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Abstract: In actuarial practice, the modeling of total losses tied to a certain policy is a non-trivial task. 1

Traditional parametric models to predict total losses have limitations due to complex distributional 2

features such as extreme skewness, zero inflation, multi-modality, etc., and the lack of explicit 3

solutions for log-normal convolution. In the recent literature, the application of the Dirichlet process 4

mixture for insurance loss has been proposed to eliminate the risk of model misspecification biases; 5

however, the effect of covariates as well as missing covariates in the modeling framework is rarely 6

studied. In this article, we propose novel connections among covariate-dependent Dirichlet process 7

mixture, log-normal convolution, and missing covariate imputation. Assuming an individual loss is 8

log-normally distributed, we develop a log skew-normal Dirichlet process to approximate the log- 9

normal sum. As a generative approach, our framework models the joint of outcome and covariates, 10

which allows to impute missing covariates under the assumption of missingness at random. The 11

performance is assessed by applying our model to several insurance datasets, and the empirical 12

results demonstrate the benefit of our model compared to the existing actuarial models such as 13

the Tweedie-based generalized linear model, generalized additive model, or multivariate adaptive 14

regression spline. 15

Keywords: Bayesian nonparametric model; heterogeneity; missing at random; log-normal sum 16

approximation; aggregate insurance claims; clustering; generative model; latent class 17

1. Introduction 18

In short-term insurance contracts, predicting accurate aggregate claims is essential 19

for major actuarial decisions such as pricing or reserving. However, it is often not easy to 20

model the aggregate loss due to its complex distributional features such as high skewness, 21

zero inflation, hump shape, multi-modality, etc. With the advance of the modern Bayesian 22

paradigm and computing power, the development of full distribution of aggregate claims 23

has been studied and applied in actuarial practice. In particular, because of its considerable 24

flexibility, a Bayesian nonparametric (BNP) approach has been gradually recognized to 25

solve distributional conundrums in an insurance context. For instance, Hong and Martin 26

(2018) [1] recently developed the Dirichlet process model as a BNP approach that maximizes 27

the fitting flexibility of the full distribution for insurance loss, which obviates the chance 28

of model misspecification bias. In this article, as an extension of their work, we aim to go 29

beyond the search for the maximized fitting flexibility, focusing on the issues that arise 30

from the presence of covariates and the aggregate outcome (total losses). The implication is 31

that the predictive distribution for the expected aggregate claims developed under Hong 32

and Martin’s Dirichlet process framework can be biased with the incorporation of covariate 33

effects and log-normal convolution. For example, as covariates add new information that 34

differentiates the data points of the outcome variable, a new structure can be introduced 35

into the data space, and this increases the within-cluster heterogeneity [2]. Besides, the 36

incorporation of missing covariates may exacerbate the existing heterogeneity. Additionally, 37

assuming that the outcome variable describes the aggregate losses, rather than individual 38
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claim amounts, it is difficult to compute the log-normal convolution as it does not have 39

a closed-form solution. In this regard, our study extends their work by addressing the 40

following research questions: 41

• RQ1. If an additional unobservable heterogeneity is introduced by the inclusion of 42

covariates, what is the best method to capture the within-cluster heterogeneity in 43

modeling the total losses, comparing several conventional approaches? 44

• RQ2. If an additional estimation bias results from the use of the incomplete covariates 45

under Missing At Random (MAR), what is the best way to increase the imputation 46

efficiency, comparing several conventional approaches? 47

• RQ3. If an individual loss is distributed with log-normal densities, what is the best 48

way to approximate the sum of log-normal outcome variables, comparing several 49

conventional approaches? 50

2. Discussion on Research Questions and Related Work 51

Let Yi, i = 1, 2, . . . , N be the independent claim amount (reported by each policyholder 52

for a single policy) random variable, defined on a common probability space (Ω,F , P) from 53

a certain loss distribution such as log-normal. Let X be a vector of covariates, and N(t) 54

be the total claim count denoting the number of individual claims for a single policy up 55

to time t (policy period). The aggregate claim Sh(t) for a single policy, h, given time t can 56

be expressed as a convolution: Sh(t) = ∑
N(t)
i=1 Yi = Y1 + Y2 + . . . + YN(t). At the end of 57

the policy period t, let S̃(t) be the total aggregate claim amounts from the total policies 58

received by an insurer, then: S̃(t) = ∑H
h=1 Sh(t) = S1(t) + S2(t) + . . . + SH(t) in which H 59

is the total number of policies on the contracts. Note that both convolutions described 60

so far are built upon the assumption that the summands - Yi, i = 1, 2, · · · , N(t) and 61

Sh, h = 1, 2, · · · , H - are mutually independent and identically distributed with log-normal 62

densities (to maintain homogeneity of each loss). 63

However, the involvement of covariates and the lack of closed-form solutions for the 64

log-normal sum bring about several challenges that violate the assumptions for an accurate 65

estimation of the total aggregate loss S̃(t). To begin with, the use of covariates gives rise 66

to an additional within-cluster heterogeneity. Kass et al.(2008) [3] describes a standard 67

aggregate loss modeling principle denoting that the expected aggregate claims E[Sh] is 68

obtained by the product of the mean claim counts and severities: E[Sh] = E[N]E[Y]. With 69

the inclusion of covariates X, a new unknown structure or heterogeneity is introduced 70

into the data space of Yi, which means that Y1|X1, Y2|X2, · · · , YN |XN within a single policy 71

can still be independent, but cannot be identically distributed. Therefore, E[Sh|X] ̸= 72

E[N|X]E[Y|X], and the total aggregate loss S̃(t) becomes difficult to compute with the 73

conventional collective risk modeling approach. In addition, assuming that the severity 74

Yi follows a log-normal distribution, the computation of S̃(t) becomes quite difficult as its 75

convolution Sh is not known to have a closed-form [4]. Another challenge is the missing 76

covariates in Sh|X. As shown by Ungolo et al.(2020)[5], the missing covariates under 77

the missingness at random (MAR) assumption lead to the biased parameter estimations 78

because the uncertainty in the estimation results of the parameters describing the outcome 79

Y is heavily affected by the quality of covariates X. Again, in this case, S̃(t) cannot be 80

computed properly. 81

Compounding all this, we propose the Dirichlet process log skew-normal mixture to 82

model the Sh|X. We consider the Dirichlet process framework to cope with the within- 83

cluster heterogeneity as suggested by Hong and Martin (2018); Braun et al.(2016) [1,6] 84

while employing the log skew-normal approximation studied by Li (2008) [7] to compute 85

each Sh|X, the sum of log-normal random variables ∑
N(t)
i=1 Yi|X. When it comes to the 86

problem of missing covariates, we exploit the generative capability of the Dirichlet process 87

to capture the latent structure of data, which allows for a rigorous statistical treatment of 88

MAR covariates. 89
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2.1. Can Dirichlet process capture the heterogeneity and bias?: RQ1, RQ2 90

Figure 1. Independent and identically distributed aggregate losses Sh (left) and a Dirichlet process
mixture (DPM) to model the Sh in every possible way (right). Given the unobserved loss Y∗

h incurred
by the next policyholder (and added to a certain policy group), by how much (subject to stochasticity)
and by which policy (subject to heterogeneity) will be left to the main concerns. A DPM addresses
these concerns via the simulation of Sh.

In Figure 1, Yi refers to individual claim amount and each Sh represents a total claim 91

amount defined by a unique policy (cluster h) as a homogeneous distribution. Although an 92

insurer can collect the aggregate loss data Sh for each policy cluster given policy period 93

t, individual policyholders (in different risk classes) can raise more than one claim (i.e. 94

random Nh(t)) at any time over a fixed time horizon t, and their corresponding claim 95

amounts (i.e. random Y∗
h ) will not be known in advance. Hence, the unsettled liability 96

information of Y∗
h from certain policyholders always renders Sh incomplete, which is often 97

translated into the challenge of their inherent stochasticity. In addition, the new claims 98

Y∗
h raised from unknown risk classes can trigger inherent heterogeneity across unique 99

clusters as well. To make matters worse, if introducing covariates X to better understand 100

the different risk classes, one might introduce an additional source of heterogeneity into 101

the scene, which prevents each cluster from being identically distributed. 102

With respect to this, Hong and Martin (2018) [1] propose the concept of the loss 103

distribution mixture for each cluster based on the Dirichlet process framework. The main 104

idea behind the Dirichlet process mixture (DPM) is to produce a single master distribution 105

to model stochasticity in Sh with the help of an infinite dimensional parametric structure 106

and the probabilistic simulations of clustering scenarios. Braun et al.(2006) [6] articulates 107

how the DPM automatically captures unobservable heterogeneity such as intracorrelation 108

between claim amounts Yi in the different risk classes without specifying the number of 109

the classes upfront. In short, no matter how complex the distribution of the data is, the 110

DPM is capable of accommodating any distributional properties - multi-modes, skewness, 111

heavy tails, etc. - resulting from unobservable heterogeneity; and therefore, dramatically 112

minimizes model misspecification biases. 113

With the inclusion of the covariates, the DPM offers a useful bedrock for a MAR 114

treatment. As a generative modeling approach, the DPM models both outcomes Sh and 115

covariates X jointly to produce cluster memberships. This is used as key knowledge to 116

identify the latent structure of the data. For example, in the domain of medicine research, 117

Roy et al.(2018) [8] develop a novel imputation strategy for the MAR covariate, using the 118

latent structure unraveled by the DPM and the other covariate knowledge available. A 119

further survey of imputation methods based on the Nonparametric Bayesian framework 120

can be found in Si and Reiter (2013) [9] and references therein. 121
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2.2. Can log skew-normal mixture approximate the log-normal convolution?: RQ3 122

The log-normal distribution has been considered a suitable claim amount Yi distribu- 123

tion due to its non-negative support, right-skewed curve, and moderately heavy tail to 124

accommodate some outliers. However, if generalizing the individual claim amount Yi by 125

introducing a log-normal distribution, the convolution computation for Sh fails because the 126

exact closed form for the log-normal sum is unknown. 127

Furman et al.(2020) [10] present several existing methods for the log-normal sum 128

approximation that have been studied in the literature. This includes the moment matching 129

approximation approaches such as Minimax approximation, Least squares approximation, 130

Log shifted gamma approximation, and Log skew-normal approximation. The distance 131

minimization approaches - Minimax approximation or Least squares approximation - 132

described by Beaulieu and Xie (2003); Zhao and Ding (2007) [4,11] are conceptually simple, 133

but they require to fit the entire cumulative densities to the sum of claim amounts, which 134

can be computationally expensive and easy to fail when the number of the summands Yi 135

increases. The Log shifted gamma approximation suggested by Lam and Le-Ngoc (2007) 136

[12] has less strict distributional assumptions, but it is not very accurate at the lower region 137

of the distribution. In our study, special attention is paid to the possibility of the Log skew- 138

normal approximation method for the sake of simplicity. A skew-normal distribution as an 139

extension of a normal distribution has a third parameter to naturally explain skewness apart 140

from the other parameters (for a location and spread). Li (2008) [7] points out that one can 141

exploit the third parameter of the skew-normal distribution to capture different skewness 142

levels of each summand. Taking the log of skew-normal densities, we can approximate Sh, 143

the sum of the log-normal Yi. Using the log skew-normal as the underlying distribution for 144

Sh in the DPM framework, one can eliminate the need to compute the cumulative density 145

curve, and its closed-form density and the optimal distribution parameters for Sh can be 146

easily obtained by the moment matching technique. For further details, see Li (2008) [7] 147

and the references contained within. 148

2.3. Our Contribution and Paper Outline 149

The contribution of this study is as follows: first, using the Bayesian nonparametric 150

framework, we propose solutions to the two major challenges of the aggregate claim Sh 151

computation - 1) heterogeneity in the log-normal random variable Yi, 2) lack of closed-form 152

of the sum of log-normal random variables Yi - in a more unified fashion. Second, we 153

introduce covariates X into the aggregate claim modeling framework, taking into account 154

the adverse impact triggered by the covariates X. This includes the added heterogeneity 155

across Yi and the missing information fed by MAR covariates X. To our knowledge, there 156

have been no previous attempts to either estimate the log skew-normal mixture within 157

the DPM framework or use the DPM to handle the MAR covariate in the insurance loss 158

modeling. 159

The rest of the paper is structured as follows. In Section 3, we describe the proposed 160

modeling framework for Sh, assuming log-normal distributed Yi and the inclusion of both 161

continuous and discrete covariates X. This section also presents our novel imputation 162

approach for the MAR covariate within the DPM framework. Section 4 clarifies the fi- 163

nal forms of the posterior and predictive densities accordingly. Section 5 presents our 164

empirical results, and validates our approach by fitting to two different datasets with 165

different sample sizes drawn from the R package CASdatasets and the Wisconsin Local 166

Government Property Insurance Fund (LGPIF). This is followed by a discussion in Section 6. 167

168

3. Model: DP Log Skew-normal Mixture for Sh|X 169

3.1. Background 170

Consider that there are multiple unknown risk classes (clusters) across the claim
Yi information within each policy, and then the individual aggregate claims Sh for the
policy h would have diverse characteristics that cannot be explained by fitting a single
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log skew-normal distribution. In order to approximate the distribution that captures such
diverse characteristics in Sh, we seek to investigate diverse clustering scenarios. To this
end, as suggested by Hong and Martin (2018) [1], we exploit the infinite mixture of log
skew-normal clusters and their complex dependencies by employing a Dirichlet process.
The Dirichlet process produces a distribution over clustering scenarios (with clustering
parameters).

{θj, ωj} ∼ G

G ∼ DP
(
α, G0

)
where G denotes the clustering scenarios, and the important components of G are 171

• θj: the parameters of the outcome variable defined with cluster j. 172

• ωj: the parameter of the cluster weights defined with cluster j. 173

G, as a single realization of the joint cluster probability vector {G(A1), G(A2) . . .} sam- 174

pled from the DPM model, takes independent partitions A1, A2, . . . of the sample space 175⋃∞
k=1 Ak = A of the support of G0. By sufficient simulations of G, the Dirichlet process 176

investigates all possible clustering scenarios rather than relying on a single best guess. 177

The overall production of G is controlled with two parameters - a precision α and a base 178

measure G0. The precision α controls a variance of sampling G in the sense that larger 179

α generates new clusters more often to account for the unknown risk classes. The base 180

measure G0, as the mean of DP(α, G0), is a DP prior over the joint space of all parameters 181

for the outcome model, covariate model, and the precision α, as shown in Ghosal (2010) 182

[13]. 183

Note that the original research on DPM by Hong and Martin (2018) [1] mainly focuses 184

on the random cluster weights ωj independent of the covariates X. On the other hand, in 185

our model, the covariate effects are incorporated into the development of cluster weights ωj. 186

All calculations for the development of the DPM modeling components in this paper are 187

based on the principles introduced by Ferguson (1973), Antoniak (1974), and Sethuraman 188

(1994) [14–16]. 189

3.2. Model Formulation with Discrete and Continuous Clusters 190

Let the outcome be S = {S1, S2, . . . , SH} denoting the H different aggregate claims 191

(incurred by the H different policies). We assume that the covariate x1 is binary, and the x2 192

is Gaussian, and then our baseline DPM model can be expressed as: 193

Sh|x1,x2, β j, σ2
j , ξ j, β̃ j

∼ δ(XT β̃ j) 1(Sh = 0) +
[
1 − δ(XT β̃ j)

]
LogSN

(
XT β j, σ2

j , ξ j
)

x1|πj ∼ Bern
(
πj
)

x2|µj, τ2
j ∼ N

(
µj, τ2

j
)

{θj, wj} ∼ G

G ∼ DP
(
α, G0

)
(1)

where j is the risk class index; θj = {β j, σ2
j , ξ j, β̃ j} describe the outcome model while 194

wj = {πj, µj, τ2
j } explains the covariate model. Sh is modeled as a mixture of a point 195

mass at 0 and positive values distributed with log skew-normal density to address the 196

complications of zero inflation in the loss data. δ(XT β̃ j) models the probability of the 197

outcome being zero using a multivariate logistic regression. Variable Definitions section 198

has a brief description of all parameters used in this study. 199

Considering a Dirichlet process log skew-normal mixture to house the multiple un- 200

known risk classes in Sh, it is necessary to differentiate the forms of mixture components 201

depending on the types of clusters it uses - the discrete and continuous. While keeping the 202

inference of the cluster parameters to be data dominated, the DPM first develops discrete 203
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clusters based on the given claim information and then extrapolates certain unobservable 204

clusters of claims by examining the heterogeneity (or hidden risk classes) of each cluster. In 205

this process, the DPM develops new continuous clusters additionally and assesses them 206

with some probabilistic decision-making algorithms, rendering the parameter estimations 207

computationally efficient and asymptotically consistent [17]. 208

The discrete mixture components (clusters) in the DPM framework have the standard
form that is useful in accounting for the observed classes such as policy information for
aggregate loss Sh [18]. In calculating the discrete cluster probabilities, we assume that the
non-zero outcome and covariates are distributed with the densities denoted by

fLSN
(
Sh|XT

h β j, σ2
j , ξ j

)
=

2
Shσj

ϕ
( log Sh − XT

h β j

σj

)
· Φ
(

ξ j ·
log Sh − XT

h β j

σj

)
(2a)

fBern
(
x1|πj

)
= πx1

j
(
1 − πj

)1−x1 (2b)

fN
(
x2|µj, τ2

j
)
=

1√
2πτ2

j

exp

{
− 1

2τ2
j

(
x2 − µj

)2
}

(2c)

where ϕ(·) and Φ(·) are standard normal probability and cumulative density functions for 209

the log skew-normal density. To model the outcome data Sh|Xh for the policy h, the DPM 210

takes the general form of the mixture 211

f (Sh|Xh, θ) =
J

∑
j=1

ωj

(
δ(XT

h β̃ j) 1(Sh = 0) +
[
1 − δ(XT

h β̃ j)
]

fLSN(Sh|Xh, θj)
)

(3)

where J is the total number of mixture components (risk classes), θj = {β j, σ2
j , ξ j, β̃ j} and 212

wj = {πj, µj, τ2
j } are the outcome and covariate parameters to explain the risk clusters, 213

and ωj, functions of covariates: ωj(Xh|wj), are the cluster components weights (mixing 214

coefficient) satisfying ∑J
j=1 ωj = 1. 215

However, when the DPM is extended as j → ∞, the new continuous clusters are
introduced by the G0 (with its infinite-dimensional parametric structure) in order to address
the additional unknown risk classes. This assesses the within-class heterogeneity in Sh by
confronting the current discrete clustering result and investigating the homogeneity more
closely. As the new clusters are considered countably infinite, their corresponding forms of
the outcome and covariate models to obtain the continuous cluster are given by

f0(Sh|Xh) =
∫

f (Sh|Xh, θ) dG0(θ) (4a)

f0(x1) =
∫

fBern(x1|w) dG0(w) (4b)

f0(x2) =
∫

fN(x2|w) dG0(w) (4c)

They are also known as a “parameter-free outcome model" and a “parameter-free covariate 216

model" respectively to develop the new continuous cluster mixture. Given a collection 217

of outcome-covariate data pairs D = {Sh, Xh}H
h=1, the DPM puts together the current 218

discrete clusters and new continuous clusters to update the mixture form in Equation 219

(3), with help of Monte Carlo Markov Chain (using sufficiently simulated samples of the 220

major parameters θj, wj). Consequently, the sample G described in Equation (1) becomes 221

G = f (Sh|Xh, D) = ∑∞
j=1 ωj · δzj where δzj denotes both discrete and continuous cluster 222

densities as point mass distributions at the random locations sampled from G0. Aligned 223
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with such flexible cluster development, the form of the predictive distribution can be 224

molded based on the knowledge extracted from G, as follow: 225

f (Sh|Xh, θ, w, α) =
ω∗

J+1

ω∗
J+1 + ∑J

j=1 ω∗
j

· f0(Sh|Xh) +
∑J

j=1 ω∗
j · f (Sh|Xh, θj)

ω∗
J+1 + ∑J

j=1 ω∗
j

(5)

and the finalized cluster weights in Equation (5) are secured through computing these two
sub-models below for discrete and continuous cluster weights respectively which reflect
the properties of the clusters and relevant covariates.

ω∗
J+1 =

α

α + H
· f0(x1, x2) (6a)

ω∗
j =

nj

α + H
· f (x1, x2|wj = (πj, µj, τ2

j )) (6b)

where α is the precision parameter to control the acceptance chances of the new clusters, 226

nj is the number of observations in cluster j, f0(X) is the parameter-free covariate model 227

in Equation (4b, 4c) to support the new continuous clusters, and f (X|wj) is the covariate 228

model to support the current discrete clusters. Note that instead of the popular stick- 229

breaking scheme used by Hong and Martin (2018) [1], the cluster weights are obtained 230

based on the covariate models of x1, x2 that explain the outcome Sh. 231

The simulated outcome model f (Sh|Xh, D) = ∑∞
j=1 ωj · δzj and its predictive model in 232

Equation (5) show that although the DPM framework allows infinite-dimensional modeling, 233

the dimension of the sampling output G is adaptive as it is a mixture with at most finite 234

components determined by data itself (e.g. its dimension cannot be greater than the total 235

sample size H). This gives the model flexibility, and throughout such modeling flexibility, 236

the G can become the comprehensive mixture distribution for Sh, accommodating all 237

distributional properties of the given claims as well as the additional unknown claims. 238

3.3. Modelling Sh|Xh with Complete Case Covariate 239

The joint posterior update for the outcome and covariate parameters - θj, wj - in 240

Equation (5,6) can be made through a Gibbs Sampler. Using the conditional distribution of 241

the unobservable variables given the observed data, the Gibbs sampler can obtain draws 242

from the analytically intractable posterior distribution of the parameters [20]. Let the 243

cluster-index j = 1, 2, · · · , J for the observation h be sh. The parameter inference steps to 244

ensure convergence are described below. 245

Step.1 Initialize the cluster membership and the main parameters: 246

247

(a) First the cluster membership j = 1, · · · , J is initialized by some clustering 248

methods such as hierarchical clustering or k-means, etc. This step provides 249

an initial clustering of the data (Sh, Xh) as well as the initial number of 250

clusters. 251

(b) Next, after all observations have been assigned to a particular cluster j = 252

1, 2, · · · , J, we can then update the parameters α and (θj, wj) for each cluster. 253

This is done using the posterior densities denoted by p(α|J), p(θ|Sh, Xh), 254

and p(w|Xh) in which (Sh, Xh) represent all observations in cluster j. 255

Step.2 Loop through the Gibbs sampler and new continuous cluster selection: 256

257

Once the cluster memberships and parameters are initialized, we then loop through 258

the Gibbs sampler many times (e.g. M = 100, 000 iterations) where the algorithm 259

alternates between updating the cluster membership for each observation and 260

updating the parameters given the cluster partitioning. Each iteration might give a 261

slightly different selection of the new clusters based on the Polya Urn scheme [20], 262

but the log-likelihood calculated at the end of each iteration can help keep track of 263
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Figure 2. An example of looping through the Gibbs sampler with complete data. In Step I, the
algorithm requires the initial cluster memberships and parameters. In Step II.(A), based on the
Chinese Restaurant scheme [19] with the DPM prior (G0), the probabilities of the selected observation
h being in each current and the proposed new cluster are computed, which updates the cluster
memberships. In Step II.(B), the new continuous cluster membership is determined by a multinomial
distribution with a set of the resulting cluster probabilities from Step II.(A) randomly assigned based
on the Polya Urn scheme. Once all observations have been assigned to clusters at a given iteration in
the Gibbs sampler, then the parameters are updated, given cluster membership.

the convergence of the selections. A detailed description of each iteration is given 264

in Algorithm (A2) in Appendix B. The term p(sh|s−h) on lines 6 and 9 in Algorithm 265

(A2) is the Chinese Restaurant process [19] posterior value given by 266

p(sh|s−h) =

c ·
n−h

j

α + H − 1
, for record h entering into existing cluster: sh = j.

c · α

α + H − 1
, for record i entering into a new cluster: sh = J + 1.

(7)
where c is a scaling constant to ensure that the probabilities sum to 1, and s−h is 267

the collection of cluster indices (s1, s2, · · · , sh−1, sh+1, · · · , sH) assigned to every 268

observation without the cluster index sh of the observation h. As shown in Equation 269

(7), the larger α results in a higher chance of developing the new continuous cluster 270

and adding to the collection of the existing discrete clusters. The forms of the prior 271

and posterior densities used to simulate the main parameters (θ∗j , α∗, w∗
j ) on lines 272

from 16 to 23 in Algorithm (A2) are presented in Appendix A. 273
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There is a couple of points to note. The Gibbs sampler for the DPM described here can 274

be characterized by the use of infinite clusters and covariates. Due to the infinite mixture 275

capacity, the resulting clusters can be kept as homogeneous as possible. In this process, the 276

within-class heterogeneity can be captured between parameters across the observations, 277

and the DPM utilizes such dependencies within existing clusters to determine the rationale 278

for the development of new clusters. The DPM harnesses the power of the covariate as well. 279

For example, the DPM associates individual policies with the unobserved claim (in new 280

clusters) and the observed claims (in old clusters), matching on the covariate information. 281

The investigation of the infinite clusters, covariates, and the continuous cluster selection 282

process in the DPM are briefly illustrated in the diagram in Figure 2. As a result, the 283

unobserved claim problem mentioned in Figure 1 can be addressed by the new cluster 284

introduction, which leads to a better approximation of Sh. 285

3.4. Modelling Sh|Xh with MAR Covariate 286

The DPM model for complete case data (Sh, Xh) has been discussed in Section 3.3. 287

In this Section, we present our novel imputation strategy for the MAR covariate in the 288

DPM framework in which the missing values are explained by the observed data. We 289

focus on the missingness in the binary type covariate. In addition, we specify here different 290

prior distributions and the corresponding posterior distributions constructed for the Gibbs 291

sampler, taking into account the MAR covariate. With the model definition in Equation (1), 292

suppose the binary covariate x1 has missingness within it. To handle this MAR covariate, 293

we consider the following modifications in the DPM Gibbs sampler: 294

295

a) Imputation: The missing covariate impacts on the parameter - θ, w - update. For 296

wj, only the observations Sh without the missing covariate are used to update. If 297

the cluster does not have any observations with complete data for that covariate, 298

then a draw from the prior distribution would be used to update. For θj, however, 299

we must first impute values for the missing covariates x1h for all observations Sh 300

within the cluster. Since having already defined a full joint model - f (Sh|Xh, θj) · 301

f (Xh|wj) - in Section 3.2, we can obtain draws for the MAR covariate x1h from the 302

imputation model such as fBern(x1h|Sh, θj, wj) ∝ f (Sh|Xh, β j, σ2
j , ξ j) · fBern(x1h|πj) at 303

each iteration of the Gibbs sampler. The imputation process is briefly illustrated 304

in Figure 3. Once all missing data in all covariates has been imputed, then we 305

can sample from the posterior for θ and the parameters of each cluster β j, σ2
j are 306

re-calculated. After this cycle is complete, the imputed data is discarded and the 307

same imputation steps are repeated every iteration. 308

309

b) Re-clustering: To determine each cluster probability after the imputations, the 310

algorithm re-defines the two main components for the cluster probability calculation 311

- 1) covariate model, 2) outcome model. For the covariate model f (Xh|wj), we set 312

this equal to the density functions of only those covariates with complete data for 313

observation h. Assuming that Xh = {x1h, x2h}, and the covariate x1 is missing for 314

observation h, then we drop x1h and only use x2h in the covariate model, 315

f (Xh|wj) = fN(x2h|w2j) (8)

This is the refined covariate model for the cluster j with the observation h where 316

the data in x1 is not available. For the outcome model f (Sh|Xh, θj), the algorithm 317

simply takes the imputation model for each cluster and integrates them out the 318

covariates with missing data. This reduces the degree of variances introduced by the 319

imputations. In our case, as covariate x1 is missing for observation h, this missing 320
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Figure 3. An example of a re-clustering process with MAR imputation in the DPM Gibbs sampler:
Step I and II. The imputations are made cluster membership-wise. Each imputation model as a joint
distribution is the product of the outcome model and the covariate model that has missing data.

Figure 4. An example of a re-clustering process with MAR imputation in the DPM Gibbs sampler:
Step III. The DPM refines the outcome models for all possible configurations based on the types of
missingness prior to running the Gibbs sampler. Using these outcome models, each cluster probability
and the predictive density are updated.

covariate can be removed from the Xh term that is being conditioned on. Therefore, 321

the refined outcome model is 322

f (Sh|x2h, θj) ∝
∫

f (Sh|Xh, θj) · fBern(x1h|w1j)dx1h (9)

A similar process is conducted for each observation with missing data and each com- 323

bination of missing covariates. Hence, using Equation (8,9), the cluster probabilities 324
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and the predictive distribution can be obtained as illustrated in Step III in Figure 4. 325

326

c) Parameter update: The cluster probability computation is followed by the parameter 327

re-estimation for each cluster, which is illustrated via the diagram in Figure 5. This 328

is the same idea as what we have discussed about the parameter - θ, w - update in 329

Figure 2.

Figure 5. Parameter re-estimation after the re-clustering with imputation in the Gibbs sampler. This
diagram articulates flows of the parameter updates, using the acyclic graphical representation. The
process cycles until achieving convergence.

330

4. Bayesian Inference for Sh|Xh with MAR Covariate 331

The efficient simulation for the model parameters - θ : {β, σ2, ξ β̃}, w : {π, µ, τ2}, and 332

α - requires the proper parameterization in the parameter models - prior parameter model 333

and posterior parameter model. The accurate estimations of cluster probabilities rely on 334

the legitimate development of data models - outcome model and covariate model - and the 335

model parameter simulation results that govern the data model behaviors. This section is 336

centered on the novel development of parameter and data models, providing the details of 337

the DPM implementation integrated with the MAR imputation strategy. 338

4.1. Parameter models and MAR covariate: 339

Our study is based on a three-level hierarchical structure: the first level regards the data
models such as the log skew-normal outcome model and the Bernoulli, Gaussian covariate
models, the second level involves the parameter models such as p(θ|Sh, Xh), p(w|Xh) to ex-
plain the data, and the third level is developed from the generalized regression to explain the
parameters or the related hyperparameters such as a0, b0, ν0, c0, d0, µ0, τ2

0 , e0, γ0, g0 and h0 to
set a probabilistic distribution on the parameter vectors θ = {β, σ2, ξ, β̃}, w = {π, µ, τ2}.
See Variable Definition for further information on the variables. Given the model definition
in Equation (1), we consider a set of conjugate parameter models due to its computa-
tional advantages [21]. For Sh ∼ δ(XT

h β̃ j) 1(Sh = 0) +
[
1 − δ(XT

h β̃ j)
]

LogSN(XT
h β j, σ2

j , ξ j),

x1 ∼ Bern(πj), and x2 ∼ N(µj, τ2
j ), the prior models come in

p0(σ
2
j |a0, b0) : InvGa(a0, b0), p0(β j|β0, Σ0) : MV N(β0, σ2

j Σ0), p0(ξ j|ν0) : T(ν0)

p0(β̃ j|β̃0, Σ̃0) : MV N(β̃0, Σ̃0), p0(πj|c0, d0) : Beta(c0, d0), p0(µj|µ0, τ2
0 ) : N(µ0, τ2

j ),

p0(τ
2
j |e0, γ0) : InvGa(e0, γ0), p0(α|g0, h0) : Ga(g0, h0)

and their corresponding kernels chosen in this study are listed in Appendix A.1. Ac- 340

cordingly, the Dirichlet process prior (probability measure) G0 in our case can be de- 341

fined as G0 = MV N(β0, Σ0)× InvGa(a0, b0)× T(ν0)× MV N(β̃0, Σ̃0)× Beta(c0, d0)× 342

N(µ0, τ2
j ) × InvGa(e0, γ0) × Ga(g0, h0). With a feed of the observed data inputs - 343
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(Sh, x1h, x2h) -, the prior models for each cluster j described above will be updated into the 344

following posterior models analytically apart from θj = {β j, σ2
j , ξ j, β̃ j}. 345

p(πj|c0, d0, S, x1) : Beta(cnew, dnew)

p(µj|µ0, τ2
0 , S, x2) : N(µnew, τ2

new), p(τ2
j |e0, γ0, S, x2) : InvGa(enew, γnew)

p(α|g0, h0, h, J, η, πη) : πηGa(g0 + J, h0 − log(η)) + (1 − πη)Ga(g0 + J − 1, h0 − log(η))
(10)

and their corresponding parameterizations are elaborated in Appendix A.2. Note that 346

the value of the precision parameter α relies on the total cluster number J, thus does not 347

vary by the cluster membership j, and its derivation of the posterior parameterization is 348

not subject to the Bayesian conjugacy. Hence, we instead adapt the form of the posterior 349

density for the α suggested by Escobar and West (1995) [22], and its derivation is shown in 350

Appendix C.1. As for θj = {β j, σ2
j , ξ j, β̃ j}, there are no conjugate priors available for log 351

skew-normal likelihood, but their posterior samples can be secured by the conventional 352

metropolis hastings described in Algorithm (A2) in Appendix A. 353

Considering that x1 has missing data, although the parameterizations of the posterior 354

densities for the covariate parameter model of w and the precision α listed in Equation (10) 355

are not affected, any outcome data of Sh with missingness should be dropped; therefore, 356

nj and x1 are defined with the only observations in cluster j that are not missing. This 357

imputation example is provided in Appendix C.2. For the outcome parameter model of 358

θj, the missing covariate x1 must be imputed before its posterior computation shown in 359

Algorithm (A2). Once the parameters are updated with the imputation, the data models 360

can be constructed as described in Equation (8,9). 361

4.2. Data models and MAR covariate 362

Data models are the main components for cluster probability computations depicted 363

in Figure 2. As with the development of parameter models, the covariate data model of X 364

ignores the observations with missingness while the outcome data model of Sh requires to 365

complete the covariates beforehand. However, the formulation of their densities can be 366

more complex due to the marginalization process with respect to the missing covariate. 367

In addition, as discussed in Section 3.2, the data model development is bound by the 368

types of clusters such as discrete clusters f (Sh|Xh, θj), f (Xh|wj) and continuous clusters 369

f0(Sh|Xh), f0(Xh). 370

371

a) covariate model for the discrete cluster: f (Xh|wj) 372

Focusing on the scenario that x1 is binary, x2 is Gaussian, and the only covariate with 373

missingness is x1h, we simply drop the covariate x1h to develop the covariate model 374

for the discrete cluster. For instance, when computing the covariate probability 375

term for hth observation in j cluster, the covariate model f (x1h, x2h|πj, µj, τ2
j ) simply 376

becomes f (x2h|µj, τ2
j ) due to the missingness of x1h. As we have x2 that is assumed 377

to be normally distributed as defined in Equation (1), its probability term is 378

f (x2h|µj, τ2
j ) =

1√
2πτ2

j

exp{
−(x2h − µj)

2

2τ2
j

} (11)

instead of

f (x1h, x2h|πj, µj, τ2
j ) = π

x1h
j
(
1 − πj

)1−x1h · 1√
2πτ2

j

exp{
−(x2h − µj)

2

2τ2
j

}

379

380
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b) covariate model for the continuous cluster: f0(Xh) 381

If the binary covariate x1h is missing, by the same logic, we drop the covariate x1h 382

for the continuous cluster; however, using Equation (4), the covariate model for 383

the continuous cluster integrates out the relevant parameters simulated from the 384

Dirichlet process prior G0 as follows: 385

f0(x2h) =
∫

f (x2h|µ, τ2) dG0(µ, τ2) =
∫

f (x2h|µ, τ2) · p(µ|τ2) · p(τ2) dµ dτ2

=
γe0

0 Γ(e0 + 1/2)
2
√

πΓ(e0)

(
γ0 +

(x2h − µ0)
2

4

)−(e0+1/2) (12)

instead of

f0(x1h, x2h) =
∫

f (x1h, x2h|π, µ, τ2) · p(π) · p(µ|τ2) · p(τ2) dπ dµ dτ2

=
B(x1h + c0, 1 − x1h + d0)

B(c0, d0)
·

γe0
0 Γ(e0 + 1/2)
2
√

πΓ(e0)

(
γ0 +

(x2h − µ0)
2

4

)−(e0+1/2)

The derivation of the distributions above is provided in Appendix C.3. 386

387

c) outcome model for the discrete cluster: f (Sh|Xh, θj) 388

In developing the outcome model, as with the parameter model case discussed in 389

Section 4.1 and Appendix C.2, it should be ensured that the covariate is complete 390

beforehand. With all missing data in x1h imputed, the outcome model for the discrete 391

cluster is obtained by marginalizing the joint - f (Sh, x1h|x2h, θj, πj) - out the MAR 392

covariate x1h, which is a log skew-normal mixture as follows: 393

f (Sh|x2h, β j, σ2
j , ξ j, β̃ j) =

1

∑
x1h=0

f (Sh|x1h, x2h, β j, σ2
j , ξ j, β̃ j) · f (x1h|πj)

= f (Sh, x1h = 1|x2h, β j, σ2
j , ξ j, β̃ j, πj) + f (Sh, x1h = 0|x2h, β j, σ2

j , ξ j, β̃ j, πj)

= δ(XT
h β̃ j) 1(Sh = 0) +

[
1 − δ(XT

h β̃ j)
]
· 2

σjSh

· ϕ

(
log Sh − (β j0 + β j1 + β j2x2h)

σj

)
· Φ

(
ξ j

log Sh − (β j0 + β j1 + β j2x2h)

σj

)
πj

+ δ(XT
h β̃ j) 1(Sh = 0) +

[
1 − δ(XT

h β̃ j)
]
· 2

σjSh

· ϕ

(
log Sh − (β j0 + β j2x2h)

σj

)
· Φ

(
ξ j

log Sh − (β j0 + β j2x2h)

σj

)
· (1 − πj)

(13)

instead of

f (Sh|x1h, x2h, β j, σ2
j , ξ j, β̃ j)

= δ(XT
h β̃ j) 1(Sh = 0) +

[
1 − δ(XT

h β̃ j)
]
· 2

σjSh

· ϕ

(
log Sh − (β j0 + β j1x1h + β j2x2h)

σj

)
· Φ

(
ξ j

log Sh − (β j0 + β j1x1h + β j2x2h)

σj

)
394

395

d) outcome model for the continuous cluster: f0(Sh|Xh) 396

Once a missing covariate x1 is fully imputed and the outcome model is marginalized 397

out conditioned to the MAR covariate x1h, the outcome model f0(Sh|x2h) for the 398
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continuous cluster can also be computed by integrating out the relevant parameters, 399

using Equation (4). 400

f0(Sh|x2h) =
∫

f (Sh|x2h, β, σ2, ξ, β̃) · p(β) · p(σ2) · p(ξ) · p(β̃) dβ dσ2 dξ dβ̃ (14)

However, it can be too complicated to compute its form analytically. Instead, we 401

can integrate the joint model out the parameters, using Monte Carlo integration. For 402

example, we can do the following for each h = 1, · · · , H. 403

(i) Sample β, σ2, ξ, β̃ from the DP prior densities G0 specified previously. 404

(ii) Plug in these samples into f (Sh|x2h, β, σ2, ξ, β̃) · p(β) · p(σ2) · p(ξ) · p(β̃). 405

(iii) Repeat the above steps many times, recording each output. 406

(iv) Divide the sum of all output values by the number of Monte Carlo samples, 407

which will be the approximate integral. 408

4.3. Gibbs sampler Modification for MAR covariate 409

We have examined the parameter models and data models to update the parameters 410

of the DPM based on probabilistically imputed values of the MAR covariate. Now we 411

set out some modifications of the DPM and let the Gibbs sampler in Algorithm (A2) in 412

Appendix B. address the MAR covariate of x1. The Gibbs sampler will alternate between 413

imputing missing data and drawing parameters until it reaches a stationary distribution of 414

the parameters. We elaborate below on the modifications that fit into Algorithm (A2) to 415

update the clustering scenarios and the posterior cluster parameters properly. 416

a) In line 6, with the presence of missing covariate x1h, the modification of the cluster
probability for the observation (Sh,��x1h, x2h) that belongs to the discrete cluster j can
be made as follows,

P(sh = j) = p(sh|s−h) · f (x2h|µj, τ2
j ) · f (Sh|x2h, β j, σ2

j , ξ j, β̃ j)

where f (x2h|µj, τ2
j ) is from Equation (11), and f (Sh|x2h, β j, σ2

j , ξ j, β̃ j) is from Equa- 417

tion (13). 418

419

b) In line 9, with the presence of missing covariate x1h, the modification of the cluster
probability for the observation (Sh,��x1h, x2h) that belongs to the continuous cluster
J + 1 can be made as follows,

P(sh = J + 1) = p(sh|s−h) · f0(x2h) · f0(Sh|x2h)

where f0(x2h) is from Equation (12), and f0(Sh|x2h) is from Equation (14). 420

421

c) In line 22, with the presence of missing covariate x1h, the imputation should be made
before simulating the parameter θ∗j as follows,
{

First, sample x1h ∼ f (Sh|Xh, β j, σ2
j , ξ j, β̃ j) · fBern(x1h|πj)

Then sample θ∗j from the posterior: p(θ|Sh, Xh)
if x1h is missing.

Sample θ∗j from the posterior: p(θ|Sh, Xh) otherwise

The imputation model formulation in the above has been discussed in Section 3.4. 422

Again, these modifications allow to draw missing covariate values from the conditional 423

posterior density at each iteration, using the Metropolis-Hastings with a random walk. 424

425
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5. Empirical Study 426

5.1. Data 427

The performance of our DPM framework is assessed based on two insurance datasets.
They highlight data difficulties such as unobservable heterogeneity in an outcome variable
and MAR covariates. For simplicity, in each dataset, we only consider two covariates -
one binary and one continuous - to explain its loss information (outcome variable). In this
study, all computations on these two datasets are performed in the same data format:

Year1 Year2 · · · , Yeary

Policy (a): {(Sa, Xa), (Sa, Xa), · · · , (Sa, Xa)}
Policy (b): {(Sb, Xb), (Sb, Xb), · · · , (Sb, Xb)}

...

Policy (H): {(SH , XH), (SH , XH), · · · , (SH , XH)}

The first dataset is PnCdemand, which is about the international property and liability 428

insurance demand of 22 countries over 7 years from 1987 to 1993. Secondly, we use a 429

dataset drawn from the Wisconsin Local Government Property Insurance Fund (LGPIF) 430

with information about the insurance coverage for government building units in Wisconsin 431

for years from 2006 to 2010. The first one - PnCdemand - can be obtained from the R package 432

CASdatasets. The dataset is relatively small as it has H = 240 cases with an outcome 433

variable GenLiab: the individual loss amount under the policies of general insurance for 434

each case. As for covariates, we consider one indicator variable of the statutory law 435

system (LegalSyst:1 or 0) and one continuous variable that measures a risk aversion rate 436

(RiskAversion) for each area. For additional background on this dataset, see Browne et al. 437

(2000) [23]. In the LGPIF dataset, the insurance coverage samples for the government 438

properties from H = 5660 policies are provided. The outcome variable is the sum of all 439

types of losses (Total Losses) for each policy. Only the covariates - LnCoverage, Fire5 - are 440

considered in our study. Fire5 is a binary covariate that indicates fire-protection levels while 441

LnCoverage is a continuous covariate that informs a total coverage amount in a logarithmic 442

scale. For further details, see Quan et al. [24]. Histograms of the losses of the two datasets

Figure 6. Histograms of the outcomes and log-transformed outcomes for the two datasets: (a)
PnCdemand, (b) LGPIF.

443

are exhibited in Figure 6. Due to the significant skewness, the loss data are log-transformed 444

to attain Gaussianity. As shown in the histograms, each distribution displays different 445

characteristics in regard to skewness, modality, excess of zeros, etc. Note that the zero- 446

inflated outcome variable in LGPIF data (b1, b2 in Figure 6) requires a two-part modeling 447

technique that distinguishes the probabilities of the outcome being zero and positive. 448
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5.2. Three Competitor Models and Evaluation 449

Our DPM framework is compared to other commonly used actuarial models in prac- 450

tice. We employ three predictive models as benchmarks - namely, a generalized linear 451

mixture model (GLM), multivariate adaptive regression spline (MARS), and generalized 452

additive model (GAM). In each dataset, we assume different distributions for the outcome 453

variables, and thus the three benchmark models are built upon the different outcome data 454

models. For example, the PnCdemand dataset (a1,a2) that appeared in Figure 6, has a high 455

frequency of small losses without zero values, hence it is safe to use a gamma mixture 456

to explain the outcome data. As for the LGPIF data (b1,b2) in Figure 6, we consider the 457

outcome data model based on a Tweedie distribution to accommodate the zero-inflated 458

loss data. The benchmark models are implemented in R with the mgcv, splines, and mice 459

packages. 460

All four models are trained, and investigations are performed in terms of model fit, 461

prediction accuracy, and the conditional tail expectation (CTE) of the predictive distribution. 462

Note that the goodness of fit value for a DPM is not available in Table 1,2. Teh (2010) [25] 463

argues that the goodness of fit evaluation for a DPM is unnecessary as underfitting is 464

mitigated by the unbounded complexity of a DPM while overfitting is alleviated by the ap- 465

proximation of posterior densities over each parameter in a DPM. Gelman et al. (2007) [26] 466

point out Posterior predictive check, which compares the simulated data under the fitted DPM 467

to the observed data, can be useful in studying model adequacy, but its usage cannot be 468

for model comparison. Therefore, the goodness of fit is only compared between the rival 469

models. For the evaluation of prediction performance, the sum of square prediction error 470

(SSPE) and sum of square absolute error (SAPE) are used. 471

5.3. Result 01. International general insurance liability data 472

For this dataset, a training set of response and covariates pair (Y, X) with n = 160
records, and a test set of response and covariates pair (Y′, X ′) with m = 80 records are
constructed. We implement the following DPM:

Yh|x1, x2, β j, σ2
j ∼ LogN

(
XT β j, σ2

j
)

x1|πj ∼ Bern
(
πj
)

x2|µj, τ2
j ∼ N

(
µj, τ2

j
)

{θj, wj} ∼ G

G ∼ DP
(
α, G0

)
A log-normal likelihood is chosen to accommodate the individual loss Yh:GenLiab for a 473

policy h. The covariate x2:RiskAversion is subject to missingness, and found to depend on 474

Yh (a MAR case). This is addressed by the internalized imputation process as discussed in 475

Figure 3. The posterior parameters of θj, wj are estimated with our DPM Gibbs sampler 476

presented in Algorithm (A2). The algorithm runs 10,000 iterations until convergence, and 477

the resulting scenarios of clustering mixture are shown in Figure 7. The plot reveals the 478

overlays of predictive densities on the log scale from the last 100 iterations that are tied to 479

convergence. Figure 8 lists the classical data imputation process - Multivariate Imputation 480

Chained Equation (MICE) - and predictive densities produced from our rival models - 481

GLM, GAM, MARS. The MICE runs multiple imputation chains, and selects the imputation 482

values from the final iteration. This process results in multiple candidate datasets. The 483

trace plots (a1,a2) monitor the imputation mean and variance for the missing values in the 484

dataset. In the covariate distribution plot (a3), the density of the observed covariate shown 485

in blue is compared with the ones of the imputed covariate for each imputed dataset shown 486

in red. The parameter inferences for the rival models are performed based on the imputed 487

datasets tied to convergence [27]. The gamma distribution is chosen to fit the rival models 488

as the Yh is continuous and positively skewed with a constant coefficient of variation. The 489
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Figure 7. LogN-DPM: The last 100 in-sample predictive densities (scenarios) overlaid together.

Figure 8. MICE trace plots and in-sample predictive densities produced from GLM, GAM, MARS.

gamma-based predictive density plots (b1,b2,b3) estimated with GLM, GAM, MARS look 490

similar, showing unusual bumps near the right tail. 491

In Figure 9, a histogram of the outcome data in the test set is displayed. The posterior 492

mean densities for out-of-sample predictions produced with our DPM along with the rival 493

models’ density estimates are overlaid on the histogram. Judging from the plot, one can say 494

that our DPM model generates the best approximation. While the rival models generate 495

smooth, mounded curves to make predictions, our DPM captures all possible peaks and 496

bumps, which is closer to the actual situation. According to Table 1, the rival models 497

produce slightly higher SAPEs, but lower SSPEs, compared to our proposed DPM. As 498

SAPE weights all the individual differences equally, we can assume that the rival models 499

tend to give too much focus on the most probable data points and miss some outliers. This 500

is mainly due to the insufficient sample size. However, our DPM has good performance 501

under small sample sizes when there is sufficient prior knowledge available. From the 502

perspective of CTE, Table 1 shows that our DPM proposes a heavier tail than other rival 503

models, which reflects that our DPM captures more uncertainties given the small sample 504

size. 505
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Figure 9. A histogram of the observed loss Yh on the log scale and the out-of-sample predictive
densities for the typical class of a policy.

Table 1. The comparison of out-of-sample modeling results based on the dataset PnCdemand

Model AIC SSPE SAPE 10%
CTE

50%
CTE

90%
CTE

95%
CTE

Ga-GLM 830.56 268.6 139.8 6.5 13.8 54.5 78.0
Ga-MARS 830.58 267.2 138.2 6.1 13.0 57.2 71.1
Ga-GAM 845.94 266.7 136.1 6.2 13.3 58.1 72.2
LogN-DPM - 272.0 134.7 6.4 13.8 59.3 79.3

5.4. Result 02. LGPIF data 506

For this dataset, a training set of response and covariates pair (S, X) with n = 4529
records, and a test set of response and covariates pair (S′, X ′) with m = 1110 records are
constructed. We implement the following DPM:

Sh|x1,x2, β j, σ2
j , ξ j, β̃ j

∼ δ(XT β̃ j) 1(Sh = 0) +
[
1 − δ(XT β̃ j)

]
LogSN

(
XT β j, σ2

j , ξ j
)

x1|πj ∼ Bern
(
πj
)

x2|µj, τ2
j ∼ N

(
µj, τ2

j
)

{θj, wj} ∼ G

G ∼ DP
(
α, G0

)
As the outcome Sh:Total Losses for a policy h in this dataset is considered to be distributed 507

with the sum of log-normal densities, a log skew-normal likelihood is chosen to approx- 508

imate this convolution [7]. The covariate x1:Fire5 is subject to missingness under MAR, 509
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and the internalized imputation process illustrated in Figure 3 resolves this issue without 510

creating imputed datasets. As the outcome Sh exhibits zero inflation, we employ a two-part 511

model, using a sigmoid and indicator function. Our DPM Gibbs sampler described in 512

Algorithm (A2) produces the posterior parameters of θj, wj with 10,000 iterations until 513

convergence. Figure 10 reveals the resulting scenarios of clustering mixture. In the plot, 514

there are 100 predictive densities suggested by our DPM, each of which stands for the 515

convergence of the estimation results. 516

Figure 10. LogSN-DPM: The last 100 in-sample predictive densities (scenarios) overlaid together.

Figure 11. MICE trace plots and in-sample predictive densities produced from GLM, GAM, MARS.

The output of the MICE and the resulting predictive densities from the rival models 517

are displayed in Figure 11. The rival models are built upon a Tweedie distribution due to its 518

ability to account for a large number of zero losses, and the flexibility to capture the unique 519

loss patterns of the different classes of policyholders. According to the plot, all three rival 520

models reasonably capture zero inflation, but the GAM tends to suggest more bumps that 521

indicate a need for further assessment of the prediction uncertainty. 522

The overall out-of-sample prediction comparison is made in the histogram overlayed 523

with predictive density curves generated from the four models in Figure 12. From the plot, 524

it is apparent that the posterior predictive density proposed by our DPM best explains 525

the new samples while other rival models keep producing multiple peaks. The prediction 526

performance of our DPM is confirmed by the smallest SSPE and SAPE in Table 2. In terms 527

of CTE, all three rival models suggest a similar level of tailedness, reflecting the knowledge 528

obtained from the observed data. However, our DPM goes beyond this and proposes a 529
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Figure 12. A histogram of the observed total loss Sh on the log scale and the out-of-sample predictive
densities for the typical class of a policy.

much heavier tail. This is because our DPM accommodates the presence of outliers and 530

shapes the tail behavior based on the combined knowledge of prior parameters and the 531

observations available. 532

Table 2. The comparison of out-of-sample modeling results based on the LGPIF dataset

Model AIC SSPE SAPE 10%
CTE

50%
CTE

90%
CTE

95%
CTE

Tweedie-GLM 26270.3 2.04e+14 89380707 955.9 12977.2 133374.4 340713.1
Tweedie-MARS 24721.4 1.99e+14 88594850 961.7 10391.0 129409.2 355112.6
Tweedie-GAM 21948.9 1.95e+14 88213987 989.4 13026.2 140199.5 398263.1
LogSN-DPM - 1.98e+14 83864890 975.3 13695.1 147486.6 425682.6

6. Discussion 533

This paper proposes a novel DPM framework for actuarial practice to model total 534

losses with the incorporation of MAR covariates. Both log-normal and log skew-normal 535

DPM present overall good empirical performances in capturing the shape of the distribu- 536

tion, out-of-sample prediction, and the estimation of the tailedness. This suggests that it is 537

worth considering our DPM framework in order to avoid various model risks or biases in 538

insurance claim analysis. 539

6.1. Research Questions 540

Regarding RQ1, we propose a DPM framework to address the within-cluster hetero- 541

geneity emerging from the inclusion of covariates. By allowing for an infinite number of 542
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clustering scenarios determined by the observations as well as prior knowledge, our DPM 543

outperforms the rival methods in drawing the lines for the cluster membership. This can 544

be assessed by examining the homogeneity of the resulting clusters. In our case, we fit 545

cluster-wise GLMs (based on Gamma and Tweedie) to the data points within each resulting 546

cluster to compare the goodness-of-fit, and the consistent AICs across all clusters endorse 547

the benefits of the DPM. Similarly, our rival methods such as GAM or MARS can capture 548

heterogeneity by using customized smooth functions across different subsets of the data, 549

but we observe some statistically insignificant smooth terms, indicating the presence of 550

heterogeneity in the cluster. 551

In terms of RQ2, we suggest incorporating the imputation steps into the parameter 552

and cluster membership update process in the DPM Gibbs sampler by leveraging the 553

joint distribution of the observed outcomes and missing covariates. This approach allows 554

the imputed values to be consistent with the observed data, preserving the correlation 555

structure within the dataset. In order to make a comparison of our approach with an 556

existing alternative, we additionally employ a chained equation technique. The multiple 557

sets of imputed values simulated from both approaches are investigated, and the result 558

shows that our DPM Gibbs sampler does not represent a significant improvement over the 559

chained equation because their average estimates of the imputed values are closer to each 560

other. However, we feel that this result is mainly due to the relatively low dimensionality 561

of the datasets we use and their simple data structure. The specific characteristics or 562

dependencies in the data and the complexity of the missing patterns would give different 563

results in practice. 564

As for RQ3, we fit a log skew-normal density to the aggregate loss outcomes. In 565

order to assess its performance, one can consider Minimax approximation, Least squares 566

approximation, Log shifted gamma approximation, etc. as the competitors. Li (2008) [7] 567

provides a useful comparison between these competitors by overlaying the cumulative 568

density curves for each technique, but its experiments are grounded on the simulated 569

log-normal data with the pre-defined parameters and assumptions, which cannot be easily 570

controlled in real-world scenarios. Therefore, we feel that the choice of the best approxima- 571

tion technique should be made based on the identification of the specific characteristics of 572

the dataset. In our case, each summand in our dataset is significantly different from each 573

other in magnitudes (the Minimax is inappropriate) and LGPIF data has a large volume of 574

data smaller than 5 (the Log shifted gamma is inappropriate); therefore, we choose a log 575

skew-normal density that is relatively simple while giving an accurate approximation at 576

the lower region of the distribution. 577

6.2. Future Work 578

There are several concerns with our log skew-normal DPM framework. 579

(a) Dimensionality: First, in our analysis, we only use two covariates (binary and 580

continuous) for simplicity, hence more complex data should be considered. As 581

the number of covariates grows, the likelihood components (covariate models) to 582

describe the covariates grow, which results in the shrinking of the cluster weights. 583

Therefore, using more covariates might enhance the level of sensitivity and accuracy 584

in the creation of cluster memberships. However, it can also introduce more noise 585

or hidden structures that render the resulting predictive distributions unstable. In 586

this sense, further research on the problem of high dimensional covariates in the 587

DPM framework would be worthwhile. 588

589

(b) Measurement error: Second, although our focus in this article is MAR covariate, 590

mismeasured covariate is an equally significant challenge that impairs the proper 591

model development in insurance practice. For example, Aggarwal et al. (2016) [28] 592

point out that “model risk" mainly arises due to missingness and measurement error 593

in variables, leading to flawed risk assessments and decision-making. Thus, further 594

investigation is necessary to explore the specialized construction of the DPM Gibbs 595

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 June 2023                   doi:10.20944/preprints202306.0098.v1

https://doi.org/10.20944/preprints202306.0098.v1


Version May 27, 2023 submitted to Journal Not Specified 22 of 30

sampler for mismeasured covariates, aiming to prevent the issue of model risk. 596

597

(c) Sum of log skew-normal: Third, as an extension to the approximation of total losses 598

Sh (the sum of individual losses) for a policy, we recommend researching into ways 599

to approximate the sum of total losses S̃ across entire policies. In other words, we 600

pose the question of “how to approximate the sum of log skew-normal random 601

variables". From the perspective of an executive or an entrepreneur whose concern 602

is the total cash flow of the firm, nothing might be more important than the accurate 603

estimation of the sum of total losses in order to identify the insolvency risk or to 604

make important business decisions. 605

606

(d) Scalability: Lastly, we suggest investigating the scalability of the posterior sim- 607

ulation by our DPM Gibbs sampler. As shown in our empirical study on the 608

PnCdemand dataset, our DPM framework produces reliable estimates with rela- 609

tively small sample sizes (n ≤ 160). This is because our DPM framework actively 610

utilizes significant prior knowledge in posterior inference rather than heavily re- 611

lying on the actual features of the data. In the result from the LGPIF dataset, our 612

DPM exhibits stable performance at sample size n = 4529 as well. However, a 613

sample size of over 10000 is not explored in this paper. With increasing amounts of 614

data, our DPM framework raises a question of computational efficiency due to the 615

growing demand for computational resources or degradation in performance [29]. 616

This is an important consideration, especially in scenarios where the insurance loss 617

information is expected to grow over time. 618
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Variable Definitions 634

The following variables and functions are used in this manuscript: 635

636

i = 1, . . . , Nh observation index i in policy h.
h = 1, . . . , H policy index h with sample (policy) size H.
j = 1, . . . , J cluster index for J clusters.
sh cluster index j = 1, . . . , J for observation h.
nj number of observations in cluster j.
n−h

j number of observations in cluster j where observation h removed from.
Yih individual loss i in a policy observation h.
Sh outcome variable which is a ΣYih in a policy observation h.
S̃ outcome variable which is a ΣSh across entire policies
Xh vector of covariates (including x1, x2) for observation h.
x1 vector of covariate (Fire5).
x2 vector of covariate (Ln(coverage)).
x1 individual value of covariate (Fire5).
x2 individual value of covariate (Ln(coverage)).
p0(·) parameter model (for prior).
p(·) parameter model (for posterior).
f0(·) data model (for continuous cluster).
f (·) data model (for discrete cluster).

δ(·) logistic sigmoid function - expit(·) - to allow for a positive probability of the zero
outcome.

θj set of parameters - β, σ2, ξ - associated with the f (ΣY|X) for j cluster.
wj set of parameters - π, µ, τ - associated with the f (X) for j cluster.
ωj cluster weights (mixing coefficient) for j cluster.

β0, Σ0

vector of initial regression coefficients and variance-covariance matrix, i.e.
σ̂2(XT X)−1 = XT X(ΣY − ΣŶ)T(ΣY − ΣŶ)/(n − p) obtained from the baseline
multivariate Gamma regression of ΣŶ > 0.

β j regression coefficient vector for a mean outcome estimation.
σ2

j cluster-wise variation value for the outcome.
ξ j skewness parameter for log skew-normal outcome.

β̃0, Σ̃0
vector of initial regression coefficients and variance-covariance matrix obtained
from the baseline multivariate logistic regression of ΣŶ = 0.

β̃ j regression coefficient vector for a logistic function to handle zero outcomes.
πj proportion parameter for Bernoulli covariate.
µj, τj location and spread parameter for Gaussian covariate.

α
precision parameter that controls the variance of the clustering simulation. For
instance, a larger α allows to select more clusters.

G0

prior joint distribution for all parameters in the DPM - β, σ2, ξ, π, µ, τ, and α. It
allows all continuous, integrable distributions to be supported while retaining the-
oretical properties and computational tractability such as asymptotic consistency,
efficient posterior estimation, etc.

a0, b0 hyperparameters for Inverse Gamma density of σ2
j .

c0, d0 hyperparameters for Beta density of πj.
ν0 hyperparameters for Student’s t density of ξ j.
µ0, τ2

0 hyperparameters for Gaussian density of µj.
e0, γ0 hyperparameters for Inverse Gamma density of τ2

j .
g0, h0 hyperparameters for Gamma density of α.
η random probability value for Gamma mixture density of the posterior on α.

πη
mixing coefficient for Gamma mixture density of the posterior on α.

637
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Appendix A Parameter Knowledge 638

Appendix A.1 Prior Kernel for distributions of outcome, covariates, and precision 639

p0(β j|β0, Σ0) : MV N(β0, σ2
j Σ0)

* ∝ e{(β j−β0)
TΣ−1

0 (β j−β0)}, p0(σ
2
j |a0, b0) : InvGa(a0, b0) ∝ (σ2

j )
−(a0+1) · e−b0/σ2

j

p0(ξ j|ν0) : T(ν0) ∝
( ξ2

j

ν0
+ 1
)−(ν0+1)/2

, p0(β̃ j|β̃0, Σ̃0) : MV N(β̃0, Σ̃0)
* ∝ e{(β̃ j−β̃0)

T Σ̃−1
0 (β̃ j−β̃0)}

p0(πj|c0, d0) : Beta(c0, d0) ∝ π
(c0−1)
j · (1 − πj)

(d0−1), p0(µj|µ0, τ2
0 ) : N(µ0, τ2

0 ) ∝ e−
1
2 (µj−µ0)

2/τ2
0

p0(τ
2
j |e0, γ0) : InvGa(e0, γ0) ∝ (τ2

j )
−(e0+1) · e−γ0/τ2

j , p0(α|g0, h0) : Ga(g0, h0) ∝ α(g0−1) · e−α·h0

* β0, Σ0 ∼ Gamma regression, β̃0, Σ̃0 ∼ Logistic regression. 640

641

Appendix A.2 Posterior Inference for outcome, covariates, and precision 642

Algorithm A1 Posterior inference θ∗j = {β∗
j , σ2∗

j , ξ∗j , β̃∗
j }

Require: initialize θ
(old)
j :


β j ∼ MV N(β0, σ2

j Σ0)

σ2
j ∼ IG(a0, b0)

ξ j ∼ T(ν0)

β̃ j ∼ MV N(β̃0, Σ̃0)
1: repeat
2: for j = 1, · · · , J do ▷ Assume J cluster memberships.
3: Sample θ(new) from the proposal densities q: ▷ Choose priors as q.

β
(new)
j ∼ qβ, σ

2(new)
j ∼ qσ2 , ξ

(new)
j ∼ qξ , β̃

(new)
j ∼ qβ̃

4: for θ
(new)
j ={β(new)

j , σ
2(new)
j , ξ

(new)
j , β̃

(new)
j } do

5: Compute the transition ratio, using the outcome models:

Ratioθ =
∏H

h=1 f (Sh|X, θ
(new)
j )1 · p0(θ

(new)
j ) · qθ(θ

(old)
j )

∏H
h=1 f (Sh|X, θ

(old)
j )1 · p0(θ

(old)
j ) · qθ(θ

(new)
j )

Sample U ∼ Uni f (0, 1)
6: if U < Ratioθ then θ∗j = θ

(new)
j otherwise θ∗j = θ

(old)
j

7: end if
8: end for
9: Record θ∗j

10: end for
11: until M posterior samples (θ∗j=1,··· ,J) obtained. ▷ M is a sufficient sample size

1 The outcome density is defined as: f (Sh|X, θj) = δ(XT
h β̃ j) 1(Sh = 0) +

[
1 − δ(XT

h β̃ j)
]

fLSN(Sh|Xh, θj). 643

p(πj|c0, d0, S, x1) : Beta(cnew, dnew) p(µj|µ0, τ2
0 , S, x2) : N(µnew, τ2

new){
cnew = c0 + ∑

nj
h=1 x1h

dnew = d0 + nj − ∑
nj
h=1 x1h

{
µnew = (njx2 + µ0)/(nj + 1)
τ2

new = τ2
j /(nj + 1)

p(τ2
j |e0, γ0, S, x2) : InvGa(enew, γnew) p(α|g0, h0, h, J, η, πη) : πηGa(g0 + J, h0 − log(η))

+ (1 − πη)Ga(g0 + J − 1, h0 − log(η)){
enew = e0 + nj/2
γnew = γ0 +

1
2{

nj
nj+1 · (x2 − µ0)

2 + ∑
nj
h=1(x2h − x2)

2}

η|α, h ∼ Beta(α + 1, h)

πη =
g0 + J − 1

g0 + J − 1 + h(h0 − log(η))
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Appendix B Baseline inference algorithm for DPM 644

Once we obtain decent parameter samples from the posterior distributions, the poste- 645

rior predictive density can be computed via the DPM Gipps sampling. The basic inference 646

algorithm is described below. Note that the modification details for the missing data im- 647

putation are provided in Section 4.3. In every iteration, the algorithm updates the cluster 648

memberships based on the parameter samples and observed data at hand, which leads 649

to the re-calculation of the cluster parameters. In the sampler, the state is the collection of 650

membership indices (s1, · · · , sH) and parameters {α∗, (θ∗1, · · · , θ∗J ), (w
∗
1 , · · · , w∗

J )}, where 651

θ∗j refers to the parameter associated with cluster j. 652

Algorithm A2 DPM Gibbs Sampling for new cluster development
Require: Starting state (s1, · · · , sH), α, (θ1, · · · , θJ), (w1, · · · , wJ)

1: repeat
2: for h = 1, · · · , H do
3: (1) Update cluster memberships:

▷ Take sh and compute the Cl probabilities using the joint model.
4: if sh = j then
5: for j = 1, · · · , J do
6: P(sh = j) = p(sh|s−h) f (x1h, x2h|wj) · f (Sh|x1h, x2h, θj)

▷ for observation h entering into existing discrete clusters.
7: end for
8: else if sh = J + 1 then
9: P(sh = J + 1) = p(sh|s−h) f0(x1h, x2h) · f0(Sh|x1h, x2h)

▷ for observation h entering into a new continuous cluster.
10: end if
11: Draw a Cl index from a multinomial {1, 2, · · · , J + 1}

▷ with probabilities
(

P(sh = 1), P(sh = 2), · · · , P(sh = J + 1)
)
:Polya Urn.

12: if the Cl index = J + 1 then
13: Record (θ1, · · · , θJ+1), (w1, · · · , wJ+1)
14: end if
15:
16: (2) Update parameters:

▷ (θj, α, wj) for each cluster based on the posterior densities.
17: for j = 1, · · · , J + 1 do
18: Sample w∗

j from the posterior: p(w|Xh).
19: end for
20: Sample α∗ from the posterior: p(α|J + 1).
21: for j = 1, · · · , J + 1 do
22: Sample θ∗j from the posterior: p(θ|Sj, Xh).
23: end for
24: Record (θ∗1, · · · , θ∗J+1), (w

∗
1 , · · · , w∗

J+1)

25: end for
26: Record α∗

27:
28: for h = 1, · · · , H do
29: (3) Compute the log-likelihood: ∑n

h=1 log[ f (Xh|w∗
j ) f (Sh|Xh, θ∗j )]

▷ the function is to eventually stabilize after a large number of iterations.
30: end for
31: until M posterior samples (θ∗j , α∗, w∗

j ) obtained. ▷ M is a sufficient sample size
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Appendix C Development of the distributional components for DPM 653

Appendix C.1 Derivation of the distribution of precision α 654

In section 4.1, the parameter model (posterior) of the precision term α is defined as

p(α|J) ∝ p0(α) · αJ−1 · (α + n) · Beta(α + 1, n)

p(α|J, η, g0, h0) ∝ πηGa(g0 + J, h0 − log(η)) + (1 − πη)Ga(g0 + J − 1, h0 − log(η))

To derive this, we first derive the distribution of the number of clusters given the precision 655

parameter: p(J|α). Consider a trivial example where we want to determine the number 656

of clusters that n = 5 observations fall into. One possible arrangement would be that 657

observations 1, 2, and 5 form new clusters, while observations 3 and 4 join an existing 658

cluster. (note, the order is important): 659

• observation 1 forms a new cluster, probability =
α

α
660

• observation 2 forms a new cluster, probability =
α

α + 1
661

• observation 3 enters into an existing cluster, probability =
2

α + 2
662

• observation 4 enters into an existing cluster, probability =
3

α + 3
663

• observation 5 forms a new cluster, probability =
α

α + 4
664

In this example, we have J = 3 clusters. We want to find the probability of this arrangement.
The probability is the following:

(α

α

)( α

α + 1

)(
2

α + 2

)(
3

α + 3

)(
α

α + 4

)
∝

α3

α(α + 1)(α + 2)(α + 3)(α + 4)

= α3 Γ(α)
Γ(α + 5)

Hence the probability of observing J clusters amongst a sample size of n is given by 665

p(J|α) ∝ αJ Γ(α)
Γ(α + n)

This is also considered the likelihood function. The posterior on α is proportional to the
likelihood times the prior, p0(α).

p(α|J) ∝ p(J|α)p0(α)

∝ αJ Γ(α)
Γ(α + n)

p0(α)

The beta function Beta(x, y) is defined as the following:

Beta(x, y) =
Γ(x)Γ(y)
Γ(x + y)

We can find the beta function of α + 1 and n as follows:

Beta(α + 1, n) =
Γ(α + 1)Γ(n)
Γ(α + 1 + n)

∝
αΓ(α)

(α + n)Γ(α + n)
Γ(α)

Γ(α + n)
∝ Beta(α + 1, n)

α + n
α
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Thus the posterior simplifies to the following:

p(α|J) ∝ αJ · Beta(α + 1, n) · α + n
α

· p0(α)

∝ p0(α) · αJ−1 · (α + n) · Beta(α + 1, n)

Now, under the Ga(g0, h0) prior for α, substituting p0(α) with Ga(g0, h0), then

p(α|J, η, g0, h0) ∝ αg0+j−2 · (α + n) · e−α(h0−log(η)

∝ πηGa(g0 + J, h0 − log(η)) + (1 − πη)Ga(g0 + J − 1, h0 − log(η))

666

667

Appendix C.2 Outcome Data Model of Sh development with MAR covariate x1 for the discrete 668

clusters 669

Prior to the outcome parameter estimation, the missing covariates should be imputed
first to obtain the complete covariate model beforehand. In this study, if the binary covariate
x1h is the only covariate with missingness, we develop the imputation model to impute the
binary covariate x1h, taking the following steps below, then update β, σ2, ξ, β̃ based on the
posterior sampling detailed in Algorithm (A1) in Appendix (A.2). The imputation model
for x1h is approximated by the joint:

f (x1h|Sh, x2h, β j, σj, ξ j, β̃ j, πj) ∝ f (Sh, x1h|x2h, β j, σj, ξ j, β̃ j, πj)

where

f (Sh, x1h|x2h, β j, σ2
j , ξ j, β̃ j, πj) = f (Sh|x1h, x2h, β j, σ2

j , ξ j, β̃ j) · fBern(x1h|πj)

= δ(XT
h β̃ j) 1(Sh = 0) · π

x1h
j
(
1 − πj

)1−x1h +
[
1 − δ(XT

h β̃ j)
] 2

σjSh

· ϕ

(
log Sh − XT β j

σj

)
· Φ

(
ξ j

log Sh − XT β j

σj

)
· π

x1h
j
(
1 − πj

)1−x1h

which serves as the joint density that we can use to sample the imputation values. For
example,

fBern(x1h = 1|Sh, x2h, β j, σ2
j , ξ j, β̃ j, πj) ∝ f (Sh, x1h = 1|x2h, β j, σ2

j , ξ j, β̃ j, πj)

= δ(β̃ j0 + β̃ j1 + β̃ j2x2h) 1(Sh = 0) · πj +
[
1 − δ(β̃ j0 + β̃ j1 + β̃ j2x2h)

] 2
σjSh

· ϕ

(
log Sh − (β j0 + β j1 + β j2x2h)

σj

)
· Φ

(
ξ j

log Sh − (β j0 + β j1 + β j2x2h)

σj

)
πj

fBern(x1h = 0|Sh, x2h, β j, σ2
j , ξ j, β̃ j, πj) ∝ f (Sh, x1h = 0|x2h, β j, σ2

j , ξ j, β̃ j, πj)

= δ(β̃ j0 + β̃ j2x2h) 1(Sh = 0) · (1 − πj) +
[
1 − δ(β̃ j0 + β̃ j2x2h)

] 2
σjSh

· ϕ

(
log Sh − (β j0 + β j2x2h)

σj

)
· Φ

(
ξ j

log Sh − (β j0 + β j2x2h)

σj

)
· (1 − πj)

Then, we can impute x1h with the values sampled from Bern(π∗
x1
) where

π∗
x1

=
f (Sh, x1h = 1|x2h, β j, σ2

j , ξ j, β̃ j, πj)

f (Sh, x1h = 1|x2h, β j, σ2
j , ξ j, β̃ j, πj) + f (Sh, x1h = 0|x2h, β j, σ2

j , ξ j, β̃ j, πj)
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Note that in R, the computation can be difficult when the numerator is too small. We
suggest the following tricks.

p1 = f (Sh, x1h = 1|x2h, β j, σ2
j , ξ j, β̃ j, πj)

p0 = f (Sh, x1h = 0|x2h, β j, σ2
j , ξ j, β̃ j, πj)

π∗
x1

=
elog(p1)

elog(p1) + elog(p0)
· e−log(p1)

e−log(p1)
=

1
1 + elog(p0)−log(p1)

Finally, the outcome model that is required to compute the parameter θ = {β j, σ2
j , ξ j, β̃ j}

in Metropolis-Hastings in Algorithm (A1) is obtained by summing the joint of Sh and x1h
(marginalize) out the MAR covariate x1h, shown in Equation (9), as below.

f (Sh|x2h,β j, σ2
j , ξ j, β̃ j, πj) =

1

∑
x1h=0

f (Sh, x1h|x2h, β j, σ2
j , ξ j, β̃ j, πj)

= f (Sh, x1h = 1|x2h, β j, σ2
j , ξ j, β̃ j, πj) + f (Sh, x1h = 0|x2h, β j, σ2

j , ξ j, β̃ j, πj)

670

671

Appendix C.3 Covariate Data Model of x2 development with MAR covariate x1 for the continuous 672

clusters 673

The parameter-free distributions f0(y|x) and f0(x) as data models for continuous
clusters are needed to calculate the probabilities of cluster membership and for the post-
processing calculations for prediction in the DPM. However, when MAR covariates are
present, it gives extra complexity in specifying distribution to integrate out the parameters.
Recall the integrals we are attempting to find are the following:

f0(xi) =
∫

f (xi|w) dG0(w) =
∫

f (xi|w) p(w) dw

If binary covariate x1 is missing, then we will need to replace the distribution f (x|w) with
the continuous distribution (Gaussian) of x2, which is f (x2|µj, τ2

j ). The derivation of the
parameter-free distribution f0(x1) and f0(x2) for the continuous cluster is as below.

f0(x1)

=
∫

f (x1|π) p(π) dµ dπ

=
∫

πx1(1 − π)1−x1 1
Beta(c0, d0)

π(c0−1)(1 − π)(d0−1)dπ

=
1

Beta(c0, d0)

∫
π(x1+c0−1)(1 − π)(1−x1+d0−1)dπ

=
Beta(x1 + c0, 1 − x1 + d0)

Beta(c0, d0)
·
∫

π(x1+c0−1)(1 − π)(1−x1+d0−1)

Beta(x1 + c0, 1 − x1 + d0)
dπ︸ ︷︷ ︸

=1, beta distribution
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f0(x2)

=
∫∫

f (x2|µ, τ2)p(µ|τ2)p(τ2) dµ dτ2

=
∫∫ 1√

2πτ2
exp

{
− 1

2τ2 (x2 − µ)2
}
× 1√

2πτ2
exp

{
− 1

2τ2 (µ − µ0)
2
}

×
γe0

0
Γ(e0)

(
τ2
)−e0−1

e−γ0/τ2
dµ dτ2

=
γe0

0
2πΓ(e0)

∫∫ (
τ2
)−e0−2

exp
{
− 1

2τ2 (x2 − µ)2 − 1
2τ2 (µ − µ0)

2 − γ0

τ2

}
dµ dτ2

The first step is to integrate with respect to µ. First, we’ll simplify the exponent.

− 1
2τ2 (x2 − µ)2 − 1

2τ2 (µ − µ0)
2 − γ0

τ2

= − 1
2τ2

[
x2

2 − 2x2µ + µ2 + µ2 − 2µ0µ + µ2
0

]
− γ0

τ2

= − 1
2τ2

[
2µ2 − 2(x2 + µ0)µ

]
− 1

2τ2

[
x2

2 + µ2
0

]
− γ0

τ2

= − 2
2τ2

[
µ2 − (x2 + µ0)µ +

(x2 + µ0)
2

4

]
+

1
τ2

(
(x2 + µ0)

2

4

)
−

x2
2 + µ2

0
2τ2 − γ0

τ2

= − 1
2(τ2/2)

(
µ − x2 + µ0

2

)2
+

(x2 + µ0)
2

4τ2 −
x2

2 + µ2
0

2τ2 − γ0

τ2

The integrand will have the kernel of a normal distribution for µ with mean
x2 + µ0

2
and

variance
τ2

2
.

f0(x2)

=
γe0

0
2πΓ(e0)

∫ √
2π(τ2/2)︸ ︷︷ ︸

term from µ integral

×
(

τ2
)−e0−2

× exp

{
(x2 + µ0)

2

4τ2 −
x2

2 + µ2
0

2τ2 − γ0

τ2

}
dτ2

=
γe0

0
2
√

πΓ(e0)

∫ (
τ2
)−e0−3/2

exp

{
− 1

τ2

(
−

x2
2 + 2x2µ0 + µ2

0
4

+
x2

2 + µ2
0

2
+ γ0

)}
dτ2

=
γe0

0
2
√

πΓ(e0)

∫ (
τ2
)−e0−1/2−1

exp

{
− 1

τ2

(
(x2

2 − µ0)
2

4
+ γ0

)}
dτ2

The integrand is the kernel of an inverse gamma distribution with shape parameter e0 +
1
2

and scale parameter
(x2

2 − µ0)
2

4
+ γ0.

f0(x2) =
γe0

0
2
√

πΓ(e0)
× Γ(e0 + 1/2)

(
(x2

2 − µ0)
2

4
+ γ0

)−e0−1/2

As shown above, a closed-form expression can be determined, but it is not always the case 674

since it can be extremely complicated. To simplify, we instead might have to consider a 675

Monte Carlo integral. 676
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