ( ) , , , , 1,2,3i i i nx x x q q q i= =  =u u q q q u           (22) 

The stress and strain components can be written, respectively, as 

             
( ) ( )

( ) ( )

1 2 3 1 2

1 2 3 1 2

( ), ( ), ( ) , , , ,

( ), ( ), ( ) , , , .

ij ij ij n

ij ij ij n

x x x q q q

x x x q q q

  

  

= = 

= = 

q q q

q q q
            (23) 

The components of virtual displacement  r  ,  x  and u  are expressed, respec-

tively, in the following forms  

1 2 3

, 1, 2, ,

, , ,

, , .

s

s

s s s

s s s

i i i
s s s s

i s s i s s i s s

r
r q s n

q

x y z
x x q x y q x z q

q q q

x x xu u v v w w
u q q v q w q

x q q x q q x q q

 

        

      


= = 


  
= = = = = =

  

       
= = = = = =
         (24) 

The virtual strain ,ij virtual stress ij , which can be expressed as the forms of gen-

eralized coordinates respectively 

( ) ( )

( )

1 2 1 2, , , , , , ,

1,2, , ; , 1,2,3

ij ij n ij ij n

ij iji
ij s s

i s s

ij iji
ij s

i s s

q q q q q q

x
q q s n i j

x q q

x
q q

x q q

   

 
  

 
  

=  = 

 
= = =  =
  

 
= =
  

，               (25) 

The generalized virtual displacement principle of deformation objects are written in 

following general coordinate form 

d d

d

d

d

ij V V V

ij s x y z s
V V

s s s s

S S S

x y z s
S

s s s

V V V

x y z s
V

s s s

S S S

x y z s
S

s s s

V S

s s s s
V S

x y z
q V f f f q V

q q q q

x y z
f f f q S

q q q

u v w
f f f q V

q q q

u v w
f f f q S

q q q

Q q dV Q q dS


  







 

    
= + + 

    

   
+ + + 

   

   
+ + + 

   

   
+ + + 

   

= + +

 







  .V S

s s s s
V S

q dV q dS  +  

             (26)  

When the deformed body being in equilibrium, we have the virtual displacement 

principles of rigidity objects as 

              0V S

s s s s
V S
Q q dV Q q dS + =  ,                            (27) 

and the virtual displacement principles of deformation objects 

         ,
ij V S

ij s s s s s
V V S

s

q dV q dV q dS
q


   


=  + 

                       (28) 

where the 
V

s , 
S

s  are generalized  volume and area forces, and the strain energy 

is the following form 
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d d d

, 1,2,3; 1,2, ,

ij ij i
ij ij ij s ij s

V V V
s i s

x
V q V q V

q x q

i j s n

 
     

  
= =

  

= = 

   ，
.                (29) 

We should show that the qs are lengths,
V

s , 
S

s are the generalized forces, and the 

qs is angles, 
V

s , 
S

s  the generalized moments. 

The Eqs.(27) and (28) are called the virtual displacement principle of deformed ob-

jects and rigid objects under the generalized coordinate respectively， and the Eq.(26) the 

generalized virtual displacement principle of deformed objects in the generalized coordi-

nate .  

4. Application of the Generalized Virtual Displacement Principle of Deformation Ob-

ject 

  In this section, we give the virtual displacement principles and constitutive rela-

tions of deformation objects under polar coordinate, cylindrical coordinate and spherical 

coordinate systems using the generalized virtual displacement principle of systems. 

4.1. Polar Coordinate Form of the Virtual Displacement Principle of Elastic Plane Problems 

In the study of plane problems, the section geometry (boundary) of some objects is 

circular and annular shaped, we taking generalized coordinates q1=r, q2= . That is de-

scribed by polar coordinate ( )r ，  and subject to volume forces ,rf f  and area forces

,rF F . In this section, we give the polar coordinate form of the virtual displacement prin-

ciple of plane deformation problems. 

   The relationships between rectangular coordinates and polar coordinates are writ-

ten as 

                   sin,cos ryrx == ,                                (30) 

and 

sin
cos ,

cos
sin .

r

x r x x r r

r

y r y y r r

 


 

 


 

      
= + = −

      

      
= + = −

      

                            (31） 

We can obtain  
2 2 2 2

2

2 2 2 2 2

1 1
.

x y r r r r 

    
 = + = + +

    
                        (32) 

Strain components r  , and r  are written as [] 

r

u

r

uu

r
,

u

rr

u
,

r

u r
r

rr
r











 −




+




=




+=




=

11
.                 (33) 

where u,ur are the displacements along ,r direction.  

In the polar coordinate system, the stresses in the plane are written as , ,r r    . For 

plane stress problem, the constitutive relation: 

( ) ( )
( )2 11 1

, ,r r r r rv v
E E E

    


       

+
= − = − = ,               (34) 

for plane strain problem, the constitutive relation: 

 
( )

  rrrrr
E

v
,

v

v

E

v
,

v

v

E

v +
=









−
−

−
=









−
−

−
=

12

1

1

1

1 22

 .     

(35) 

Using the virtual displacement principle of plane elastic body we can obtain the equi-

librium equations in the following polar coordinate form [31] 
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( )
1 1

0,

21
0,

rr
r r

r r

f
r r r

f
r r r




  



 



  




+ + − + =

 

 
+ + + =

 

                         (36) 

and strain compatibility equation as     

    ( ) ( )
2 2 2

2 2 2 2

1 1 1 1
0.r r

rr r
r r r r r r r

 

 
 

 

  
+ − − =

    
                 (37) 

The stress in plane strain problem are expressed by  

( )

( )

( ) ( )

2 2

2 2

1
,

1 1

1
,

1 1

1
.

2 1 2 1

r r
r r

r r
r

r r

uu uE E
v v

v v r r r

u u uE E
v v

v v r r r

u u uE E

v v r r r





 

  
 

  


  


 


    
= + = + +  

− −    

  
= + = + + 

− −   

  
= = + − 

+ +   

                  （38） 

When the volume force 0== ffr , the stress component in the basic equation of 

the stress method can be expressed as an unknown function ( ) 0= ,r  to be solved, and 

the equation satisfied by the stress function ( ) ,r  [31] 

( ) ( ) 0
11

2

2

2

22

2
4 =












+




+




= 


 ,r

rrrr
,r ，                （39） 

the stress component   rr ,, of the polar coordinate system is obtained by the 

differential of ( ) ,r , that is, 



























−




=
















−==




=




+




=

rrrrr

,
r

,
rrr

rr

r

2

2

2

2

2

2

2

111

11

                     (40) 

4.2. Cylindrical coordinate form of the virtual displacement principle of elastic object 

For dynamic problems, the choice of coordinate system itself has nothing to do with 

the solution of the problem, but the choice of coordinate system is closely related to the 

description of dynamic equations and boundary conditions of the problem. In other 

words, the choice of coordinate system directly affects the difficulty of solving the prob-

lem. 

In this section, we taking the generalized coordinates 1 2 3, ,q r q q z= = = , then the vir-

tual displacement principle of deformation objects in the cylindrical coordinate system is ob-

tained with the generalized virtual displacement principle Eq.(27) of deformation objects. 

   In the cylindrical coordinate system, the position coordinates of a point m in space 

are represented by ( )z,,r  . The relationships between rectangular coordinates and gen-

eralized coordinates are 

          zz,ry,rx ===  sincos .                                  (41) 

The displacement components in generalized coordinates (cylindrical coordinates) 

are 

     ( ) ( ) ( )z,,rww,z,,ruu,z,,ruu rr   === ,                    (42) 

the stress components as 

 
( ) ( ) ( )

( ) ( ) ( ),z,,r,z,,r,z,,r

,z,,r,z,,r,z,,r

zrzrzzrr

zzrr









===

===
                  (43) 

and the strain components as 
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( ) ( ) ( )

( ) ( ) ( ).z,,r,z,,r,z,,r

,z,,r,z,,r,z,,r

zrzrzzrr

zzrr









===

===
             (44) 

  The relationship between strain components and displacement components in gen-

eralized coordinates are the following form 

1
, , ,

1 1
, , .

r r
r z

r r
r z rz

uu u w

r r r z

u u uu uw w

r r r r z z r




  
 

  


  
 

 
= = + =
  

   
= + − = + = +

                (45) 

The Eqs. (45) are also called the strain tensor of an elastic body in cylindrical coordi-

nate. 

The constitutive relations of deformation object in cylindrical coordinates are written 

as [31] 

,,,

,,,

zzrrzrzr

zzrr









===

+=+=+= 222
                (46) 

where  

( )( ) ( )v

E
,

vv

Ev

+
=

−+
=

1211
 .                           (47) 

We call Eqs. (46) the constitutive relations of an elastic deformation object in cylindri-

cal coordinate. 

  In cylindrical coordinates, the equilibrium equation of elastic object are obtained 

using the virtual displacement principle Eq.(27) [31] 

1
0,

21
0,

21
0.

r rr zr
r

r z r

zzr z zr
z

F
r r z r

F
r r z r

F
r r z r

 

   




   



   



  



 − 
+ + + + =

  

  
+ + + + =

  

 
+ + + + =

  

                       (48) 

For the problem of axi-symmetry, that is, when the geometry, boundary conditions 

and constraints of the elastic body are symmetrical to a certain axis of symmetry, such as 

the z-axis, according to the symmetry of deformation, we have 

( ) ( )z,rww,u,z,ruu rr === 0 ,                  

the strain tensor of an elastic body as 

               

,
r

w

z

u
,,

,
z

w
,

r

u

r
rzzr

z
r

r




+




===




=




=





 00

                        (49) 

and the shear stress as  

                           0==   zr .                                   (50) 

The equilibrium equation in axi-symmetry coordinates of elastic object, the Eqs.(48) 

can be written in the following form 

0,

2
0.

rr zr
r

zr z zr
z

F
r z r

F
r z r

  
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− 
+ + + =

 

 
+ + + =

 

                        (51) 

4.3. Virtual Displacement Principle of Elastic Objects in Spherical Coordinate Systems 
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When we taking the generalized coordination 1 2 3, ,q r q q = = = , the virtual displace-

ment principle of elastic object in the spherical coordinate system is given with the virtual 

displacement principle Eq.(27) of deformation objects. 

In the spherical coordinate system, the position coordinates of a point m in space are 

represented by ( ) ,,r . The relationships between rectangular coordinates and spherical 

coordinates are 

        cossinsincossin rz,ry,rx === .                 

  We use ( ) ( ) ( ), , , , , , , ,ru r u r u r         to represent the displacement 

components of the spherical coordinate system respectively, and the relationship between 

strain components and displacement components in spherical coordinates are the follow-

ing form 

1 1
, , cot ,

sin

1 1
, ,

sin

1 1
cot ,

sin

r r r
r

r r
r r

uu uu u u

r r r r r r

u uu uu u

r r r r r r

u u
u

r r

 
 

  
 

 
 

   
  

 
  

 
  


= = + = + +
  

 
= + − = + −

   

  
= − + 

     (52) 

equations (52) are also called the strain tensor of an elastic body in spherical coordi-

nates. 

  Constitutive relations of elastic object in spherical coordinate system are [31] 

( ) ( ) ( )

, , ,
1 1 2 1 1 2 1 1 2

, , .
2 1 2 2 1 2 2 1 2

r r

r r r r

E v E v E v

v v v v v v

E E E

v v v

   

     

        

     

     
= + = + = +     

+ − + − + −     

= = =
− − −

(53) 

In spherical coordinates, the equilibrium equations of elastic object are obtained, us-

ing the virtual displacement principle Eq.(27) in the following form 

( )

( )( )
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1 1 1
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1 1 1
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1 1 1
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rrr
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 
   

  

  
  

  
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  

 
+ + + − + + =
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+ + + + + =

         (54) 

For the problem of spherical symmetry, that is, the geometry of the object, con-

straints, external forces and other external factors are symmetrical to a certain point (such 

as the origin of the coordinate system). 

   According to the symmetry of the deformation of the object, the displacement of 

a point of the deformed object are written by ( ) 00 ===  u,u,ruu rr , and some 

shear strains and shear stresses are equal to zero, i.e ,rr 0===     and 

0===   rr , The rest of the strain and stress components are only a function of 

coordinate r, independent of  and . 

 The strain components and stress components are written by 

           
d

, .
d

r r
r

u u

r r
   = = =                          (55) 

             .T   = =                                      (56) 

 Constitutive relations are the following form 
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The virtual displacement principle of elastic objects in spherical symmetrical coordi-

nates can be written as [31] 

                     
( )

0
2

=+
−

+ r
Trr F

rdr

d 
,                          (58) 

that is written in the form 

                 0
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=+
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E .                   (59) 

 5. Conclusions 

Based on the current situation that the virtual displacement principle of rigid objects 

and deformed objects is studied separately, this paper adopts the method of analytical 

mechanics, the concept of ideal constraint and virtual displacement are introduced,  the 

generalized virtual displacement principle of deformed objects is proposed; the general-

ized virtual displacement principle of deformable objects is general, which is applicable 

to both deformable objects of various materials and rigid objects. This research lays a foun-

dation for solving the dynamic problems of flexible, intelligent and bionic material object 

systems in equilibrium. 
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