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Abstract: In actuarial practice, the modeling of total losses tied to a certain policy is a non-trivial task.
Traditional parametric models to predict total losses have limitations due to complex distributional
features such as extreme skewness, zero inflation, multi-modality, etc., and the lack of explicit
solutions for log-normal convolution. In the recent literature, the application of the Dirichlet process
mixture for insurance loss has been proposed to eliminate the risk of model misspecification biases;
however, the effect of covariates as well as missing covariates in the modeling framework is rarely
studied. In this article, we propose novel connections among covariate-dependent Dirichlet process
mixture, log-normal convolution, and missing covariate imputation. Assuming an individual loss is
log-normally distributed, we develop a log skew-normal Dirichlet process to approximate the log-
normal sum. As a generative approach, our framework models the joint of outcome and covariates,
which allows to impute missing covariates under the assumption of missingness at random. The
performance is assessed by applying our model to several insurance datasets, and the empirical
results demonstrate the benefit of our model compared to the existing actuarial models such as
the Tweedie-based generalized linear model, generalized additive model, or multivariate adaptive
regression spline.

Keywords: Bayesian nonparametric model; heterogeneity; missing at random; log-normal sum
approximation; aggregate insurance claims; clustering; generative model; latent class

1. Introduction

In short-term insurance contracts, predicting accurate aggregate claims is essential
for major actuarial decisions such as pricing or reserving. However, it is often not easy to
model the aggregate loss due to its complex distributional features such as high skewness,
zero inflation, hump shape, multi-modality, etc. With the advance of the modern Bayesian
paradigm and computing power, the development of full distribution of aggregate claims
has been studied and applied in actuarial practice. In particular, because of its considerable
flexibility, a Bayesian nonparametric (BNP) approach has been gradually recognized to
solve distributional conundrums in an insurance context. For instance, Hong and Martin
(2018) [1] recently developed the Dirichlet process model as a BNP approach that maximizes
the fitting flexibility of the full distribution for insurance loss, which obviates the chance
of model misspecification bias. In this article, as an extension of their work, we aim to go
beyond the search for the maximized fitting flexibility, focusing on the issues that arise
from the presence of covariates and the aggregate outcome (total losses). The implication is
that the predictive distribution for the expected aggregate claims developed under Hong
and Martin’s Dirichlet process framework can be biased with the incorporation of covariate
effects and log-normal convolution. For example, as covariates add new information that
differentiates the data points of the outcome variable, a new structure can be introduced
into the data space, and this increases the within-cluster heterogeneity [2]. Besides, the
incorporation of missing covariates may exacerbate the existing heterogeneity. Additionally,
assuming that the outcome variable describes the aggregate losses, rather than individual
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claim amounts, it is difficult to compute the log-normal convolution as it does not have
a closed-form solution. In this regard, our study extends their work by addressing the
following research questions:

* RQL1. If an additional unobservable heterogeneity is introduced by the inclusion of
covariates, what is the best method to capture the within-cluster heterogeneity in
modeling the total losses, comparing several conventional approaches?

*  RQ2. If an additional estimation bias results from the use of the incomplete covariates
under Missing At Random (MAR), what is the best way to increase the imputation
efficiency, comparing several conventional approaches?

* RQ3. If an individual loss is distributed with log-normal densities, what is the best
way to approximate the sum of log-normal outcome variables, comparing several
conventional approaches?

2. Discussion on Research Questions and Related Work

LetY;, i =1,2,..., N be the independent claim amount (reported by each policyholder
for a single policy) random variable, defined on a common probability space (2, F, P) from
a certain loss distribution such as log-normal. Let X be a vector of covariates, and N(t)
be the total claim count denoting the number of individual claims for a single policy up
to time ¢ (policy period). The aggregate claim Sy (t) for a single policy, i, given time ¢ can
be expressed as a convolution: S, (t) = Zfi(lt) Yi = Y1+ Yo+ ...+ Yy Atthe end of
the policy period ¢, let S(t) be the total aggregate claim amounts from the total policies
received by an insurer, then: §(t) = Y2 | S, (t) = S1(t) + Sa(t) + ... + Sg(t) in which H
is the total number of policies on the contracts. Note that both convolutions described
so far are built upon the assumption that the summands - Y;, i = 1,2,---,N(¢) and
Sy, h=1,2,---, H - are mutually independent and identically distributed with log-normal
densities (to maintain homogeneity of each loss).

However, the involvement of covariates and the lack of closed-form solutions for the
log-normal sum bring about several challenges that violate the assumptions for an accurate
estimation of the total aggregate loss S(t). To begin with, the use of covariates gives rise
to an additional within-cluster heterogeneity. Kass et al.(2008) [3] describes a standard
aggregate loss modeling principle denoting that the expected aggregate claims E[S;] is
obtained by the product of the mean claim counts and severities: E[S;] = E[N]E[Y]. With
the inclusion of covariates X, a new unknown structure or heterogeneity is introduced
into the data space of Y;, which means that Y1 |Xj, Y2|Xp, - - -, Y| Xy within a single policy
can still be independent, but cannot be identically distributed. Therefore, E[S;|X] #
E[N|X]E[Y|X], and the total aggregate loss S(t) becomes difficult to compute with the
conventional collective risk modeling approach. In addition, assuming that the severity
Y; follows a log-normal distribution, the computation of S(t) becomes quite difficult as its
convolution Sy is not known to have a closed-form [4]. Another challenge is the missing
covariates in S,|X. As shown by Ungolo et al.(2020)[5], the missing covariates under
the missingness at random (MAR) assumption lead to the biased parameter estimations
because the uncertainty in the estimation results of the parameters describing the outcome
Y is heavily affected by the quality of covariates X. Again, in this case, S(t) cannot be
computed properly.

Compounding all this, we propose the Dirichlet process log skew-normal mixture to
model the S;|X. We consider the Dirichlet process framework to cope with the within-
cluster heterogeneity as suggested by Hong and Martin (2018); Braun et al.(2016) [1,6]
while employing the log skew-normal approximation studied by Li (2008) [7] to compute
each 5;|X, the sum of log-normal random variables Zfi(lt) Y;|X. When it comes to the
problem of missing covariates, we exploit the generative capability of the Dirichlet process
to capture the latent structure of data, which allows for a rigorous statistical treatment of
MAR covariates.
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2.1. Can Dirichlet process capture the heterogeneity and bias?: RQ1, RQ?2
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Figure 1. Independent and identically distributed aggregate losses Sj, (left) and a Dirichlet process
mixture (DPM) to model the Sj, in every possible way (right). Given the unobserved loss Y} incurred
by the next policyholder (and added to a certain policy group), by how much (subject to stochasticity)
and by which policy (subject to heterogeneity) will be left to the main concerns. A DPM addresses
these concerns via the simulation of Sj,.

In Figure 1, Y; refers to individual claim amount and each S, represents a total claim
amount defined by a unique policy (cluster /) as a homogeneous distribution. Although an
insurer can collect the aggregate loss data Sy, for each policy cluster given policy period
t, individual policyholders (in different risk classes) can raise more than one claim (i.e.
random Nj(t)) at any time over a fixed time horizon ¢, and their corresponding claim
amounts (i.e. random Y}) will not be known in advance. Hence, the unsettled liability
information of Y} from certain policyholders always renders Sj incomplete, which is often
translated into the challenge of their inherent stochasticity. In addition, the new claims
Y, raised from unknown risk classes can trigger inherent heterogeneity across unique
clusters as well. To make matters worse, if introducing covariates X to better understand
the different risk classes, one might introduce an additional source of heterogeneity into
the scene, which prevents each cluster from being identically distributed.

With respect to this, Hong and Martin (2018) [1] propose the concept of the loss
distribution mixture for each cluster based on the Dirichlet process framework. The main
idea behind the Dirichlet process mixture (DPM) is to produce a single master distribution
to model stochasticity in S, with the help of an infinite dimensional parametric structure
and the probabilistic simulations of clustering scenarios. Braun et al.(2006) [6] articulates
how the DPM automatically captures unobservable heterogeneity such as intracorrelation
between claim amounts Y; in the different risk classes without specifying the number of
the classes upfront. In short, no matter how complex the distribution of the data is, the
DPM is capable of accommodating any distributional properties - multi-modes, skewness,
heavy tails, etc. - resulting from unobservable heterogeneity; and therefore, dramatically
minimizes model misspecification biases.

With the inclusion of the covariates, the DPM offers a useful bedrock for a MAR
treatment. As a generative modeling approach, the DPM models both outcomes S, and
covariates X jointly to produce cluster memberships. This is used as key knowledge to
identify the latent structure of the data. For example, in the domain of medicine research,
Roy et al.(2018) [8] develop a novel imputation strategy for the MAR covariate, using the
latent structure unraveled by the DPM and the other covariate knowledge available. A
further survey of imputation methods based on the Nonparametric Bayesian framework
can be found in Si and Reiter (2013) [9] and references therein.
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2.2. Can log skew-normal mixture approximate the log-normal convolution?: RQ3

The log-normal distribution has been considered a suitable claim amount Y; distribu-
tion due to its non-negative support, right-skewed curve, and moderately heavy tail to
accommodate some outliers. However, if generalizing the individual claim amount Y; by
introducing a log-normal distribution, the convolution computation for Sj, fails because the
exact closed form for the log-normal sum is unknown.

Furman et al.(2020) [10] present several existing methods for the log-normal sum
approximation that have been studied in the literature. This includes the moment matching
approximation approaches such as Minimax approximation, Least squares approximation,
Log shifted gamma approximation, and Log skew-normal approximation. The distance
minimization approaches - Minimax approximation or Least squares approximation -
described by Beaulieu and Xie (2003); Zhao and Ding (2007) [4,11] are conceptually simple,
but they require to fit the entire cumulative densities to the sum of claim amounts, which
can be computationally expensive and easy to fail when the number of the summands Y;
increases. The Log shifted gamma approximation suggested by Lam and Le-Ngoc (2007)
[12] has less strict distributional assumptions, but it is not very accurate at the lower region
of the distribution. In our study, special attention is paid to the possibility of the Log skew-
normal approximation method for the sake of simplicity. A skew-normal distribution as an
extension of a normal distribution has a third parameter to naturally explain skewness apart
from the other parameters (for a location and spread). Li (2008) [7] points out that one can
exploit the third parameter of the skew-normal distribution to capture different skewness
levels of each summand. Taking the log of skew-normal densities, we can approximate Sy,
the sum of the log-normal Y;. Using the log skew-normal as the underlying distribution for
Sy, in the DPM framework, one can eliminate the need to compute the cumulative density
curve, and its closed-form density and the optimal distribution parameters for S;, can be
easily obtained by the moment matching technique. For further details, see Li (2008) [7]
and the references contained within.

2.3. Our Contribution and Paper Outline

The contribution of this study is as follows: first, using the Bayesian nonparametric
framework, we propose solutions to the two major challenges of the aggregate claim Sy,
computation - 1) heterogeneity in the log-normal random variable Y;, 2) lack of closed-form
of the sum of log-normal random variables Y; - in a more unified fashion. Second, we
introduce covariates X into the aggregate claim modeling framework, taking into account
the adverse impact triggered by the covariates X. This includes the added heterogeneity
across Y; and the missing information fed by MAR covariates X. To our knowledge, there
have been no previous attempts to either estimate the log skew-normal mixture within
the DPM framework or use the DPM to handle the MAR covariate in the insurance loss
modeling.

The rest of the paper is structured as follows. In Section 3, we describe the proposed
modeling framework for S, assuming log-normal distributed Y; and the inclusion of both
continuous and discrete covariates X. This section also presents our novel imputation
approach for the MAR covariate within the DPM framework. Section 4 clarifies the fi-
nal forms of the posterior and predictive densities accordingly. Section 5 presents our
empirical results, and validates our approach by fitting to two different datasets with
different sample sizes drawn from the R package CASdatasets and the Wisconsin Local
Government Property Insurance Fund (LGPIF). This is followed by a discussion in Section 6.

3. Model: DP Log Skew-normal Mixture for S, |X
3.1. Background

Consider that there are multiple unknown risk classes (clusters) across the claim
Y; information within each policy, and then the individual aggregate claims S, for the
policy i would have diverse characteristics that cannot be explained by fitting a single
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log skew-normal distribution. In order to approximate the distribution that captures such
diverse characteristics in S, we seek to investigate diverse clustering scenarios. To this
end, as suggested by Hong and Martin (2018) [1], we exploit the infinite mixture of log
skew-normal clusters and their complex dependencies by employing a Dirichlet process.
The Dirichlet process produces a distribution over clustering scenarios (with clustering
parameters).

{9]', w]} ~ G
G ~ DP(a, Gy)

where G denotes the clustering scenarios, and the important components of G are

*  0;: the parameters of the outcome variable defined with cluster j.
*  wj: the parameter of the cluster weights defined with cluster j.

G, as a single realization of the joint cluster probability vector {G(A1), G(Az) ...} sam-
pled from the DPM model, takes independent partitions A1, Ay, ... of the sample space
Ur—1 Ax = A of the support of Gy. By sufficient simulations of G, the Dirichlet process
investigates all possible clustering scenarios rather than relying on a single best guess.
The overall production of G is controlled with two parameters - a precision « and a base
measure Gy. The precision & controls a variance of sampling G in the sense that larger
« generates new clusters more often to account for the unknown risk classes. The base
measure Gy, as the mean of DP(«, Gy), is a DP prior over the joint space of all parameters
for the outcome model, covariate model, and the precision &, as shown in Ghosal (2010)
[13].

Note that the original research on DPM by Hong and Martin (2018) [1] mainly focuses
on the random cluster weights w; independent of the covariates X. On the other hand, in
our model, the covariate effects are incorporated into the development of cluster weights w;.
All calculations for the development of the DPM modeling components in this paper are
based on the principles introduced by Ferguson (1973), Antoniak (1974), and Sethuraman
(1994) [14-16].

3.2. Model Formulation with Discrete and Continuous Clusters

Let the outcome be S = {51, Sy, ..., Sy} denoting the H different aggregate claims
(incurred by the H different policies). We assume that the covariate x; is binary, and the x;
is Gaussian, and then our baseline DPM model can be expressed as:

Sulx1,%2, Bj,07, G, Bj
~8(XTBj) 1(Sy = 0) + [1 - 6(X"B))] LogSN (X' B;, 07, &)

x1|7j ~ Bern ()
5 ) 1)
x|pj, T ~ N(uj, T7)
{9]‘, w]} ~ G

G ~ DP(a, Go)

where j is the risk class index; 0; = {,3]', cT].z, Sir ﬁj} describe the outcome model while
w; = {7, pj, TJZ} explains the covariate model. S;, is modeled as a mixture of a point
mass at 0 and positive values distributed with log skew-normal density to address the
complications of zero inflation in the loss data. §(X Tﬁj) models the probability of the
outcome being zero using a multivariate logistic regression. Variable Definitions section
has a brief description of all parameters used in this study.

Considering a Dirichlet process log skew-normal mixture to house the multiple un-
known risk classes in Sy, it is necessary to differentiate the forms of mixture components
depending on the types of clusters it uses - the discrete and continuous. While keeping the
inference of the cluster parameters to be data dominated, the DPM first develops discrete


https://doi.org/10.20944/preprints202306.0098.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 June 2023 d0i:10.20944/preprints202306.0098.v1

6 of 30

clusters based on the given claim information and then extrapolates certain unobservable
clusters of claims by examining the heterogeneity (or hidden risk classes) of each cluster. In
this process, the DPM develops new continuous clusters additionally and assesses them
with some probabilistic decision-making algorithms, rendering the parameter estimations
computationally efficient and asymptotically consistent [17].

The discrete mixture components (clusters) in the DPM framework have the standard
form that is useful in accounting for the observed classes such as policy information for
aggregate loss Sy, [18]. In calculating the discrete cluster probabilities, we assume that the
non-zero outcome and covariates are distributed with the densities denoted by

frsn (Sul X4 Bj, o7 (2a)

)= 2 (logShUthTﬁj) .q)(gj‘logShanhTﬁj)

foern (x1]77) = 717 (1 —m)' (2b)

1 1 2
N x2|y',T-2 = exp{— X) — U } (2¢)
( ] ]) \/271_71_]2 21,]2( ])

where ¢(-) and ®(-) are standard normal probability and cumulative density functions for
the log skew-normal density. To model the outcome data S| X}, for the policy h, the DPM
takes the general form of the mixture

f(Sn|Xn, 0) Zw;( (X B) 1(Sp = 0) + [1—=8(X;; B;)] frsn(SnlXp, 9j)> ®3)

where ] is the total number of mixture components (risk classes), 8; = {B;, 0; ("f i ,B]} and
w; = {7, uj, T 21 are the outcome and covariate parameters to explain the I‘lSk clusters,
and wj, functions of covariates: w;(X}|w;), are the cluster components weights (mixing
coefficient) satisfying ):]].:1 wj=1

However, when the DPM is extended as j — oo, the new continuous clusters are
introduced by the Gy (with its infinite-dimensional parametric structure) in order to address
the additional unknown risk classes. This assesses the within-class heterogeneity in Sy by
confronting the current discrete clustering result and investigating the homogeneity more
closely. As the new clusters are considered countably infinite, their corresponding forms of
the outcome and covariate models to obtain the continuous cluster are given by

fo(SulXi) = [ £(511i,0) dGo(0) (4a)
folr) = [ foem(lew) dGo() (@)
folx2) = [ u(xzfow) dGo(w) (40)

They are also known as a “parameter-free outcome model" and a “parameter-free covariate
model" respectively to develop the new continuous cluster mixture. Given a collection
of outcome-covariate data pairs D = {Sj, X;}}'_;, the DPM puts together the current
discrete clusters and new continuous clusters to update the mixture form in Equation
(3), with help of Monte Carlo Markov Chain (using sufficiently simulated samples of the
major parameters 6;, w;). Consequently, the sample G described in Equation (1) becomes
G = f(Sn|Xp, D) = L2y wj - &z; where &;; denotes both discrete and continuous cluster
densities as point mass distributions at the random locations sampled from Gy. Aligned
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with such flexible cluster development, the form of the predictive distribution can be
molded based on the knowledge extracted from G, as follow:

Zjlzl w; - f(Sul X, 6))

J
W1 T Lje1 @)

W
]
Wiyt Ljg @)

f(Su| Xy, 0,w,a) = “ fo(SulXn) + (5)

and the finalized cluster weights in Equation (5) are secured through computing these two
sub-models below for discrete and continuous cluster weights respectively which reflect
the properties of the clusters and relevant covariates.

. ®

wia =T H “ fo(x1,x2) (6a)
"

wj = vc—l—]H - f(x1, %2]w0; = (71, pj, 7)) (6b)

where « is the precision parameter to control the acceptance chances of the new clusters,
n; is the number of observations in cluster j, fo(X) is the parameter-free covariate model
in Equation (4b, 4c) to support the new continuous clusters, and f(X|wj) is the covariate
model to support the current discrete clusters. Note that instead of the popular stick-
breaking scheme used by Hong and Martin (2018) [1], the cluster weights are obtained
based on the covariate models of x1, x, that explain the outcome Sj,.

The simulated outcome model f(S;,|X;, D) = Y21 wj - 0z, and its predictive model in
Equation (5) show that although the DPM framework allows infinite-dimensional modeling,
the dimension of the sampling output G is adaptive as it is a mixture with at most finite
components determined by data itself (e.g. its dimension cannot be greater than the total
sample size H). This gives the model flexibility, and throughout such modeling flexibility,
the G can become the comprehensive mixture distribution for S;, accommodating all
distributional properties of the given claims as well as the additional unknown claims.

3.3. Modelling Sy|Xj, with Complete Case Covariate

The joint posterior update for the outcome and covariate parameters - 0, w; - in
Equation (5,6) can be made through a Gibbs Sampler. Using the conditional distribution of
the unobservable variables given the observed data, the Gibbs sampler can obtain draws
from the analytically intractable posterior distribution of the parameters [20]. Let the
cluster-index j = 1,2, - - -, | for the observation & be sj,. The parameter inference steps to
ensure convergence are described below.

Step.1 Initialize the cluster membership and the main parameters:

(a) First the cluster membership j =1, - - -, ] is initialized by some clustering
methods such as hierarchical clustering or k-means, etc. This step provides
an initial clustering of the data (S, Xj) as well as the initial number of
clusters.

(b)  Next, after all observations have been assigned to a particular cluster j =
1,2,---,], we can then update the parameters a and (8;, w;) for each cluster.
This is done using the posterior densities denoted by p(«|]), p(6|Sy, Xy),
and p(w|X},) in which (S, X;,) represent all observations in cluster j.

Step.2 Loop through the Gibbs sampler and new continuous cluster selection:

Once the cluster memberships and parameters are initialized, we then loop through
the Gibbs sampler many times (e.g. M = 100,000 iterations) where the algorithm
alternates between updating the cluster membership for each observation and
updating the parameters given the cluster partitioning. Each iteration might give a
slightly different selection of the new clusters based on the Polya Urn scheme [20],
but the log-likelihood calculated at the end of each iteration can help keep track of
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Figure 2. An example of looping through the Gibbs sampler with complete data. In Step I, the

algorithm requires the initial cluster memberships and parameters. In Step II1.(A), based on the
Chinese Restaurant scheme [19] with the DPM prior (Gy), the probabilities of the selected observation
h being in each current and the proposed new cluster are computed, which updates the cluster
memberships. In Step II.(B), the new continuous cluster membership is determined by a multinomial
distribution with a set of the resulting cluster probabilities from Step II.(A) randomly assigned based
on the Polya Urn scheme. Once all observations have been assigned to clusters at a given iteration in
the Gibbs sampler, then the parameters are updated, given cluster membership.

the convergence of the selections. A detailed description of each iteration is given
in Algorithm (A2) in Appendix B. The term p(sj|s_j,) on lines 6 and 9 in Algorithm
(A2) is the Chinese Restaurant process [19] posterior value given by

n;h
¢-——=——, forrecord h entering into existing cluster: s;, = j.
p(snls—n) = a+H-1 & & n=J
¢+ ————, forrecord i entering into a new cluster: s;, = 1.
KT H_1 g =7+

@)
where c is a scaling constant to ensure that the probabilities sum to 1, and s_j, is
the collection of cluster indices (s1,52, - ,Sy_1,Sh41," - - ,SH) assigned to every
observation without the cluster index s;, of the observation h. As shown in Equation
(7), the larger « results in a higher chance of developing the new continuous cluster
and adding to the collection of the existing discrete clusters. The forms of the prior

*

and posterior densities used to simulate the main parameters (6}‘, o, w; ) on lines
from 16 to 23 in Algorithm (A2) are presented in Appendix A.
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There is a couple of points to note. The Gibbs sampler for the DPM described here can
be characterized by the use of infinite clusters and covariates. Due to the infinite mixture
capacity, the resulting clusters can be kept as homogeneous as possible. In this process, the
within-class heterogeneity can be captured between parameters across the observations,
and the DPM utilizes such dependencies within existing clusters to determine the rationale
for the development of new clusters. The DPM harnesses the power of the covariate as well.
For example, the DPM associates individual policies with the unobserved claim (in new
clusters) and the observed claims (in old clusters), matching on the covariate information.
The investigation of the infinite clusters, covariates, and the continuous cluster selection
process in the DPM are briefly illustrated in the diagram in Figure 2. As a result, the
unobserved claim problem mentioned in Figure 1 can be addressed by the new cluster
introduction, which leads to a better approximation of Sj,.

3.4. Modelling S| X, with MAR Covariate

The DPM model for complete case data (Sj,, X;,) has been discussed in Section 3.3.
In this Section, we present our novel imputation strategy for the MAR covariate in the
DPM framework in which the missing values are explained by the observed data. We
focus on the missingness in the binary type covariate. In addition, we specify here different
prior distributions and the corresponding posterior distributions constructed for the Gibbs
sampler, taking into account the MAR covariate. With the model definition in Equation (1),
suppose the binary covariate x1 has missingness within it. To handle this MAR covariate,
we consider the following modifications in the DPM Gibbs sampler:

a) Imputation: The missing covariate impacts on the parameter - 8, w - update. For
wj, only the observations S; without the missing covariate are used to update. If
the cluster does not have any observations with complete data for that covariate,
then a draw from the prior distribution would be used to update. For 6;, however,
we must first impute values for the missing covariates xy;, for all observations Sy,
within the cluster. Since having already defined a full joint model - f(S;|Xj, 6;) -
f(Xp|wj) - in Section 3.2, we can obtain draws for the MAR covariate xqj, from the
imputation model such as fgeyy (x14|Sp, 0;, w;) & f(Sp| X, Bj, (sz, &i) + fBern(x11|77j) at
each iteration of the Gibbs sampler. The imputation process is briefly illustrated
in Figure 3. Once all missing data in all covariates has been imputed, then we
can sample from the posterior for 8 and the parameters of each cluster B;, 0]2 are
re-calculated. After this cycle is complete, the imputed data is discarded and the
same imputation steps are repeated every iteration.

b)  Re-clustering: To determine each cluster probability after the imputations, the
algorithm re-defines the two main components for the cluster probability calculation
- 1) covariate model, 2) outcome model. For the covariate model f(Xj|w;), we set
this equal to the density functions of only those covariates with complete data for
observation h. Assuming that Xj, = {xy;, X, }, and the covariate x; is missing for
observation /, then we drop x1; and only use x,j, in the covariate model,

f(Xulw;) = fn(xon|wo;) (8)

This is the refined covariate model for the cluster j with the observation & where
the data in x; is not available. For the outcome model f(S;|X}, 6;), the algorithm
simply takes the imputation model for each cluster and integrates them out the
covariates with missing data. This reduces the degree of variances introduced by the
imputations. In our case, as covariate x; is missing for observation #, this missing


https://doi.org/10.20944/preprints202306.0098.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 June 2023 d0i:10.20944/preprints202306.0098.v1

10 of 30

xi | x2 | x3 [ x4 CLmembership |[ & =
. o]Jo NA|O | O i=1
Cluster membership ol o o [walo =1
initialization and “ToTlTo "o o0 0 ¥ iz -
development of joint olo nal o | o i=2
densities in accordance O] O |NA NA O i=2

with cluster membership.

X1 X2 X3 X4
» ®¢1=1 m O | N/A <o --o-- - impute],

Lol o [ o [ NAf=o-|[impute .

[imputation model] “
£(Sh|X, 0:) F(X2|w) *.—m
£(Sh|X, 0,) F(X3|wWi) ——2)

Cluster-wise Imputation

[outcome model}— £ (Sn|X, 0;)
development for each record o, W1[
(observation) based on the ’ - £(X1|wr)

cl membership and other - £(X2|wy)
parameters. A\ FOB|w)
* £(X4|wy)
xi [ x2| x3| x4
» @ 8¢ j=2 ojJo oo o],
o | o | NA=o-to-|limpute
O ] O |NA | NA <0--1--fimpute.... " ...
f(Snlx, 6)
6. WZ[ £(X1|we)
(X2|W2) [imputation model]
\ .f(x3,|W2 £(Sn|X, 0,) F(X2|w,) ‘(3)
\ F(X4|ws) £(Sn|X, 0) F(X2|ws) £(X3[w;) —&)

Figure 3. An example of a re-clustering process with MAR imputation in the DPM Gibbs sampler:
Step I and II. The imputations are made cluster membership-wise. Each imputation model as a joint
distribution is the product of the outcome model and the covariate model that has missing data.
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Red tat o0 .
to reduce the degree of - £(S4[X, 62)
variance introduced by
the imputations. I dX2————3)
[] dX2dX3 ——@)

We can use the[refined outcome models |
from clustering hth record (S, X») with N/A
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for Predictive Density .—{ z (S4fXs,6:)
computation J.f(Sh|X.., 0)dG,(6)

Figure 4. An example of a re-clustering process with MAR imputation in the DPM Gibbs sampler:

Step III. The DPM refines the outcome models for all possible configurations based on the types of
missingness prior to running the Gibbs sampler. Using these outcome models, each cluster probability
and the predictive density are updated.

covariate can be removed from the X}, term that is being conditioned on. Therefore,
the refined outcome model is

f(Snlxan, 8; /f Snl X, 0;) - fBern (X1 |w1j)dxyy, ©)

A similar process is conducted for each observation with missing data and each com-
bination of missing covariates. Hence, using Equation (8,9), the cluster probabilities


https://doi.org/10.20944/preprints202306.0098.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 June 2023 d0i:10.20944/preprints202306.0098.v1

11 of 30

and the predictive distribution can be obtained as illustrated in Step III in Figure 4.

) Parameter update: The cluster probability computation is followed by the parameter
re-estimation for each cluster, which is illustrated via the diagram in Figure 5. This
is the same idea as what we have discussed about the parameter - 8, w - update in
Figure 2.

prior

G
S\
o T O

VK Ypdate

CL membership_|
wpda®
I
H

Figure 5. Parameter re-estimation after the re-clustering with imputation in the Gibbs sampler. This

upda\e

J

diagram articulates flows of the parameter updates, using the acyclic graphical representation. The
process cycles until achieving convergence.

4. Bayesian Inference for S;|X;, with MAR Covariate

The efficient simulation for the model parameters - 0 : {B,02,& B}, w : {m, u, 72}, and
« - requires the proper parameterization in the parameter models - prior parameter model
and posterior parameter model. The accurate estimations of cluster probabilities rely on
the legitimate development of data models - outcome model and covariate model - and the
model parameter simulation results that govern the data model behaviors. This section is
centered on the novel development of parameter and data models, providing the details of
the DPM implementation integrated with the MAR imputation strategy.

4.1. Parameter models and MAR covariate:

Our study is based on a three-level hierarchical structure: the first level regards the data
models such as the log skew-normal outcome model and the Bernoulli, Gaussian covariate
models, the second level involves the parameter models such as p(0|S;,, X;,), p(w|X;,) to ex-
plain the data, and the third level is developed from the generalized regression to explain the
parameters or the related hyperparameters such as ay, by, vo, co, do, po, Tg, eo, Y0, 8o and hy to
set a probabilistic distribution on the parameter vectors 6 = {S, 02, ﬁ}, w={mpu, 72},
See Variable Definition for further information on the variables. Given the model definition
in Equation (1), we consider a set of conjugate parameter models due to its computa-
tional advantages [21]. For S, ~ §(X[ ;) 1(S, = 0) + [1— (X[ ;)] LogSN(XhT[S]-,(TjZ, g,
x1 ~ Bern(mj), and x ~ N(y;, ’l']-Z), the prior models come in

po(07lag, bo) : InvGa(ag, bo), po(B;lBo, Lo) : MVN(Bo, 07%0), po(§jlve) : T(wo)
po(BjlBo, Lo) : MVN(Bo, £o),  po(mjlco, do) : Beta(co, do), po(jlmo, ) : N(po, T7),
po(t7leo, 70) : InvGa(ey, v0),  po(algo, ho) : Ga(go, ho)

and their corresponding kernels chosen in this study are listed in Appendix A.1. Ac-
cordingly, the Dirichlet process prior (probability measure) Gy in our case can be de-
fined as Gy = MVN(ﬁQ, Zo) X InvGa(ao, bo) X T(VQ) X MVN(BO, 20) X Betu(co, d()) X
N(uo, TJZ) x InvGa(ey, 70) X Ga(go, hp). With a feed of the observed data inputs -
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(Sp, X1, X21,) -, the prior models for each cluster j described above will be updated into the
following posterior models analytically apart from 6; = {B;, 0].2, i Bj}-

P(TL’]‘|C0, do, S, xl) : BEta(Cnew/ dnew)
P(V]WO/ Tgr Sr xZ) : N(,unewr Tr%ew)r P(T]'2|30/ Y0, S/ xZ) : InvGa(enew; ’)/new)

p(«|go, ho, b, ], 1, 7y) © 7y Ga(go+ ], ho —log(n)) + (1 —my)Ga(go+ ] —1, ho —log(n))
(10)

and their corresponding parameterizations are elaborated in Appendix A.2. Note that
the value of the precision parameter « relies on the total cluster number ], thus does not
vary by the cluster membership j, and its derivation of the posterior parameterization is
not subject to the Bayesian conjugacy. Hence, we instead adapt the form of the posterior
density for the a suggested by Escobar and West (1995) [22], and its derivation is shown in
Appendix C.1. As for 8; = {B;, (7]-2, Gjr Bj}, there are no conjugate priors available for log
skew-normal likelihood, but their posterior samples can be secured by the conventional
metropolis hastings described in Algorithm (A2) in Appendix A.

Considering that x; has missing data, although the parameterizations of the posterior
densities for the covariate parameter model of w and the precision « listed in Equation (10)
are not affected, any outcome data of 5;, with missingness should be dropped; therefore,
nj and x; are defined with the only observations in cluster j that are not missing. This
imputation example is provided in Appendix C.2. For the outcome parameter model of
0;, the missing covariate x; must be imputed before its posterior computation shown in
Algorithm (A2). Once the parameters are updated with the imputation, the data models
can be constructed as described in Equation (8,9).

4.2. Data models and MAR covariate

Data models are the main components for cluster probability computations depicted
in Figure 2. As with the development of parameter models, the covariate data model of X
ignores the observations with missingness while the outcome data model of Sj, requires to
complete the covariates beforehand. However, the formulation of their densities can be
more complex due to the marginalization process with respect to the missing covariate.
In addition, as discussed in Section 3.2, the data model development is bound by the
types of clusters such as discrete clusters f(Sy,| X}, 0;), f(Xy|w;) and continuous clusters

fo(SulXn), fo(Xp)-

a)  covariate model for the discrete cluster: f(Xj|w;)
Focusing on the scenario that x; is binary, x, is Gaussian, and the only covariate with
missingness is x1;,, we simply drop the covariate xq; to develop the covariate model
for the discrete cluster. For instance, when computing the covariate probability
term for hth observation in j cluster, the covariate model f(x1y, Xop| 77}, ), TJZ) simply
becomes f(xo;|#j, T]2) due to the missingness of x1;,. As we have x; that is assumed
to be normally distributed as defined in Equation (1), its probability term is

1
f(x2h|ﬂj/ TJZ) =
/ 2
27T’L'j

instead of

— (2o — Hj)z
21'],2

} (11)

exp{

1—=xyy .

— (2o — Plj)2
exp{ 5
2711'].2 27]'

}

f(x1n, x2h|7Tj, i, T]-Z) = n}‘lh (1 — 71]-)
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b) covariate model for the continuous cluster: f)(X},)
If the binary covariate xy, is missing, by the same logic, we drop the covariate xy,
for the continuous cluster; however, using Equation (4), the covariate model for
the continuous cluster integrates out the relevant parameters simulated from the
Dirichlet process prior Gy as follows:

folean) = [ Floxaali ™) dGo(,7) = [ Floxaalpe, ™) - plle®) - p() dp de®

_w Tt 12) ) G o)ty et
2/T (eo) 4

(12)

instead of

folstn ) = [ Flean, o, 72) - p() - plule®) - p(r) dre dyede?

_ B(xy,+co, 1 —x9;, +do) . q/gof(eo +1/2) ( M> —(eo+1/2)
B B(co, do) 2,/7T(ep) 0 4

The derivation of the distributions above is provided in Appendix C.3.

9 outcome model for the discrete cluster: f(S,[X), 6;)
In developing the outcome model, as with the parameter model case discussed in
Section 4.1 and Appendix C.2, it should be ensured that the covariate is complete
beforehand. With all missing data in x1; imputed, the outcome model for the discrete
cluster is obtained by marginalizing the joint - f(Sy,, x15|x25, 8}, 77;) - out the MAR
covariate xyj, which is a log skew-normal mixture as follows:

1
F(Sulxan B, 07,81, Bj) = Y F(Sulxun xan, Bj, 07,81, By) - f (Xl 7))

x1h:0

= f(Sn, x1p = 1xap, ﬁj/o}'zr &i, Bj, 1) + f(Sp, X1 = Olxa, Bj, ‘7]‘21 &i, Bj, 7j)

- ~ 2
— 3(X['B;) 1(Sy = 0) + [1— (X[ B;)] - 75
’ <log Sn— (Bjo ;rjﬁﬂ + ,szx2h)> ® (6]- log Sy — (Bjo ;ﬁﬂ + ﬁjzm)) - (13)
TG, _ _ TaN. 2
+ 8(X Bj) 1(Sy = 0) + [1 - 6(X] Bj)] 75,
¢<log Sh— (ﬁf + ,szxzh)> . q><€jlog3h - (,12‘9 + ﬁszCzh)) (- )
Ji ]
instead of

F(Sulxin, x2n, Bj, 07, G0 By)

= 5(X;, Bj) 1(Sy = 0) + [1—6(X; B))] - szsh

log S, — (Bjo + Bj1x1n + BjaXan) log Sy, — (Bjo + Bj1x1n + BjaXan)
¢ P G

Oj 7j

d)  outcome model for the continuous cluster: fy(S;,|X},)
Once a missing covariate x; is fully imputed and the outcome model is marginalized
out conditioned to the MAR covariate xyj, the outcome model fy(Sy|xy;) for the
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continuous cluster can also be computed by integrating out the relevant parameters,
using Equation (4).

fo(Snlxan) = /f(5h|x2h/ﬁf0'2r§rlg) p(B) - p(c?) - p(&) - p(B) dB do* di dB  (14)

However, it can be too complicated to compute its form analytically. Instead, we
can integrate the joint model out the parameters, using Monte Carlo integration. For
example, we can do the following for eachh =1,--- , H.

(1) Sample B, 02, &, B from the DP prior densities Gy specified previously.
(i) Plugin these samples into f(Sy|xan, B,0%,¢,B) - p(B) - p(e?) - p(Z) - p(P)-

(iii) Repeat the above steps many times, recording each output.
(iv) Divide the sum of all output values by the number of Monte Carlo samples,
which will be the approximate integral.

4.3. Gibbs sampler Modification for MAR covariate

We have examined the parameter models and data models to update the parameters
of the DPM based on probabilistically imputed values of the MAR covariate. Now we
set out some modifications of the DPM and let the Gibbs sampler in Algorithm (A2) in
Appendix B. address the MAR covariate of x;. The Gibbs sampler will alternate between
imputing missing data and drawing parameters until it reaches a stationary distribution of
the parameters. We elaborate below on the modifications that fit into Algorithm (A2) to
update the clustering scenarios and the posterior cluster parameters properly.

a)  Inline 6, with the presence of missing covariate x;;, the modification of the cluster
probability for the observation (Sy, x17, x2;,) that belongs to the discrete cluster j can
be made as follows,

P(sy = j) = p(suls—n) - f(xanluj, 7) - f(Sulxan By 07, €0 B))

where f(xop|pj, T]2) is from Equation (11), and f(Sy|xop, Bj, (7]-2, Gjs ﬁ]) is from Equa-
tion (13).

b) In line 9, with the presence of missing covariate x1j,, the modification of the cluster
probability for the observation (Sy, x17, x2;,) that belongs to the continuous cluster
] + 1 can be made as follows,

P(sp = J+1) = p(spls—p) - fo(xan) - fo(Snlxan)

where fy(xo,) is from Equation (12), and fo(Sy,|x2y,) is from Equation (14).

C) In line 22, with the presence of missing covariate xy;,, the imputation should be made
before simulating the parameter 6}-* as follows,

First, sample xy;, ~ f(S,,| X}, B}, 0]-2, i, Bi) - foern(x1nl71;) .
if x1y, is missing.
Then sample 6] from the posterior: p(6|S, X))

Sample 6; from the posterior: p(6[Sy,, Xj,) otherwise

The imputation model formulation in the above has been discussed in Section 3.4.

Again, these modifications allow to draw missing covariate values from the conditional
posterior density at each iteration, using the Metropolis-Hastings with a random walk.
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5. Empirical Study
5.1. Data

The performance of our DPM framework is assessed based on two insurance datasets.
They highlight data difficulties such as unobservable heterogeneity in an outcome variable
and MAR covariates. For simplicity, in each dataset, we only consider two covariates -
one binary and one continuous - to explain its loss information (outcome variable). In this
study, all computations on these two datasets are performed in the same data format:

Year;y Year, ---, Yeary,
Policy (a):  {(Sa, Xa), (Sa, Xu), -+, (Sa, Xa)}
Policy (b):  {(Sp, Xp), (Sp, Xp), -+, (Sp, Xp)}

Policy (H): {(Su, Xn), (S, Xu), -+, (Su, Xu)?}

The first dataset is PnCdemand, which is about the international property and liability
insurance demand of 22 countries over 7 years from 1987 to 1993. Secondly, we use a
dataset drawn from the Wisconsin Local Government Property Insurance Fund (LGPIF)
with information about the insurance coverage for government building units in Wisconsin
for years from 2006 to 2010. The first one - PnCdemand - can be obtained from the R package
CASdatasets. The dataset is relatively small as it has H = 240 cases with an outcome
variable GenLiab: the individual loss amount under the policies of general insurance for
each case. As for covariates, we consider one indicator variable of the statutory law
system (LegalSyst:1 or 0) and one continuous variable that measures a risk aversion rate
(RiskAversion) for each area. For additional background on this dataset, see Browne et al.
(2000) [23]. In the LGPIF dataset, the insurance coverage samples for the government
properties from H = 5660 policies are provided. The outcome variable is the sum of all
types of losses (Total Losses) for each policy. Only the covariates - LnCoverage, Fire5 - are
considered in our study. Fire5 is a binary covariate that indicates fire-protection levels while
LnCoverage is a continuous covariate that informs a total coverage amount in a logarithmic
scale. For further details, see Quan et al. [24]. Histograms of the losses of the two datasets

International General Insurance Liability LGPIF Winsconsin
2
8 —
8 (a1) (b1)
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y
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Figure 6. Histograms of the outcomes and log-transformed outcomes for the two datasets: (a)
PnCdemand, (b) LGPIF.

are exhibited in Figure 6. Due to the significant skewness, the loss data are log-transformed
to attain Gaussianity. As shown in the histograms, each distribution displays different
characteristics in regard to skewness, modality, excess of zeros, etc. Note that the zero-
inflated outcome variable in LGPIF data (b1, b2 in Figure 6) requires a two-part modeling
technique that distinguishes the probabilities of the outcome being zero and positive.
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5.2. Three Competitor Models and Evaluation

Our DPM framework is compared to other commonly used actuarial models in prac-
tice. We employ three predictive models as benchmarks - namely, a generalized linear
mixture model (GLM), multivariate adaptive regression spline (MARS), and generalized
additive model (GAM). In each dataset, we assume different distributions for the outcome
variables, and thus the three benchmark models are built upon the different outcome data
models. For example, the PnCdemand dataset (al,a2) that appeared in Figure 6, has a high
frequency of small losses without zero values, hence it is safe to use a gamma mixture
to explain the outcome data. As for the LGPIF data (b1,b2) in Figure 6, we consider the
outcome data model based on a Tweedie distribution to accommodate the zero-inflated
loss data. The benchmark models are implemented in R with the mgcv, splines, and mice
packages.

All four models are trained, and investigations are performed in terms of model fit,
prediction accuracy, and the conditional tail expectation (CTE) of the predictive distribution.
Note that the goodness of fit value for a DPM is not available in Table 1,2. Teh (2010) [25]
argues that the goodness of fit evaluation for a DPM is unnecessary as underfitting is
mitigated by the unbounded complexity of a DPM while overfitting is alleviated by the ap-
proximation of posterior densities over each parameter in a DPM. Gelman et al. (2007) [26]
point out Posterior predictive check, which compares the simulated data under the fitted DPM
to the observed data, can be useful in studying model adequacy, but its usage cannot be
for model comparison. Therefore, the goodness of fit is only compared between the rival
models. For the evaluation of prediction performance, the sum of square prediction error
(SSPE) and sum of square absolute error (SAPE) are used.

5.3. Result 01. International general insurance liability data

For this dataset, a training set of response and covariates pair (Y, X) with n = 160
records, and a test set of response and covariates pair (Y’, X’) with m = 80 records are
constructed. We implement the following DPM:

Yh|x1,x2, ﬂ],O']z ~ LOgN(XTﬁ]', (7]2)
x1|7j ~ Bern(7t;)
xolpj, 7~ N(pj, )
{6]', w]} ~ G
G ~ DP(a, Gy)

A log-normal likelihood is chosen to accommodate the individual loss Y}:GenLiab for a
policy h. The covariate xp:RiskAversion is subject to missingness, and found to depend on
Y}, (a MAR case). This is addressed by the internalized imputation process as discussed in
Figure 3. The posterior parameters of 0, w; are estimated with our DPM Gibbs sampler
presented in Algorithm (A2). The algorithm runs 10,000 iterations until convergence, and
the resulting scenarios of clustering mixture are shown in Figure 7. The plot reveals the
overlays of predictive densities on the log scale from the last 100 iterations that are tied to
convergence. Figure 8 lists the classical data imputation process - Multivariate Imputation
Chained Equation (MICE) - and predictive densities produced from our rival models -
GLM, GAM, MARS. The MICE runs multiple imputation chains, and selects the imputation
values from the final iteration. This process results in multiple candidate datasets. The
trace plots (al,a2) monitor the imputation mean and variance for the missing values in the
dataset. In the covariate distribution plot (a3), the density of the observed covariate shown
in blue is compared with the ones of the imputed covariate for each imputed dataset shown
in red. The parameter inferences for the rival models are performed based on the imputed
datasets tied to convergence [27]. The gamma distribution is chosen to fit the rival models
as the Y}, is continuous and positively skewed with a constant coefficient of variation. The
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log(Yh)
Figure 7. LogN-DPM: The last 100 in-sample predictive densities (scenarios) overlaid together.
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Figure 8. MICE trace plots and in-sample predictive densities produced from GLM, GAM, MARS.

gamma-based predictive density plots (b1,b2,b3) estimated with GLM, GAM, MARS look
similar, showing unusual bumps near the right tail.

In Figure 9, a histogram of the outcome data in the test set is displayed. The posterior
mean densities for out-of-sample predictions produced with our DPM along with the rival
models’ density estimates are overlaid on the histogram. Judging from the plot, one can say
that our DPM model generates the best approximation. While the rival models generate
smooth, mounded curves to make predictions, our DPM captures all possible peaks and
bumps, which is closer to the actual situation. According to Table 1, the rival models
produce slightly higher SAPEs, but lower SSPEs, compared to our proposed DPM. As
SAPE weights all the individual differences equally, we can assume that the rival models
tend to give too much focus on the most probable data points and miss some outliers. This
is mainly due to the insufficient sample size. However, our DPM has good performance
under small sample sizes when there is sufficient prior knowledge available. From the
perspective of CTE, Table 1 shows that our DPM proposes a heavier tail than other rival
models, which reflects that our DPM captures more uncertainties given the small sample
size.
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Figure 9. A histogram of the observed loss Y}, on the log scale and the out-of-sample predictive
densities for the typical class of a policy.

Table 1. The comparison of out-of-sample modeling results based on the dataset PnCdemand

10% 50% 90% 95%
Model AIC SSPE SAPE CTE CTE CTE CTE
Ga-GLM 830.56 268.6 139.8 6.5 13.8 54.5 78.0
Ga-MARS 830.58 267.2 138.2 6.1 13.0 57.2 711
Ga-GAM 845.94 266.7 136.1 6.2 13.3 58.1 722
LogN-DPM - 272.0 134.7 6.4 13.8 59.3 79.3

5.4. Result 02. LGPIF data

For this dataset, a training set of response and covariates pair (S, X) with n = 4529
records, and a test set of response and covariates pair (S, X’) with m = 1110 records are
constructed. We implement the following DPM:

Snlx1,%2, Bj, 0]2, &, Bj
~ 8(X"Bj) 1(Sy = 0) + [1 — 8(X"B))] LogSN (X' B;, 07, &)
x1|7j ~ Bern(r;)
xolpj, 7 ~ N(pj, T7)
{9]‘, w]} ~ G
G~ DP(LK, Go)
As the outcome Sj,:Total Losses for a policy & in this dataset is considered to be distributed

with the sum of log-normal densities, a log skew-normal likelihood is chosen to approx-
imate this convolution [7]. The covariate x1:Fire5 is subject to missingness under MAR,
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and the internalized imputation process illustrated in Figure 3 resolves this issue without
creating imputed datasets. As the outcome S, exhibits zero inflation, we employ a two-part
model, using a sigmoid and indicator function. Our DPM Gibbs sampler described in
Algorithm (A2) produces the posterior parameters of 6;, w; with 10,000 iterations until
convergence. Figure 10 reveals the resulting scenarios of clustering mixture. In the plot,
there are 100 predictive densities suggested by our DPM, each of which stands for the
convergence of the estimation results.

0 s 10 15 20

log(Sh) with a point mass at zero

Figure 10. LogSN-DPM: The last 100 in-sample predictive densities (scenarios) overlaid together.
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Figure 11. MICE trace plots and in-sample predictive densities produced from GLM, GAM, MARS.

The output of the MICE and the resulting predictive densities from the rival models
are displayed in Figure 11. The rival models are built upon a Tweedie distribution due to its
ability to account for a large number of zero losses, and the flexibility to capture the unique
loss patterns of the different classes of policyholders. According to the plot, all three rival
models reasonably capture zero inflation, but the GAM tends to suggest more bumps that
indicate a need for further assessment of the prediction uncertainty.

The overall out-of-sample prediction comparison is made in the histogram overlayed
with predictive density curves generated from the four models in Figure 12. From the plot,
it is apparent that the posterior predictive density proposed by our DPM best explains
the new samples while other rival models keep producing multiple peaks. The prediction
performance of our DPM is confirmed by the smallest SSPE and SAPE in Table 2. In terms
of CTE, all three rival models suggest a similar level of tailedness, reflecting the knowledge
obtained from the observed data. However, our DPM goes beyond this and proposes a
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Figure 12. A histogram of the observed total loss Sy, on the log scale and the out-of-sample predictive

densities for the typical class of a policy.

much heavier tail. This is because our DPM accommodates the presence of outliers and
shapes the tail behavior based on the combined knowledge of prior parameters and the
observations available.

Table 2. The comparison of out-of-sample modeling results based on the LGPIF dataset

10% 50% 90% 95%
CTE CTE CTE CTE

Tweedie-GLM 26270.3  2.04e+14 89380707 955.9 129772 1333744 340713.1
Tweedie-MARS | 247214  1.99e+14 88594850 961.7 10391.0  129409.2 355112.6
Tweedie-GAM 219489  195e+14 88213987 989.4 13026.2  140199.5 398263.1
LogSN-DPM - 1.98e+14 83864890 975.3 13695.1  147486.6 425682.6

Model AIC SSPE SAPE

6. Discussion

This paper proposes a novel DPM framework for actuarial practice to model total
losses with the incorporation of MAR covariates. Both log-normal and log skew-normal
DPM present overall good empirical performances in capturing the shape of the distribu-
tion, out-of-sample prediction, and the estimation of the tailedness. This suggests that it is
worth considering our DPM framework in order to avoid various model risks or biases in
insurance claim analysis.

6.1. Research Questions

Regarding RQ1, we propose a DPM framework to address the within-cluster hetero-
geneity emerging from the inclusion of covariates. By allowing for an infinite number of
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clustering scenarios determined by the observations as well as prior knowledge, our DPM
outperforms the rival methods in drawing the lines for the cluster membership. This can
be assessed by examining the homogeneity of the resulting clusters. In our case, we fit
cluster-wise GLMs (based on Gamma and Tweedjie) to the data points within each resulting
cluster to compare the goodness-of-fit, and the consistent AICs across all clusters endorse
the benefits of the DPM. Similarly, our rival methods such as GAM or MARS can capture
heterogeneity by using customized smooth functions across different subsets of the data,
but we observe some statistically insignificant smooth terms, indicating the presence of
heterogeneity in the cluster.

In terms of RQ2, we suggest incorporating the imputation steps into the parameter
and cluster membership update process in the DPM Gibbs sampler by leveraging the
joint distribution of the observed outcomes and missing covariates. This approach allows
the imputed values to be consistent with the observed data, preserving the correlation
structure within the dataset. In order to make a comparison of our approach with an
existing alternative, we additionally employ a chained equation technique. The multiple
sets of imputed values simulated from both approaches are investigated, and the result
shows that our DPM Gibbs sampler does not represent a significant improvement over the
chained equation because their average estimates of the imputed values are closer to each
other. However, we feel that this result is mainly due to the relatively low dimensionality
of the datasets we use and their simple data structure. The specific characteristics or
dependencies in the data and the complexity of the missing patterns would give different
results in practice.

As for RQ3, we fit a log skew-normal density to the aggregate loss outcomes. In
order to assess its performance, one can consider Minimax approximation, Least squares
approximation, Log shifted gamma approximation, etc. as the competitors. Li (2008) [7]
provides a useful comparison between these competitors by overlaying the cumulative
density curves for each technique, but its experiments are grounded on the simulated
log-normal data with the pre-defined parameters and assumptions, which cannot be easily
controlled in real-world scenarios. Therefore, we feel that the choice of the best approxima-
tion technique should be made based on the identification of the specific characteristics of
the dataset. In our case, each summand in our dataset is significantly different from each
other in magnitudes (the Minimax is inappropriate) and LGPIF data has a large volume of
data smaller than 5 (the Log shifted gamma is inappropriate); therefore, we choose a log
skew-normal density that is relatively simple while giving an accurate approximation at
the lower region of the distribution.

6.2. Future Work
There are several concerns with our log skew-normal DPM framework.

(@) Dimensionality: First, in our analysis, we only use two covariates (binary and
continuous) for simplicity, hence more complex data should be considered. As
the number of covariates grows, the likelihood components (covariate models) to
describe the covariates grow, which results in the shrinking of the cluster weights.
Therefore, using more covariates might enhance the level of sensitivity and accuracy
in the creation of cluster memberships. However, it can also introduce more noise
or hidden structures that render the resulting predictive distributions unstable. In
this sense, further research on the problem of high dimensional covariates in the
DPM framework would be worthwhile.

(b) Measurement error: Second, although our focus in this article is MAR covariate,
mismeasured covariate is an equally significant challenge that impairs the proper
model development in insurance practice. For example, Aggarwal et al. (2016) [28]
point out that “model risk" mainly arises due to missingness and measurement error
in variables, leading to flawed risk assessments and decision-making. Thus, further
investigation is necessary to explore the specialized construction of the DPM Gibbs
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sampler for mismeasured covariates, aiming to prevent the issue of model risk.

(c) Sum of log skew-normal: Third, as an extension to the approximation of total losses
Sy, (the sum of individual losses) for a policy, we recommend researching into ways
to approximate the sum of total losses S across entire policies. In other words, we
pose the question of “how to approximate the sum of log skew-normal random
variables". From the perspective of an executive or an entrepreneur whose concern
is the total cash flow of the firm, nothing might be more important than the accurate
estimation of the sum of total losses in order to identify the insolvency risk or to
make important business decisions.

(d)  Scalability: Lastly, we suggest investigating the scalability of the posterior sim-
ulation by our DPM Gibbs sampler. As shown in our empirical study on the
PnCdemand dataset, our DPM framework produces reliable estimates with rela-
tively small sample sizes (n < 160). This is because our DPM framework actively
utilizes significant prior knowledge in posterior inference rather than heavily re-
lying on the actual features of the data. In the result from the LGPIF dataset, our
DPM exhibits stable performance at sample size n = 4529 as well. However, a
sample size of over 10000 is not explored in this paper. With increasing amounts of
data, our DPM framework raises a question of computational efficiency due to the
growing demand for computational resources or degradation in performance [29].
This is an important consideration, especially in scenarios where the insurance loss
information is expected to grow over time.
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Variable Definitions

The following variables and functions are used in this manuscript:

i=1,..
h=1,..
i=1,..

Sh

ag, bo
co, do
vp

Ho, r&
€0,70
80, hO

Ty

N,
LH
'/]

observation index i in policy .

policy index k with sample (policy) size H.

cluster index for | clusters.

cluster index j = 1,..., ] for observation h.

number of observations in cluster j.

number of observations in cluster j where observation /1 removed from.
individual loss i in a policy observation /.

outcome variable which is a 2Yj;, in a policy observation h.

outcome variable which is a 2.5, across entire policies

vector of covariates (including x1, x;) for observation h.

vector of covariate (Fire5).

vector of covariate (Ln(coverage)).

individual value of covariate (Fire5).

individual value of covariate (Ln(coverage)).

parameter model (for prior).

parameter model (for posterior).

data model (for continuous cluster).

data model (for discrete cluster).

logistic sigmoid function - expit(-) - to allow for a positive probability of the zero
outcome.

set of parameters - 8,02, ¢ - associated with the f(XY|X) for j cluster.

set of parameters - 77, yi, T - associated with the f(X) for j cluster.

cluster weights (mixing coefficient) for j cluster.

vector of initial regression coefficients and variance-covariance matrix, i.e.
o2(XTx)"1 = XTX(2Y — 2Y)T(ZY — ZY)/(n — p) obtained from the baseline
multivariate Gamma regression of =Y > 0.

regression coefficient vector for a mean outcome estimation.

cluster-wise variation value for the outcome.

skewness parameter for log skew-normal outcome.

vector of initial regression coefficients and variance-covariance matrix obtained
from the baseline multivariate logistic regression of LY = 0.

regression coefficient vector for a logistic function to handle zero outcomes.
proportion parameter for Bernoulli covariate.

location and spread parameter for Gaussian covariate.

precision parameter that controls the variance of the clustering simulation. For
instance, a larger « allows to select more clusters.

prior joint distribution for all parameters in the DPM - B, a2, ¢, m,u, T, and a. It
allows all continuous, integrable distributions to be supported while retaining the-
oretical properties and computational tractability such as asymptotic consistency,
efficient posterior estimation, etc.

hyperparameters for Inverse Gamma density of (7]-2.

hyperparameters for Beta density of ;.

hyperparameters for Student’s t density of ¢;.

hyperparameters for Gaussian density of ;.

hyperparameters for Inverse Gamma density of sz_

hyperparameters for Gamma density of a.

random probability value for Gamma mixture density of the posterior on a.
mixing coefficient for Gamma mixture density of the posterior on .
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Appendix A Parameter Knowledge
Appendix A.1 Prior Kernel for distributions of outcome, covariates, and precision
* - — 2
po(BjlBo, o) : MVN(Bo, (7].220) (x e{(ﬂj—ﬂo)Tzol(ﬁj—ﬁo)}l po(U]-zlao, bo) : InvGal(ag, by) o (0-],2)—(a0+1) Lo/
(:2 —(v+1)/2 JOR JO i A \Te-1(4._ @
p0(§j|V0) . T(Vo) (e (1/7{) —|—1> ’ po(ﬁ]LB(), Zo) : MVN(ﬂo, 20) X e{(ﬁ] Bo) 20 (ﬂ] Bo)}
— 1 2/.2
po(?‘[j|CQ, do) : Beta(co, do) e 7T](C0 1, (1 — nj)(do_l), pO(V]“’lOr Tg) : N(‘uo, Tg) x e 3 (Hj=po)* /7
_ 2
po(Tleo, 7o) : InvGaley, 70) o (z2)~ @V e ™% po(algo, ho) : Ga(go, ho) o al80~D) . =0
* Bo, Lo ~ Gamma regression, fo,%g ~ Logistic regression.
Appendix A.2 Posterior Inference for outcome, covariates, and precision
Algorithm A1 Posterior inference 67 = {7, 0']-2*, (3 B;}
Bj ~ MVN(Bo, 07%0)
2 o1
Require: initialize 0" : { *J Glao, bo)
§i~Tlo)
Bj ~ MVN(Bo, Xo)
1: repeat
2: forj=1,---,]do > Assume | cluster memberships.
3: Sample (") from the proposal densities g: > Choose priors as 4.
2 ~
ﬁ](new) ~ qg, (T] (new) ~ G2, g](new) ~ gz, 'B§new) N qﬁ
. (new) _; p(new) 2(new) (new) z(new)
4: for 6]. ={B; /05 ,(;‘]. ,ﬁj } do
5: Compute the transition ratio, using the outcome models:
ld
T F(SulX, 0 po (6" - ga(6)"' )
Ratiop = H (old)\1 (old) (new)
[T f(SulX, 6]' )" PO(BJ‘ ) -qe(ﬂj )
Sample U ~ Unif(0,1)
6: if U < Ratioy then 9; = Bj(”ew) otherwise 6]*-‘ = 6](-01d)
7: end if
8: end for
9: Record 9;-‘
10: end for
11: until M posterior samples (6;-*:1,“. ) ]) obtained. > M is a sufficient sample size

! The outcome density is defined as: f(Sy|X, 8;) = (X[ B;) 1(S;, = 0) + [1— (X[ Bj)] frsn(Sn| X, 0;).

p(7ilco, do, S, x1) : Beta(cnew, dnew) p(uilpo, 2,5, x2) : N(tnew, Tew)
{cngw =co+ szzl X1 {,unew = (njx2 +po)/(nj +1)
Apew = do +1j — sz:l X1h Toew = T]‘Z/(”f +1)
p(r]2|e0, Yo, S, x2) : InvGa(enew, Ynew) p(algo, ho, b, ], 1, 7y) : 1tyGa(go + ], ho —log(1))
+ (1 —my)Ga(go+] —1, ho — log(n))
{enew =ep+ nj/2nl y {11|oc,h ~ Beta(“g"‘i}@ .
Trew = Yo + %{Th (%2 — o)? + L, (xon — %2)?} Ty = g0+ — 10+ h(hg —log(1))
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Appendix B Baseline inference algorithm for DPM

Once we obtain decent parameter samples from the posterior distributions, the poste-
rior predictive density can be computed via the DPM Gipps sampling. The basic inference
algorithm is described below. Note that the modification details for the missing data im-
putation are provided in Section 4.3. In every iteration, the algorithm updates the cluster
memberships based on the parameter samples and observed data at hand, which leads
to the re-calculation of the cluster parameters. In the sampler, the state is the collection of
membership indices (s1,- - - ,sy) and parameters {a*, (67, -, 07), (wy, -+ ,w])}, where
9;-‘ refers to the parameter associated with cluster j.

Algorithm A2 DPM Gibbs Sampling for new cluster development

Require: Starting state (s1,---,sm),«,(01,---,0;), (w1, -, wy)

1: repeat
2: forh=1,--- ,Hdo
3: (1) Update cluster memberships:
> Take s, and compute the CI probabilities using the joint model.
4: if s, = j then
5: forj=1,---,]do
6 P(sy = j) = p(suls—n) f(x1n, xan|w;) - f(Su|x1n, X1, 0;)
> for observation & entering into existing discrete clusters.
end for
: else if s, = | + 1 then
% P(sp =] +1) = p(suls—n) fo(x1n xXan) - fo(Snlx1n, x2n)
> for observation & entering into a new continuous cluster.
10: end if
11: Draw a Cl index from a multinomial {1,2,---, ] + 1}
> with probabilities (P(s, = 1), P(sy =2),---,P(sy = ] +1)):Polya Urn.
12: if the Cl index = | 4+ 1 then
13: Record (91,-'- ,9]+1), (wl,--- ,le)
14: end if
15:
16: (2) Update parameters:
> (0}, a,w;) for each cluster based on the posterior densities.
17: forj=1,---,]+1do
18: Sample w} from the posterior: p(w|Xj,).
19: end for
20: Sample a* from the posterior: p(a|] +1).
21: forj=1,---,]+1do
22 Sample 67 from the posterior: p(6]S;, Xj).
23: end for
24: Record (67, - - ,97+1),(w1‘,--- ,w’fH)
25: end for
26: Record a*
27:
28: forh=1,--- ,Hdo
29: (3) Compute the log-likelihood: Y}, log[f (X}, [w;) f(Sn | X}, 6]*)]
> the function is to eventually stabilize after a large number of iterations.
30: end for

31: until M posterior samples (9;-‘, o, w]*) obtained. > M is a sufficient sample size
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Appendix C Development of the distributional components for DPM
Appendix C.1 Derivation of the distribution of precision «

In section 4.1, the parameter model (posterior) of the precision term « is defined as

p(al]) <po(a)-al™'- (a+n)- Beta(a+1,n)
p(al], 1,80, h0) o myGa(go+ ], ho —log(n)) + (1 — my)Ga(go+ ] — 1, ho — log(1))

To derive this, we first derive the distribution of the number of clusters given the precision
parameter: p(J|a). Consider a trivial example where we want to determine the number
of clusters that n = 5 observations fall into. One possible arrangement would be that
observations 1, 2, and 5 form new clusters, while observations 3 and 4 join an existing
cluster. (note, the order is important):

¢  observation 1 forms a new cluster, probability =

RIR

o
*  observation 2 forms a new cluster, probability = il

2
*  observation 3 enters into an existing cluster, probability = ——
x+2

. . _— s 3
*  observation 4 enters into an existing cluster, probability = ——
a+3

o
*  observation 5 forms a new cluster, probability = i

In this example, we have | = 3 clusters. We want to find the probability of this arrangement.
The probability is the following:

(%) (ail) (04—21-2> (zxi3> (aiél) = oc(a+l)(a+;)3(oc+3)(oc+4)
_ 5 T

3
“ Y T+

Hence the probability of observing | clusters amongst a sample size of n is given by

I'(a)

p(Jla) “]m

This is also considered the likelihood function. The posterior on « is proportional to the
likelihood times the prior, po ().

p(al]) o< p(Jla)po(w)

« oclr(l;(j_)n)po(oc)

The beta function Beta(x,y) is defined as the following:

Beta(x,y) = LGy

I'(x+y)

We can find the beta function of « + 1 and 7 as follows:

Beta(a+1,n) = Im
o al' ()
(a+n)T(a+n)
I'(w) a+n

"% «B 1n)—"—
1“(O‘_Fn)oc eta(a +1,n) o
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Thus the posterior simplifies to the following:

+
aan - po(a)

o« po(a)-a/~1- (a+n)- Beta(a+1,n)

p(al]) o« lX]-Beta((erlln).

Now, under the Ga(go, ho) prior for a, substituting po(«) with Ga(go, ho), then

p(al], 17,80, ho) o a8t =2. (a4 1) - e~ ho—log(n)
o 7ty Ga(go + J, ho — 1og()) + (1 = ) Ga(go + ] =1, ho — log(17))

Appendix C.2 Outcome Data Model of Sy, development with MAR covariate x1 for the discrete
clusters

Prior to the outcome parameter estimation, the missing covariates should be imputed
first to obtain the complete covariate model beforehand. In this study, if the binary covariate
x1y, is the only covariate with missingness, we develop the imputation model to impute the
binary covariate x;,, taking the following steps below, then update g, ¢, &, B based on the
posterior sampling detailed in Algorithm (A1) in Appendix (A.2). The imputation model
for xyy, is approximated by the joint:

f(x1|Sn X2, Bj, 05, &, By 717) o f(Sny X1\ X2, By, 05, &, By, 7))
where
f(Sn x1h|x2h/ﬂj, o?, Gjr Bj/ 7Tj) = f(Snlxn, Xon, Bjs 77, Gjr l;j) 'fBern(x1h|7Tj)
j j
. - L2
=0(X; By) Sy =0)- " (1 — ;) " + [1 - 6(X; By)] o,

log S, — XTB; log S, — XTB; _
¢<Og o ﬁj) -<I><Cjog " ﬁj) -ﬂflh(lfﬂj)l o

7j Oj

which serves as the joint density that we can use to sample the imputation values. For
example,

Foern(Xtn = 1Su, x21, B, 07, &, By 75) o f(Sn, x11 = 1xan, Bj, 07, &, Bj, 7))
~ ~ ~ ~ ~ ~ 2
= 0(Bjo + Bj1 + Bjoxan) 1(Sy = 0) - 71; + [1 — 6(Bjo + Bj1 + Bjoxan)] o5,
j

p <log Sp— (Bjo+ Bj1 + ,szxzh)> @ <§j10g Sn— (Bjo + Bj1 + Bjaxan) ) -

7j 7j

fBern(x11 = OISy, X1, Bj, 07, &, By 7)) o f(Sn, X1 = O|xa, Bj, 07, &, B, 717)
~ < < < 2
= 0(Bjo + Bjaxan) 1(Sp = 0) - (1 —711;) + [1 = 8(Bjo + Bjoxan)] o5,
j

¢<log Sy — (ﬁj? + ﬁjz?@h)) . (I)(gjlog Sn — (ﬁj9 + ,5jzxzh)> (1)

7j 7

Then, we can impute xq; with the values sampled from Bern(njgl) where

*

f(Shl X1p = 1|x2hr ﬁ]/ 0']2/ g]/ E]r 71'])
T, = = ~
" f(sh/ xlh = l|x2h/ ﬁ]/ 02/ (:]I ﬁ]l 7-[]) + f(Sh/ xlh = O|x2h/ ﬁ]/ 02/ gji ﬁ]/ 7-[])
) )
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Note that in R, the computation can be difficult when the numerator is too small. We
suggest the following tricks.

pl = f(sh’ X1p = 1|x2h/ﬂj/0]2/§jrgjl 7-[])
pPo = f(sh/ X1h = 0|x2h/ﬁjla]zrgjrﬁ~jr 7-[])
. elog(p1) e—log(p1) B 1
T = log(p1) + elog(po) ~ e—10g(p1) — 1 + elog(po)—log(p1)

Finally, the outcome model that is required to compute the parameter 6 = { ,B]-, sz, ¢ i B]}
in Metropolis-Hastings in Algorithm (A1) is obtained by summing the joint of S, and xy,
(marginalize) out the MAR covariate x1j, shown in Equation (9), as below.

1
F(SulxanBj 07,81, Bjo i) = Y f(Snoxunlxan, By, 07, G5 By, 77)

xlh:O

= f(Sn, x1n = xon, Bj, 07, &, Bjy 717) + f(Su, x1n = Olxan, By, 07, &, By, 7))

Appendix C.3 Covariate Data Model of x; development with MAR covariate x for the continuous
clusters

The parameter-free distributions fy(y|x) and fo(x) as data models for continuous
clusters are needed to calculate the probabilities of cluster membership and for the post-
processing calculations for prediction in the DPM. However, when MAR covariates are
present, it gives extra complexity in specifying distribution to integrate out the parameters.
Recall the integrals we are attempting to find are the following:

/f xi|w) dGo(w /f xi|lw) p

If binary covariate x1 is missing, then we will need to replace the distribution f(x|w) with
the continuous distribution (Gaussian) of x», which is f(x2|p;, T ) The derivation of the

parameter-free distribution fy(x;) and fy(x2) for the continuous cluster is as below.

fo(x1)
= /f x1|7t) p(m) du dm
= [ ”>”113m<1cocio)”(“°1)(1 — )l
1
= (x1+co—1) (1 _ \(1—x1+do—1)
Beta(co,dg) / & (1—m) dr
Beta(x1 +co, 1—x1+ do) 7-[(X1+C0_1)(1 _ n)(l—xl-i-do—l)

d
Betu(Co,do) Beta(x1 4+co, 1—x1+ do) T

=1, beta distribution
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—// ! X —L(x— )2 X ! ex —L( - )2
T Ve TP T2 R T T e TP T TR

XF(o)Cﬁ)%l_W”rdﬂdT

—ep—2 _L B 2_L - > T ,
27tF // exp{ 772 (x2 — ) 72 (1 — po) Tz}dy dt

The first step is to integrate with respect to u. First, we'll simplify the exponent.

1 1 Yo
—ﬁ(xz — )’ - ﬁ(# —o)* — 3
1 ’Yo
:_2T2. 2x2y+y +u —2y0y+yo]
1 1 70
=52 _2V —2(x2 + }40)#} 52 [xz + }40}
27 X2 + Ho (x2 + po)?
="z W (x2+y0)y+(4ﬂ)] +T2(4]4
_%+ug 1
272 T2
_ 1 X2+ Ho 2+(x2+ﬂo)2_x%+?‘%_@
2(t2/2) 2 472 272 T2
The integrand will have the kernel of a normal distribution for y with mean X2t and
variance T—z
5

fo(x2)

(x2+m)? B+u5 v | o
_'2nr t/ V n(12/2) < ) XeXp{ s a v e (L

term from w integral

eg
_ T / 2\ ~€03/2 1 xz + 2JCZHO +Hy |, GG 2
= 2/l (o) () P2 Ty )t

¥ —eg—1/2—1 1 —1p)?
= vt / () eXp{ 2( i ”0)}6”2

1
The integrand is the kernel of an inverse gamma distribution with shape parameter ¢y + 5

(x5 — po)?

and scale parameter 1

+’YO.

60
Z\f il (eo)
As shown above, a closed-form expression can be determined, but it is not always the case

since it can be extremely complicated. To simplify, we instead might have to consider a
Monte Carlo integral.

—eg—1/2
folar2) = X T(eo+1/2) (W + ’m)
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